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Abstract—In this paper, we study the Pareto near–optimal
strategy for multiparameter singularly perturbed system
(MSPS). The main contribution is to propose a new method
for obtaining the Pareto near–optimal strategy. We show
that the resulting near–optimal strategy achieves the cost
functional J∗

j + O(||µ||). Moreover, we also show that the

resulting Pareto near–optimal strategy is equivalent to the
existing composite strategy.

I. Introduction

Multimodeling stability, control and filtering problems
have been investigated extensively (see e.g., [1]–[5]). The
multimodeling problems arise in large scale dynamic sys-
tems. For example, these multimodel situations in practice
are illustrated by the multi–area power system [1]. A pop-
ular approach to deal with the multiparameter singularly
perturbed systems (MSPS) is the two–time–scale design
method [1]–[5]. When the positive parameters εj , j = 1, 2
are very small or unknown the previously used technique
is very efficient. However, in order to obtain the slow sub-
system, the nonsingularity of the fast state matrices are
needed.

In this paper, we study the Pareto near–optimal strat-
egy for the MSPS. We first investigate the uniqueness and
boundedness of the solution to the multiparameter alge-
braic Riccati equation (MARE) and establish its asymp-
totic structure. The proof of the existence of the solution
to the MARE with asymptotic expansion is obtained by
an implicit function theorem. This paper presents an im-
provement on some of the results of [4] in the sense that
there is no assumption for the nonsingularlity of the fast
state matrices. We also investigate the stabilizability and
detectability for the reduced–order algebraic Riccati equa-
tion (ARE). The main contribution is to propose a new
method for obtaining the Pareto near–optimal strategy.
We show that the proposed strategy achieves the cost func-
tional J∗

j + O(||µ||), µ = [ε1 ε2] even if Ajj is nonsingular,
where J∗

j is the optimal cost. Thus, our new results are ap-
plicable to more realistic MSPS compared with [1]. More-
over, when Ajj is nonsingular, we also show that the re-
sulting Pareto near–optimal strategy is equivalent to the
existing composite strategy [1]. Therefore, we claim that
the new Pareto near–optimal strategy includes the existing
one [1] as a special case.

II. Pareto Optimal Strategy

We consider the linear time–invariant MSPS

ẋ0(t) = A00x0(t) + A01x1(t) + A02x2(t)
+B01u1(t) + B02u2(t), x0(0) = x0

0, (1a)
ε1ẋ1(t) = A10x0(t) + A11x1(t) + B11u1(t), x1(0) = x0

1,(1b)
ε2ẋ2(t) = A20x0(t) + A22x2(t) + B22u2(t), x2(0) = x0

2,(1c)

where xj ∈ Rnj , j = 0, 1, 2 are the state vector, uj ∈
Rmj , j = 1, 2 are the control input. All the matrices are
constant matrices of appropriate dimensions.

ε1 and ε2 are two small positive singular parameters of
the same order of magnitude such that

0 < k1 ≤ α ≡ ε1

ε2
≤ k2 < ∞. (2)

Note that the fast state matrices Ajj , j = 1, 2 may be
singular. In the Pareto optimal strategy of the above MSPS
(1), a quadratic cost functional is given by

Jj =
1
2

∫ ∞

0

[zT
j (t)zj(t) + uT

j (t)Rjuj(t)]dt, j = 1, 2, (3)

where zj(t) = Cj0x0(t) + Cjjxj(t) ∈ Rrj , j = 0, 1, 2.
A Pareto solution is a pair u1, u2 which minimizes

