Proceedings of the American Control Conference
Arlington, VA June 25-27, 2001

Robust H, Control Problem for Nonstandard Singularly
Perturbed Systems and Application

Hiroaki Mukaidani*! and Hua Xu*
* Faculty of Information Sciences, Hiroshima City University,
3-4-1, Ozuka—Higashi, Asaminami-ku, Hiroshima, 731-3194 Japan.
t Ermail: mukaida@im.hiroshima-cu.ac. ip,

** Graduate School of Systems Management, The University of Tsukuba,
3-29-1, Otsuka, Bunkyou-ku, Tokyo, 112-0012 Japan.

Abstract

This paper considers the robust H, control problem
for nonstandard singularly perturbed uncertain sys-
tems under imperfect state measurements. We propose
a new algorithm which is based on the Kleinman al-
gorithm with specific initial conditions. Furthermore,
we also present a new algorithm for solving general-
ized Lyapunov equation on the basis of the generalized
Schur methed. Finally, in order to show the effective-
ness of the proposed algorithms, a practical example is
included.

1 Introduction

Robust control problems for singularly perturbed un-
certain systems have been extensively studied in the
past decade (see e.g., [1, 2] and the reference therein).
Shi et al.[1] has studied the robust H, control problem
for standard singularly perturbed uncertain systems by
making use of a singular perturbation method. How-
ever, there partially exist the uncertainties in the state
and the output matrices. Recently, Shi et al.[2] has also
studied the asymptotic Ho, control of singularly per-
turbed systems such that there completely exist the un-
certainties in the state and the output matrices. How-
ever, the practical design procedure for the output dy-
namic controller has not been reported. Moreover, it is
found that the nonsingularity of the state matrix Asy
for the fast subsystem in [1, 2] plays an important role
in the study of the problem.

In this paper, we consider the robust H, control prob-
lem for nonstandard singularly perturbed uncertain
systems under imperfect state measurements where the
uncertainties are time—varying norm—bounded pertur-
bation parameters. The crucial difference from the ex-
isting results Shi et al. [1] are that there exist the un-
certainties in both the state and output matrices and
the fast state matrix A3 may be singular. In order
to solve the Riceati equation, we propose a new algo-
rithm which has quadratic convergence property. The
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resulting algorithm is quite different from the exist-
ing method [3]. Moreover, we present a new algorithm
for solving the generalized Lyapunov equation which is
based on a variant of the numerical approach to the
generalized Sylvester equations [6]. In order to show
the effectiveness of our algorithms, we apply the new
algorithm to the manufacturing assembly process and
show the validity of the full-order controller proposed
in this paper.

2 Problem Formulation

Consider a class of uncertain singularly perturbed sys-
tems [2]

&1 = [Ann + AApzy + [Ars + Adsslz
+Byw+ [Bis + ABplu, z(0)=0, (la)

£ig = [A21 + AAa]zy + [Ase + AAxg]zs
+Bo1w + [Bag + ABaxolu, z,(0)=0, (ib)
z = Czy + Crazg + Digu, (1)
y = [Co1 + ACu]z1 + [Caa + AC2]z2 + Dyyw,(1d)

where ¢ is a small positive parameter, z; € R™ and
z3 € R™ are state vectors, u € R™! is the control
input, w € RY is the disturbance, z € R® is the con-
trolled output, y € R™2 is the measurement. All ma-
trices above are of appropriate dimensions. The system
(1) is said to be in the standard form if the matrix Asy
is nonsingular. Otherwise, it is called the nonstandard
singularly perturbed systems.

