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Abstract

In this paper, the H2 guaranteed cost control problem for

a singularly perturbed norm{bounded uncertain system is

addressed by using the improved recursive algorithm. First

we derive su�cient conditions such that full{order alge-

braic Riccati equation has positive de�nite solution. After

de�ning the generalized algebraic Riccati equation, we pro-

pose a new recursive algorithm based on the Kleinman al-

gorithm with the very special kind of the initial condition.

The proposed algorithm is very e�cient from the numer-

ical point of view since the new recursive algorithm has

property of quadratic convergence. Furthermore, we apply

the new algorithm to the manufacturing assembly process

and show the validity of the full{order c ontroller proposed

in this paper.

1 Introduction

Recently, new results in H2 guaranteed cost control
problem of singularly perturbed systems were obtained in
[5]. These results are based on the singular perturbation
methods [12]. The resulting controller is O("){close to
those of full{order controller and achieves the performance
for the full{order system for small enough ". However, for
the value " that are too small, it is usually di�cult to cal-
culate the H2 norm of the transfer matrix function due to
numerical sti�ness [12].

The recursive algorithm for various control problems of
the singularly perturbed systems have been developed in
literatures (see [11] and [3]). It has been shown that the
recursive algorithm is very e�ective to solve the algebraic
Riccati equations when the system matrices are functions
of a small perturbation parameter ". However, when the
recursive approach is applied for the control problems of
the singularly perturbed systems, we note that using the
zero{order solution without high{order accuracy will fail to
produce the desired exact solution of the algebraic Riccati

equation. In this case, the recursive algorithm converge to
the approximation solution.

Motivated by the results of [11], [3] and [8], we improve
the classical recursive numerical technique for the solu-
tion of algebraic Riccati equation associated with the H2

guaranteed cost control problem of singularly perturbed
systems. Our new idea is to set the initial condition to the
solutions of the reduced{order algebraic Riccati equation.
The improved recursive algorithm is based on the Klein-
man algorithm. Therefore, while the classical recursive
algorithm is the linear convergence property, the new re-
cursive algorithm achieves the quadratic convergence prop-
erty. By using the proposed recursive algorithm, we show
that the solution of the algebraic Riccati equation con-
verges very fast to the exact solution. Furthermore, we
apply the new algorithm to the manufacturing assembly
process. Shi et al. [2] considered the problem of robust dis-
turbance attenuation with stability for a class on uncertain
singular perturbed systems under the composite controller
design, while we focus on the design of the H2 guaranteed
cost control problem of the uncertain singular perturbed
systems based on the proposed direct approach. As a re-
sult, since we need not separate the design into slow and
fast designs, it is easy to construct the high{order stabiliz-
ing controller. As another signi�cant improvement, some
assumptions made in [1, 2, 5] are not necessary in this pa-
per. Firstly, we claim that there exist the uncertainties in
all of the state and the output matrices compared with Shi
et al.[2]. Secondly, since we do not assume the orthogonal
condition, our new results are applicable to the more realis-
tic systems in comparison with Petersen et al.[1]. Thirdly,
since we do not assume that A22 is nonsingular, our new
results are applicable to both standard and nonstandard
singularly perturbed systems.

1.1 Problem Statement

Consider the following linear singularly perturbed un-
certain system

_x1(t) = (A11 +D1FEa1)x1(t)
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+(A12 +D1FEa2)x2(t)

+G1w(t) + (B1 +D1FEb)u(t); (1a)

" _x2(t) = (A21 +D2FEa1)x1(t)

+(A22 +D2FEa2)x2(t)

+G2w(t) + (B2 +D2FEb)u(t); (1b)

z(t) = C11x1(t) + C12x2(t) +D12u(t); (1c)

F
T
F � Ij (1d)

where " is a small positive parameter, x1(t) 2 Rn1 and
x2(t) 2 Rn2 are state vectors, u(t) 2 Rm is the control
input, z(t) 2 Rr is the controlled output, w(t) 2 Rq is
the disturbance, F 2 Rk�j is a Lebesgue measurable ma-
trix of uncertain parameters. All matrices above are of
appropriate dimensions. Let us introduce the partitioned
matrices

