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Asymptotic Expansions of Solutions of Cross—Coupled Algebraic
Riccati Equations of Multimodeling Systems Related to Nash Games
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Abstract— The linear quadratic Nash games for infi-
nite horizon multiparameter singularly perturbed sys-
tems (MSPS) are considered. The existence of bounded
solutions and asymptotic expansions of solutions for
the generalized cross—coupled multiparameter algebraic
Riccati equations (GCMARE) are established without
non—singularity assumptions of the fast subsystems.

I. INTRODUCTION

The linear quadratic Nash games and their applications
have been studied intensively in many papers (see e.g.,
[1, 2]). In particular, Starr and Ho [1] derived the closed—
loop perfect—state linear Nash equilibrium strategies for
a class of analytic differential games. In [3, 4], linear
quadratic Nash games for the multiparameter singularly
perturbed systems (MSPS) have been studied by using the
two—time—scale design method. However, to obtain the
reduced—order systems, the non—singularity assumptions of
the fast subsystems are needed.

It is well-known that in order to obtain the Nash equilib-
rium strategies for the MSPS, we must solve the generalized
cross—coupled algebraic Riccati equations (GCARE). The
existence of their solutions plays a crucial role in the theory
of the Nash games for the MSPS. This important problem
has been studied in [6] under the conservative conditions.
However, the results for the asymptotic expansions of so-
lutions for the GCARE have not been investigated so far.
Moreover, in [6], the relation between the GCARE and the
reduced—order equations and the formulation to calculate
the reduced—order equations have not been studied.

In this paper the linear quadratic Nash games for the infi-
nite horizon MSPS are considered without non—singularity
assumptions of the fast subsystems. After defining the GC-
MARE, the boundedness of the solution to the GCMARE
and its asymptotic structure are newly derived under less
conservative condition compared with the previous result
[6]. The proof of the existence of the solution to the GC-
MARE with asymptotic expansion is obtained by an im-
plicit function theorem [5] under assumptions imposed on
the reduced—order subsystems. As another important fea-
ture of this paper, since the non—singularity assumptions of
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the state matrices of the fast subsystems are not needed,
the obtaining theoretical results can be extended over the
existing results [3].

Notation: The notations used in this paper are fairly stan-
dard. The superscript T' denotes matrix transpose. I,, de-
notes the n x n identity matrix. detM denotes the deter-
minant of M. Re(\) denotes a real part of A € C.

II. PROBLEM FORMULATION

Consider a linear time-invariant MSPS [3]

2 2
To (t) = Z Aolxl(t) + Z B()iui(t), (1&)
1=0 =1
Eli‘l(t) Aloxo (t) + Anxl(t) + Biiuy (t)7 (1b)
€2i2 (t) = AQ().TO (t) + Aggig(t) + B22u2 (t)7 (1(3)
1137(0) - .Z‘?, ] = 07 17 2’
with quadratic cost functions
1 oo
5= 5 [ W Ow+ Rl (20)
0
R;>0,1=1, 2,
Yi (t) = Ciol‘o(t) + Ciixs (t) = CZ‘CC(t), (Qb)
T
a(t) = [2f@) «1@) 23],

where z; € R™, ¢+ = 0, 1, 2 are the state vector, u; €
R™i, i =1, 2 are the control input. All the matrices are
constant matrices of appropriate dimensions.

€1 and g9 are two small positive singular parameters of
the same order of magnitude [3] such that

0<k1§a55—1§k2<oo, (3a)
€2
a= lim a. (3b)
e1—+0
g2—40

Let us introduce the partitioned matrices

A=A, Bie =9 Bi, Bye = 9. By,
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Sie = BieR;'BL = 15,01, i =1, 2,

L, 0 0
(I)e = 0 51]n1 0 5
0 0 ealn,
Ao Aot Aoz
A= Ay A O ;
A 0 Ag
Bo1 By
By = | Bii |, By = 0 )
0 Bay
[ Soor Sot1 0 ]
S, =BR'Bl = | SL, S 0 |,
0 0 0|
[ Soo2 0 Soza ]
Sy=BiRpyBI=| 0 0 o0 |,
i Sy 0 Sz ]
[ Qoor Qo1 0]
Q=C{Ci=|Qf;, Qu 0],
0 0 0
[ Qooz 0 Qo22 |
Q=Cclc, = 0 0 0
| Q2 0 Qa2 |

We now consider the linear quadratic Nash games for in-
finite horizon MSPS (1) under the following basic assump-
tions [3].

