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Abstract

In this paper, H2 state feedback control for large–scale systems
is studied in a different approach from the existing methods.
The attention is focused on the design of a near–optimal H2

controller which does not depend on the values of the small
unknown weak coupling parameter. It is newly shown that the
resulting controller in fact achieves O(ε2) approximation of the
optimal H2 cost.

1 Introduction

The stability analysis and control for large–scale systems have
been investigated extensively (see e.g., [5]). These control
problem situations in practice are illustrated by the multiarea
power system [6]. In order to obtain the optimal solution to
the Linear Quadratic Regulator (LQR) problem, the Algebraic
Riccati Equation (ARE), which is parameterized by the small
positive weak coupling parameter ε must be solved. Various
reliable approaches for solving the ARE have been well doc-
umented in literatures (see e.g., [3]). However, a limitation of
these approaches are that the small parameter is assumed to be
known. In practice, the small perturbation parameter ε is of-
ten not known. Thus, it is not applicable to a large class of the
control problem when the weak coupling parameter represents
small unknown perturbation whose value is not known exactly.
Moreover, in case where the Schur method is used, the comput-
ing need two times dimension of the ARE. Therefore, the re-
duction of the algebraic manipulation must be needed because
the large–scale systems include numerous subsystems.

Recently, the optimal control problem for the large–scale sys-
tems via the recursive approach has been investigated [4].
When ε is small or known the previously used technique is very
efficient. However, when the small weak coupling parameter is
unknown, the recursive algorithm approach cannot also apply.
Furthermore, so far, the loss of performance between the opti-
mal control and the resulting controller which is based on the
recursive technique has not been investigated.

In this paper, H2 state feedback control for large–scale sys-
tems is investigated. The considered large–scale systems are
connected by the small weak coupling parameter for the other

subsystems. The main contribution in this paper is as follows.
Firstly, the unique and bounded solution of the ARE and its
asymptotic structure are established using the different man-
ner compared with the existing result [1]. That is, the proof
is done by using the implicit function theorem [2]. Using the
asymptotic structure, a new near–optimal H2 controller which
does not depend on the values of the small weak parameter is
obtained. This is done by eliminating the parameters ε for the
optimal controller. Secondly, it is newly shown that the result-
ing controller achieves O(ε2) approximation of the optimal H2

cost. It should be noted that there exists no result of the loss of
the cost performance via the near–optimal control so far. Even
if the parameter is unknown, when the parameter is sufficiently
small, the new near–optimal H2 controller can be used reliably
for the large scale systems.

Notation: The superscript T denotes matrix transpose. Trace
denotes the trace for any square matrix. det denotes the deter-
minant for any square matrix. In denotes the n × n identity
matrix. || · ||2 denotes its 2–norm for any matrix. || · || denotes its
Euclidean norm for any matrix. vec denotes the column vector
for any square matrix. block − diag denotes the block diago-
nal matrix. ⊗ denotes the Kronecker product.

2 Problem formulation

Consider the linear time–invariant large–scale systems

ẋi(t) = Aiixi(t) + B1
iiwi(t) + B2

iiui(t)

+ε

N∑
j=1, j �=i

Aijxj(t) + ε

N∑
j=1, j �=i

B1
ijwj(t)

+ε

N∑
j=1, j �=i

B2
ijuj(t), (1a)

zi(t) = Ciixi(t) + Diiui(t), (1b)

yi(t) = xi(t), i = 1, 2, · · · , N (1c)

where xi ∈ Rni , i = 1, 2, · · · , N are the state vec-
tors, wi ∈ Rpi , j = 1, 2, · · · , N are the disturbance in-
puts, ui ∈ Rmi , j = 1, 2, · · · , N are the control in-
puts, zi ∈ Rqi , j = 1, 2, · · · , N are the controlled inputs,
yi ∈ Rri , j = 1, 2, · · · , N are the outputs, ε denotes a small
positive weak coupling parameter which connect the other sub-
systems.



Let us introduce the partitioned matrices

Aε

:=

⎡
⎢⎢⎢⎢⎢⎣

A11 εA12 εA13 · · · εA1(N−1) εA1N

εA21 A22 εA23 · · · εA2(N−1) εA2N

εA31 εA32 A33 · · · εA3(N−1) εA3N

...
...