A" =

�
A11 A12

"�1A21 "�1A22

�
;

A =

�
A11 A12

A21 A22

�
;

B" =

�
B1

"�1B2

�
; B =

�
B1

B2

�
;

G" =

�
G1

"�1G2

�
; G =

�
G1

G2

�
;

C1 =
�
C11 C12

�
;

D" =

�
D1

"�1D2

�
; D =

�
D1

D2

�
;

Ea =
�
Ea1 Ea2

�
;

x(t) =

�
x1(t)
x2(t)

�
2 R

n
; n = n1 + n2:

By using above relations, the system (1) can be changed
as

_x(t) = (A" +D"FEa)x(t) +G"w(t)

+(B" +D"FEb)u(t); (2a)

z(t) = C1x(t) +D12u(t): (2b)

For technical simpli�cation, without loss of generality we
shall make the following basic assumption.

Assumption 1 1) The pair (A"; B") is stabilizable for
" 2 (0; "�] ("� > 0).
2) The pair (A22; B2) is stabilizable.
3) DT

12D12 > 0.

Note that since we do not assume the orthogonal con-
dition, that is, CT

1 D12 = 0, our new results are applicable
to the more realistic systems in comparison with [1].

Our �rst problem is to �nd a state feedback u(t) =
Kx(t) such that the closed{loop system is asymptotically
stable for all F . A way to address this problem is to use
the quadratic stabilizability concept [1].

Improving the results of Petersen et al. [1], we can be
stated in the following new theorem.

Theorem 1 Under Assumptions 1, we associate the alge-
braic Riccati equation

[A" � B"
�RET

b Ea]
T
P" + P"[A" �B"

�RET
b Ea]

+�P"D"D
T
" P"

��(P"B" + C
T
1 D12) �R(B

T
" P" +D

T
12C1)

+Q+
1

�
E
T
a [Ij �Eb

�RET
b ]Ea +C

T
1 C1

� C
T
1 D12

�RET
b Ea �E

T
a Eb

�RDT
12C1 = 0 (3)

for the matrix function

P" = P"(�) =

�
P11("; �) "P21("; �)

T

"P21("; �) "P22("; �)

�

where � is a positive scalar, Q > 0 is a positive de�nite
symmetric matrix, �R = (�DT

12D12 + ET
b Eb)

�1. For each
", a controller that guarantees the quadratically stable for
all F : FTF � Ij exists if and only if there exist � > 0
and (3) has a positive de�nite solution. If such conditions
are met, a controller is determined by the formula

u(t) = � �R[�(BT
" P"(�) +D

T
12C1)

+ET
b Ea]x(t): (4)

proof: Since the proof of Theorem 1 proceeds by similar
argument of the references [1], it is omitted. 2

For such a controller, taking K(�) = � �R[�(BT
" P"(�) +

DT
12C1)+ET

b Ea] and letting H = C1+D12K, the transfer
matrix from w(t) to z(t) is expressed by

T (s) = H(sIn � A" �D"FfEa + EbK(�)g

�B"K(�))�1G": (5)

Then the H2 guaranteed cost control problem for singu-
larly perturbed uncertain systems is given below.
Find K(�) = K(��) and determine � as small as possible
such that

jjT (s)jj2 < � (6)

where

jjT(s)jj22 = Trace[GT
" Lo(F )G"];

[A" +D"F (Ea + EbK) +B"K]TLo(F )

+Lo(F )[A" +D"F (Ea + EbK) +B"K]

+HT
H = 0:

By using a similar technique in [5], we can easily prove the
following result.

Theorem 2 Under Assumption 1, we have

Lo(F ) < P": (7)

proof: The proof is omitted because it is similar to the
references [1] and [9]. 2
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Consequently, the best H2 guaranteed cost � is given
by

� = min
�

p
Trace[GT

" P"(�)G"]; (8a)

�
� = Argmin

�

p
Trace[GT

" P"(�)G"]: (8b)

Moreover, the controller is de�ned by K(�) = K(��) =
�(��DT

12D12 +ET
b Eb)

�1[�(BT
" P"(�

�) +DT
12C1) +ET

b Ea].