Assumption 1 There exists an p* > 0 such that the
triplet (Ae, Bie, Ci), © = 1, 2 are stabilizable and de-
tectable for all p € (0, u*], where p:= \/e1€3.

Assumption 2 The triplet (Aii, By, Cii), i =1, 2 are
stabilizable and detectable.

These conditions are quite natural since at least one con-
trol agent has to be able to control and observe unstable
modes. The purpose is to find a linear feedback controller
(u}, u3) such that

The Nash inequality shows that u] regulates the state to
zero with minimum output energy. The following lemma is
already known [1].

Lemma 1 Under Assumption 1, there exists an admissi-
ble controller such that (4) hold iff the following full-order
CMARE

AZXG + XeAe + Ql - XesleXe

_XGSQGYG - }/;SQeXe = 07 (5&)
AZYVE + }/eAe + QQ - YESQE}/E
*YvesleXe - Xesleyre = 07 (5b)

have stabilizing solutions X. > 0 and Y. > 0 where

T T
X()o 61X10 €2X20T
X, = €1X10 e1X11 NGE2.5TH N
€2 X9 /E162X21 g2 X929
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T T

Yoo e1Yq £2Y5 .

Y, = 1Yo &aYn VE1E2Y 5
eaYa (/E1€2Y01 €2Ya2

Then, the closed—loop linear Nash equilibrium solutions to
the full-order problem are given by

ui(t) = =Ry Bl Xea(t), (6a)
uy(t) = —Rayy Bi.Yex(t). (6b)
III. ASYMPTOTIC EXPANSION

To study the property of solutions of the CMARE (5),
we introduce the following useful lemma [6].

Lemma 2 The CMARE (5) is equivalent to the following
GCMARE (7), respectively.

ATX + XTA+Q1 — X761 X

XSy —vYTS,X =0, (7a)
ATY 4 YTA+Qy —YTSY
-YTsx - xTs, v =o, (7b)
where
X, = o X=X"0, X;=XL i=0,1, 2,
i X()() Eerllz) EQX%E)
X = X0  Xn \/571X2ﬂ ,
L Xoo \/aX21 Xao
Yo = @Y =Y"®, V=Y, i=0,1, 2,
i YOO 51Y17.5 621%1.5
Yy = Yio Yiu Va© Y2T1
| Yoo VaYo Yoo

Moreover, we can change the form of the strategies (6) as

follows.
ui(t) = —Ryy BY Xa(t),

uy(t) = —Ryy Bl Ya(t).

(8a)
(8b)

Proof: Since the proof is similar to the proof of Lemma
3 in [6], it is omitted. ]
After partitioning the GCARE (7), we obtain the
reduced-order equations (10) as e; — +0, 7 = 1, 2, where
Xim, Yim, Im =00, 10, 20, 11, 21, 22 are the zeroth order
solutions. ~
If Assumption 2 holds, there exist the matrices X1; >0
and Y52 > 0 such that the matrices A11—S111 X111 and Aoy —
Sg2Yao are stable7~where~,41T1)~(11 +):(11A11 jX115111X11 +
Q11 = 0 and A, X2 + Xog Aoy — X225922 X2 + Q22 = 0.
Now we chose X717 and Yas to be X717 and Ys2, respectively.
Then there exist A\, and A, such that

(A1 — S111X11)ve = Az, Re(Ns

A o (9a)
(Az2 — S220Ya2)vy, = Ayvy, Re()y

) < 0
) < 0, (9b)

where v, € C™* and v, € C"? are any vectors.



