
Asymptotic Expansions of Solutions of Cross–Coupled Algebraic

Riccati Equations of Multimodeling Systems Related to Nash Games

Hiroaki Mukaidani Tetsu Shimomura Hua Xu

Graduate School of Education Graduate School of Education Graduate School of Business Sciences
Hiroshima University Hiroshima University The University of Tsukuba
1–1–1, Kagamiyama, 1–1–1, Kagamiyama, 3–29–1, Otsuka,
Higashi–Hiroshima, Higashi–Hiroshima, Bunkyou–ku,

Hiroshima, 739–8524 Japan Hiroshima, 739–8524 Japan Tokyo, 112–0012 Japan
mukaida@hiroshima-u.ac.jp tshimo@hiroshima-u.ac.jp xuhua@gssm.otsuka.tsukuba.ac.jp

Abstract— The linear quadratic Nash games for infi-

nite horizon multiparameter singularly perturbed sys-

tems (MSPS) are considered. The existence of bounded

solutions and asymptotic expansions of solutions for

the generalized cross–coupled multiparameter algebraic

Riccati equations (GCMARE) are established without

non–singularity assumptions of the fast subsystems.

I. Introduction

The linear quadratic Nash games and their applications
have been studied intensively in many papers (see e.g.,
[1, 2]). In particular, Starr and Ho [1] derived the closed–
loop perfect–state linear Nash equilibrium strategies for
a class of analytic differential games. In [3, 4], linear
quadratic Nash games for the multiparameter singularly
perturbed systems (MSPS) have been studied by using the
two–time–scale design method. However, to obtain the
reduced–order systems, the non–singularity assumptions of
the fast subsystems are needed.

It is well–known that in order to obtain the Nash equilib-
rium strategies for the MSPS, we must solve the generalized
cross–coupled algebraic Riccati equations (GCARE). The
existence of their solutions plays a crucial role in the theory
of the Nash games for the MSPS. This important problem
has been studied in [6] under the conservative conditions.
However, the results for the asymptotic expansions of so-
lutions for the GCARE have not been investigated so far.
Moreover, in [6], the relation between the GCARE and the
reduced–order equations and the formulation to calculate
the reduced–order equations have not been studied.

In this paper the linear quadratic Nash games for the infi-
nite horizon MSPS are considered without non–singularity
assumptions of the fast subsystems. After defining the GC-
MARE, the boundedness of the solution to the GCMARE
and its asymptotic structure are newly derived under less
conservative condition compared with the previous result
[6]. The proof of the existence of the solution to the GC-
MARE with asymptotic expansion is obtained by an im-
plicit function theorem [5] under assumptions imposed on
the reduced–order subsystems. As another important fea-
ture of this paper, since the non–singularity assumptions of

the state matrices of the fast subsystems are not needed,
the obtaining theoretical results can be extended over the
existing results [3].
Notation: The notations used in this paper are fairly stan-
dard. The superscript T denotes matrix transpose. In de-
notes the n × n identity matrix. detM denotes the deter-
minant of M . Re(λ) denotes a real part of λ ∈ C.

II. Problem Formulation

Consider a linear time–invariant MSPS [3]

ẋ0(t) =
2∑

i=0

A0ixi(t) +
2∑

i=1

B0iui(t), (1a)

ε1ẋ1(t) = A10x0(t) + A11x1(t) + B11u1(t), (1b)
ε2ẋ2(t) = A20x0(t) + A22x2(t) + B22u2(t), (1c)

xj(0) = x0
j , j = 0, 1, 2,

with quadratic cost functions

Ji =
1
2

∫ ∞

0

[yT
i (t)yi(t) + uT

i (t)Riiui(t)]dt, (2a)

Rii > 0, i = 1, 2,

yi(t) = Ci0x0(t) + Ciixi(t) = Cix(t), (2b)

x(t) =
[

xT
0 (t) xT

1 (t) xT
2 (t)

]T
,

where xi ∈ Rni , i = 0, 1, 2 are the state vector, ui ∈
Rmi , i = 1, 2 are the control input. All the matrices are
constant matrices of appropriate dimensions.