J = γ1J1 + γ2J2, 0 < γj < 1, γ1 + γ2 = 1 (4)

for some γ1 and γ2. It is well known from [1] that the
solution of the Pareto optimal strategy is given by

u∗
j (t) = − 1

γj
R−1

j BT
jEPEx(t), j = 1, 2, (5)

where PE satisfies the MARE

AT
E PE + PEAE − PESEPE + Q = 0, (6)

with

AE =


 A00 A01 A02

ε−1
1 A10 ε−1

1 A11 0
ε−1
2 A20 0 ε−1

2 A22


 ,

B1E =


 B01

ε−1
1 B11

0


 , B2E =


 B02

0
ε−1
2 B22


 ,
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Q1 =


 CT

10C10 CT
10C11 0

CT
11C10 CT

11C11 0
0 0 0


 ,

Q2 =


 CT

20C20 0 CT
20C22

0 0 0
CT

22C20 0 CT
22C22


 ,

SjE = BjER−1
j BT

jE , j = 1, 2,

SE =
1
γ1

S1E +
1
γ2

S2E , Q = γ1Q1 + γ2Q2,

SE =


 S00 ε−1

1 S01 ε−1
2 S02

ε−1
1 ST

01 ε−2
1 S11 0

ε−1
2 ST

02 0 ε−2
2 S22


 ,

Q =


 Q00 Q01 Q02

QT
01 Q11 0

QT
02 0 Q22


 .

A solution PE of the MARE (6), if it exists, must contain
the parameters εj because the matrices AE and SE contain
the ε−1

j –order parameter. Taking into account this fact, we
look for a solutions PE of the MARE (6) with the structure

PE =


 P00 ε1P

T
10 ε2P

T
20

ε1P10 ε1P11
√

ε1ε2P
T
21

ε2P20
√

ε1ε2P21 ε2P22


 ∈ RN×N ,

where N = n0+n1+n2, P00 = P T
00, P11 = P T

11, P22 = P T
22.

A near–optimal Pareto strategy for the MSPS has been
proposed in [1]. The algorithm consists of solving three
separate subproblems, one in a slow time scale and two in
fast time scale, and then combining the solutions of these
problems to the specific form of the control law. However,
in order to separate the MSPS, the nonsingularity of the
matrices Ajj , j = 1, 2 are required. To avoid these as-
sumptions we propose a method which is different from
the existing method [1].

III. MARE

Before we present the Pareto near–optimal strategy, we
first study the asymptotic structure for the MARE (6).
The MARE (6) can be partitioned into

f1 = AT
00P00 + P00A00 + AT

10P10 + P T
10A10

+AT
20P20 + P T

20A20 − P00S00P00 − P T
10S

T
01P00

−P00S01P10 − P T
20S

T
02P00 − P00S02P20

−P T
10S11P10 − P T

20S22P20 + Q00 = 0, (7a)
f2 = P00A01 + P T

10A11 + ε1A
T
00P

T
10 + AT

10P11 +
√

αAT
20P21

−ε1(P00S00P
T
10 + P T

10S
T
01P

T
10 + P T

20S
T
02P

T
10)

−P00S01P11 − P T
10S11P11

−√
α(P00S02P21 + P T

20S22P21) + Q01 = 0, (7b)

f3 = P00A02 + P T
20A22 + ε2A

T
00P

T
20 + AT

20P22 +
1√
α

AT
10P

T
21

−ε2(P00S00P
T
20 + P T

10S
T
01P

T
20 + P T

20S
T
02P

T
20)

−P00S02P22 − P T
20S22P22

− 1√
α

(P00S01P
T
21 + P T

10S11P
T
21) + Q02 = 0, (7c)

f4 = AT
11P11 + P11A11 + ε1(AT

01P
T
10 + P10A01)

−ε1(ε1P10S00P
T
10 + P11S

T
01P

T
10 +

√
αP T

21S
T
02P

T
10)

−ε1(P10S01P11 +
√

αP10S02P21) − P11S11P11

−αP T
21S22P21 + Q11 = 0, (7d)

f5 = ε1P10A02 + ε2A
T
01P

T
20

−ε2(ε1P10S00P
T
20 + P11S

T
01P

T
20 +

√
αP T

21S
T
02P

T
20)

−ε1(P10S02P22 +
1√
α

P10S01P
T
21)