1.2 Generalized Algebraic Riccati Equa-
tion

In order to solve the algebraic Riccati equation (3), we
introduce the following useful lemma [8].

Lemma 1 The algebraic Riccati equation (3) is equiva-
lent to the following generalized algebraic Riccati equation
(9)

[A� B �RET
b Ea]

T
P + P

T [A �B �RET
b Ea]

+�P T
DD

T
P

��(P T
B + C

T
1 D12) �R(B

T
P +D

T
12C1)

+Q+
1

�
E
T
a [Ij �Eb

�RET
b ]Ea +C

T
1 C1

� C
T
1 D12

�RET
b Ea �E

T
a Eb

�RDT
12C1 = 0; (9a)

P" = �T
" P = P

T�"; (9b)

where

�" =

�
I1 0
0 "I2

�
; P =

�
P11 "PT

21

P21 P22

�
;

P11 = P
T
11; P22 = P

T
22;

A = �"A"; B = �"B"; D = �"D":

Moreover, by making use of relation (9b), we can change
the form of the controller (4).

u(t) = � �R[�(BT
P (�)

+D
T
12C1) +E

T
b Ea]x(t): (9c)

proof: The proof is identical to the proof of Lemma 3 in
Mukaidani et al. [8]. 2

1.3 Solvability Condition

In this section, the linear state feedback full{order con-
troller for singularly perturbed systems with structured
uncertainties is presented.

The algebraic Riccati equation (9a) can be partitioned
into

A
�T
11
P11 + P

T
11A

�
11

+ A
�T
21
P21 + P

T
21A

�
21

�PT
11S

�
11
P11 � P

T
21S

�
22
P21

�P T
11S

�
12
P21 � P

T
21S

�T
12
P11 +Q

�
11

= 0; (10a)

"P21A
�
11

+ P
T
22A

�
21

+ A
�T
12
P11 + A

�T
22
P21

�"P21S
�
11
P11 � "P21S

�
12
P21

�P T
22S

�T
12
P11 � P

T
22S

�
22
P21 +Q

�T
12

= 0; (10b)

A
�T
22
P22 + P

T
22A

�
22

+ "A
�T
12
P
T
21 + "P21A

�
12

�P T
22S

�
22
P22 � "P

T
22S

�T
12
P
T
21 � "P21S

�
12
P22

�"2P21S
�
11
P
T
21 +Q

�
22

= 0; (10c)

where

A
� = A �B �RET

b Ea � �B �RDT
12C1

=

�
A
�
11

A
�
12

A
�
21

A
�
22

�
;

S
� = �(B �RBT �DD

T ) =

�
S
�
11

S
�
12

S
�T
12

S
�
22

�
;

Q
� = Q+

1

�
E
T
a [Ij �Eb

�RET
b ]Ea +C

T
1 C1

��CT
1 D12

�RDT
12C1

�CT
1 D12

�RET
b Ea �E

T
a Eb

�RDT
12C1

=

�
Q
�
11

Q
�
12

Q
�T
12

Q
�
22

�
:

For the previous equations (10), setting " = 0, we obtain
the following equations

A
�T
11

�P11 + �P T
11A

�
11

+ A
�T
21

�P21 + �PT
21A

�
21

� �P T
11S

�
11

�P11 � �P T
21S

�
22

�P21

� �P T
11S

�
12

�P21 � �P T
21S

�T
12

�P11 +Q
�
11

= 0; (11a)

�P T
22A

�
21

+A
�T
12

�P11 + A
�T
22

�P21

� �P T
22S

�T
12

�P11 � �P T
22S

�
22

�P21 +Q
�T
12

= 0; (11b)

A
�T
22

�P22 + �P T
22A

�
22
� �P T

22S
�
22

�P22 +Q
�
22

= 0; (11c)

where �P11, �P21 and �P22 are 0{order solutions of the equa-
tions (10). The Riccati equation (11c) will produce the
unique positive de�nite stabilizing solution under the fol-
lowing conditions [8].