...
...

...
εAN1 εAN2 εAN3 · · · εAN(N−1) ANN

⎤
⎥⎥⎥⎥⎥⎦ ,

B1
ε

:=

⎡
⎢⎢⎢⎢⎢⎢⎣

B1
11 εB1

12 εB1
13 · · · εB1

1(N−1) εB1
1N

εB1
21 B1

22 εB1
23 · · · εB1

2(N−1) εB1
2N

εB1
31 εB1

32 B1
33 · · · εB1

3(N−1) εB1
3N

...
...

...
...

...
εB1

N1 εB1
N2 εB1

N3 · · · εB1
N(N−1) B1

NN

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B2
ε

:=

⎡
⎢⎢⎢⎢⎢⎢⎣

B2
11 εB2

12 εB2
13 · · · εB2

1(N−1) εB2
1N

εB2
21 B2

22 εB2
23 · · · εB2

2(N−1) εB2
2N

εB2
31 εB2

32 B2
33 · · · εB2

3(N−1) εB2
3N

...
...

...
...

...
εB2

N1 εB2
N2 εB2

N3 · · · εB2
N(N−1) B2

NN

⎤
⎥⎥⎥⎥⎥⎥⎦

,

C := block − diag
(

C11 · · · CNN

)
,

D := block − diag
(

D11 · · · DNN

)
.

Using the state feedback control

u(t) = Kεx(t), (2)

where

u(t)T :=
[

u1(t)T · · · uN(t)T
]T ∈ Rm̄, m̄ :=

N∑
i=1

mi,

x(t)T :=
[

x1(t)T · · · xN(t)T
]T ∈ Rn̄, n̄ :=

N∑
i=1

ni,

the H2–norm of the closed–loop transfer function matrix G(s)
is given by

||G(s)||22 =
1
2π

∫ ∞

−∞
Trace[G(−jω)T G(jω)]dω

= Trace[B1T
ε LεB

1
ε ], (3)

where

G(s) = (C + DKε)(sIn̄ − Aε − B2
εKε)−1B1

ε ,

Lε(Aε + B2
εKε) + (Aε + B2

εKε)T Lε

+(C + DKε)T (C + DKε) = 0.

Without loss of generality, DT D = Im̄ is assumed. H2 control
problem is to find a control u(t) which minimizes the H2–norm
of the closed–loop transfer function matrix (3).

It is well–known from the existing results (see e.g., [8]) that
such controller that minimizes the H2–norm (3) is given by

uopt(t) = Koptεx(t) = −(B2T
ε Pε + DT C)x(t), (4)

where Pε is the positive semidefinite stabilizing solution which
satisfies the ARE

PεAε + AT
ε Pε − PεSεPε + Q = 0, (5)

with

Aε := Aε − B2
εDT C

=

⎡
⎢⎢⎢⎢⎢⎣

Ā11 εĀ12 εĀ13 · · · εĀ1(N−1) εĀ1N

εĀ21 Ā22 εĀ23 · · · εĀ2(N−1) εĀ2N

εĀ31 εĀ32 Ā33 · · · εĀ3(N−1) εĀ3N

...
...

...
...

...
εĀN1 εĀN2 εĀN3 · · · εĀN(N−1) ĀNN

⎤
⎥⎥⎥⎥⎥⎦ ,

Sε := B2
εB2T

ε

=

⎡
⎢⎢⎢⎢⎢⎣

S̄11 εS̄12 εS̄13 · · · εS̄1(N−1) εS̄1N

εS̄T
12 S̄22 εS̄23 · · · εS̄2(N−1) εS̄2N

εS̄T
13 εS̄T

23 S̄33 · · · εS̄3(N−1) εS̄3N

...
...

...
...

...
εS̄T

1N εS̄T
2N εS̄T

3N · · · εS̄T
(N−1)N S̄NN

⎤
⎥⎥⎥⎥⎥⎦ ,

Q := CT (Iq̄ − DDT )C
= block − diag

(
Q11 · · · QNN

)
,

q̄ :=
N∑

i=1

qi, S̄ii = S̄T
ii , Qii = CT

ii (Iqi − DiiD
T
ii)Cii,

i = 1, 2, · · · , N.

