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Abstract— This paper investigates an application of fuzzy
control to the guaranteed cost control problem of decentralized
robust control for a class of discrete-time uncertain large-
scale systems. Based on Linear Matrix Inequality (LMI) design
approach, a class of decentralized local fixed state feedback
controllers with additive gain perturbations is established. The
novel contribution of this paper is that in order to reduce the
large cost caused by the LMI conditions, the fuzzy controllers
are substituted for the additive gain perturbations. Although
the fuzzy controllers are included in the uncertain large-scale
systems, the closed-loop system is asymptotically stable. As
another important feature, the control input matrices allow
uncertainty and the conservative assumption is not needed
compared with the existing result that is based on the neural
networks. In order to demonstrate the efficiency of our proposed
controller, the simple numerical example is given.

I. INTRODUCTION

Large-scale interconnected systems are generally met in
our modern society, such as transportation systems, power
systems, communication network systems, economic sys-
tems, and so on. Such systems are generally characterized by
a large number of variables representing the system, a strong
interaction between the system variables, and a complex
structure. The study of large-scale interconnected systems
has received ever greater attention in the past few decades
(see, for example, [1] and the references therein).

In recent years, the problem of the decentralized robust
control of large-scale systems with parameter uncertainties
has been widely studied, and some solution approaches have
been developed. In [2], for the nonlinear multimachine power
systems a decentralized stabilizing linear state feedback
controller has been proposed by using the algebraic Riccati
equation (ARE) approach. Furthermore, in [3], the results
developed in [2] have been extended to the class of large-
scale interconnected linear systems via the linear matrix
inequality (LMI). Although there have been numerous useful
results on decentralized robust control of uncertain large-
scale systems, much effort has been made towards finding
a controller that guarantees robust stability. However, when
controlling such systems, it is also desirable to design the
control systems which guarantee not only the robust stability,
but also an adequate level of performance. One approach
to this problem is the so-called guaranteed cost control
approach [4]. This approach has the advantage of providing
an upper bound on a given performance index.
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Recent advance in theory of LMI has allowed a revisiting
of the guaranteed cost control approach [5]. The existence
of the guaranteed cost control problem for a class of the
interconnected systems have been established via the LMI
conditions [6]. The LMI design method is a very powerful
tool, it can not only efficiently find feasible and global
solutions, but also easily handle various kinds of additional
linear constraints. However, due to the presence of the
design parameter of the LMI, it is well known that the
cost performance becomes quite large. In order to avoid
this drawback, the stability of the closed-loop system with
the neurocontroller have been studied via the LMI-based
design approach [9], [10]. However, in these researches,
the conservative matching conditions for the neurocontroller
have been made. Moreover, there are no uncertainties for the
input matrix. Thus, it is not applicable to a wider class of
the problems.

The fuzzy controller has been utilized for an intelligent
control system. The fuzzy controller can decide the control
algorithm without the strict mathematical model. As an
example, the controller that guarantees the nonlinearity of
the robot manipulator by means of fewer fuzzy rules has
been proposed [7]. Using the fuzzy control, a design of the
linear quadratic state feedback controller for the nonlinearity
system has been proposed [8]. However, there is a possibility
that fuzzy controller can not stabilize the system because
the stability of the closed-loop system which includes the
fuzzy controller has not been considered. For example, even
if the fuzzy control is applied, the system stability may not
be guaranteed without the consideration for the stability of
the overall systems when the degree of system nonlinearity
is strong.

In this paper, the decentralized guaranteed cost control
problem of the discrete-time uncertain large-scale systems
with the fuzzy control is discussed. The crucial difference
between the method in [7] and the proposed method is that
the decomposition of the optimization based on the LMI is
newly considered and the fuzzy control is substituted for the
additive gain perturbations. Our contributions are as follows.
Firstly, a class of the fixed state feedback controller of the
discrete-time uncertain large-scale systems with the gain
perturbations is derived. Secondly, some sufficient conditions
to design the decentralized guaranteed cost controller are
newly established by means of the LMI. Finally, in order to
reduce the large cost caused by the parameter uncertainties,
fuzzy control are used. As a result, although the fuzzy
control are included in the uncertain large-scale systems,
it is newly shown that the robust stability of the closed-
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loop system and the reduction of the cost are both attained.
As another important feature, the control input matrices
allow uncertainty and the conservative assumption is not
needed compared with the existing result that is based on
the neural networks [10]. Thus, the proposed design method
can be applied to the wide class for the uncertain large-scale
systems. Finally, in order to verify the effectiveness of our
design approach, the numerical example is given.