The admissible parameter uncertainties are the follow-
ing form

AAH AAlz ABIZ
AAdy AAy ABx»

- [ g; ]F(t)[ Ba Bax B ], (2a)

[ ACy ACxn |=H.F(®t)| Ea Ean ], (2b)

FT@F(#) <1, F() e RO, (2)
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where F'(t) € RP** is a Lebesgue measurable matrix
of uncertain parameters. Note that there completely
exist the uncertainties in all of the state and the output
matrices compared with Shi et al[1]. Let us introduce
the partitioned matrices

T
m:[mflp cczT] eR™, n=mn1+no,

o An Al2 _ All A12
A = { e As e 1A ] A= [ Az1 Az } ’
n By | Bu
Bre = { £~ By ]’ B = [321 ]’
B

BZEZ[E—IBzz])Bzz[Bzz]a
Ci=[Cn Cra], Co=[Cn Cxn],

[ AAn Adyp
AAE - l: E_IAAzl E-IAAzz } i
AB
ABy: = { 5‘1A%22 } , ACy=[ ACy ACy» |,
_ Hal — Hal nx
HQE—[S_IHaZ},Hﬂv—{Haz}GR F7

Bo=[ By Fs]eR™

Then equations (1) can be rewritten as

= [A: + AAz + Biew + |Bae + ABacJu, (3a)
z(0) =0,

z= O]_.’IC + Dlzu, (Sb)
y = [Cs + ACz + Dayw, (8¢)
where

AA; = HyF(9)Ba, ABy. = H,eF(1)Es,
ACy = H,F(t)E,.

If an uncertain singularly perturbed system (1) or (3) is
QS—H_.—, then the following conditions are satisfied

[7.

i) The closed-loop system is uniformly asymptotically
stable.

ii) For any square integrable signal w, the uncertain
singularly perturbed system (1) has an H., norm
bound + > 0 in the sense

Izl2 < 7vlwf2- (4)
The following lemma was shown by Gu [7].

Lemma 1 The singularly perturbed uncertain system
(1) or (3) can be made QS-Hoo—y by a strictly proper
linear output feedback control if and only if there exists
a A > 0 such that the following cuziliary system without
uncertainiies

6= deat [ B I ]| |+ Bacs, (50

z{(0) =0,
{ z } 101 + ?12 } (5b)
2= T u,
z XEG, XEb
y=Cor + [ Da vAH, ] [ g ] (5¢)

where W € RF is the disturbance, 2 € R*® is the con-
trolled output, con be stabilized with its He, norm less
than v by an oulput feedback control. That is, for any
square integrable auziliary signal w,, the uncertain sin-
gularly perturbed system (5) has an Hy norm bound
v > 0 in the sense

Izell2 < ~vlwel2 (6)

where

ze:[z}eRlﬂ's, we:[g}eRllﬂ’A

Define

Ch
Bl’y)\e = [ Bie YAHqe ] , Cia= 1E s
'X a

1
Dizy = [ DlZXEb } . Datya = [ Doy vAH, |,
Dy =(DD12) , Do = (Do Dgppn)
The equations (5) can be also rewritten as

T = Aaﬁ: + Bl'yz\zwe + B?EU'» .’L‘(O) = 07 (73‘)

ze = C1az+ Diayu, (7b)

y = Caz+ Dayawe. (7¢)
We shall make the following basic structure assump-

tions for the full-order systems (7), which are typical
in the H. control problem.

Assumption 1 Al. The pair (A, Baa) is stabiliz-
able and {Cha, Agz) is observable.
[ Aoy —sl,, Ba

A2. rank Cia Dy | =na+mg,
L Ea2 Eb
Azz - SIn2 B12 Haz _
rank [ Coo Dy H, |T™ A
[ A(S) Bg
A3. rank Ol D12 =n+ miy,
L E, B
A(.S‘) B]_ Ha .
rank [ Cy Dy H |~ n+ Mg,
| A=y, A
where A(s) = [ Anp Aoy |-

The QS—H ,—y condition can be written in a more con-
venient form (Shi et al. [1]).

Lemma 2 A4 system (1) is QS-Hoo—y if and only if
there ezists a positive scalar A such that the following

3921



algebraic Riccati equations (8a) and (8b) have symmet-
ric positive semidefinite stabilizing solutions X, and Y,
respectively, which satisfy p(X.Y.) < ¥%.

