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Abstract— The guaranteed cost control problem of

the decentralized robust control for nonlinear large–

scale uncertain delay systems under controller gain per-

turbations is considered. Sufficient condition for the ex-

istence of the guaranteed cost control is given in terms

of the linear matrix inequality (LMI). It is shown that

the decentralized local state feedback controllers can be

obtained by solving the LMIs.

I. Introduction

The study of large–scale interconnected systems has re-
ceived ever greater attention in the past few decades (see,
for example, [1] and the references therein). In recent years,
the problem of the decentralized robust control of large–
scale systems with parameter uncertainties has been widely
studied, and some solution approaches have been developed
[2]–[7]. Although there have been numerous results on de-
centralized robust control of large–scale uncertain systems,
much effort has been made towards finding a controller
which guarantee robust stability. However, when control-
ling such systems, it is also desirable to design the control
systems which guarantee not only the robust stability, but
also an adequate level of performance. One approach to
this problem is the so–called guaranteed cost control ap-
proach [8]. This approach has the advantage of providing
an upper bound on a given performance index.

Recent advance in theory of linear matrix inequality
(LMI) has allowed a revisiting of the guaranteed cost con-
trol approach [10]. The LMI design method is a very well–
known and powerful tool, it can not only efficiently find
feasible and global solutions, but also easily handle vari-
ous kinds of additional linear constraints. In recent years,
the guaranteed cost control problem for a class of nonlinear
large–scale interconnected systems which is based on the
LMI design method was solved [7]. However, the problem of
guaranteed cost stabilization for large-scale uncertain non-
linear delay systems has not been discussed so far. More-
over, although the existing results [7] obtained the con-
trollers that are robust with respect to the uncertainty in
the controled plant for the ordinary dynamic systems, their

robustness with respect to the uncertainty in the controllers
for the large–scale uncertain nonlinear delay systems has
not been studied.

In this paper, the guaranteed cost control problem of the
decentralized robust control for such systems is considered.
It should be noted that although in [11], a linear decentral-
ized controller that guarantees the exponential stabiliza-
tion of a class of interconnected uncertain delay systems
has been proposed, the guaranteed cost control problem
for such systems has not been considered. Moreover, our
work is an extension of the previous one [12] in the sense
that the large–scale systems are allowed to be the time de-
lays and the controller gain perturbations. After defining
the guaranteed cost control problem for the large–scale in-
terconnected uncertain nonlinear delay systems under the
additive controller gain perturbations, a sufficient condition
for the existence of the decentralized robust feedback con-
trollers which guarantees the adequate upper bound on a
given performance is derived in term of the LMI. The main
contribution of this paper is that the guaranteed cost con-
trollers are constructed by using the LMI technique. The
crucial difference between the existing results [7, 12] and
our results is that the time delays and the gain perturba-
tions are both included. Moreover, the considered systems
are complicated and general compared with [12]. As a re-
sult, the proposed robust decentralized controller can be
implemented for the practical system compared with the
existing results [7, 12].
Notation: The notations used in this paper are fairly stan-
dard. The superscript T denotes matrix transpose. In de-
notes the n × n identity matrix. || · || denotes its Euclidean
norm for a matrix.

II. Problem Formulation

The nonlinear uncertain large–scale interconnected delay
system which consists of N subsystems is described by the
following state equations:

ẋi(t) = [Ai + ∆Ai(t)]xi(t) + Biui(t)
+[Ad

i + ∆Ad
i (t)]xi(t − τi)
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+
N∑

j=1,j �=i

[Gij + ∆Gij(t)]gij(xi, xj), (1a)

ui(t) = [Ki + ∆Ki(t)]xi(t), (1b)
xi(t) = φi(t), t ∈ [−τi, 0], i = 1, 2, · · · , N, (1c)

where xi ∈ Rni and ui ∈ Rmi are the state and the con-
trol of the ith subsystems, respectively. τi > 0 is the de-
lay constant, and φi(t) is a given continuous vector valued
initial function. Ai, Bi and Ad

i are constant matrices of
appropriate dimensions and Gij are interconnection ma-
trices between the ith subsystems and other subsystems.
gij(xi, xj) ∈ Rli are unknown nonlinear vector functions
that represent nonlinearity [4, 7].