ε1 and ε2 are two small positive singular parameters of
the same order of magnitude [3] such that

0 < k1 ≤ α ≡ ε1

ε2
≤ k2 < ∞, (3a)

ᾱ = lim
ε1→+0
ε2→+0

α. (3b)

Let us introduce the partitioned matrices

Ae = Φ−1
e A, B1e = Φ−1

e B1, B2e = Φ−1
e B2,
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Sie = BieR
−1
ii BT

ie = Φ−1
e SiΦ−1

e , i = 1, 2,

Φe =


 In0 0 0

0 ε1In1 0
0 0 ε2In2


 ,

A =


 A00 A01 A02

A10 A11 0
A20 0 A22


 ,

B1 =


 B01

B11

0


 , B2 =


 B02

0
B22


 ,

S1 = B1R
−1
11 BT

1 =


 S001 S011 0

ST
011 S111 0
0 0 0


 ,

S2 = B1R
−1
22 BT

2 =


 S002 0 S022

0 0 0
ST

022 0 S222


 ,

Q1 = CT
1 C1 =


 Q001 Q011 0

QT
011 Q111 0
0 0 0


 ,

Q2 = CT
2 C2 =


 Q002 0 Q022

0 0 0
QT

022 0 Q222


 .

We now consider the linear quadratic Nash games for in-
finite horizon MSPS (1) under the following basic assump-
tions [3].

Assumption 1 There exists an µ∗ > 0 such that the
triplet (Ae, Bie, Ci), i = 1, 2 are stabilizable and de-
tectable for all µ ∈ (0, µ∗], where µ :=

√
ε1ε2.

Assumption 2 The triplet (Aii, Bii, Cii), i = 1, 2 are
stabilizable and detectable.

These conditions are quite natural since at least one con-
trol agent has to be able to control and observe unstable
modes. The purpose is to find a linear feedback controller
(u∗

1, u∗
2) such that

Ji(u∗
i , u∗

j) ≤ Ji(ui, u∗
j ), i, j = 1, 2, i �= j. (4)

The Nash inequality shows that u∗
i regulates the state to

zero with minimum output energy. The following lemma is
already known [1].

Lemma 1 Under Assumption 1, there exists an admissi-
ble controller such that (4) hold iff the following full–order
CMARE

AT
e Xe + XeAe + Q1 − XeS1eXe

−XeS2eYe − YeS2eXe = 0, (5a)
AT

e Ye + YeAe + Q2 − YeS2eYe

−YeS1eXe − XeS1eYe = 0, (5b)

have stabilizing solutions Xe ≥ 0 and Ye ≥ 0 where

Xe =


 X00 ε1X

T
10 ε2X

T
20

ε1X10 ε1X11
√

ε1ε2X
T
21

ε2X20
√

ε1ε2X21 ε2X22


 ,

Ye =


 Y00 ε1Y

T
10 ε2Y

T
20

ε1Y10 ε1Y11
√

ε1ε2Y
T
21

ε2Y20
√

ε1ε2Y21 ε2Y22


 .

Then, the closed–loop linear Nash equilibrium solutions to
the full–order problem are given by

u∗
1(t) = −R−1

11 BT
1eXex(t), (6a)

u∗
2(t) = −R−1

22 BT
2eYex(t). (6b)

III. Asymptotic Expansion

To study the property of solutions of the CMARE (5),
we introduce the following useful lemma [6].

Lemma 2 The CMARE (5) is equivalent to the following
GCMARE (7), respectively.