AT X, + X Ac + v 2 XeBiyppe Bl 5. X
—(XeBa: + CgADIZA)Dl (B3. Xe + D15 C1a)
+CECin=0, (82)
AY. + VAT + 470N 00Y.
—(v.CT + Bl.Y;\EDngA)f)z (CaY: + Dzlfy/\Bg:,,Aa)

+ Bipe Bl =0, (8b)
where
X eX4 [ v Y3
Xe = { eXy eXp |7 Yo Yio e ' |’

Moreover, a suitable dynamic output feedback controller
s given by

é = Ael+ Ly (Qa)

= F 255 (Qb)

where

Fpe = =Dy (B3. X. + DO,

Kae = —(Y.Cf + Bippe D310 D, Le = —Z: Ko,

Acs — AE + B22F25 + ')/_2Bl'y>\£Ba)\5XE

—Le(Ca + v 2D BT Xo),

ZE - (In - ’Y_ZYsXE)il, f €R".
Remark 1 Recall that the solution X. for (8a) is
called stabilizing if A, + Biyael1e + BacFhe is stable
matriz with Fi. = V—ZB%;AEXE, Similarly, the solu-

tion Y; of (8b) is stabilizing if As + K1.Cix + K2:Ca
18 stable matriz with K. = 7*2Y5C'1T)\.

In order to solve the algebraic Riccati equation (8a) and
(8b), we introduce the following generalized algebraic
Riccati equation (10a) and (11a), respectively.
FiX)=ATX + XTA+ v 2XTBipBL X
—(XT By + CE Di2x)D1 (BT X
+ D5 C) + ChCia =0, (10a)
L.X =x7m, = X, (10b)
Fo(Y) = AYT + VAT + vy 2y CLonY?
—(YCF + BiypDiyn) Da(CoY T
+ D217>\B€y>\> + B]_fy)\Ba/\ =0, (lla)
7ty =vinst =v., (11b)

where

I, = [Inl 0 jlv Bl'y)\:[Bl FY)\Ha ]7

0 «€l,,
X1 eX$ Yiu Yoo
X = | y= 7
[ Xon KXo ’ SYII‘E Yzz

Xu = X:Fp Xog = ng, Y= YE: Yo = ngﬁ
Ac=T7'4, Bipe =1, Bips, Boe =111 By,

3 Primary Results

In this section, we study the robust H, control prob-
lem by using the dynamic output feedback control law
for the linear time—invariant singularly perturbed sys-
tem (7).

Let us define the following partition matrices

A= A- ByD; D, 01,

R=B,D1B; —v ?BiaBi,
Q = C’II;\[IEQ_FS - Dlz)\DlD?z)\]cl)\a
A= A— BrpDi \DaCs,
R=CTDy0y — v 205 Cpa,
Q= Bl’y)\[lll-i—P — Dglry)\D2D217>\]B%:yA)
where
[ An A D Ry Rip
A=\ 70 R=\pr p
| Agy Ao ] [ R?Z Ra2 } '
= [ Qu Qu } A { A Ap }
e = = 5 .A. - n hy 3
Q | QL Qe Az Az
~ [ Rll RIZ :‘ A |: Qll le :l
R= A A ? = A 9 .
I O Rl I i

Then, it follows that
XTA+ATX - XTRX +Q =0, (12a)
AYT +YAT —YRYT + =0 (12b)
The generalized algebraic Riccati equations (12a) and

(12a) will produce the unique positive semidefinite sta-
bilizing solution under the assumption 1.