For a given controllers ui(t) = Kixi(t), the actual
controller implemented is assumed to be ui(t) = [Ki +
∆Ki(t)]xi(t), where Ki is the nominal controller gain, and
∆Ki(t) represents the gain perturbations. In fact, the
controller gain perturbations can result from the actua-
tor degradations, as well as from the requirement for re–
adjustment of controller gains during the controller imple-
mentation stage [13].

The parameter uncertainties considered here are assumed
to be of the following form:[

∆Ai(t) ∆Ad
i (t)

]
= DiFi(t)

[
E1i Ed

i

]
, (2a)

∆Gij(t) = DijFij(t)Hij , (2b)
∆Ki(t) = Dk

i F k
i (t)Ek

i , (2c)

where Di, E1i, Ed
i , Dij , Hij Dk

i and Ek
i are known constant

real matrices of appropriate dimensions. Fi(t) ∈ Rpi×qi ,
Fij(t) ∈ Rri×si and F k

i (t) ∈ Rpk
i ×qk

i are unknown matrix
functions with Lebesgue measurable elements and satisfy-
ing

F T
i (t)Fi(t) ≤ Iqi , (3a)

F T
ij (t)Fij(t) ≤ Isi , (3b)

F kT
i (t)F k

i (t) ≤ Iqk
i
. (3c)

Without loss of generality, the following assumptions con-
cerning the unknown nonlinear vector functions are made.

Assumption 1 There exist known constant matrices Vi

and Wij such that for all xi ∈ Rni and xj ∈ Rnj

||gij(xi, xj)|| ≤ ||Vixi|| + ||Wijxj||, (4)

for all i, j and for all t ≥ 0.

Assumption 2 For all i,
N∑

j=1, j �=i

WT
jiWji > 0.

Remark 1 Assumption 2 is made only for simplification
of presentation.

Associated with system (1) is the cost function

J =
N∑

i=1

∫ ∞

0

[xT
i (t)Qixi(t) + uT

i (t)Riui(t)]dt, (5)

where Qi and Ri are given positive definite symmetric ma-
trices.

Definition 1 A decentralized control law ui(t) = [Ki +
∆Ki(t)]xi(t) is said to be a quadratic guaranteed cost con-
trol with associated cost matrix Pi > 0 for the uncertain
large–scale interconnected delay system (1) and cost func-
tion (5) if the closed–loop system is quadratically stable and
the closed–loop value of the cost function (5) satisfies the
bound J ≤ J∗ for all admissible uncertainties, that is,

N∑
i=1

(
d

dt
xT

i (t)Pixi(t) + xT
i (t){Qi

+[Ki + ∆Ki(t)]T Ri[Ki + ∆Ki(t)]}xi(t)

)
< 0, (6)

for all nonzero xi ∈ Rni and all uncertain matrices (2).

The objective of this paper is to design the guaranteed
cost control nominal gains Ki, i = 1, 2, · · · , N for the
large–scale interconnected delay system (1) with uncertain-
ties (2).

III. Main Results

Now, we present a sufficient condition for existence of the
state feedback guaranteed cost control law for the uncertain
delay systems (1).

Theorem 1 Consider the large–scale interconnected delay
systems (1) under Assumptions 1 and 2. If there exist sym-
metric positive definite matrices Pi ∈ Rni×ni and Si ∈
Rni×ni such that for all uncertain matrices (2), the LMI (7)
is satisfied, the control laws ui(t) = [Ki +∆Ki(t)]xi(t), i =
1, · · · , N are the guaranteed cost controller,

Λi

=




Ξi PiÃ
d
i PiG̃i1 · · · PiG̃iN

ÃdT
i Pi −Si 0 · · · 0

G̃T
i1Pi 0 −Il1 · · · 0
...