+
√

αP T
21(A22 − S22P22)

+
1√
α

(A11 − S11P11)T P T
21 = 0, (7e)

f6 = AT
22P22 + P22A22 + ε2(AT

02P
T
20 + P20A02)

−ε2(ε2P20S00P
T
20 + P22S

T
02P

T
20 +

1√
α

P21S
T
01P

T
20)

−ε2(P20S02P22 +
1√
α

P20S01P
T
21) − P22S22P22

− 1
α

P21S11P
T
21 + Q22 = 0. (7f)

It is assumed that the limit of α exists as ε1 and ε2 tend
to zero [1]–[5], that is

ᾱ = lim
ε1→+0
ε2→+0

α. (8)

Let P̄00, P̄10, P̄20, P̄11, P̄21 and P̄22 be the limiting solutions
of the above equation (7) as εj → +0, j = 1, 2, then we
obtain the following equations

AT
00P̄00 + P̄00A00 + AT

10P̄10 + P̄ T
10A10 + AT

20P̄20 + P̄ T
20A20

−P̄00S00P̄00 − P̄ T
10S

T
01P̄00 − P̄00S01P̄10 − P̄ T

20S
T
02P̄00

−P̄00S02P̄20 − P̄ T
10S11P̄10 − P̄ T

20S22P̄20 + Q00 = 0, (9a)
P̄00A01 + P̄ T

10A11 + AT
10P̄11 +

√
ᾱAT

20P̄21 − P̄00S01P̄11

−P̄ T
10S11P̄11 −

√
ᾱ(P̄00S02P̄21 + P̄ T

20S22P̄21)
+Q01 = 0, (9b)

P̄00A02 + P̄ T
20A22 + AT

20P̄22 +
1√
ᾱ

AT
10P̄

T
21 − P̄00S02P̄22

−P̄ T
20S22P̄22 − 1√

ᾱ
(P̄00S01P̄

T
21 + P̄ T

10S11P̄
T
21)

+Q02 = 0, (9c)
AT

11P̄11 + P̄11A11 − P̄11S11P̄11

−ᾱP̄ T
21S22P̄21 + Q11 = 0, (9d)

√
ᾱP̄ T

21(A22 − S22P̄22) +
1√
ᾱ

(A11 − S11P̄11)T P̄ T
21 = 0, (9e)

AT
22P̄22 + P̄22A22 − P̄22S22P̄22

− 1
ᾱ

P̄21S11P̄
T
21 + Q22 = 0. (9f)

Assumption 1: The triples (Ajj , Bjj , Cjj), j = 1, 2 are
stabilizable and detectable.

Assumption 2:

rank


 sIn0 − A00 −A01 −A02 B01 B02

−A10 −A11 0 B11 0
−A20 0 −A22 0 B22


 = N,
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rank


 sIn0 − AT

00 −AT
10 −AT

20 CT
10 CT

20

−AT
01 −AT

11 0 CT
11 0

−AT
02 0 −AT

22 0 CT
22


 = N,

where ∀s ∈ C with Re[s] ≥ 0.
If the assumption 1 holds, there exist the matrices P̃jj

such that the matrices Ajj −Sjj P̃jj are nonsingular, where
AT

jjP̃jj + P̃jjAjj − P̃jjSjj P̃jj + Qjj = 0, j = 1, 2. If
we chose P̄jj as P̃jj, the unique solution of (9e) is given by
P̄21 = 0 because the matrices Ajj−Sjj P̄jj are nonsingular.
Thus the parameter ᾱ does not appear in (9). Therefore,
we obtain the following 0–order equations

AT
s P̄00 + P̄00As − P̄00SsP̄00 + Qs = 0, (10a)

P̄ T
j0 = P̄00N0j − M0j , (10b)