Moreover, the minimum value of the H2–norm (3) is given by

min ||G(s)||22 = Trace[B1T
ε PεB

1
ε ]. (6)

Since Aε, B1
ε and B2

ε include the term of the small weak cou-
pling parameter ε, a solution Pε of the ARE (5), if it exists,
must contain terms of order ε. Taking this fact into account,
the solution Pε of the ARE (5) with the following structure is
considered [4]

Pε

:=

⎡
⎢⎢⎢⎢⎢⎣

P11 εP12 εP13 · · · εP1(N−1) εP1N

εP T
12 P22 εP23 · · · εP2(N−1) εP2N

εP T
13 εP T

23 P33 · · · εP3(N−1) εP3N

...
...

...
...

...
εP T

1N εP T
2N εP T

3N · · · εP T
(N−1)N PNN

⎤
⎥⎥⎥⎥⎥⎦ .

In the following analysis, the basic assumptions are needed.

Assumption 1 The triples (Aii, B2
ii, Cii), i = 1, 2, · · · , N

are stabilizable and detectable.

Assumption 2 Dii has full column rank.

Assumption 3
[

Aii − jωIni B2
ii

Cii Dii

]
has full column rank

for any ω.



3 Asymptotic Structure of the ARE

Substituting the matrices Aε, Sε, Q and Pε into the ARE (5),
setting ε = 0 and partitioning the ARE (5), the following
reduced–order AREs are obtained, where P̄ii, i = 1, · · · , N
be the limiting solutions of the ARE (5) as ε → +0.

P̄iiĀii + ĀT
iiP̄ii − P̄iiSiiP̄ii + Qii = 0, (7)

where Sii := B2
iiB

2T
ii .

The limiting behavior of Pε as the parameter ε → +0 is de-
scribed by the following lemma.

Lemma 1 Under Assumptions 1–3, there exists a small σ∗

such that for all ε ∈ (0, σ∗) the ARE (5) admits a positive
semidefinite stabilizing solution Pε which can be written as

Pε = P̄ + O(ε) = block − diag
(

P̄11 · · · P̄NN

)
+ O(ε),

(8)

Proof: The proof can be done by using the implicit function
theorem [2] to the ARE (5). To do so, it is enough to show that
the corresponding Jacobian is nonsingular at ε = 0. It can be
shown, after some algebra, that the Jacobian of the ARE (5) in
the limit as ε → +0 is given by

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J11 · · · 0 0 · · · 0
...

. . . 0 0 · · · 0
... · · · JNN 0 · · · 0
... · · · · · · J12 · · · 0
... · · · · · · · · · . . . 0
∗ · · · · · · · · · · · · J(N−1)N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where

Jii = (Āii − SiiP̄ii) ⊗ Ini + Ini ⊗ (Āii − SiiP̄ii),
Jij = (Āii − SiiP̄ii) ⊗ Ini + Inj ⊗ (Ājj − SjjP̄jj).

The Jacobian (9) can be expressed as

detJ =

[
N∏

i=1

detJii

]
·
⎡
⎣ N∏

i=1, j=2, i<j

detJij

⎤
⎦ (10)

Obviously, Jii, Jij are nonsingular because the matrix Āii −
SiiP̄ii is stable under Assumptions 1–3. Thus, detJ �= 0, i.e.,
J is nonsingular at ε = 0. The conclusion of Lemma 1 is
obtained directly by using the implicit function theorem.

The remainder of the proof is to show that Pε is the positive
semidefinite stabilizing solution. For sufficiently small param-
eter ε, Pε ≥ 0 because the solution P̄ii is the positive semidef-
inite matrix. Moreover, using (8), the following relation holds

Aε − SεPε

= block − diag
(

Ā11 − S11P̄11 · · · ĀNN − SNN P̄NN

)
+O(ε), (11)

because the matrices Āii−SiiP̄ii are stable under Assumptions
1–3. Therefore, if the parameter ε is very small, Aε − SεPε is
stable also.