Let
�f := f� > 0jthe Riccati equation (11c) has a positive
de�nite stabilizing solutiong,
�f := supf�j� 2 �fg.

Then, the matrix A
�
22

� S
�
22

�P22 is non{singular if we
choose 0 < � < �f . Therefore, we obtain the following
0{order equations

�P T
11A

�
0
+A

�T
0

�P11 � �P T
11S

�
0
�P11 +Q

�
0
= 0; (12a)

�P21 = �NT
2 +N

T
1
�P11; (12b)

A
�T
22

�P22 + �P T
22A

�
22
� �P T

22S
�
22

�P22 +Q
�
22

= 0; (12c)

where

A
�
0

= A
�
11

+N1A
�
21

+ S
�
12
N

T
2 +N1S

�
22
N

T
2 ;

S
�
0

= S
�
11

+N1S
T�
12

+ S
�
12
N

T
1 +N1S

�
22
N

T
1 ;

Q
�
0

= Q
�
11
�N2A

�
21
�A

�T
21
N

T
2 �N2S

�
22
N

T
2 ;
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N
T
2 = D

�T
4 Q̂

T
12; N

T
1 = �D�T4 D

T
2 ;

D1 = A
�
11 � S

�
11
�P11 � S

�
12
�P21;

D3 = A
�
21 � S

�T
12

�P11 � S
�
22
�P21;

D2 = A
�
12 � S

�
12
�P22; D4 = A

�
22 � S

�
22
�P22;

D0 = D1 �D2D
�1
4 D3; Q̂12 = Q12 +A

�T
21

�P22:

Remark 1 Although the expressions of the matrix A�
0 ; S

�
0

and Q
�
0 contain the matrix �P22, they do not depend on

it (see, e.g., [6]). In fact, the coe�cient matrices of the
equation (12a) are obtained from the formula

T0 = T1 � T2T
�1
4 T3 =

�
A
�
0 �S�0

�Q�
0 �A�T

0

�
; (13)

where

T1 =

�
A
�
11 �S�

11

�Q�
11 �A�T

11

�
; T2 =

�
A
�
12 �S�12

�Q�
12 �A�T

21

�
;

T3 =

�
A
�
21 �S�T12

�Q�T
12 �A�T

12

�
; T4 =

�
A
�
22 �S�

22

�Q�
22 �A�T

22

�
:

Let us de�ne
�s := f0 < � � �f jthe Riccati equation (12a) has a posi-
tive de�nite stabilizing solutiong,
�s := supf�j� 2 �sg.

As a result, for every 0 < � < �� = minf�s; �fg, Ric-
cati equations (12a) and (12c) have the positive de�nite
stabilizing solutions.

We have the following result.

Theorem 3 Under Assumption 1, if we select a param-
eter 0 < � < �� = minf�s; �fg, then there exists small
�" > 0 such that for all " 2 (0; �"), the algebraic Riccati
equation (3) admits a positive de�nite solution, which can
be written as

P" =

�
�P11 +O(") " �P T

21 +O("2)
" �P21 + O("2) " �P22 +O("2)

�
: (14)

If such condition are met, a control is given by (3). Fur-
thermore, P" of the Riccati equation (3) is a positive de�-
nite stabilizing solution.

proof: By using the implicit function theorem, the theorem
can be proved. The proof is omitted because it is similar
to the references Dragan [4] and Mukaidaniet al. [8]. 2

Remark 2 We can prove Theorem 3 by using a similar
method to that given in the proof of Theorem 2.1 and 2.2
in [4]. Note that the proof given in [4] is made on the
invertible assumption, that is, A22 is non{singular. How-
ever, this paper improves the proof of Theorem 2 in the
sense that the invertible assumption is not needed.