AL X0 + XooAoo + Ay X10 + Xy Arg + AL X0 + X35 A20 — X00S001 Xoo — X00S002 Y00
— X158 Xo00 — Xo00So011 X10 — XioS111X10 — X20S822 Y00 — X00S022Y20 — X30S222Ya0

—Y00 5002 X00 — 372T050T22X00 — Y00S022 X20 — 1_/2T05222)_(20 + Qoo1 =0,

(10a)

XooAo1 + X{p A1 + AL X1+ VaAl Xor — (XooSo11 X11 + Xi9S111X11) — Va(Xo0So22Ya1 + XagSa22Y21)

—Va(Yo0S022X21 + YahS292 Xo1) + Qo11 = 0,
1

va

XOOAOQ + X%AQQ + AgoXQQ +

Va

(10Db)

_ 1 - _ _ _ _ _ _ _
AT XT — —=(Xo00S011 X531 + X19S111X31) — (X00S022Ya2 + X0S222Y22)

—(Yo0 S22 X2 + Y3S220X22) = 0, (10c)
AT X1 + X114y — X181 X11 — aX3, Sa22Ya1 — @Yy Sa2oXo1 + Q111 =0, (10d)
_ 1 _ 1 . _ _ _ _ _
VaXi A + ﬁAﬂX% - ﬁXllsllng; —VaX3 S222Y00 — VaYy So20 Xoo = 0, (10e)
_ _ 1 _ _ _ _ _ _
A3, X9 + XogAgo — 5X215111X2Tl — X925922Y25 — Y225222 X022 = 0, (10f)
Al Yoo + Yoo Aoo + AfgYio + Y1h A1g + A3y Yao + Yo Ao — Yo0.S002 Y00 — Yo0S001 Xoo
—Y305020 Y00 — Yo0S022Y20 — YanSa20 Y0 — YibStq1 Xoo — Yo0S011 X10 — YinS111X10
—X00S001 Yoo — Xi0Sa11 Y00 — X00S011Y10 — Xi9S111Y10 + Qooz = 0, (10g)
YooAor + Yih Ay + AL Y11 + VaAL Yo, — Va(YooSoa2Yer + Yo Sa22Yo1) — (YooSo11 X11 + YihS111X11)
—(XooSo11 Y11 + X{S111Y11) = 0, (10h)
_ _ _ 1 _ _ _ _ _ 1 _ _ _ _
Yoo Aoz + Yah Aoo + A3 Yoo + ﬁA{ngj{ — (Yo0So022Ya2 + Yah Sa20Ya0) — fd(YooSonXgl + Y5811 X5)
1 _ _ _ )
—ﬁ(XOOSOHYﬁ + X{pS111Y31) + Q22 = 0, (10i)
AL Y11+ Vi Ay — @Yy Sa20 Vo1 — V11 S111 X1 — X11S111 Y11 = 0, (10j)
— 1 _ _ _ 1 - _ 1 - _
VaYh Ags + ﬁAlTlYﬁ — VaYy) So90Yas — EYuSungTl - ﬁxnsnﬂfﬁ =0, (10k)
_ _ _ _ 1_ _ 1 - _
AL Yoo + Yoo Agy — Yo3.8999 Va0 — EY21S111X2Tl - EX21S111Y27£ + Q222 = 0. (101)

Note that we can change the form (10f) and (10j) as
follows

U;(Azz - 52223722)TX22U;/ + Ungz(Azz - 52223722)%
1 _ _
—angmSlqulvy = 0,

_ 1 _ _
=4 2AyU§X22Uy — angngulXZTlvy = 07 (11a)

v (A — S11 X11) T Vi, + vI Y1 (A — Sin Xi1)ve
*071153721522237275% =0,

54 QA;E’UEYH’U;E — @’L)g?zlSQQQYQq;’Um =0. (11b)

‘Taking Re(\;) < 0 and Re()y) < 0 into account, we have
X22 = Y11 = 0. Then, from (10e) and (10k), the following
equalities (12) hold.

X3 (Agy — Sa29Ya2) + (A1 — S111 X11)" X3, =0, (12a)
aYsi (Aaz — S220Ya2) + (A11 — S111X11) Y5, = 0. (12b)

Hence, the unique solutions of (10f) and (10j) are given
by Xo1 = Y21 = 0 because of the stability A1; — Si11X11
and Agg — Sa99Yos. Thus the parameter & does not appear
in (10), that is, it does not affect the equation (10) in the
limit when 1 and €5 tend to zero. Therefore, we obtain the
zeroth order equations (13). Then, the Nash equilibrium
strategies for the MSPS will be studied. It is noted that

we need the following basic assumption, so that ones can
apply the proposed method to the nonstandard MSPS.