AT X + XT A + Q1 − XT S1X

−XT S2Y − Y T S2X = 0, (7a)
AT Y + Y T A + Q2 − Y T S2Y

−Y T S1X − XT S1Y = 0, (7b)

where

Xe = ΦeX = XT Φe, Xii = XT
ii , i = 0, 1, 2,

X =


 X00 ε1X

T
10 ε2X

T
20

X10 X11
√

α
−1

XT
21

X20
√

αX21 X22


 ,

Ye = ΦeY = Y T Φe, Yii = Y T
ii , i = 0, 1, 2,

Y =


 Y00 ε1Y

T
10 ε2Y

T
20

Y10 Y11
√

α
−1

Y T
21

Y20
√

αY21 Y22


 .

Moreover, we can change the form of the strategies (6) as
follows.

u∗
1(t) = −R−1

11 BT
1 Xx(t), (8a)

u∗
2(t) = −R−1

22 BT
2 Y x(t). (8b)

Proof: Since the proof is similar to the proof of Lemma
3 in [6], it is omitted.

After partitioning the GCARE (7), we obtain the
reduced–order equations (10) as εi → +0, i = 1, 2, where
X̄lm, Ȳlm, lm = 00, 10, 20, 11, 21, 22 are the zeroth order
solutions.

If Assumption 2 holds, there exist the matrices X̃11 ≥ 0
and Ỹ22 ≥ 0 such that the matrices A11−S111X̃11 and A22−
S222Ỹ22 are stable, where AT

11X̃11+X̃11A11−X̃11S111X̃11+
Q11 = 0 and AT

22X̃22 + X̃22A22 − X̃22S222X̃22 + Q22 = 0.
Now we chose X̄11 and Ȳ22 to be X̃11 and Ỹ22, respectively.
Then there exist λx and λy such that

(A11 − S111X̃11)vx = λxvx, Re(λx) < 0, (9a)
(A22 − S222Ỹ22)vy = λyvy, Re(λy) < 0, (9b)

where vx ∈ Cn1 and vy ∈ Cn2 are any vectors.
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AT
00X̄00 + X̄00A00 + AT

10X̄10 + X̄T
10A10 + AT

20X̄20 + X̄T
20A20 − X̄00S001X̄00 − X̄00S002Ȳ00

−X̄T
10S

T
011X̄00 − X̄00S011X̄10 − X̄T

10S111X̄10 − X̄T
20S

T
022Ȳ00 − X̄00S022Ȳ20 − X̄T

20S222Ȳ20

−Ȳ00S002X̄00 − Ȳ T
20S

T
022X̄00 − Ȳ00S022X̄20 − Ȳ T

20S222X̄20 + Q001 = 0, (10a)
X̄00A01 + X̄T

10A11 + AT
10X̄11 +

√
ᾱAT

20X̄21 − (X̄00S011X̄11 + X̄T
10S111X̄11) −

√
ᾱ(X̄00S022Ȳ21 + X̄T

20S222Ȳ21)
−√

ᾱ(Ȳ00S022X̄21 + Ȳ T
20S222X̄21) + Q011 = 0, (10b)

X̄00A02 + X̄T
20A22 + AT

20X̄22 +
1√
ᾱ

AT
10X̄

T
21 −

1√
ᾱ

(X̄00S011X̄
T
21 + X̄T

10S111X̄
T
21) − (X̄00S022Ȳ22 + X̄T

20S222Ȳ22)

−(Ȳ00S022X̄22 + Ȳ T
20S222X̄22) = 0, (10c)

AT
11X̄11 + X̄11A11 − X̄11S111X̄11 − ᾱX̄T

21S222Ȳ21 − ᾱȲ T
21S222X̄21 + Q111 = 0, (10d)

√
ᾱX̄T

21A22 +
1√
ᾱ

AT
11X̄

T
21 −

1√
ᾱ

X̄11S111X̄
T
21 −

√
ᾱX̄T

21S222Ȳ22 −
√

ᾱȲ T
21S222X̄22 = 0, (10e)

AT
22X̄22 + X̄22A22 − 1

ᾱ
X̄21S111X̄

T
21 − X̄22S222Ȳ22 − Ȳ22S222X̄22 = 0, (10f)