4 Kleinman Algorithm for Solving ARE

In order to obtain the near–optimal H2 controller, the following
useful result is obtained.

Lemma 2 Consider the iterative algorithm which is based on
the Kleinman algorithm

P (i+1)
ε (Aε − SεP

(i)
ε ) + (Aε − SεP

(i)
ε )T P (i+1)

ε

+P (i)
ε SεP

(i)
ε + Q = 0, i = 0, 1, · · · , (12a)

P (i)
ε

:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P
(i)
11 εP

(i)
12 εP

(i)
13 · · · εP

(i)
1(N−1)

εP
(i)
1N

εP
(i)T
12 P

(i)
22 εP

(i)
23 · · · εP

(i)
2(N−1) εP

(i)
2N

εP
(i)T
13 εP

(i)T
23 P

(i)
33 · · · εP

(i)
3(N−1) εP

(i)
3N

...
...

...
...

...

εP
(i)T
1N εP

(i)T
2N εP

(i)T
3N · · · εP

(i)T
(N−1)N PNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(12b)

with the initial condition obtained from

P (0)
ε = P̄ = block − diag

(
P̄11 · · · P̄NN

)
. (13)

Under Assumptions 1–3, there exists a small σ̄ such that for all
ε ∈ (0, σ̄), σ̄ ≤ σ∗ the iterative algorithm (12) converges to
the exact solution of Pε with the rate of quadratic convergence,
where P

(i)
ε is positive semidefinite. That is, the following con-

ditions are satisfied.

||P (i)
ε − Pε|| = O(ε2i

), i = 0, 1, · · · , (14)

where

γ = 2||Sε|| < ∞, β = ||[∇G(P (0)
ε )]−1||,

η = β · ||G(P (0)
ε )||, θ = βηγ,

∇G(Pε) =
∂vecG(Pε)
∂(vecPε)T

,

G(Pε) = PεAε + AT
ε Pε − PεSεPε + Q.

Proof: The proof follows directly by applying Newton–
Kantorovich theorem [7] for the ARE (5). It is easy to verify
that function G(Pε) is differentiable. Using the fact that

∇G(Pε) :=
∂vecG(Pε)
∂(vecPε)T

(15)

= (Aε − SPε)T ⊗ In̄ + In̄ ⊗ (Aε − SPε)T ,

the following inequality holds

||∇G(P1ε) −∇G(P2ε)|| ≤ γ||P1ε − P2ε||, (16)



where γ = 2||Sε||. Moreover, using the result of the stabil-
ity established by (11), it is shown that there exists a small σ̄
such that for sufficiently small parameter ε ∈ (0, σ̄), σ̄ ≤ σ∗,
∇G(Pε) is nonsingular. Therefore, there exists β such that
||[∇G(Pε)]−1|| ≡ β. On the other hand, using the Lemma1,
it is easy to show that ||G(Pε)|| = O(ε). Hence, there exists η
such that ||[∇G(Pε)]−1|| · ||G(Pε)|| ≡ η = O(ε). Thus, there
exists θ such that θ ≡ βγη < 2−1 because η = O(ε). Using
Newton–Kantorovich theorem, the strict error estimate is given
by (14).

5 Near–optimal H2 control

The required solution of the ARE (5) exists under Assump-
tions 1–3. The attention is focused on the specific linear state
feedback controller which does not depend on the values of
the small parameter. Such a linear state feedback controller is
obtained by eliminating O(ε) item of the linear state feedback
controller (4). If ε is very small, it is obvious that the linear
state feedback controller (4) can be approximated as

uapp(t)
= block− diag

(
u1app(t) · · · uNapp(t)

)
= K̄x(t) = −(B̄2T P̄ + DT C)x(t)
= −block − diag

(
B2T

11 P̄11 + DT
11C11 · · ·

B2T
NN P̄NN + DT

NN CNN

)
x(t), (17)

where B̄2T := block − diag
(

B2T
11 · · · B2T

NN

)
.

It should be noted that the proposed control design is quite dif-
ferent from the multi–level computation design approach [1].
When ε is sufficiently small, it is known from Lemma 1 that
the resulting controller (17) will be close to the optimal con-
troller (4). In an optimization problem it is of interest to check
whether the resulting value of the cost function will be near to
its optimal value.