Assumption 3 The Hamiltonian matrices Ty, @ = 1, 2
are nonsingular, where

(14)

Tii = [ A S } ~

2
T
_an _Aii

Under Assumptions 2 and 3, we obtain the following ze-
roth order equations

AT X0 + XooAs + Qa1

—X00951X00 — X00Ss2Y00 — Yo0Ss2X00 = 0, (15a)
ATYo0 + YooAs + Qu2

—Y00Ss2Y00 — Y00Ss1 X00 — X00Ss1Yoo =0,  (15D)
AT X1+ X1 A — XS X + Qi =0, (15¢)
AL Yoo + Yoo Aoy — Vo359 Y2 + Qa2 =0, (15d)
X10 = =Dy DI Xoo — Dt Ny, (15e)
Yy = _D;1T1D1T-01YO07 (15f)
Xoo = *DJQTngozXooy (15g)
Yy = *DJQED;}FMYOO - Dy_ngg%Q» (15h)
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AL X0 + XooAoo + ATy X10 + XigAro + ALy X0 + X309 A20 — X00S001 Xoo — X00S002 Y00
—X105811 X00 — Xo00S011 X10 — Xi9S111X10 — X20S825 Y00 — X00S022 Y20 — X295222 Y20

—Y00S002 X00 — Ya,S¢22X00 — Yoo So22X20 — Vi S220X20 + Qoo1 = 0,
XooAor + X{pA + Ao X11 — (XooSo11 X11 + X1oS111X11) + Qour = 0,
Xoo Aoz + X0 A2s — (XooSo22Yos + X305222Y20) = 0,

AT X1 + XAy — XS X + Qi =0,

AL Yoo + Yoo Ao + ATgYio + YiH Arg 4 AdYao 4 Yo Aso — Yo0S002 Yoo — Yo0S001 Xoo

—Y505022Y00 — Yo0S022 Y20 — Y9222 Y20 —
—X00S001 Yoo — X195811 Yoo — X00S011 Y10 — Xi9S111Y10 + Qooz = 0, (
YooAo1 + qu(;An — (57005011)_(11 + Y1].55111X11) =0, (13f
YooAo + Yoo Aoy + AJ Yoo — (Yoo So22Yon + Y5.5222Y55) + Qo22 = 0,

A3, Y20 + Yoo Aoy — Y225920 Va0 + Q202 = 0.

where

Ay = Ago — Dpo1 D}y A1o — Dyo2 Dy Asg
+(So11 — Dao1 D11 S111) Dy N,
+(So22 — Dy02D;2125222)D;2T2Ny%2’

Ss1 = Soo1 — Dwo1 D311 S011 — So11 D1y Doy
+D01 Dy S Dt Dior

Ss2 = Soo2 — Dy02Dy_21250Tzz — So22 Dy_gngoQ
+Dy02D;2125222D;2€D502>

Qs1 = Qoor — ATy DI Ny — NoorDiy Avo
—Nyo1 D11 S DA NG,

Qs2 = Qooz — A3y D35 N,y — Nyoa D5y Ao
—NyOQD;2125222D;2T2N73;)27

Dyo1 = Aot — So11 X11, Da11 = Arn — S11 X1,

Dyo2 = Aoz — So22Y22, Dyas = Ay — Sa22Y22,

Neo1 = ALy X11 + Qo11, Nyoz = A%y Yao + Qoo

The following theorem gives how to calculate the coef-
ficient matrices of the reduced-order equations (15a) and

(15b).