AT
00Ȳ00 + Ȳ00A00 + AT

10Ȳ10 + Ȳ T
10A10 + AT

20Ȳ20 + Ȳ T
20A20 − Ȳ00S002Ȳ00 − Ȳ00S001X̄00

−Ȳ T
20S

T
022Ȳ00 − Ȳ00S022Ȳ20 − Ȳ T

20S222Ȳ20 − Ȳ T
10S

T
011X̄00 − Ȳ00S011X̄10 − Ȳ T

10S111X̄10

−X̄00S001Ȳ00 − X̄T
10S

T
011Ȳ00 − X̄00S011Ȳ10 − X̄T

10S111Ȳ10 + Q002 = 0, (10g)
Ȳ00A01 + Ȳ T

10A11 + AT
10Ȳ11 +

√
ᾱAT

20Ȳ21 −
√

ᾱ(Ȳ00S022Ȳ21 + Ȳ T
20S222Ȳ21) − (Ȳ00S011X̄11 + Ȳ T

10S111X̄11)
−(X̄00S011Ȳ11 + X̄T

10S111Ȳ11) = 0, (10h)

Ȳ00A02 + Ȳ T
20A22 + AT

20Ȳ22 +
1√
ᾱ

AT
10Ȳ

T
21 − (Ȳ00S022Ȳ22 + Ȳ T

20S222Ȳ22) − 1√
ᾱ

(Ȳ00S011X̄
T
21 + Ȳ T

10S111X̄
T
21)

− 1√
ᾱ

(X̄00S011Ȳ
T
21 + X̄T

10S111Ȳ
T
21) + Q022 = 0, (10i)

AT
11Ȳ11 + Ȳ11A11 − ᾱȲ T

21S222Ȳ21 − Ȳ11S111X̄11 − X̄11S111Ȳ11 = 0, (10j)
√

ᾱȲ T
21A22 +

1√
ᾱ

AT
11Ȳ

T
21 −

√
ᾱȲ T

21S222Ȳ22 − 1√
ᾱ

Ȳ11S111X̄
T
21 −

1√
ᾱ

X̄11S111Ȳ
T
21 = 0, (10k)

AT
22Ȳ22 + Ȳ22A22 − Ȳ22S222Ȳ22 − 1

ᾱ
Ȳ21S111X̄

T
21 −

1
ᾱ

X̄21S111Ȳ
T
21 + Q222 = 0. (10l)

Note that we can change the form (10f) and (10j) as
follows

vT
y (A22 − S222Ỹ22)T X̄22vy + vT

y X̄22(A22 − S222Ỹ22)vy

− 1
ᾱ

vT
y X̄21S111X̄

T
21vy = 0,

⇔ 2λyvT
y X̄22vy − 1

ᾱ
vT

y X̄21S111X̄
T
21vy = 0, (11a)

vT
x (A11 − S111X̃11)T Ȳ11vx + vT

x Ȳ11(A11 − S111X̃11)vx

−ᾱvT
x Ȳ21S222Ȳ

T
21vx = 0,

⇔ 2λxvT
x Ȳ11vx − ᾱvT

x Ȳ21S222Ȳ
T
21vx = 0. (11b)

Taking Re(λx) < 0 and Re(λy) < 0 into account, we have
X̄22 = Ȳ11 = 0. Then, from (10e) and (10k), the following
equalities (12) hold.

ᾱX̄T
21(A22 − S222Ȳ22) + (A11 − S111X̄11)T X̄T

21 = 0, (12a)
ᾱȲ T

21(A22 − S222Ȳ22) + (A11 − S111X̄11)T Ȳ T
21 = 0. (12b)

Hence, the unique solutions of (10f) and (10j) are given
by X̄21 = Ȳ21 = 0 because of the stability A11 − S111X̄11

and A22 − S222Ȳ22. Thus the parameter ᾱ does not appear
in (10), that is, it does not affect the equation (10) in the
limit when ε1 and ε2 tend to zero. Therefore, we obtain the
zeroth order equations (13). Then, the Nash equilibrium
strategies for the MSPS will be studied. It is noted that

we need the following basic assumption, so that ones can
apply the proposed method to the nonstandard MSPS.