The main result for the degradation of the H2–norm via the
new H2 controller (17) is given as follows.

Theorem 1 Under Assumptions 1–3, the use of the reduced–
order controller (17) results in (18)

||Ḡ(s)||22 = ||G(s)||22 + O(ε2), (18)

where

||Ḡ(s)||22 = Trace[B1T
ε L̄εB

1
ε ],

Ḡ(s) := (C + DK̄)(sIn̄ − Aε − B2
ε K̄)−1B1

ε ,

L̄ε(Aε + B2
ε K̄) + (Aε + B2

ε K̄)T L̄ε

+(C + DK̄)T (C + DK̄) = 0,

and the optimal value ||G(s)||22 is obtained with the controller
(4) which optimizes H2 cost for the actual system (1).

Proof: When uapp(t) is used, the value of the norm is

||Ḡ(s)||22 = Trace[B1T
ε WεB

1
ε ], (19)

where Wε is a positive semidefinite solution of the algebraic
Lyapunov equation (ALE)

(Aε − SεP̄ )T Wε + Wε(Aε − SεP̄ ) + P̄SεP̄ + Q = 0 (20)

with Aε − B2
ε K̄ = Aε − SεP̄ and (C + DK̄)T (C + DK̄) =

P̄SεP̄ + Q.

Subtracting (5) from (20), Vε = Wε−Pε satisfies the following
ALE

(Aε − SεP̄ )T Vε + Vε(Aε − SεP̄ )
+(Pε − P̄ )Sε(Pε − P̄ ) = 0. (21)

Similarly, subtracting (5) from (12a), the following ALE holds.

(Aε − SεP
(i)
ε )T (P (i+1)

ε − Pε)
+(P (i+1)

ε − Pε)(Aε − SεP
(i)
ε )

+(Pε − P (i)
ε )Sε(Pε − P (i)

ε ) = 0. (22)

When i = 0, the following relation is satisfied.

(Aε − SεP
(0)
ε )T (P (1)

ε − Pε) + (P (1)
ε − Pε)(Aε − SεP

(0)
ε )

+(Pε − P (0)
ε )Sε(Pε − P (0)

ε )
= (Aε − SεP̄ )T (P (1)

ε − Pε) + (P (1)
ε − Pε)(Aε − SεP̄ )

+(Pε − P̄ )Sε(Pε − P̄ ) = 0.

Therefore, it is easy to verify that Vε = P
(1)
ε − Pε because

Aε − SεP̄ is stable. Using Lemma 2 it is easy to show that

||Vε|| = ||Wε − Pε|| = ||P (1)
ε − Pε|| = O(ε2). (23)

Hence

Vε = Wε − Pε = O(ε2), (24)

which implies (18).

6 Numerical Example

In order to demonstrate the efficiency of the proposed algo-
rithm, a numerical example is tested. Consider the inter-
connected large–scale system (1) composed of three four–
dimensional subsystems. The system matrix is given as a mod-
ification of [1].