II. PROBLEM STATEMENT

Consider a class of large-scale interconnected systems
composed of N subsystems described by the following state
equations

xi(k + 1) = [Ai + ∆Ai(k)] xi(k) + [Bi + ∆Bi(k)]ui(k)

+
N∑

j=1, j �=i

[Aij + ∆Aij(k)]xj(k), (1a)

ui(k) = [Ki + ∆Ki(k)] xi(k), (1b)

where xi ∈ Rni and ui ∈ Rmi are the state and control
of the ith subsystems, respectively. Ai, Bi and Aij are
constant matrices of appropriate dimensions. The parameter
uncertainties considered here are assumed to be of the
following form:[

∆Ai(t) ∆Bi(t) ∆Aij(t)
]

=
[
DaiFai(k)

[
Eai Ebi

]
DaijFaij(k)Eaij

]
, (2)

where Fai(k) ∈ Rpi×ri and Faij(k) ∈ Rpij×rij are un-
known matrix functions with Lebesgue measurable elements
and satisfying

F T
ai(k)Fai(k) ≤ Iri , F T

aij(k)Faij(k) ≤ Irij .

Moreover, the matrix Ki of the gain matrix (1b) is the fixed
gain that will be solved via the LMI, later. It is assumed that
∆Ki(k) has the following form

∆Ki(k) = DkiFki(k)Eki, (3)

where Fki(k) ∈ Rqki×ski is the output of the fuzzy control
satisfying

F T
ki(k)Fki(k) ≤ Iski .

It should be noted that ∆Ki(k) is so-called additive gain
perturbation [11]. Associated with system (1) is the cost
function

J =
N∑

i=1

∞∑
k=0

[
xT

i (k)Qixi(k) + uT
i (k)Riui(k)

]
, (4)

where Qi and Ri are given as the positive definite symmetric
matrices.

Definition 1: A decentralized control law ui(k) =
[Ki + ∆Ki(k)] xi(k), i = 1, ... , N is said to be a quadratic
guaranteed cost control with cost matrix Pi > 0 for the
uncertain large-scale interconnected systems (1a) and the
cost function (4) if the closed-loop systems are quadratically
stable and for some positive constant J , the closed-loop

value of the cost function (4) satisfies the bound J ≤ J
for all admissible uncertainties, that is,

N∑
i=1

(
xT

i (k + 1)Pixi(k + 1) − xT
i (k)Pixi(k)

+
[
xT

i (k)Qixi(k) + uT
i (k)Riui(k)

])
< 0. (5)

It should be noted that if the matrix inequality (5) holds,
the closed-loop system is asymptotically stable and there
exists an upper bound on the cost performance.

The objective of this paper is to design a decentralized
linear time-variant guaranteed cost control law ui(k) =
[Ki + ∆Ki(k)] xi(k) for the large-scale interconnected sys-
tems (1) with uncertainties (2) and fuzzy control input (3).

III. PRELIMINARY RESULTS

Now, a sufficient condition for existence of the guaranteed
cost control for the uncertain large-scale systems (1) is
established.

Theorem 1: Consider the large-scale interconnected sys-
tems (1) with the uncertainties (2) and the fuzzy control input
(3). If there exist the symmetric positive definite matrices
Pi ∈ Rni×ni such that the matrix inequality (6) is satis-
fied, the control laws ui(k) = [Ki + ∆Ki(k)]xi(k), i =
1, · · · , N are the guaranteed cost controller.

Mi

:=



ÃT

i PiÃi + Θi ÃT
i PiÃi1 · · · ÃT

i PiÃiN

ÃT
i1PiÃi ÃT

i1PiÃi1 − In1 · · · ÃT
i1PiÃiN

...
...

. . .
...