Assumption 3 The Hamiltonian matrices Tiii, i = 1, 2
are nonsingular, where

Tiii :=
[

Aii −Siii

−Qiii −AT
ii

]
. (14)

Under Assumptions 2 and 3, we obtain the following ze-
roth order equations

AT
s X̄00 + X̄00As + Qs1

−X̄00Ss1X̄00 − X̄00Ss2Ȳ00 − Ȳ00Ss2X̄00 = 0, (15a)
AT

s Ȳ00 + Ȳ00As + Qs2

−Ȳ00Ss2Ȳ00 − Ȳ00Ss1X̄00 − X̄00Ss1Ȳ00 = 0, (15b)
AT

11X̄11 + X̄11A11 − X̄11S111X̄11 + Q111 = 0, (15c)
AT

22Ȳ22 + Ȳ22A22 − Ȳ22S222Ȳ22 + Q222 = 0, (15d)
X̄10 = −D−T

x11D
T
x01X̄00 − D−T

x11N
T
x01, (15e)

Ȳ10 = −D−T
x11D

T
x01Ȳ00, (15f)

X̄20 = −D−T
y22D

T
y02X̄00, (15g)

Ȳ20 = −D−T
y22D

T
y02Ȳ00 − D−T

y22N
T
y02, (15h)
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AT
00X̄00 + X̄00A00 + AT

10X̄10 + X̄T
10A10 + AT

20X̄20 + X̄T
20A20 − X̄00S001X̄00 − X̄00S002Ȳ00

−X̄T
10S

T
011X̄00 − X̄00S011X̄10 − X̄T

10S111X̄10 − X̄T
20S

T
022Ȳ00 − X̄00S022Ȳ20 − X̄T

20S222Ȳ20

−Ȳ00S002X̄00 − Ȳ T
20S

T
022X̄00 − Ȳ00S022X̄20 − Ȳ T

20S222X̄20 + Q001 = 0, (13a)
X̄00A01 + X̄T

10A11 + AT
10X̄11 − (X̄00S011X̄11 + X̄T

10S111X̄11) + Q011 = 0, (13b)
X̄00A02 + X̄T

20A22 − (X̄00S022Ȳ22 + X̄T
20S222Ȳ22) = 0, (13c)

AT
11X̄11 + X̄11A11 − X̄11S111X̄11 + Q111 = 0, (13d)

AT
00Ȳ00 + Ȳ00A00 + AT

10Ȳ10 + Ȳ T
10A10 + AT

20Ȳ20 + Ȳ T
20A20 − Ȳ00S002Ȳ00 − Ȳ00S001X̄00

−Ȳ T
20S

T
022Ȳ00 − Ȳ00S022Ȳ20 − Ȳ T

20S222Ȳ20 − Ȳ T
10S

T
011X̄00 − Ȳ00S011X̄10 − Ȳ T

10S111X̄10

−X̄00S001Ȳ00 − X̄T
10S

T
011Ȳ00 − X̄00S011Ȳ10 − X̄T

10S111Ȳ10 + Q002 = 0, (13e)
Ȳ00A01 + Ȳ T

10A11 − (Ȳ00S011X̄11 + Ȳ T
10S111X̄11) = 0, (13f)

Ȳ00A02 + Ȳ T
20A22 + AT

20Ȳ22 − (Ȳ00S022Ȳ22 + Ȳ T
20S222Ȳ

T
22) + Q022 = 0, (13g)

