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Abstract

In this paper, a new method based on a generalized al-
gebraic Riccati equation arising in descriptor systems is
presented to solve the composite optimal control prob-
lem of nonstandard singularly perturbed systems. It is
shown that the composite optimal control can be ob-
tained very simply by only revising the solution of the
slow regulator problem. It is proven that the compos-
ite optimal control can achieve a performance which
is O(e?) close to the optimal performance. Although
this result is well-known for the standard singularly per-
turbed systems, it is new in the nonstandard case.

1 Full-Order Regulator Problem

Consider the linear time-invariant singularly perturbed
system

(1a)
(1b)

z=Ane+ Apz+ By, 23(0) = Zg,

£z = Az + Asyz + Bou, Z(O) = zp,

with a performance index

_1 (== g z T
J_§/O ([Z] Q[z]-{-uRu)dt, (2)
which has to be minimized, where

T
o=[% &[4 &) o

and ¢ is a small positive parameter, z(t) € R™ and z(t) €
R™ are states, and u(t) € R" is the control, and all
matrices are of appropriate dimensions. The system (1)
is called the nonstandard singularly perturbed system if
the matrix Asz is singular.

Let us introduce a generalized algebraic Riccati equa-
tion.

(i) ATP+ PTA-PTBR'BTP+Q =0, (4a)

(ii) E.P = PTE., (4b)
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where E, = diag[l,,cly]. Corresponding to the pa-
rameter matrices of (4), P has the following partitioned
form

P:[Pu EP2Tl

_ pT _ pT
Py Py }ﬂPIl—Plly P22—P221 (5)

since it satisfies (4b). It is worthy to note that P is not
symmetric, but E, P is.

Theorem 1. Suppose that there exists a small positive
parameter e* such that, for alle € (0,*), the generalized
algebraic Riccati equation (4) admils a unique solution

P for which E.P > 0. Then,
u*(t) = —R™'BT Py(t), (6)

constitutes the optimal feedback control for the full-order
regulator problem, and the optimal performance is

J* = 3 (OB PY(). ™

2 Decomposition of Slow and Fast Regulator
Problems

Similar to the standard singularly perturbed systems[1],
we decompose the full-order regulator problem into two
subsystem regulator problems.

Slow regulator problem: Find u, to minimize

. 1 e Ty T T, T
=g [T n ] e R @
for the slow subsystem

Ey, = Ay, + Bu,, Ey,(0) = Eyo, (9)

where y,(1) = [27(t) zT()]T, E = Ecle=0, A, B are
defined in (4), and @ in (3).

Fast regulator problem: Find u; to minimize

1 [ee)
Ir=3 /0 (27 CF Cazy +uf Rup)dt,  (10)
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for the fast subsystem
Eif :Agng +B2Uf, Zf(ﬂ):ZQ—Z,(O), (11)
where z; = 2 — 2,, uy = u — u,. .

We now consider the solution of the slow and fast regu-
lator problems under appropriate assumptions.

Proposition 1. The fast requlator problem admits a
unique optimal feedback control

uj = —R™' By P, 25, (12)

where P;;f is a unique stabilizing posttive semidefinite
symmetric solution of the algebraic Riccatt equation

Pags Aga + AT, Pags — Pagg BaR™'BT Paay + Qa2 = 0.
(13)

In the following, we will consider the solution of the slow
regulator problem. Before doing that, we first introduce
another generalized algebraic Riccati equation [2],

(1) ATP, + PTA—PTBR™!BTP, +Q =0, (l4a)
(1) ETP, = PTE. (14b)
where @ is the same as that in (4). The solution P, of

(14) has a lower-triangular block form

| Pus O T _
Po= [ Py, Pa, ] > Piie = Pus, (15)

because of (14b). It is worthy to note that Py, may not
be symmetric.

Proposition 2. The slow regulator problem admits a
unique optimal open-loop control, which can be imple-
mented by a class of linear feedback conirols given by

w = —R'BT Py, (16)
where +
P, 0
P, = 1ls , 17
[ Pns  Pa, ] (an

15 the solution of the generalized algebraic Riccati equa-

tion (14).

3 Near-Optimality of Composite Optimal
Control

The composite optimal control is constructed as follows.

P 0 r
w=ut+ut = -R7Y[BT BY [ Lls :l [ ],
¢ f [ 1 2] P;i.s P;é_, P
(18)

where x(t) = z,(t) and z(t) & z,(t) + z5(t).
We now apply the composite optimal control u; to the

full-order system (1) and compare it with the exact op-
timal control (6). In order to do that, we first study

the existence conditions of the unique solution P of the
generalized algebraic Riccati equation (4).

Theorem 2. There exists a small positive parameter
e* such that, for alle € [0,e*), the generalized algebraic
Riccati equation (4) admits ¢ unique stabilizing solution
P for which E,P > 0. Moreover, the solution P pos-
sesses a power series expansion at € = 0, that is,

i )T
o o
P21 P22

(19)

Now, we can compare the composite optimal control u}
with the exact optimal control u* and show the O(g?)
approximation of J*. Applying the composite optimal
control u} to the full-order system (1), we have

1
J = in(O)EEPCy(O)! (20)
where P, is the solution of the generalized Lyapunov
equation

(&) (A= SPHTP.+ PY(A-SP}) = —PTSPY — @,
(21a)

(it) E. P, = PTE,, (21b)

with S = BR™!BT.

Theorem 3. The first two terms of the power series of
J¢ and J* at e = 0 are the same, that is,

J°=J* +0(g?), (22)

and hence the composite optimal control (18) is an O(e?)
near-optimal solution to the full-order regqulator problem

(1).(2)-

We have therefore provided a complete theoretic analysis
of the near-optimality of the composite optimal control
for both standard and nonstandard singularly perturbed
systems. It is further proven that the new composite op-
timal controller is equivalent to the existing one in the
case of the standard singularly perturbed systems. The
detail is omitted for the limit of the paper space. There-
fore, we claim that the new composite optimal controller
includes the existing composite optimal controller [1] as
a special case.
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