Firstly, we define the (—order solutions to the Riccati
equation (10a). Substitutes X of (10b) into (12a) and
sets £ = 0. If the Riccati equation (13b) has a unique
positive semidefinite stabilizing solution, then we ob-
tain the following O—order equations

AOTXM + X%;Ao - X’lTlR()Xll + Q() =0, (13&)
AL Xop + X Azy — X5HR02Xon + Qaz = 0, (13b)

le = —Ng +NFX11, (130)
where
_ Ay —R
TO—T1”T2T41T3:[_50 —A??}’

le[ Ag —1?%1 }7 Tg:[ A —1::3%2 ],

-Qu  —An Q2 —Ay

ne|d W] o] d e
-Q1 —Arp —Goz —A%

NT = A7TEL,, NT = -A;TA7,

Ay = Ay — Ry1 X11 — Ria Xo,

Ay = Ay — R, X11 — Rpo X1,

Ay = A1y — R12Xos, Ay = Agy — Ry X,

Lip = Qua + AL Xoa, Ao = A1 — AsA A3,
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Remark 2 The matrices Ag, Ry and Qg do not de-
pend on Xap because their matrices can be computed by
using Ty, 4 =1,---,4 which is independent of Xao [8].

By following the similar steps in equation (12a), if the
Riccati equation (14b) has a unique positive semidefi-
nite stabilizing solution, then we obtain the following
O-order equations for the equation (12b)

AO?{{ + 57114[1%1 - 571130?1:{ +Qo=0, (14a)
fizgl—é‘g + 172214%; - 1722]%2217212‘ + QQZ =0, (14b)
Yiz = =My + Y1 My, (14c)

where

.
Ho= Hy — HyHy Hy = [ i }

iy
AT —R AL -R
! [ G111 —An 2 —Quz —An
AT _pT [ AT, B ]
He=| “2 ~Fi2| g _| A2 —&
° [ Q% —Axn ] ‘ —22 —Ax

MT =T7 Ley, My = -I7'Ts,

Iy = Ay - VioRY, — VuRY,

I'y = App — YiaRE, — Vis Rao,

T3 = Az — Y'zzng, Ty = Ay — 1722R§2,
Ly =V AL, + QF,, To =Ty — Tl 'Ts.

Now we are 1n a position to establish our primary result
in this paper.

Theorem 1 Under the assumption 1, if there exists
a positive scalar A such that the reduced—order Riccati
equations (13a), (13b), (14a) and (14b) have positive
semidefinite stabilizing solutions X11 = 0, KXo > 0,
Yii > 0 and Yag > 0, respectively, then there exists
sufficient small £* such that Ve ¢ [0, &%), the alge-
braic Riccati equations (8a) and (8b) admit the positive
semidefinite stabilizing solutions. Furthermore, the so-
lutions of (8a) and (8b) can be approzimated by

X1 +¢eEn e{Xo + eExn}T

= < 15
E{le +eFy} e{Xao+ EE22} :l »(152)
Vi1 +eFyy Yio + P12 }
| ha . (15b
% [ {YVig +eFia}T e HVop +eFaa} (15b)

Xaz[

If such conditions are met, a control is given by (9).

Proof: By using the implicit function theorem {3,
the theorem can be proved. The proof is omitted since
it is similar to that of the references [9]. ™

Remark 3 [t can be easily shown that if there ex-
ists positive scalar A such that the Riccati equations
(13) and (14) have positive semidefinite stabilizing so-
lutions, then the uncertain singularly perturbed system
with controller (9) is robust stabilizable and has a robust
H, performance .

4 New Algorithm

We propose the following new algorithm for solving
{(12a) and (12b) with parameter &.

[A— RXOTX0H) 4 xCHIT[ 4 RX )

+XOTRX® 4+ § =0, (16a)
[A-YORYIT | yO+D4 - YO RT
+YORYOT 1 @ =0, (16b)

with the mitial condition obtained from

[ Xu O _ [ Yu Y
X —[le Xzz}’y _{ 0 Vi (186c)
where

wo-[ 3 S |vo-[ 5 )
Xyt Xog £¥1y Yy

and X;; and V;; are defined by (13) and (14), respec-
tively.

The main result of this section is as follows.

Theorem 2 Under the stabilizability and detectabil-
ity conditions, imposed in the assumption I, we as-
sume that the Riceati eguations (13a), (13b), (14a)
and (14b) have the positive semidefinite stabilizing so-
lutions respectively. Then the proposed algorithm (16a)
converges to the exact solution of the generalized aol-
gebratc Riccati equation (10a) or (12a) with the rate
of quadratic convergence. Moreover, there ezists o
unigue solution of the algebraic Riccati equation (10a)
in neighborhood of the required solution.