A11 =

⎡
⎢⎢⎣

0 1 −0.266 −0.009
−2.75 −2.78 −1.36 −0.037

0 0 0 1
−4.95 0 −55.5 −0.039

⎤
⎥⎥⎦ ,

εA12 =

⎡
⎢⎢⎣

0.0024 0 −0.087 0.002
−0.185 0 1.11 −0.011

0 0 0 0
0.222 0 8.17 0.004

⎤
⎥⎥⎦ ,

εA13 =

⎡
⎢⎢⎣

0.073 0 −0.25 0.003
−0.46 0 2.8 −0.02

0 0 0 0
0.924 0 17.5 0.02

⎤
⎥⎥⎦ ,



εA21 =

⎡
⎢⎢⎣

0.021 0 0.121 0.003
−1.1 0 −1.62 −0.015

0 0 0 0
−2.43 0 1.37 −0.034

⎤
⎥⎥⎦ ,

A22 =

⎡
⎢⎢⎣

−0.21 1 −1.6 −0.005
−1.9 −1.8 9.3 −0.12

0 0 0 1
−3.1 0 −56 0.032

⎤
⎥⎥⎦ ,

εA23 =

⎡
⎢⎢⎣

0.06 0 0.46 0.002
−1 0 1.49 −0.04
0 0 0 0

0.12 0 29.8 −0.028

⎤
⎥⎥⎦ ,

A31 =

⎡
⎢⎢⎣

−0.002 0 0.83 0
−6.78 0 −10.1 0.09

0 0 0 0
−1.24 0 0.498 −0.017

⎤
⎥⎥⎦ ,

εA32 =

⎡
⎢⎢⎣

0.011 0 0.22 0
−2.1 0 1.7 −0.123

0 0 0 0
−0.07 0 6.38 −0.011

⎤
⎥⎥⎦ ,

εA33 =

⎡
⎢⎢⎣

−0.197 1 −1.2 −0.003
−54.5 −20 70.1 −2.37

0 0 0 1
−3.4 0 −21.0 −0.017

⎤
⎥⎥⎦ ,

B1
ε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
0 0 0
2 0 0
0 1 0
0 1 0
0 0 0
0 2 0
0 0 1
0 0 1
0 0 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B2
ε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
36.1 0 0
0 0 0
0 0 0
0 0 0
0 78.9 0
0 0 0
0 0 0
0 0 0
0 0 1000
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The small parameter is chosen as ε = 0.5065. Referring
the proposed design procedure, the near–optimal H2 control
is given by

uapp(t) = block − diag
(
u1app(t) u2app(t) u3app(t)

)
,(25)

u1app(t)

=
[−1.6073 −1.0155 −6.7626 −1.6343× 10−2

]
x(t),

u2app(t)
=

[−1.3703 −1.0046 −6.6746 8.3537 × 10−2
]
x(t),

u3app(t)
=

[−1.5716 −1.0006 −3.4550 2.5050 × 10−1
]
x(t).

Now, let us evaluate the costs using the near–optimal con-
troller (25). The values of the H2–norm is ||Ḡ(s)||22 =
Trace[B1T

ε WεB
1
ε ] = 2.4136 × 10. Hence, the loss of

||Ḡ(s)||22 is less than 12.3075% compared with the optimal
value ||G(s)||22 = 2.1491 × 10. The values of the H2–norm for

various ε are given in Table 1, where φ =
||Ḡ(s)||22 − ||G(s)||22

ε2
.

Table 1.
ε ||G(s)||22 ||Ḡ(s)||22 φ

0.5 2.1441 × 10 2.4019 × 10 1.0311 × 10
10−1 1.9056 × 10 1.9162 × 10 1.0608 × 10
10−2 1.8919 × 10 1.8920 × 10 1.0968 × 10
10−3 1.8918 × 10 1.8918 × 10 1.1018 × 10
10−4 1.8918 × 10 1.8918 × 10 1.1053 × 10
10−5 1.8918 × 10 1.8918 × 10 1.0200 × 10
10−6 1.8918 × 10 1.8918 × 10 2.9161 × 10

It is easy to verify that ||Ḡ(s)||22 − ||G(s)||22 = O(ε2) because of
φ < ∞. Therefore, the new result for the H2–norm property
which is indicated by (18) is correct.

As a result, from the point of view of the numerical example,
if the small positive weak coupling parameter which connect
the other subsystems is sufficiently small, H2 controller can be
constructed by using the information only of the subsystems.

7 Conclusion

In this paper, H2 state feedback control of the large–scale sys-
tems which are connected by the weak small parameter has
been studied. The main contribution of this paper is to pro-
pose the new design method of the ε–independent reduced–
order controller. It should be noted that the proposed design
method is quite different from the existing method such as the
multi–level computation design method [1]. Furthermore, it
has been newly shown that the resulting controller achieves
O(ε2) approximation of the optimal solution. Thus, the pro-
posed H2 controller design is very useful and reliable because
such controller can be obtained without information of other
connected subsystem and calculated in the same dimension
compared with the subsystems.

It is expected that the proposed approach is also applied to the
output feedback case. Such problem is more realistic than state
feedback case. This problem will be addressed in future inves-
tigations.
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