...
...

. . .
...

G̃T
iNPi 0 0 · · · −IlN


 < 0, (7)

where Λi ∈ RN̄×N̄ , N̄ = 2ni + (N − 1)li and

Ξi := ÃT
i Pi + PiÃi + Ui + R̃i + Si,

Ui := 2
N∑

j=1, j �=i

(V T
i Vi + WT

jiWji),

Ãi := Āi + DiFi(t)E1i + BiD
k
i F k

i (t)Ek
i ,

Ãd
i := Ad

i + DiFi(t)Ed
i ,

G̃ij := Gij + DijFij(t)Hij , Āi := Ai + BiKi,

R̃i := Qi + [Ki + ∆Ki(t)]T Ri[Ki + ∆Ki(t)].

Furthermore, the corresponding value of the cost function
(5) satisfies the following inequality (8) for all admissible
uncertainties (2).

J <

N∑
i=1

[
φT

i (0)Piφi(0) +
∫ 0

−τi

φT
i (s)Siφi(s)ds

]
. (8)
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Remark 2 Note that there exists no matrix PiG̃ii, i =
1, · · · , N in the matrix Λi.

In order to prove Theorem 1, we need the following in-
equality

2xT
i V T

i Vixi + 2xT
j WT

ij Wijxj ≥ gT
ijgij . (9)

Now, let us prove Theorem 1.
Proof: Combining the guaranteed cost controller

ui(t) = [Ki + ∆Ki(t)]xi(t) with (1) gives a closed–loop
system of the form

ẋi(t) = Ãixi(t) + Ãd
i xi(t − τi)

+
N∑

j=1, j �=i

G̃ijgij(xi, xj). (10)

Suppose now there exist the symmetric positive definite ma-
trices Pi > 0, Si = ST

i > 0, i = 1, · · · , N such that the LMI
(7) holds for all admissible uncertainties. In order to prove
the asymptotic stability of the closed–loop system (10), let
us define the following Lyapunov function candidate

V (x(t)) =
N∑

i=1

[
xT

i (t)Pixi(t)

+
∫ t

t−τi

xT
i (s)Sixi(s)ds

]
, (11)

where x(t) =
[

xT
1 (t) · · · xT

N(t)
]T . Note that

V (x(t)) > 0 whenever x(t) �= 0. Then the time derivative
of V (x(t)) along any trajectory of the closed–loop system
(10) is given by

d

dt
V (x(t))

=
N∑

i=1

{
xT

i (t)(ÃT
i Pi + PiÃi)xi(t)

+2xT
i (t)PiÃ

d
i xi(t − τi)

+
[ N∑

j=1, j �=i

G̃ijgij(xi, xj)
]T

Pixi(t)

+xT
i (t)Pi

[ N∑
j=1, j �=i

G̃ijgij(xi, xj)
]

+xT
i (t)Sixi(t) − xT

i (t − τi)Sixi(t − τi)

}
.

Since
N∑

i=1

N∑
j=1, j �=i

(2xT
i V T

i Vixi + 2xT
i WT

jiWjixi − gT
ijgij)

=
N∑

i=1

N∑
j=1, j �=i

(2xT
i V T

i Vixi + 2xT
j WT

ij Wijxj − gT
ijgij),

and using (9), it follows that

d

dt
V (x(t))

=
N∑

i=1

{
xT

i (t)(ÃT
i Pi + PiÃi)xi(t)

+2xT
i (t)PiÃ

d
i xi(t − τi)

+
[ N∑

j=1, j �=i

G̃ijgij(xi, xj)
]T

Pixi(t)

+xT
i (t)Pi

[ N∑
j=1, j �=i

G̃ijgij(xi, xj)
]

+xT
i (t)Sixi(t) − xT

i (t − τi)Sixi(t − τi)