ÃT
iNPiÃi ÃT

iNPiÃi1 · · ·ÃT
iNPiÃiN − InN




< 0, (6)

where

Ãi = Ai + Bi [Ki + ∆Ki(k)] ,
+∆Ai(k) + ∆Bi(k) [Ki + ∆Ki(k)] ,

Ãij = Aij + ∆Aij(k),
Θi = −Pi + (N − 1)Ini + Q̃i,

Q̃i = Qi + [Ki + ∆Ki(k)]T Ri [Ki + ∆Ki(k)] .

Moreover, there exists no matrix ÃT
i1PiÃi1 − Ini , i =

1, ... , N in the matrix Mi.
Proof: Combining the guaranteed cost controller

ui(k) = [Ki + ∆Ki(k)] xi(k) with (1) gives a closed-loop
system (7).

xi(k + 1) = Ãixi(k) +
N∑

j=1, j �=i

Ãijxj(k). (7)

Suppose now there exist the symmetric positive definite
matrices Pi > 0, i = 1, ... , N such that the matrix
inequality (6) holds for all admissible uncertainties (2) and
the fuzzy control input (3). In order to prove the asymptotic
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∆V (x(k))

=
N∑

i=1

[
xi(k)
z(k)

]T




ÃT
i PiÃi − Pi + (N + 1)Ini ÃT

i PiÃi1 ÃT
i PiÃi2 · · · ÃT

i PiÃiN

ÃT
i1PiÃi ÃT

i1PiÃi1 − Ini ÃT
i1PiÃi2 · · · ÃT

i1PiÃiN

ÃT
i2PiÃi ÃT

i2PiÃi1 ÃT
i2PiÃi2 − Ini · · · ÃT

i2PiÃiN

...
...

...
. . .

...
ÃT

iNPiÃi ÃT
iNPiÃi1 ÃT

iNPiÃi2 · · · ÃT
iNPiÃiN − Ini



[

xi(k)
z(k)

]
.(11)

stability of the closed-loop system (7), let us define the
following Lyapunov function candidate

V (x(k)) =
N∑

i=1

xT
i (k)Pixi(k). (8)

The corresponding difference along any trajectory of the
closed-loop system (7) is given by

∆V (x(k)) := V (x(k + 1)) − V (x(k))

=
N∑

i=1

[
xi(k)
z(k)

]T

×




ÃT
i PiÃi − Pi ÃT

i PiÃi1 ÃT
i PiÃi2 · · · ÃT

i PiÃiN

ÃT
i1PiÃi ÃT

i1PiÃi1 ÃT
i1PiÃi2 · · ·ÃT

i1PiÃiN

ÃT
i2PiÃi ÃT

i2PiÃi1 ÃT
i2PiÃi2 · · ·ÃT

i2PiÃiN

...
...

...
. . .

...
ÃT

iNPiÃi ÃT
iNPiÃi1Ã

T
iN PiÃi2· · ·ÃT

iNPiÃiN




×
[

xi(k)
z(k)

]
, (9)

where

z(k) :=
[

xT
1 (k) xT

2 (k) · · · xT
N(k)

]T
.

Taking into account the fact that

N∑
i=1

N∑
j=1, j �=i

xT
j (k)xj(k) −

N∑
i=1

N∑
j=1, j �=i

xT
i (k)xi(k)

= 0, (10)

and summing this equality (10) to (9) results in (11). More-
over, using the assumption (6) and Q̃i > 0, it follows
immediately that

∆V (x(k)) < −
N∑

i=1

xT
i (k)Q̃ixi(k) < 0. (12)

Hence, V (x(t)) is a Lyapunov function for the closed-loop
system (7). Therefore, the closed-loop system (7) is asymp-
totically stable and ui(t) is the guaranteed cost controller
because the inequality (5) is satisfied. Furthermore, summing
both sides of the inequality (9) from 0 to ∞ and using the

initial conditions, the following inequality holds.

∞∑
k=0

∆V (x(k)) =
∞∑

k=0

[V (x(k + 1)) − V (x(k))]

=
N∑

i=1

[
xT

i (∞)Pixi(∞) − xT
i (0)Pixi(0)

]

< −
N∑

i=1

∞∑
k=0

xT
i (k)Q̃ixi(k) = −J. (13)

Since the closed-loop system (7) is asymptotically stable,
xi(∞) = 0 i = 1, ... , N . Finally, the following inequality
holds.