AT
22Ȳ22 + Ȳ22A22 − Ȳ22S222Ȳ22 + Q222 = 0. (13h)

where

As = A00 − Dx01D
−1
x11A10 − Dy02D

−1
y22A20

+(S011 − Dx01D
−1
x11S111)D−T

x11N
T
x01

+(S022 − Dy02D
−1
y22S222)D−T

y22N
T
y02,

Ss1 = S001 − Dx01D
−1
x11S

T
011 − S011D

−T
x11D

T
x01

+Dx01D
−1
x11S111D

−T
x11D

T
x01,

Ss2 = S002 − Dy02D
−1
y22S

T
022 − S022D

−T
y22D

T
y02

+Dy02D
−1
y22S222D

−T
y22D

T
y02,

Qs1 = Q001 − AT
10D

−T
x11N

T
x01 − Nx01D

−1
x11A10

−Nx01D
−1
x11S111D

−T
x11N

T
x01,

Qs2 = Q002 − AT
20D

−T
y22N

T
y02 − Ny02D

−1
y22A20

−Ny02D
−1
y22S222D

−T
y22N

T
y02,

Dx01 = A01 − S011X̄11, Dx11 = A11 − S111X̄11,

Dy02 = A02 − S022Ȳ22, Dy22 = A22 − S222Ȳ22,

Nx01 = AT
10X̄11 + Q011, Ny02 = AT

20Ȳ22 + Q022.

The following theorem gives how to calculate the coef-
ficient matrices of the reduced–order equations (15a) and
(15b).

Theorem 1 The matrices As, Ss1, Ss2, Qs1 and Qs2 do
not depend on X̄11, X̄21, Ȳ21 and Ȳ22, that is, their ma-
trices can be computed by using the following Hamiltonian
matrices.
[

As *
* −AT

s

]
=

[
A00 *
* −AT

00

]

−T011T
−1
111T101 − T022T

−1
222T202, (16a)[

* −Ss1

−Qs1 *

]
= T001 − T011T

−1
111T101, (16b)

[
* −Ss2

−Qs2 *

]
= T002 − T022T

−1
222T202, (16c)

T001 =
[

A00 −S001

−Q001 −AT
00

]
, T011 =

[
A01 −S011

−Q011 −AT
10

]
,

T101 =
[

A10 −ST
011

−QT
011 −AT

01

]
, T111 =

[
A11 −S111

−Q111 −AT
11

]
,

T002 =
[

A00 −S002

−Q002 −AT
00

]
, T022 =

[
A02 −S022

−Q022 −AT
20

]
,

T202 =
[

A20 −ST
022

−QT
022 −AT

02

]
, T222 =

[
A22 −S222

−Q222 −AT
22

]
.

where * stands for a appropriate matrix. Moreover, we
can change the form of the solutions X̄10, X̄20, Ȳ10 and
Ȳ20.

[
X̄10

Ȳ10

]T

=
[

X̄11

−In1

]T

T−1
111T101

[
In0 0
X̄00 Ȳ00

]
, (17a)

[
X̄20

Ȳ20

]T

=
[

Ȳ22

−In2

]T

T−1
222T202

[
0 In0

X̄00 Ȳ00

]
. (17b)

Proof: Note the relation

T111

=
[

In1 0
X̄11 In1

] [
Dx11 −S111

0 −DT
x11

] [
In1 0

−X̄11 In1

]
.

Since T111 is nonsingular under Assumption 3 and the al-
gebraic Riccati equation (ARE) (15c) has a stabilizing so-
lution under Assumption 2, Dx11 is also nonsingular. This
means that T−1

111 can be expressed explicitly in terms of
D−1

x11. Using the similar manner, we have the following re-
lations.