2 The New Iterative Algorithm

By the results in Garcia et al. [5], we have to solve the
full{order algebraic Riccati equations at any risk so as to

calculate Trace[GT
" P"(�)G"] for every 0 < � < ��. Fur-

thermore, since the guaranteed cost depend on the small
parameter ", that is,

Trace[GT
" P"(�)G"]

= Trace[GT
1 P11(�)G1 +G

T
2 P21(�)G1

+GT
1 P

T
21(�)G2 + "

�1
G
T
2 P22(�)G2];

we have to solve the full{order algebraic Riccati equations
with high{order accuracy because of "�1GT

2 P22(�)G2 for
the guaranteed cost. So far, the recursive algorithm (Gajic
et al. [11, 3]) was very e�ective to solve the full{order
algebraic Riccati equation with small parameter " > 0.
However, note that using the zero{order solution without
high{order accuracy will fail to produce the desired exact
solution of the algebraic Riccati equation. In this case,
the recursive algorithm converge to the approximation so-
lution.

In this paper we develop an elegant and simple algo-
rithm which converges globally to the positive de�nite sym-
metric solution of equation (3). The algorithm is derived
by the standard algebraic Riccati equations, which have
to be solved iteratively. We present the new iterative al-
gorithm based on the Kleinman algorithm [10]. Here we
note that the Kleinman algorithm is based on the New-
ton type algorithm. In general, the stabilizable{detectable
conditions will guarantee the convergence of the Kleinman
algorithm for the standard linear quadratic regulator type
generalized algebraic Riccati equation to the positive def-
inite solutions. However, it is di�cult to apply the Klein-
man algorithm to the equation (3) presented in this paper
because the matrix S� = BR�1BT � �DDT is in general
inde�nite. That is, the generalized algebraic Riccati equa-
tion (9a) is not always a convex function with respect to
P .

We propose the following algorithm for solving the gen-
eralized algebraic Riccati equation (3)

(A� � S
�
P
(i))TP (i+1) + P

(i+1)T (A� � S
�
P
(i))

+ P
(i)T

S
�
P
(i) +Q

� = 0; (15a)

with the initial condition obtained from

P
(0) =

�
�P11 0
�P21 �P22

�
; (15b)

where �P11, �P21, �P22 are de�ned by (12).
Kleinman algorithm is well known, and widely is used

to �nd a solution of algebraic Riccati equation, and its
local convergence properties are well understood. W e pro-
pose a good choice of the initial condition which guarantee
to �nd required solution of a given generalized algebraic
Riccati equation. Our new idea is to set the initial condi-
tion P (0) to the relation (15b). The fundamental idea is
based on jjP � P (0)jj = O(") from Theorem 3. Although
the matrix S� is in general inde�nite, we prove to converge
to the required solution by using the Kleinman algorithm.
The algorithm (15) has the feature given in the following
theorem.
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Theorem 4 Under Assumptions 1, if we select a p arame-
ter 0 < � < �� = minf�s; �fg, then the new iterative algo-
rithm (15) converges to the exact solution of P � with the

rate of quadratic convergence such that P (i)
" = �T

" P
(i) =

P (i)T�" is positive de�nite. That is,

lim
i!1

jjP (i+1) � P �jj

jjP (i) � P�jj
= 0; (16a)

jjP (i+1) � P
�jj � MjjP (i) � P

�jj2;

0 <M <1, jjP(i) � P
�jj = O("2

i

): (16b)

Moreover, let P (1)
11 , P (1)

21 and P
(1)
22 be the limit points

of the iterative algorithm (15). As the results, we have

A
�T
P
(1) + P

(1)T
A
� � P

(1)T
S
�
P
(1)

+Q� = 0 (17)

where

P
� = P

(1) =

�
P
(1)
11 "P

T (1)
21

P
(1)
21 P

(1)
22

�
:

Thus, by using the linear state feedback full{order con-
troller

uexa(t) = � �R[�(BT
P
(1)

+DT
12C1) + E

T
b Ea]x(t); (18)

the uncertain singularly perturbed system (1) is quadrati-
cally stable.

proof: The proof is omitted because it is similar to that of
[9]. 2

As a result of the application of the idea of Kleinman
algorithm, we have managed to replace the computation
of the generalized Riccati equation (3) which contains the
small parameter " by a sequence of algebraic Lyapunov
equations (15a).