J =
N∑

i=1

∞∑
k=0

xT
i (k)Q̃ixi(k) <

N∑
i=1

xT
i (0)Pixi(0) = J .(14)

The proof of Theorem 1 is completed.
Now, the LMI design approach to the construction of the

guaranteed cost controller is given.
Theorem 2: Suppose there exists the constant parameters

εai > 0, εaij > 0 such that for all i = 1, ... , N the LMI
(15) have the symmetric positive definite matrices Xi > 0 ∈
Rni×ni and a matrix Yi ∈ Rmi×ni , where

Ξi = εaiDaiD
T
ai +

N∑
j=1, j �=i

εaijDaijD
T
aij ,

and note that the matrix

[
−Ini ET

aii

Eaii −εaiiIrii

]
is not included

in Ni.
If such conditions are met, the decentralized linear state

feedback control laws (16)

ui(k) = [Ki + ∆Ki(k)] xi(k)
=

[
YiX

−1
i + ∆Ki(k)

]
xi(k) (16)

are the guaranteed cost controllers with the additive fuzzy
control input ∆Ki(k) = DkiFki(k)Eki, where Ki :=
YiX

−1
i is the fixed matrix gain. Moreover, the cost bound

satisfies (17).

J <

N∑
i=1

xT
i (0)X−1

i xi(0). (17)

In order to prove Theorem 2, the following Lemma will
be used [5].
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Ni :=




−Xi XiE
T
ki Xi Xi Y T

i 0 0 · · · 0 0 ΛT 0 ΨT

EkiXi −Iski 0 0 0 0 0 · · · 0 0 0 0 0

Xi 0 − 1
N − 1

Ini 0 0 0 0 · · · 0 0 0 0 0

Xi 0 0 −Q−1
i 0 0 0 · · · 0 0 0 0 0

Yi 0 0 0 −R−1
i + DkiD

T
ki 0 0 · · · 0 0 DkiD

T
kiB

T
i 0 DkiD

T
kiE

T
bi

0 0 0 0 0 −In1 ET
ai1 · · · 0 0 AT

i1 0 0
0 0 0 0 0 Eai1−εai1Iri1· · · 0 0 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 0 0 · · ·−InN ET
aiN AT

iN 0 0
0 0 0 0 0 0 0 · · ·EaiN−εaiN IriN 0 0 0
Λ 0 0 0 BiDkiD

T
ki Ai1 0 · · ·AiN 0 −Xi + Ξi BiDki DT

kiE
T
bi

0 0 0 0 0 0 0 · · · 0 0 DT
kiB

T
i −Iqki 0

Ψ 0 0 0 EbiDkiD
T
ki 0 0 · · · 0 0 EbiDki 0 −εaiIri




< 0. (15)

where Λ := AiXi + BiYi, Ψ := EaiXi + EbiYi.

Lemma 1: Let G, H and F be real matrices of appropriate
dimensions with FFT ≤ In. Then, for any given ϕ > 0, the
following inequality holds.

GFH+ (GFH)T ≤ ϕGGT + ϕ−1HTH. (18)
Proof: Let us introduce the matrices Xi = P−1

i and
Yi = KiP

−1
i . Pre- and post-multiplying both sides of the

LMI (15) by

Ti := block diag
[

Pi Iski Ini Ini Imi

Ini Iri1 · · · InN IriN Ini Iqki Iri

]
yields (19). Applying the Schur complement [12] to the
matrix inequality (19) gives (20). Using Lemma 1 for all
admissible uncertainties (2) and the fuzzy control input (3)
and after a direct but tedious matrix manipulation, the matrix
inequality (6) holds. On the other hand, since the results
of the cost bound (17) can be proved by using the similar
argument for the proof of Theorem 1, it is omitted.

Since the LMI (15) consists of a convex solution set
of Xi ∈ (εai, εai1, ... , εaiN , Xi, Yi), various efficient
convex optimization algorithms can be applied. Moreover, its
solutions represent the set of the guaranteed cost controllers.
This parameterized representation can be exploited to design
the guaranteed cost controllers which minimizes the value of
the guaranteed cost for the closed-loop uncertain large-scale
interconnected systems. Consequently, solving the following
optimization problem allows us to determine the optimal
bound.