}

+
N∑

i=1

N∑
j=1, j �=i

(2xT
i V T

i Vixi + 2xT
i WT

jiWjixi

−gT
ijgij)

−
N∑

i=1

N∑
j=1, j �=i

(2xT
i V T

i Vixi + 2xT
j WT

ij Wijxj

−gT
ijgij)

=
N∑

i=1

zT
i




Ξi − R̃i PiÃ
d
i PiG̃i1 · · · PiG̃iN

ÃdT
i Pi −Si 0 · · · 0

G̃T
i1Pi 0 −Il1 · · · 0
...

...
...

. . .
...

G̃T
iNPi 0 0 · · · −IlN


 zi

−
N∑

i=1

N∑
j=1, j �=i

(2xT
i V T

i Vixi + 2xT
j WT

ij Wijxj

−gT
ijgij)

<

N∑
i=1

zT
i (t)Λizi(t) −

N∑
i=1

xT
i (t)R̃ixi(t),

where zi =
[

xT
i (t) xT

i (t − τi) gT
i1 · · · gT

iN

]T ∈ RN̄

and Ξi and Λi are given in (7). Taking (7) into account, it
follows immediately that

d

dt
V (x(t)) < −

N∑
i=1

xT
i (t)R̃ixi(t) < 0. (12)

Hence, V (x(t)) is a Lyapunov function for the closed–loop
system (10). Therefore, the closed–loop system (10) is
asymptotically stable and ui(t) = [Ki + ∆Ki(t)]xi(t) is
the guaranteed cost controller because the inequality (6)
is satisfied. Furthermore, by integrating both sides of the
inequality (12) from 0 to T and using the initial conditions,
we have

V (x(T )) − V (x(0)) < −
N∑

i=1

∫ T

0

xT
i (t)R̃ixi(t)dt. (13)

Since the closed–loop system (10) is asymptotically stable,
that is, x(T ) → 0, when T → ∞, we obtain V (x(T )) → 0.
Thus we get

J =
N∑

i=1

∫ T

0

xT
i (t)R̃ixi(t)dt < V (x(0))
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=
N∑

i=1

[
φT

i (0)Piφi(0) +
∫ 0

−τi

φT
i (s)Siφi(s)ds

]
.

The proof of Theorem 1 is completed.
We now give the LMI design approach to the construction

of the guaranteed cost controller.

Theorem 2 Under Assumptions 1 and 2, suppose there
exist the constant parameters µi > 0, εi > 0 and νi >
0 such that for all i = 1, · · · , N the LMI (14) have the
symmetric positive definite matrices Xi > 0 ∈ Rni×ni and
S̄i > 0 ∈ Rni×ni and a matrix Yi ∈ Rmi×ni .

If such conditions are met, the decentralized linear state
feedback nominal gains are given by (15)

Ki = YiX
−1
i , i = 1, · · · , N. (15)

Moreover, the guaranteed cost bound for the closed–loop
uncertain large–scale interconnected delay systems is given
below

J <

N∑
i=1

[
φT

i (0)X−1
i φi(0) +

∫ 0

−τi

φT
i (s)S̄−1

i φi(s)ds

]
.(16)

Proof: Let us introduce the matrices Xi = P−1
i , Yi =

KiP
−1
i and S̄i := S−1

i . Pre– and post–multiplying both
sides of the inequality (14) by

block − diag
[

Pi Si Imi Il1 Is1 · · ·
IlN IsN Ini Imi Ini Ini Irk

i

]
yields (17).

Using the Schur complement [14], the LMI (17) holds if,
and only if, the LMI (18) holds. Furthermore, applying the
Schur complement to the LMI (18) gives (19).

Using a standard matrix inequality [4, 9], for all admissi-
ble uncertainties (2), the matrix inequality (7) holds. This
is the required result. On the other hand, since the results
of the cost bound (16) can be proved by using the similar
argument for the proof of Theorem 1, it is omitted.