AT
jjP̄jj + P̄jjAjj − P̄jjSjjP̄jj + Qjj = 0, (10c)

where

As = A00 + N01A10 + N02A20 + S01M
T
01 + S02M

T
02

+N01S11M
T
01 + N02S22M

T
02,

Ss = S00 + N01S
T
01 + S01N

T
01 + N02S

T
02 + S02N

T
02

+N01S11N
T
01 + N02S22N

T
02,

Qs = Q00 − M01A10 − AT
10M

T
01 − M02A20 − AT

20M
T
02

−M01S11M
T
01 − M02S22M

T
02,

N0j = −D0jD
−1
jj , M0j = Q̄0jD

−1
jj , Q̄0j = AT

j0P̄jj + Q0j,

D00 = A00 − S00P̄00 − S01P̄10 − S02P̄20,

D0j = A0j − S0jP̄jj , Dj0 = Aj0 − ST
0jP̄00 − SjjP̄j0,

Djj = Ajj − SjjP̄jj , j = 1, 2.

The matrices As, Ss and Qs do not depend on P̄11 and
P̄22 because their matrices can be computed by using
Tpq , p, q = 0, 1, 2 which is independent of P̄11 and P̄22

[5], that is,

Ts = T00 − T01T
−1
11 T10 − T02T

−1
22 T20 =

[
As −Ss

−Qs −AT
s

]
,

T00 =
[

A00 −S00

−Q00 −AT
00

]
, T0j =

[
A0j −S0j

−Q0j −AT
j0

]
,

Tj0 =
[

Aj0 −ST
0j

−QT
0j −AT

0j

]
, Tjj =

[
Ajj −Sjj

−Qjj −AT
jj

]
,

j = 1, 2.

Lemma 1: Under the assumptions 1 and 2, there exist
a matrix Bs ∈ RN×M , M = m1 + m2 and a matrix Cs

with the same dimension as
[

CT
10 CT

20

]T such that Ss =
BsR

−1BT
s , Qs = CT

s Cs. Moreover, the triple (As, Bs, Cs)
is stabilizable and detectable.
Proof: From (10a), it is easy to verify that

Ss =
[

B̄01 + N01B̄11 B̄02 + N02B̄22

]

·
[

R−1
1 0
0 R−1

2

][
B̄T

01 + B̄T
11N

T
01

B̄T
02 + B̄T

22N
T
02

]
(11)

where B̄0j =
1√
γj

B0j , B̄jj =
1√
γj

Bjj , j = 1, 2.

Thus, we have Bs = [B̄01 + N01B̄11 B̄02 + N02B̄22]. How-
ever, it seems difficult to find Cs from (10a). In order to
do that, we introduce a dual ARE

W̄jjA
T
jj + AjjW̄jj − W̄jjQjjW̄jj + Sjj = 0, j = 1, 2, (12)

which admits at least a symmetric positive semidefinite
solution W̃jj under the assumption 1. Using (12), we find
that

Tjj =
[

Inj −W̄jj

0 Inj

][
Ejj 0
−Qjj −ET

jj

][
Inj W̄jj

0 Inj

]
,

where Ejj = Ajj − QjjW̃jj , j = 1, 2 is nonsingular under
the assumption 1. After the calculation of Ts, we arrive at
another expression for Qs, that is,

Qs = Q00 + LT
10Q

T
01 + Q01L10 + LT

20Q
T
02 + Q02L20

+LT
10Q11L10 + LT

20Q22L20,

where Lj0 = −E−1
jj Ej0, Ej0 = Aj0 − W̃jjQ

T
0j , j = 1, 2.