E0 : min
ΣN

i=1Xi

N∑
i=1

αi,

Xi ∈ (εai, εai1, ... , εaiN , Xi, Yi). (21)

s.t. LMI (15), (22), εai > 0, εaij > 0.[
−αi xT

i (0)
xi(0) −Xi

]
< 0. (22)

That is, the problem addressed in this paper is as follows:
“Find Ki = YiX

−1
i , i = 1, ... , N such that LMI (15) and

(22) are satisfied and for all i, the cost J becomes as small
as possible.”

Finally, we are in a position to establish the main result
of this section.

Theorem 3: If the above optimization problem has the
feasible solution set of εai, εaij , Xi and Yi, then the
control laws of the form (16) are the decentralized linear
state feedback control laws which ensure the minimization
of the guaranteed cost (17) for the uncertain large-scale
interconnected systems.

Proof: Using Theorem 2, the control laws (16) that
consist of the feasible solution set of εai, εaij , Xi and Yi are
the guaranteed cost controllers of the uncertain large-scale
interconnected systems (1). Using the Schur complement to
the LMI (22) results in

(22) ⇔ xT
i (0)X−1

i xi(0) < αi. (23)

It follows that

J <

N∑
i=1

xT
i (0)X−1

i xi(0) <

N∑
i=1

αi

< min
ΣN

i=1Xi

N∑
i=1

αi =
N∑

i=1

min
Xi

αi = J∗. (24)

Thus, the minimization of αi implies the minimum value J∗

of the guaranteed cost for the interconnected uncertain sys-
tems (1). The optimality of the solution of the optimization
problem follows from the convexity of the objective function
under the LMI constraints. This is the desired result.

It can be noted that the original optimization problem for
the guaranteed cost (24) can be decomposed to the reduced
optimization problems min

Xi

αi because each optimization

problem is independent of other LMI. Hence, this optimiza-
tion problems for each independent subsystem would be
solved.

3102






−Pi ET
ki Ini Ini KT

i 0 0 · · · 0 0 (Ai + BiKi)T 0 (Eai + EbiKi)T

Eki −Iski 0 0 0 0 0 · · · 0 0 0 0 0

Ini 0 − 1
N − 1

Ini 0 0 0 0 · · · 0 0 0 0 0

Ini 0 0 −Q−1
i 0 0 0 · · · 0 0 0 0 0

Ki 0 0 0 −R−1
i + DkiD

T
ki 0 0 · · · 0 0 DkiD

T
kiB

T
i 0 DkiD

T
kiE

T
bi

0 0 0 0 0 −In1 ET
ai1 · · · 0 0 AT

i1 0 0
0 0 0 0 0 Eai1−εai1Iri1· · · 0 0 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 0 0 · · ·−InN ET
aiN AT

iN 0 0
0 0 0 0 0 0 0 · · ·EaiN−εaiN IriN 0 0 0

Ai + BiKi 0 0 0 BiDkiD
T
ki Ai1 0 · · ·AiN 0 −Xi + Ξi BiDki DT

kiE
T
bi

0 0 0 0 0 0 0 · · · 0 0 DT
kiB

T
i −Iqki 0

Eai + EbiKi 0 0 0 EbiDkiD
T
ki 0 0 · · · 0 0 EbiDki 0 −εaiIri




< 0. (19)


−Pi + ET
kiEki Ini Ini KT

i 0 · · · 0 (Ai + BiKi)T 0

Ini − 1
N − 1

Ini 0 0 0 · · · 0 0 0

Ini 0 −Q−1
i 0 0 · · · 0 0 0

Ki 0 0 −R−1
i + DkiD

T
ki 0 · · · 0 DkiD

T
kiB

T
i 0

0 0 0 0 −In1· · · 0 AT
i1 0

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 · · ·−InN AT

iN 0
Ai + BiKi 0 0 BiDkiD

T
ki Ai1· · ·AiN −P−1

i BiDki

0 0 0 0 0 · · · 0 DT
kiB

T
i −Iqki




+




0
...
0

Dai

0


Fai




(Eai + EbiKi)T

0
0
0

DkiD
T
kiE

T
bi

0
...
0

DT
kiE

T
bi

0




T

+




(Eai + EbiKi)T

0
0
0

DkiD
T
kiE

T
bi

0
...
0

DT
kiE

T
bi

0




F T
ai




0
...
0

Dai

0




T

+
N∑

j=1, j �=i




0
...
0

Daij

0


Faij




0
...
0

ET
aij

0
...
0




T

+
N∑

j=1, j �=i




0
...
0

ET
aij

0
...
0




F T
aiN




0
...
0

Daij

0




T

< 0. (20)