Since the LMI (14) consists of a convex solution set of
(µi, εi, νi, Xi, Yi, S̄i), various efficient convex optimiza-
tion algorithm can be applied. Moreover, its solutions rep-
resent the set of the guaranteed cost controllers. This pa-
rameterized representation can be exploited to design the
guaranteed cost controllers which minimizes the value of
the guaranteed cost for the closed–loop uncertain large–
scale interconnected delay systems. Consequently, solving
the following optimization problem allows us to determine
the optimal bound.

D0 :
N∑

i=1

min
Xi

Ji = J∗, (20)

Ji := αi + Trace [Mi],
Xi ∈ (µi, εi, νi, Xi, Yi, S̄i, αi, Mi),

such that (14) and[ −αi φT
i (0)

φi(0) −Xi

]
< 0,

[ −Mi NT
i

Ni −S̄i

]
< 0, (21)

where NiN
T
i :=

∫ 0

−τi

φi(s)φT
i (s)ds.

That is, the problem addressed in this paper is as follows:
“Find Ki = YiX

−1
i , i = 1, · · · , N such that LMI (14) and

(21) are satisfied and for all i, the cost Ji, i = 1, · · · , N
becomes as small as possible.”

Finally, we are in a position to establish the main result
of this section.

Theorem 3 If the above optimization problem has the so-
lution µi, εi, νi, Xi, Yi, S̄i, αi and Mi, then the con-
trol gains of the form (15) are the decentralized linear state
feedback control gains which ensure the minimization of the
guaranteed cost (16) for the uncertain large–scale intercon-
nected delay systems.

Proof: By Theorem 2, the nominal control gains (15)
constructed from the feasible solutions µi, εi, νi, Xi, Yi, S̄i,
αi and Mi are the guaranteed cost controllers of the un-
certain large–scale interconnected delay systems (1). Using
the Schur complement to the LMI (21), we have

φT
i (0)X−1

i φi(0) < αi,∫ 0

−τi

φT
i (s)S̄−1

i φi(s)ds < Trace [Mi].

It follows that

J <

N∑
i=1

[
φT

i (0)X−1
i φi(0) +

∫ 0

−τi

φT
i (s)S̄−1

i φi(s)ds

]

<

N∑
i=1

min
Xi

(αi + Trace [Mi]) =
N∑

i=1

min
Xi

Ji = J∗. (22)

Thus, the minimization of Ji implies the minimum value
J∗ of the guaranteed cost for the interconnected uncertain
delay systems (1). The optimality of the solution of the
optimization problem follows from the convexity of the ob-
jective function under the LMI constraints. This is the
required result.

Remark 3 It should be noted that the original optimiza-
tion problem for the guaranteed cost (20) can be decom-
posed to the following reduced optimization problems (23)
because each optimization problem (23) is independent of
other LMI. Hence, we have only to solve the optimization
problems (23) for each independent subsystem.

Di : min
Xi

Ji = min
Xi

(αi + Trace [Mi]), i = 1, · · · , N, (23)

Xi ∈ (µi, εi, νi, Xi, Yi, S̄i, αi, Mi).

IV. Numerical Example

In order to demonstrate the efficiency of our proposed
control, we have run a simple numerical example. Consider
the interconnected uncertain system (1) composed of three
two–dimensional subsystems. The system matrices and the
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


Φi Ad
i S̄i XiE

T
1i Gi1 0 · · · GiN 0 Xi Y T

i + νiBiD
k
i DkT

i Xi Xi XiE
kT
i

S̄iA
dT
i −S̄i S̄iE

dT
i 0 0 · · · 0 0 0 0 0 0 0

E1iXi Ed
i S̄i −µiImi

0 0 · · · 0 0 0 0 0 0 0

GT
i1 0 0 −Il1 HT

i1 · · · 0 0 0 0 0 0 0
0 0 0 Hi1 −εiIs1 · · · 0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