Hence, it is easy to find that

Qs =
[

C̄T
10 + LT

10C̄
T
11 C̄T

20 + LT
20C̄

T
22

] [
C̄10 + C̄11L10

C̄20 + C̄22L20

]

= CT
s Cs,

where C̄j0 =
√

γjCj0, C̄jj =
√

γjCjj , j = 1, 2.
Let us now prove the second part of stabilizability and

detectability. Note the relation

 In0 −D01D

−1
11 −D02D

−1
22

0 D−1
11 0

0 0 D−1
22




·

 sIn0 − A00 −A01 −A02 B̄01 B̄02

−A10 −A11 0 B̄11 0
−A20 0 −A22 0 B̄22




·




In0 0 0 0 0
−D−1

11 A10 In1 0 π21 0
−D−1

22 A20 0 In2 0 π22

π11 π31 0 π41 0
π12 0 π32 0 π42




=


 sIn0 − A00 − N01A10 − N02A20 0 0

0 In1 0
0 0 In2

B̄01 + N01B̄11 B̄02 + N02B̄22

0 0
0 0


 , (13)

where π1j = −R−1
j B̄T

jjP̄jjD
−1
11 Aj0, π2j = D−1

jj B̄jj , π3j =
R−1

j B̄T
jj P̄jj, π4j = Inj + R−1

j B̄T
jjP̄jjD

−1
jj B̄jj , j = 1, 2.

Hence, the couple (As, Bs) is stabilizable if and only if
rank[sIn0 −A00 −N01A10 −N02A20 Bs] = n0, ∀s ∈ C. In
other words, the matrix pair (A00+N01A10+N02A20, Bs) is
stabilizable. Since As = A00+N01A10+N02A20+BsK and
the feedback K does not change the stabilizable property of
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(A00 + N01A10 + N02A20, Bs), we arrive at the conclusion
that the matrix pair (As, Bs) is also stabilizable. Similarly,
we can prove that (AT

s , CT
s ) is detectable if and only if the

assumption 2 is satisfied. The detail is omitted for brevity.
Thereby, we have finished the proof of Lemma 1. �

The following theorem will establish the relation between
PE and reduced–order solutions (10).

Theorem 1: Under the assumptions 1 and 2, there exist
small ε∗j , j = 1, 2 such that for all εj ∈ (0, ε∗j ), the MARE
(6) admits a symmetric positive semidefinite stabilizing so-
lution PE which can be written as

PE =
 P̄00 + F00 ε1(P̄10 + F10)T ε2(P̄20 + F20)T

ε1(P̄10 + F10) ε1(P̄11 + F11)
√

ε1ε2FT
21

ε2(P̄20 + F20)
√

ε1ε2F21 ε2(P̄22 + F22)


 ,

(14)

where Fpq(||µ||) = O(||µ||) with

pq = 00, 10, 20, 11, 21, 22, µ = [ε1 ε2] .
Proof: We apply the implicit function theorem [4] to (7).
To do so, it is enough to show that the corresponding Ja-
cobian is nonsingular at εj = 0, j = 1, 2. It can be shown,
after some algebra, that the Jacobian of (7) in the limit is
given by

J = ∇F

=
∂vec(f1, f2, f3, f4, f5, f6)

∂vec(P00, P10, P20, P11, P21, P22)T

∣∣∣
µ=µ0, P=P0

=




J00 J01 J02 0 0 0
J10 J11 0 J13 J14 0
J20 0 J22 0 J24 J25

0 0 0 J33 0 0
0 0 0 0 J44 0
0 0 0 0 0 J55




(15)

where vec denotes an ordered stack of the columns of its
matrix [7] and

µ = [ε1 ε2] , µ0 = [0 0] ,
P = (P00, P10, P20, P11, P21, P22),
P0 = (P̄00, P̄10, P̄20 P̄11, 0, P̄22),
J00 = (In0 ⊗ DT

00)Un0n0 + DT
00 ⊗ In0 ,

J0j = (In0 ⊗ DT
j0)Un0n1 + DT

j0 ⊗ In0 ,

Jj0 = DT
0j ⊗ In0 , Jjj = DT

jj ⊗ In0 ,

J13 = DT
10 ⊗ In1 , J14 =

√
ᾱ(DT

20 ⊗ In1)Un1n2 ,

J24 =
1√
ᾱ

DT
10 ⊗ In2 , J25 = DT

20 ⊗ In2 ,

J33 = (In1 ⊗ DT
11)Un1n1 + DT

11 ⊗ In1 ,

J44 =
√

ᾱDT
22 ⊗ In1 +

1√
ᾱ

In2 ⊗ DT
11,

J55 = (In2 ⊗ DT
22)Un2n2 + DT

22 ⊗ In2 , j = 1, 2

where ⊗ denotes Kronecker products and Unjnj , j =
0, 1, 2 is the permutation matrix in Kronecker matrix sense
[7].