Remark 1: It can be noted that the cost bound (22)
depends on the initial condition xi(0). To remove this
dependence on xi(0), it is assumed that xi(0) is a zero mean
random variable satisfying E[xi(0)xi(0)T ] = Ini [4], [6]. In
this case, it is interesting to point out that the guaranteed

cost becomes

E[J ] <

N∑
i=1

E
[
xT

i (0)X−1
i xi(0)

]

=
N∑

i=1

Trace [X−1
i ]

<

N∑
i=1

Trace [Vi]<
N∑

i=1

min
Yi

Trace [Vi]=J†, (25)
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where [
−Vi Ini

Ini −Xi

]
< 0,

Yi ∈ (εai, εai1, · · · , εaiN , Xi, Yi, Vi). (26)

Moreover, since the solutions set of εai , εaij , Xi, Yi and
Vi are independent from the other subsystems, each subop-
timization problem can be solved.

Ei : min
Yi

Trace [Vi], i = 1, ... , N. (27)

Finally, since the global optimization problem E0 does not
need to be solved, the proposed reduced-order optimization
technique is very useful and reliable.

IV. ADDITIVE GAIN AS FUZZY CONTROL

The LMI approach for the uncertain large-scale systems
usually results in the conservative controller design due to
the existence of the uncertainties ∆Ai, ∆Aij , ∆Bi and the
additive gain perturbations ∆Ki. As a result, the cost J
becomes large. The main contribution of this paper is to
apply the fuzzy control as the additive gain perturbations to
improve the cost. It should be noted that the proposed fuzzy
controller regulate its outputs in real-time under the robust
stability by the LMI approach.

In this paper, the error Eri(k) and the difference of error
∆Eri(k) can be defined as

Eri(k) = xi(k), (28a)

∆Eri(k) = Eri(k) − Eri(k − 1). (28b)

In this paper, fuzzy subsets of the output Fki(k) are given
by the following form

If Eri(k) is L1j(k) and ∆Eri(k) is L2j(k),
then Fki(k) is Hj(k) j = 1, ... , M, (29)

where M is the total rules number, L1j(k), L2j(k), and
Hj(k) are fuzzy subsets of the input at step k. OR operation
is applied to the fuzzy subsets Hj(k), j = 1, ... , M , and
Fki(k) can be obtained by calculating its center of gravity.

Fki(k) :=

M∑
j=1

φj S(φj)

M∑
j=1

S(φj)

. (30)

where S(φj ) is OR operation set of Hj(k), φj is the
horizontal axis of the membership function for the output
of the fuzzy controller.

Eri(k) and ∆Eri(k) are defined as the input of the fuzzy
controller. Hence, the fuzzy controller outputs arbitrary func-
tion Fki(k). The membership functions and their ranges are
shown in Fig. 1 and Fig. 2. As a symbol that denotes degree
and sign of Eri(k), ∆Eri(k) and Fki(k), Negative Big
(NB), Negative Small (NS), Zero (ZO), Positive Small (PS),
Positive Big (PB) are defined. The range of the membership
functions is selected according to the maximum error and

TABLE I

THE FUZZY RULE FOR UNCERTAIN SYSTEM.

∆Eri(k)
NB NS ZO PS PB

NB PB
NS PS NS

Eri(k) ZO PB PS ZO NS NB
PS PS NS
PB NB

NB NS ZO PS PB

-1.0 -0.5 0.0 0.5 1.0

-100 -1 0 1.0 100

1.0

)(kEir∆

)(kEir

Fig. 1. Input of membership function.

the difference of the error values when Fki(k) = 0 for the
proposed system (1).

The relationship between the input and the output of the
fuzzy controller is the most important part. This relationship
must be obtained correctly to improve the performance of the
fuzzy logic control system, which is called If-Then rules.
The fuzzy logic is determined by not a strict value but a
vague expression. Therefore, the proposed fuzzy rules can
be achieved by expression such as ”Big” or ”Small”. The
process for determining the rules is whether the arbitrary
function Fki(k) should be increased or decreased by the error
Eri(k) and the difference of the error ∆Eri(k). The control
rules when the initial condition of the proposed system
changes from the positive to the origin are considered.