T−1
111 =

[
In1 0
X̄11 In1

][
D−1

x11 −D−1
x11S111D

−T
x11

0 −D−T
x11

]

·
[

In1 0
−X̄11 In1

]
, (18a)

T−1
222 =

[
In2 0
Ȳ22 In2

][
D−1

y22 −D−1
y22S222D

−T
y22

0 −D−T
y22

]

·
[

In2 0
−Ȳ22 In2

]
. (18b)
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J =
∂vec(fx1, fx2, fx3, fx4, fx5, fx6, fy1, fy2, fy3, fy4, fy5, fy6)

∂vec(X00, X10, X20, X11, X21, X22, Y00, Y10, Y20, Y11, Y21, Y22)T

∣∣∣
µ=µ0, P=P0

=




J00 J01 J02 0 0 0 J06 0 J08 0 0 0
J10 J11 0 J13 J14 0 0 0 0 0 J110 0
J20 0 J22 0 J24 J25 0 0 0 0 0 J211

0 0 0 J33 0 0 0 0 0 0 0 0
0 0 0 0 J44 0 0 0 0 0 0 0
0 0 0 0 0 J55 0 0 0 0 0 0

J60 J61 0 0 0 0 J00 J01 J02 0 0 0
0 0 0 J73 0 0 J10 J11 0 J13 J14 0
0 0 0 0 J84 0 J20 0 J22 0 J24 J25

0 0 0 0 0 0 0 0 0 J33 0 0
0 0 0 0 0 0 0 0 0 0 J44 0
0 0 0 0 0 0 0 0 0 0 0 J55




, (21)

P = (X00, X10, X20, X11, X21, X22, Y00, Y10, Y20, Y11, Y21, Y22),

P0 = (X̄00, X̄10, X̄20, X̄11, 0, 0, Ȳ00, Ȳ10, Ȳ20, 0, 0, Ȳ22), µ =
[

ε1 ε2

]T
, µ0 =

[
0 0

]T
,

AT X + XT A + Q1 − XT S1X − XT S2Y − Y T S2X =


 fx1 fx2 fx3

fT
x2 fx4 fx5

fT
x3 fT

x5 fx6


 ,

AT Y + Y T A + Q2 − Y T S2Y − Y T S1X − XT S1Y =


 fy1 fy2 fy3

fT
y2 fy4 fy5

fT
y3 fT

y5 fy6


 .

Therefore, it suffices the proof of Lemma 3 to show that
the relations (16) hold. These formulations can be proved
after direct algebraic manipulations, which are omitted here
for brevity.

It should be noted that the results of Theorem 1 have
never been obtained compared with the existing results
[3, 6]. The following theorem will establish the relation
between the solutions X and Y and the solutions X̄lm and
Ȳlm for the reduced–order equations (15).

Theorem 2 Suppose that

det
[

ÂT
s ⊗ In0 + In0 ⊗ Âs

−[(Ss1 Ȳ00)T ⊗ In0 + In0 ⊗ (Ss1 Ȳ00)T ]

−[(SssX̄00)T ⊗ In0 + In0 ⊗ (Ss2X̄00)T ]
ÂT

s ⊗ In0 + In0 ⊗ Âs.

]
�= 0, (19)

where Âs := As − Ss1X̄00 − Ss2Ȳ00.
Under Assumptions 1–3, the GCMARE (7) admits the

stabilizing solutions X and Y such that these matrices pos-
sess a power series expansion at ||µ|| = 0. That is,

X =


 X̄00 0 0

X̄10 X̄11 0
X̄20 0 0


 + O(||µ||), (20a)

Y =


 Ȳ00 0 0

Ȳ10 0 0
Ȳ20 0 Ȳ22


 + O(||µ||). (20b)

Proof: We apply the implicit function theorem [5] to
the GCMARE (7). To do so, it is enough to show that the

corresponding Jacobian is nonsingular at ||µ|| = 0. It can be
shown, after some algebra, that the Jacobian of GCMARE
(7) in the limit as µ → µ0 is given by (21).