The Jacobian (15) can be expressed as

detJ = detJ11 · detJ22 · detJ33 · detJ44 · detJ55

·det[In0 ⊗ DT
0 Un0n0 + DT

0 ⊗ In0 ] (16)

where D0 ≡ D00 − D01D
−1
11 D10 − D02D

−1
22 D20. Obvi-

ously, Jjj , j = 1, · · · , 5 are nonsingular because the ma-
trices Djj = Ajj − SjjP̄jj, j = 1, 2 are nonsingular under
the assumption 1. After some straightforward algebra but
tedious, we see that As − SsP̄00 = D00 − D01D

−1
11 D10 −

D02D
−1
22 D20 = D0. Therefore, the matrix D0 is nonsingu-

lar if the assumption 2 holds. Thus, detJ �= 0, i.e., J is
nonsingular at (µ, P) = (µ0, P0). The conclusion of The-
orem 1 is obtained directly by using the implicit function
theorem. �

With respect to the results of [4], we do not require sin-
gularity of Ajj , j = 1, 2. Moreover, we believe that our
proof is very directly. Thus, our new results are applicable
to more realistic MSPS.

IV. Pareto near–optimal strategy

Our attention is focused on the near–optimal strategy
design. Such a strategy is obtained by using the reduced–
order solutions (10). Hence, we can get the Pareto near–
optimal strategy

uappj(t) = − 1
γj

R−1
j BT

j P̄ x(t), j = 1, 2, (17)

where

P̄ =


 P̄00 0 0

P̄10 P̄11 0
P̄20 0 P̄22


 , ΦE =


 In0 0 0

0 ε1In1 0
0 0 ε2In2


 ,

P̄E = ΦE P̄ , Bj = ΦEBjE , j = 1, 2.

Theorem 2: Under the assumptions 1 and 2, the use of
the near–optimal strategy (17) results in J̄j satisfying

J̄j = J∗
j + O(||µ||), j = 1, 2, (18)

where the value of the actual cost is

J̄j =
1
2
x(0)T YjEx(0), j = 1, 2, (19)

and YjE is a positive semidefinite solution of the multipa-
rameter algebraic Lyapunov equation (MALE)

YjE(AE − SE P̄E) + (AE − SE P̄E)T YjE

+Qj +
1
γ2

j

P̄ESjE P̄E = 0, j = 1, 2. (20)

Proof: When the Pareto optimal strategy (5) is given, they
result in

J∗
j =

1
2
x(0)T XjEx(0), j = 1, 2, (21)

where XjE is a positive semidefinite solution of the MALE

XjE (AE − SEPE) + (AE − SEPE)T XjE

+Qj +
1
γ2

j

PESjEPE = 0, j = 1, 2. (22)
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In order to calculate the loss of performance (J̄j − J∗
j ), we

subtract (22) from (20) and obtain the MALE for ZjE =
YjE − XjE

ZjE(AE − SE P̄E) + (AE − SE P̄E)T ZjE +
1
γ2

j

P̄ESjE P̄E

− 1
γ2

j

PESjEPE + XjESjE (PE − P̄E)

+(PE − P̄E )T SjEXjE = 0, j = 1, 2. (23)

Using the result established in (14), it is easy to verify that

||P̄E − PE || = O(||µ||). (24)

It follows from (24) that

ZjE(AE − SE P̄E) + (AE − SE P̄E)T ZjE + O(||µ||) = 0,

j = 1, 2. (25)