3 Numerical Example

In order to demonstrate the e�ciency of the proposed
algorithm, we consider a fourth order real world example,
that is, manufacturing assembly process [2]. The system
matrix is given by (See Shi et al. [2])

A11 =

"
0 1 �1
�2 �0:2 0
2 0 0

#
; A12 =

"
0
2
0

#
;

A21 =
�
0 �5:2� 10�2 0

�
; A22 =

�
�2

�
;

B1 =

"
0 0
0 0
0:2 0

#
; G1 =

"
0 0 0
1 0 0
0 1 0

#
;

B2 =
�
0 1

�
; G2 =

�
0 0 0:1

�
;

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

1

4

x

x

Time (sec)

Fig.1 Response of the open loop system without any
controller.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

Time (sec)

1

4

x

x

Fig.2 Response of the closed{loop system with the
proposed controller.

C11 =

2
64

1 0
0 1
0 0
0 0

3
75 ; C12 = D12 =

2
64

0 0
0 0
1 0
0 1

3
75 ;

D1 =

"
0:2
0:2
0:2

#
; D2 =

�
0:2

�
; Eb =

�
1 1

�
;

Ea1 =
�
1 1 1

�
; Ea2 =

�
0
�
; Q = 0:05I4:

The reader is referred to [2] for a discussion of the model-
ing aspects. The numerical results are obtained for small
parameter " = 0:1. For every boundary value

0 < � < �� = minf�f ; �sg = 2:5097,
the algebraic Riccati equations (12a) and (12c) have

the positive de�nite stabilizing solution. The best bound
�� = 1:6486 is obtained for �� = 0:1455. Now, we choose
0 < � = 0:1455 < �� to design the controller. We give the
solutions of the algebraic Riccati equations (3) at the top
of the next page. We also give the full{order controller
based on this value of �� = 0:1455. We �nd that the
solution of the algebraic Riccati equation (3) converges to
the exact solution with accuracy of jjF(P (i))jj < 10�12 after
2 recursive iterations. Note that the result of Table 1 shows
that the proposed algorithm (15a) is quadratic convergence
because the initial condition (15b) is su�ciently close to
the exact solution.

Table 1.

i jjF (P (i)
" )jj

0 6:66944� 10�3

1 9:73263� 10�7

2 4:70403 � 10�14

In this example, the proposed controller (9c) will be em-
ployed as the manufacturing system under bounded uncer-
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P
(3)
" =

2
64

3:442463 1:515721 � 10�1
�2:964068 � 10�1

�1:871900 � 10�2

1:515721 � 10�1 1:436862 �4:372471 � 10�1 8:547088 � 10�2

�2:964068 � 10�1
�4:372471 � 10�1 1:264558 �2:712478 � 10�2

�1:871900 � 10�2 8:547088 � 10�2
�2:712478 � 10�2 1:653024 � 10�2

3
75 :

K =

�
�5:216888 � 10�1

�2:102910 � 10�2
�1:261458 5:460343� 10�1

�3:937801 � 10�1
�9:631873 � 10�1 2:627014 � 10�1

�6:246930� 10�1

�
:

tain assembly goods. The results of the simulation of this
example are depicted in Figures 1 and 2. The initial state

is set as x(0) =
�
1 0 0 0:2

�T
. It is shown from Fig.

2 that the closed{loop system is asymptotically stable.

4 Conclusions

In this paper, the H2 guaranteed cost control problem
for singularly perturbed systems with uncertainties has
been investigated based on the iterative numerical tech-
nique. We presented a new recursive algorithm under the
special initial condition. Comparing with [11] and [3], since
the proposed algorithm is quadratic convergence, the re-
quired solution can be easily obtained up to an arbitrary

order of accuracy, that is, O("2
i

) where i is a iteration
number. Another important feature, our new results are
applicable to the more realistic systems in comparison with
[1, 2, 5].
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