Note that

J00 = In0 ⊗ DT
00 + DT

00 ⊗ In0 ,

J01 = In0 ⊗ DT
x10 + (DT

x10 ⊗ In0)Un1n0 ,

J02 = In0 ⊗ DT
y20 + (DT

y20 ⊗ In0)Un2n0 ,

J10 = DT
x01 ⊗ In0 , J20 = DT

y02 ⊗ In0 ,

J11 = (DT
x11 ⊗ In0)Un1n0 , J22 = (DT

y22 ⊗ In0)Un2n0 ,

J13 = In1 ⊗ DT
x10, J14 =

√
ᾱ(In1 ⊗ DT

y20),

J24 =
√

ᾱ
−1

(In2 ⊗ DT
x10)Un2n1 , J25 = In2 ⊗ DT

y20,

J33 = In1 ⊗ DT
x11 + DT

x11 ⊗ In1 ,

J44 =
√

ᾱ(DT
y22 ⊗ In1)Un2n1 +

√
ᾱ
−1

(In2 ⊗ DT
x11)Un2n1 ,

J55 = In2 ⊗ DT
y22 + DT

y22 ⊗ In2 ,

J06 = −In0 ⊗ ET
x00 − ET

x00 ⊗ In0 ,

J08 = −In0 ⊗ ET
x20 − (ET

x20 ⊗ In0)Un2n0 ,

J110 = −√
ᾱ(In1 ⊗ Ex20), J211 = −In2 ⊗ Ex20,

J60 = −In0 ⊗ ET
y00 − ET

y00 ⊗ In0 ,

J61 = −In0 ⊗ ET
y10 − (ET

y10 ⊗ In0)Un1n0 ,

J73 = −In1 ⊗ ET
y10, J84 = −√

ᾱ
−1

(In2 ⊗ ET
y10)Un2n1 ,

D00 = A00 − S001X̄00 − S002Ȳ00 − S011X̄10 − S022Ȳ20,

Dx10 = A10 − ST
011X̄00 − S111X̄10,

Dy20 = A20 − ST
022Ȳ00 − S222Ȳ20,

Ex00 = S002X̄00 + S022X̄20, Ex20 = ST
022X̄00 + S222X̄20,
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Ey00 = S001Ȳ00 + S011Ȳ10, Ey10 = ST
011Ȳ00 + S111Ȳ10.

The Jacobian (21) can be expressed as

detJ

=


 5∏

j=1

(detJjj)2




·det
[

Js J06 − J08J
−1
22 J20

J60 − J61J
−1
11 J10 Js

]
.

where Js = J00 − J01J
−1
11 J10 − J02J

−1
22 J20.

After some straightforward but tedious algebra, it is easy
to show that the following relations hold.

Js = ÂT
s ⊗ In0 + In0 ⊗ Âs, (22a)

J06 − J08J
−1
22 J20

= −[(Ss1 Ȳ00)T ⊗ In0 + In0 ⊗ (Ss1 Ȳ00)T ], (22b)
J60 − J61J

−1
11 J10

= −[(SssX̄00)T ⊗ In0 + In0 ⊗ (Ss2X̄00)T ], (22c)

where

Âs = D00 − Dx01D
−1
x11Dx10 − Dy02D

−1
y22Dy20,

Ss1Ȳ00 = Ey00 − Dx01D
−1
x11Ey10,

Ss2X̄00 = Ex00 − Dy02D
−1
y22Ex20.

Hense, we have detJ =


 5∏

j=1

(detJjj)2


 · detΓ. Obviously,

Jjj , j = 1, · · · , 5 are nonsingular because the matrices
Dx11 = A11 − S111X̄11 and Dy22 = A22 − S222Ȳ22 are sta-
ble under Assumption 2. Moreover, the nonsingularlity as-
sumption of the matrix Γ is made. Thus, detJ �= 0, i.e., J is
nonsingular at (µ, P) = (µ0, P0). The conclusion of The-
orem 1 is obtained directly by using the implicit function
theorem.

IV. Conclusions

The linear quadratic Nash games for infinite horizon
MSPS have been considered. The main contribution is that
the boundedness and the asymptotic expansions for the so-
lutions of the GCMARE have been newly investigated.
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