GT
iN 0 0 0 0 · · · −IlN

HT
iN 0 0 0 0 0

0 0 0 0 0 · · · HiN −εiIsN
0 0 0 0 0

Xi 0 0 0 0 · · · 0 0 −Q−1
i

0 0 0 0

Yi + νiD
k
i DkT

i BT
i 0 0 0 0 · · · 0 0 0 νiD

k
i DkT

i − R−1
i 0 0 0

Xi 0 0 0 0 · · · 0 0 0 0 −S̄i 0 0

Xi 0 0 0 0 · · · 0 0 0 0 0 −U−1
i 0

Ek
i Xi 0 0 0 0 · · · 0 0 0 0 0 0 −νiIqk

i




< 0, (14)

where Φi := AiXi + BiYi + (AiXi + BiYi)T + µiDiD
T
i + Ti + νiBiD

k
i DkT

i BT
i , Ti :=

N∑
j=1, j �=i

εiDijD
T
ij .




Ψi PiAd
i ET

1i PiGi1 0 · · · PiGiN 0 Ini
KT

i + νiPiBiD
k
i DkT

i Ini
Ini

EkT
i

AdT
i Pi −Si EdT

i 0 0 · · · 0 0 0 0 0 0 0

E1i Ed
i −µiImi

0 0 · · · 0 0 0 0 0 0 0

GT
i1Pi 0 0 −Il1 HT

i1 · · · 0 0 0 0 0 0 0
0 0 0 Hi1 −εiIs1 · · · 0 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
GT

iN Pi 0 0 0 0 · · · −IlN
HT

iN 0 0 0 0 0
0 0 0 0 0 · · · HiN −εiIsN

0 0 0 0 0

Ini
0 0 0 0 · · · 0 0 −Q−1

i
0 0 0 0

Ki + νiD
k
i DkT

i BT
i Pi 0 0 0 0 · · · 0 0 0 νiD

k
i DkT

i − R−1
i 0 0 0

Ini
0 0 0 0 · · · 0 0 0 0 −S−1

i
0 0

Ini
0 0 0 0 · · · 0 0 0 0 0 −U−1

i 0

Ek
i 0 0 0 0 · · · 0 0 0 0 0 0 −νiIqk

i




< 0, (17)

where Ψi := ĀT
i Pi + PiĀi + µiPiDiD

T
i Pi + PiTiPi + νiPiBiD

k
i DkT

i BT
i Pi.

nonlinear functions with the uncertainties are given as fol-
lows.

A1 =
[

0 1
−1 −1

]
, Ad

1 =
[

0 0
−0.1 −0.1

]
, B1 =

[
0
1

]
,

D1 =
[

0
1

]
, G12 =

[
0

0.2

]
, G13 =

[
0

0.1

]
,

A2 =
[

0 1
−2 −3

]
, Ad

2 =
[

0 0
−0.2 −0.3

]
, B2 =

[
0
2

]
,

D2 =
[

0
1.5

]
, G23 =

[
0

0.4

]
, G21 =

[
0

0.1

]
,

A3 =
[

0 1
1 0

]
, Ad

3 =
[

0 0
0.1 0

]
, B3 =

[
0

0.5

]
,

D3 =
[

0
0.5

]
, G31 =

[
0

0.3

]
, G32 =

[
0

0.2

]
,

E1j =
[
0 0.1

]
, Ed

j =
[
0 0.01

]
, j = 1, 2, 3,

Ek
j =

[
0.01

]
, Dk

j =
[
0 0.1

]
, j = 1, 2, 3,

D12 = D13 = D23 = D21 = D31 = D32 =
[

0
1

]
,

H12 = H13 = [0.015] , H23 = H21 = [0.01] ,
H31 = H31 = [0.02] , τ1 = τ2 = τ3 = 1,

φ1(t) = φ2(t) = φ3(t) =
[

exp(t + 1)
0

]
,

g1j = [0.1 + δ1(t)]
(

sin
[
1 0

]
x1 − sin

[
1 0

]
xj

)
,

|δ1(t)| ≤ 0.1, j = 2, 3,

g2j = [0.1 + δ2(t)]
(

sin
[
1 0

]
x2 − sin

[
1 0

]
xj

)
,

|δ2(t)| ≤ 0.1, j = 3, 1,

g3j = [0.1 + δ3(t)]
(

sin
[
1 0

]
x3 − sin

[
1 0

]
xj

)
,

|δ3(t)| ≤ 0.1, j = 1, 2.