Proof: The proof of the quadratic convergence prop-
erty has been given in [9]. Thus, we will prove existence
of the unique solution for the Riccati equation (8a). We
now observe that function 7 (P) is differentiable on a
convex set D. Using the fact that

VAX)=(A-RX)T® L.+ I,® (A- RX)T,
we have
IVFL(X) = VFAXa)] < %)X - Xal.
Moreover, using the fact that

A Ay
3

V(X)) = [ A Ar A, }

it follows that VF(X©®) is nonsingular because A4
and Ag = Ay — AzA7 A3 are stable. Therefore, there
exists B such that |[VF(X(@)]7'] = 3. On the other
hand, since F;(X() = 0, there exists 77 such that
IIVFUXONLF(XON) < 7. Thus, there exists &
such that @ = 357 < 271. Now, let us define

= {1 - vI=33].
¥
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Clearly, S = { X : |X — X®] < t* } is in the con-
vex set D. In the sequel, X* is the unique solution in
S by applying Newton—-Kantorovich theorem (see [5],
pp.155) because | X* — X{V| = O(¢) holds for small «.
This completes the proof of Theorem 2. =
By comparing with Mukaidani et al. [9], since the pro-
posed algorithm is quadratic convergence, the required
solution can be easily obtained up to an arbitrary or-
der of accuracy, that is, O(c®) where 7 is a iteration
number.

We next give the convergence theorem for the algo-
rithm (16b) by similar argument.

Theorem 3 Under the stabilizability and detectability
conditions, imposed in the assumption 1, the proposed
algorithm (16b) converges to the exact solution of the
generalized algebraic Riccati equation (1la) with the
rate of quadratic convergence. Moreover, there exists a
unique solution of the algebraic Riccats equation (11a)
in neighborhood of the required solution Y.

Proof:  Since the proof of Theorem 3 is performed
by a dual argument, it is omitted. "

5 Algorithms for The Generalized Lyapunov
Equation

Tn order to obtain the solution of the generalized Lya-
punov equation (16a), we present the new algorithm
by applying the generalized Schur (GS) method. The
GS method is based upon the QZ-algorithm and the
GS-algorithm [6]. Let us consider the simultanecus lin-
ear equations (17) by rearranging the generalized Lya-
punov equation (16a)

WITAHHTXV + WTYUUTBV +WTCV =0, (17a)
WITL.HHT XV - WTYyuuTi.v =, (17b)

where the matrix W, H, U and V are an orthogonal
matrix, e.g., WT =W 1, and

X=X Y= xGOT f= (4 - RXD)T,
B=A-RX® ¢=XxOTRx® 1 .

Using the unitary equivalence transformations, such
methods involve the following three steps.

Step 1: Transform (A4, Il:) and (B, 1l.) into sim-
pler form (A;, M) = (WTAH, WTI.H),
(By, My.) = (UTBV, UTIL.V), respectively.
Furthermore, modify the right-hand side C; =
wrev.

Step 2: Solve the equations (18) for X; = HTXV
and Y, = WTY.

AX T +WB+C =0 (18&)
ey — Villze =0 (18b)

Step 3: Transform the solution back to the original
equation: XUt = x = gy vl XG0T —y —
Wy ur.

The matrix pairs in Step 1 are transformed to gener-
alized Schur form with upper quasi—triangular matrix
pairs A; = WP AH and I1;,, = WTTI, H, and upper tri-
angular matrix pairs By = UTBV and Iy = ULV,
In step 2, using the GS—Algorithm and Kronecker prod-
ucts method, these solutions X and Y of (18) can be
obtained [6]. It should be remarked that since the GS
method is based upon the QZ-algorithm and the GS—
algorithm, the method is apparently quite numerically
stable and performs reliably on equations with dense
matrices of high—order dimension.