Theorem 1 The matrices As, Ss1, Ss2, Qa1 and Qg2 do
not depend on Xq11, Xo1, Yo1 and Yoo, that is, their ma-
trices can be computed by using the following Hamiltonian

matrices.
[ A * | Aoo *
* AT | *  —Af
*T011T1_1%T101 - T022T2_2éT202; (16a)

* -8, _
| —Qs1 * ' ] = Toor — Tor1 7171 Tho1, (16b)
[ -5, _
| Qs * ? ] = Tooz — To22Ta35To02, (16¢)
T Ao —Soo1 To Aot —Sonn
001 _Q001 _A(’])"O ) 011 —Q011 _A’{O )

Y75St1 Xoo — Yoo0So011 X10 — YihS111 X10

13e)

)

(13g)

(13h)
Tio1 = _ AlTO 7SOT%1 _ , T = | An 751%1 _ )
| —Qonn —Aor | | —Qi1 —Ajy |
Tooz = Aoo _50%2 _ y Toga = | e _5072“2 _ )
| —Qoo2 —Apy | | —Qo22 —Ay |
T2 = - AQqq _S%Q - s Ta22 = | A _52%2 - :
| —Qo22 —Av2 | | —Q222 —A3, |

where * stands for a appropriate matriz. Moreover, we
can change the form of the solutions X19, X0, Y10 and
Ya0.

T
—1 {ng 0
—1I,, } Ty T { Xoo

o7 T
X20 _ —1 0 Ino
{ Y20 } N [ —In, } T T [ Xoo Yoo ] - (17b)

Proof: Note the relation

T
_| In, O Dz =Sn I, 0
| X I, 0 -DI, —Xu In, |’

Since T111 is nonsingular under Assumption 3 and the al-
gebraic Riccati equation (ARE) (15¢) has a stabilizing so-
lution under Assumption 2, D.11 is also nonsingular. This
means that 77} can be expressed explicitly in terms of
D;lll. Using the similar manner, we have the following re-
lations.

-1 _ I, 0 Dy =D SiD
H X1 In, 0 -Dh
I, 0
. { 75(111 I } , (18a)
7=l {nz 0 Dy_zlz *D34_2125222Dy_2€
222 Yoo Iny || 0 —D,
I, O
. [ Vo I ] . (18b)
n2
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8V€C(le» fm2a fzS» fw4a fz5» fwﬁa fyl» fy27 fy?n fy47 fySa fyG)

Ovec(Xoo, X0, Xo0, X11, Xo1, Xo2, Yoo, Y10, Y20, Y11, Ya1, Y22)T lu=po, P=Po

J

Joo Jor Jo2 O O 0 Jos

Jw Ju 0 Jiz Juu 0 0

Joog 0 Jaa 0O Jog Jos O

0 0 0 Js3 O 0 0

0 0 0 0 Jgu O 0

o 0 0 0 0 Js 0
o Jeo  Je1 0 0 0 0 Joo
0 0 0 Jiz 0 0 Jwo
0 0 0 0 Jgsa 0 Jy

0 0 0 0 0 0 0

0 0 0 0 0 0 0

I 0 0 0 0 0 0 0

J1
0
0
0
0

Jos 0O 0 0
0 0 Jio 0
0 0 0 Jo11
0 0 0 0
0 0 0 0
0 0 0 0

1 Jo2 O 0 0 ’ (21)

1 0 Jiz Ju 0
Joo 0 Jogu Jos
0 Js3 0 0
0 0 Jaa 0
0 0 0 | Js |

P: (XO()a Xl()a X20: X117 X217 X227 }/00) Y107 Y207 Y117 Y21a 5/22))

S o o o S oo - T
Py = (X007 Xi0, X20, X11, 0, 0, Yoo, Y10, Y20, 0, O, Y22)7 n = [ €1 €2 ] y Mo = [ 00 ]

ATX + XTA+ Q- X786 X — XTSYy —YTS,X =

ATY + YTA4+Qy —YTSY — Y75 X — XTSY =

Therefore, it suffices the proof of Lemma 3 to show that
the relations (16) hold. These formulations can be proved
after direct algebraic manipulations, which are omitted here
for brevity. [ |

It should be noted that the results of Theorem 1 have
never been obtained compared with the existing results
[3, 6]. The following theorem will establish the relation
between the solutions X and Y and the solutions Xj,, and

Yim for the reduced—order equations (15).
Theorem 2 Suppose that

AT @I, + I, ® A,
—[(SSIYOO)T ® Ino + Ino ® (S$1Y—00)T]
_[(Sss XOE))T ® Ino + Ino ® A(SSQ XOO)T]
AT @ I,y + Iy ® As.

det

£0, (19)
where AS = AS - le()(] - SSQ%().