Since D11, D22 and D0 are stable, AE−SE P̄E is stable from
Theorem 1 [1]. Hence

ZjE = O(||µ||), j = 1, 2 (26)

implying (18). �

In the rest of this section, we will show that the Pareto
near–optimal strategy (17) is equivalent to the existing
composite strategy [1] as the special case. Let Ajj , j = 1, 2
of (1) be nonsingular. In this case, the composite strategy
is

ucomj(t) = − 1
γj

R−1
j BT

j Xx(t)

= − 1
γj

R−1
j BT

j


 X00 0 0

X10 X11 0
X20 0 X22


 x(t), j = 1, 2. (27)

In the above, X00 is the unique stabilizing positive semidef-
inite symmetric solution of the following ARE

(Ar − BrR
−1
r ET

r Cr)T X00 + X00(Ar − BrR
−1
r ET

r Cr)
−X00BrR

−1
r BT

r X00 + CT
r (In0 − ErR

−1
r ET

r )Cr = 0, (28)

where

Rr = R + ET
r Er, Ar = A00 − A01A

−1
11 A10 − A02A

−1
22 A20,

Br =
[

B̄01 − A01A
−1
11 B̄11 B̄02 − A02A

−1
22 B̄22

]
,

Cr =
[

C̄10 − C̄11A
−1
11 A10

C̄20 − C̄22A
−1
22 A20

]
,

Er = −
[

C̄11A
−1
11 B̄11 0
0 C̄22A

−1
22 B̄22

]
.

Xjj , j = 1, 2 are the unique stabilizing positive semidefi-
nite solution of the following AREs

AT
jjXjj + XjjAjj − XjjSjjXjj + Qjj = 0, j = 1, 2 (29)

and Xj0 are

XT
j0 = [X00(S0jXjj − A0j) − (AT

j0Xjj

+Q0j)](Ajj − SjjXjj)−1, j = 1, 2. (30)

Theorem 3: Under the assumptions 1 and 2, the follow-
ing identities hold.

Xjj = P̄jj , Xj0 = P̄j0, X00 = P̄00, j = 1, 2, (31)

and hence the resulting near–optimal controller (17) is
the same as the composite optimal controller (27).
Proof: It can be carried out via a similar technique used
in [8]. Firstly, comparing (29) with (10c) yields Xjj =
P̄jj , j = 1, 2 directly. Secondly, comparing (30) with
(10b) and noting that Xjj = P̄jj, we have the conclusion
that Xj0 = P̄j0, j = 1, 2 if X00 = P̄00. Therefore, the
remainder of the proof is to show that X00 = P̄00. In order
to do that, we only need to show that the ARE (28) and
(10a) are the same equations, that is,

Ar − BrR
−1
r ET

r Cr = As, (32a)
BrR

−1
r BT

r = Ss, (32b)
CT

r (In0 − ErR
−1
r ET

r )Cr = Qs. (32c)

Before showing these relations, let us define (pp.115, [6])

H = In1+n2

+
[

R−1
1 B̄T

11P̄11D
−1
11 B̄11 0

0 R−1
2 B̄T

22P̄22D
−1
22 B̄22

]
.(33)

Then,

H−1 = In1+n2

−
[

R−1
1 B̄T

11P̄11A
−1
11 B̄11 0

0 R−1
2 B̄T

22P̄22A
−1
22 B̄22

]
.(34)

Thus, using (34) and the ARE (10c) we have

H−T RH−1 = R + ET
r Er = Rr ⇔ HR−1HT = R−1

r . (35)

Let us further introduce six useful identities.