In order to determine the amount of increment or decre-
ment for the arbitrary function Fki(k), If-Then rules are used.
These rules are converted into a table as given by Table 1.
For example, when ∆Eri(k) is Zero (ZO) and Eri(k) is
Negative Big (NB), then Fki(k) is should be Positive Big
(PB) to increase the absolute value of ‖ Ki + ∆Ki(k) ‖.
As a result, the convergence (change) will be fast (great). In
other case, when ∆Eri(k) is Positive Big (PB) and Eri(k)
is Zero (ZO), then Fki(k) is should be Negative Big (NB) to
decrease the absolute value of ‖ Ki + ∆Ki(k) ‖. Thus, the
convergence (change) will be slow (small). In this way, the
control rules are set by considering how Eri(k) and ∆Eri(k)
change.

V. NUMERICAL EXAMPLE

In order to demonstrate the effectiveness of proposed fuzzy
controller, a numerical example is given. The system matrices
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NB NS ZO PS PB

1.0 0.5 0.0 -0.5 -1.0

1.0

)(kFki

Fig. 2. Output of membership function.

Table 2. The actual costs.
Fai(k) = Faij(k) Ĵ (Without fuzzy) J (With fuzzy)

1.0 7.2610 6.5425
0.0 7.2609 6.5423
−0.1 7.2609 6.5421

0.5 sin(120πk) 7.2609 6.5423
1 − exp(−k) 7.2610 6.5424

are given below.

A1 =
[

0 1
−1 −1

]
, A12 =

[
0 0
0 0.1

]
, A13 =

[
0 0.1
0 0.1

]
,

A2 =
[

0 1
−2 −3

]
, A21 =

[
0 0.1
0 0.1

]
, A23 =

[
0 0
0 0

]
,

A3 =
[

0 1
1 0

]
, A31 =

[
0.1 0
0.1 0.1

]
, A32 =

[
0 0
0 0.1

]
,

B1 =
[

0
1

]
, B2 =

[
0
2

]
, B3 =

[
1

0.5

]
,

Dai =
[

0
0.01 × i

]
,

Eai =
[
0 0.001 × i

]
, Ebi =

[
0.001× i

]
,

Daij =
[

0
0.01 × i

]
, Eaij =

[
0 0.001 × i

]
,

Dki =
[
0 0.1

]
, Eki =

[
2.0
]
,

Ri = i, Qi =
[

0.001 × i 0
0 0.01 × i

]
, i = 1, 2, 3.

The fixed state feedback control gains Ki which is based on
the proposed LMIs (15) are given by

K1 =
[

9.5354e − 1 8.2313e − 1
]
,

K2 =
[

9.7967e − 1 1.3495
]
,

K3 =
[

1.1787e − 1 −9.4046e − 1
]
.

The results of the cost for the proposed system (1) with the
fuzzy controller and uncertain system without the additive
gain perturbations are shown in Table 2. In all cases, the
cost J with the fuzzy controller is smaller than the cost Ĵ
without the fuzzy controller. Therefore, it is also shown from
Table 2 that it is possible to improve the cost by applying

the new proposed fuzzy controller. It should be noted that
although the simple fuzzy rule such as Table 1 is applied to
the uncertain large-scale systems, the reduction of the cost
is attained.

VI. CONCLUSIONS

The application of the fuzzy control for the guaranteed
cost control problem of the large-scale system that has
uncertainties in both state and input matrices has been
investigated. Compared with the existing results the new LMI
condition have been derived. In order to reduce the cost, the
fuzzy control has been newly introduced. Substituting the
fuzzy control into the additive gain perturbations, the robust
stability and the adequate cost of the closed-loop system are
both guaranteed even if such systems include these artificial
controllers. Moreover, since the conservative assumption that
is related to the neural networks [10] is not needed, the
proposed design method can be applied to the wide class
of the uncertain large-scale systems. The numerical example
has shown that the fuzzy control has succeeded in reducing
the large cost caused by the LMI technique.
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