Under Assumptions 1-3, the GCMARE (7) admits the
stabilizing solutions X and Y such that these matrices pos-
sess a power series expansion at || = 0. That is,

Xoo 0 0
X = | Xio Xu 0| +0(ul), (20a)
| Xy 00
[ Yoo 0 0
| Yoo 0 Yo

Proof: 'We apply the implicit function theorem [5] to
the GCMARE (7). To do so, it is enough to show that the

T
le fw2 fx3
fZQ fx4 fl’5 )
53 JZ:‘; foc6
fyl fy2 fy3
%Tg fy4 fys
fy3 .13—‘5 fyﬁ

corresponding Jacobian is nonsingular at ||u|| = 0. It can be
shown, after some algebra, that the Jacobian of GCMARE
(7) in the limit as g — po is given by (21).

Note that

Joo = Iny ® Diy + Dijg ® I,

Jor = Iy ® wa + (Dglo ® Ino)Unyno,

Joz = In, @ Dgzo + (D520 ® Lo )Unano

Jio = DLy, @ Iy, Joo = D§02 ® In,,

Ji1 = (D11 ® Ing)Unyngs J22 = (Djoa @ Ing)Unano,
Ji3 = In, ® D}y, Jia = Va(In, ® Dly),

-1
J24 = \/5 (In2 ® Dg‘lo)Ungnla J25 = Inz & D5207
Js3 = In, @ D3y + D}y @ I,

—1
J44 = \/E(DZ;Q ® I’nl)UTL2TL1 + \/E (I'n2 ® DT

xll)U”LZ’Lla

J55 = I’ﬂg ® D§22 + D§22 ® 1"2’
Jos = —Iny ® Elog — Erog ® Ing,
Jos = —Iny © Bizg — (Eg20 ® Ing)Unznos

Jio = —Va(ln, ® Eyao), Jo11 = —In, ® Ey0,

Joo = —Ing ® Ejgg — Epg ® Ing,

Jo1 = —1In, ® Emi - (Emi ® Ing)Uning>

Jog = =Ly ® BN, Jsa = —vVa (I, ® ENg)Unyn,

Doo = Ago — So01 Xoo — So02Yo0 — So11X10 — So22Y20,

D10 = A1 — 5331 Xo00 — S111X10,

Dyao = Azg — Sta Y00 — S222Y20,

E00 = So02Xo00 4 So22X20, Er20 = SgaeXoo + S22 Xo0,
38



Ey00 = So01 Yoo + So11Y10, Ey10 = Sa11 Yoo + S111Yi0-

The Jacobian (21) can be expressed as

detJ
5
= | [I(det;)?
j=1
det { Js » Jos — Jog Iy J20
Jeo — Je1J11 J10 Js

where Js = Jo() - J01J1_11J10 - J02J2_21J20.
After some straightforward but tedious algebra, it is easy
to show that the following relations hold.

Js = AZ @ Ing +In, ® A, (22a)
Jos — Jos oz J20
= —[(SSIYOO)T ® Ino + Ino ® (S811/E)0)T]7 (22b)
Joo — Je1J11" J10
= —[(Ss, X00)" @ Iy + Iny ® (Ss, X00)"],  (22¢)
where
A, = Dgo— D01 Dy Dato — DyOQDy_zlgDme
Ss1Yoo = Eyoo — Dz01D,1 Eyto,
S2Xo0 = Eazoo — Dyo2 Doy Exzo.-

5

Hense, we have detJ = l_I(detJjj)2 -detI". Obviously,
j=1
Jjj» j = 1,---,5 are nonsingular because the matrices
D11 = A — S111 X101 and Dygp = Agp — Sa22Yoo are sta-
ble under Assumption 2. Moreover, the nonsingularlity as-
sumption of the matrix I" is made. Thus, detJ # 0, i.e., J is
nonsingular at (u, P) = (uo, Po). The conclusion of The-
orem 1 is obtained directly by using the implicit function
theorem. [ |

IV. CONCLUSIONS

The linear quadratic Nash games for infinite horizon
MSPS have been considered. The main contribution is that
the boundedness and the asymptotic expansions for the so-
lutions of the GCMARE have been newly investigated.
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