In that case the unknown functions gij(xi, xj) satisfy

||gij(t)|| ≤ 0.2
(
||xi||+ ||xj||

)
.

Therefore, we choose as V1 = V2 = V3 = W12 = W13 =
W23 = W21 = W31 = W32 = 0.2I2.

Now, we choose as Ri = 0.1 and Qi =
diag

[
0.2 0.1

]
, i = 1, 2, 3. By applying Theorem 3

and solving the corresponding optimization problem (23),
we obtain the decentralized feedback control gains

K1 =
[ −1.0490 −1.3701

]
,

K2 =
[ −1.0462 −8.4753 × 10−1

]
,

K3 =
[ −5.7931 −5.6983

]
.

Consequently,
the optimal guaranteed cost of the uncertain closed–loop
delay system is J∗ = 15.768881, where min

X1
J1 = 2.501906,

min
X2

J2 = 2.194812 and min
X3

J3 = 11.072163.
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


Γi KT
i + νiPiBiD

k
i DkT

i PiA
d
i + µ−1

i ET
1iEd

i PiGi1 0 · · · PiGiN 0

Ki + νiD
k
i DkT

i BiPi νiD
kT
i Dk

i − R−1
i

0 0 0 · · · 0 0

AdT
i Pi + µ−1

i
EdT

i E1i 0 µ−1
i

EdT
i Ed

i − Si 0 0 · · · 0 0

GT
i1Pi 0 0 −Il1 HT

i1 · · · 0 0
0 0 0 Hi1 −εiIs1 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

GT
iNPi 0 0 0 0 · · · −IlN

HT
iN

0 0 0 0 0 · · · HiN −εiIsN




< 0. (18)

Fi :=




Γi KT
i + νiPiBiD

k
i DkT

i PiA
d
i + µ−1

i
ET

1iE
d
i PiGi1 · · · PiGiN

Ki + νiD
k
i DkT

i BiPi νiD
kT
i Dk

i − R−1
i

0 0 · · · 0

AdT
i Pi + µ−1

i EdT
i E1i 0 µ−1

i EdT
i Ed

i − Si 0 · · · 0

GT
i1Pi 0 0 ε−1

i HT
i1Hi1 − Il1 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

GT
iN Pi 0 0 0 · · · ε−1

i
HT

iN HiN − IlN


 < 0. (19)

where Γi := ĀT
i Pi + PiĀi + Ui + Qi + Si + PiTiPi + µiPiDiD

T
i Pi + µ−1

i ET
1iE1i + νiPiBiD

k
i DkT

i BT
i Pi + ν−1

i EkT
i Ek

i .

It should be noted that although there exist both the
time delays and the gain perturbations compared with the
existing results [7, 12], we can construct the decentralized
robust controller. Therefore, the proposed design method
is useful in the sense that the resulting decentralized robust
controller can be implemented to more practical large–scale
systems.

V. Conclusions

In this paper, a solution of the guaranteed cost control
problem for nonlinear large–scale uncertain delay systems
have been presented. The decentralized robust optimal
guaranteed cost controller which minimizes the value of the
guaranteed cost for the closed–loop uncertain system can
be solved by using software such as MATLAB’s LMI con-
trol Toolbox. Thus, the resulting decentralized linear feed-
back controller can guarantee the quadratic stability and
the optimal cost bound for the uncertain large–scale delay
systems.
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