6 Numerical Example

In order to demonstrate the efficiency of the proposed
algorithm, we consider a fourth order real world exam-
ple, that is, manufacturing assembly process [1]. The
system matrix is given by (see Shi et al. [1])

0o 1 -1 0
An=| -2 -02 0 |, Ap=|2|,
2 0 0 0
Apn=[0 -52x102 0], Ap=]-2],
[0 0 O 0 0

Byu=|100/,Bo=| 0 0],
010 0.2 0

By = [0 0 01],Baz=[0 1],
[1 0 0 0
01 0 0

C111: 0 0 ’Olz_DIZ_ 1 0 3
| 0 0 01
0.2

Hya=102 |, Hp=[02], B,=[1 1],
0.2

Eya=[11 1], Eno=[0], F(t)=sin(10mz).

The numerical results are obtained for small parameter
£ = 0.1. Now, choosing A\ = 1.0 and v = 3.0, then,
the algebraic Riccati equations (13a) and (13b) have
the positive semidefinite stabilizing solutions. Thus,
we find that equation (8a) has solutions X, > 0 under
the previous conditions. The solutions of the algebraic
Riccati equation (13), that is, the O—order solutions are
shown in the following.

4.1885 0.2495  —-0.2650 0.0
X _ 0.2495 1.7466  —0.5352 0.0
| —0.2650 -—0.5352 1.5664 0.0

0.00506 0.11465 —0.03556 0.00620

On the basis of above O-order solutions, by using the
new algorithms (16), we get the exact solution (19). We
find that the solutions of the algebraic Riceati equation
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4.2612453460

2.6135877367 x 1071
—2.6952557244 x 1071
—5.1479030477 x 1072

|

x®

—3.145562671 x 107!
—3.169823512 x 107!

[
s oK b 23 .

P

Fig.1 Response of the open loop system without any
controller.

PO

[ |

I ]

Fig.2 Response of the closed-loop system with the
proposed controller.

(8a) converge to the exact solution with accuracy of
[FL(X@)| < 10~ after 3 iterations. It can be seen
that the initial guess (16¢) for the proposed algorithm
is quite good. It should be noted that if we set the
initial condition to the above solutions with O(10~*)-
order accuracy the classical recursive algorithm [3] does
not converge to the exact solution with accuracy of
O(1074), while the proposed algorithm converges to
the exact solution with accuracy of O(107'4) after 3
iterations.

Table 1.
7X@
1.2215 x 102
8.6001 x 106
4.0334 x 1013
1.6372 x 10-18

QL B = O =

In this example, the QS—H,,—v controller is given by
(20). The constructed controller (20) will be employed
as the manufacturing system under bounded uncertain
assembly goods. The results of the simulation of this
example are depicted in Figures 1 and 2. The initial
stateisset as z(0) = [ 1 0 0 0.2 ]T. 1t is shown
from Fig. 2 that the closed-loop system is asymptoti-
cally stable.

2.6135877367 x 1071
1.8137919882 x 10t
—5.6897106792 x 1071
1.1627840749

1.301241674 x 107t
—1.146454121 3.471615952 x 1071

—5.1479030477 x 10~2
11627840749 x 10~
—3.6788833874 x 102
1.4664013731 x 10~

—2.6952557244 x 107!
—5.6807106792 x 107 ¢

1.5285405402
—3.6788833874 x 1071

(19)

3.871185570 x 107
—7.668793471 x 107

—1.326434852 (20)

xT.

7 Conclusion

In this paper, we have considered the robust H. con-
trol problem for nonstandard singularly perturbed sys-
tems under imperfect state measurements. We have
proposed the new algorithm for solving the generalized
algebraic Riccati equations and new method for solving
the generalized Lyapunov equations. Comparing with
[3], since the proposed algorithm is quadratic conver-
gence, the required solution can be easily obtained up
to an arbitrary order of accuracy. It should be em-
phasized that by applying the new algorithm to the
algebraic Riccati equation, the obtained controller is
very reliable to the manufacturing assembly process.
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