A−1
jj + A−1

jj Sjj P̄jjD
−1
jj = D−1

jj , (36a)

A−1
jj + D−1

jj SjjP̄jjA
−1
jj = D−1

jj , (36b)

Inj + Sjj P̄jjD
−1
jj = AjjD

−1
jj , (36c)

Inj + P̄jjSjjD
−T
jj = AT

jjD
−T
jj , (36d)

QT
0j − QjjA

−1
jj Aj0 = Q̄T

0j + DT
jj P̄jjA

−1
jj Aj0, (36e)

−D0j + N0jSjjP̄jj = N0jAjj , j = 1, 2. (36f)

Then, we get

−BrR−1
r Er

=
[

S01 − A01A
−1
11 S11 S02 − A02A

−1
22 S22

]

·
[

D−T
11 C̄T

11 + P̄11D
−1
11 S11D

−T
11 C̄T

11

0

0
D−T

22 C̄T
22 + P̄22D

−1
22 S22D

−T
22 C̄T

22

]
. (37)

Hence,

Ar − BrR
−1
r ET

r Cr
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= A00 − A01A
−1
11 A10 − A02A

−1
22 A20

+
[

S01 − A01A
−1
11 S11 S02 − A02A

−1
22 S22

]

·
[

(In1 + P̄11D
−1
11 S11)D−T

11 (QT
01 − Q11A

−1
11 A10)

(In2 + P̄22D
−1
22 S22)D−T

22 (QT
02 − Q22A

−1
22 A20)

]

= A00 − A01A
−1
11 A10 − A02A

−1
22 A20

+(S01 + N01S11)D−T
11 (Q̄T

01 + DT
11P̄11A

−1
11 A10)

+(S02 + N02S22)D−T
22 (Q̄T

02 + DT
22P̄22A

−1
22 A20)

= A00 + N01S11M
T
01 + N02S22M

T
02

−D01A
−1
11 A10 − D02A

−1
22 A20

+N01S11P̄11A
−1
11 A10 + N02S22P̄22A

−1
22 A20

+S01M
T
01 + S02M

T
02, (38)

where the identities (36) have also been used to simplify
the expressions. After expanding As of (10a), we arrive at
the conclusion that As is the same as (38), which proves
(32a). Now, considering (32b), we have

BrH

=
[

B̄01 B̄02

] − [
D01D

−1
11 B̄11 D02D

−1
22 B̄22

]
+

[
A01D

−1
11 B̄11 A02D

−1
22 B̄22

]
− [

A01A
−1
11 B̄11R

−1
1 B̄T

11P̄11D
−1
11 B̄11

A02A
−1
22 B̄22R

−1
2 B̄T

22P̄22D
−1
22 B̄22

]
− [

A01A
−1
11 B̄11 A02A

−1
22 B̄22

]
=

[
B̄01 B̄02

]
+

[
N01B̄11 N02B̄22

]
=

[
B̄01 + N01B̄11 B̄02 + N02B̄22

]
= Bs. (39)

Hence, using (39), we have

BrR
−1
0 BT

r = BrHR−1HT BT
r = BsR

−1BT
s = Ss, (40)

which proves (32b).
Finally, using the identities of (36), it is straightforward

but tedious to verify that

ErR
−1
r ET

r

=
[

C̄11D
−1
11 S11D

−T
11 C̄T

11 0
0 C̄22D

−1
22 S22D

−T
22 C̄T

22

]
.(41)

Moreover, we get

CT
r Cr = Q00 − Q̄01A

−1
11 A10 − AT

10A
−T
11 Q̄T

01

−Q̄02A
−1
22 A20 − AT

20A
−T
22 Q̄T

02

+AT
10A

−T
11 P̄11S11P̄11A

−1
11 A10

+AT
20A

−T
22 P̄22S22P̄22A

−1
22 A20. (42)

Since −Qjj = AT
jjP̄jj + P̄jjAjj − P̄jjSjjP̄jj , j = 1, 2, it

follows that

CT
r Cr − CT

r ErR
−1
r ET

r Cr

= CT
r Cr − Q̄01D

−1
11 A10 − AT

10D
−T
11 Q̄T

01 + Q̄01A
−1
11 A10

+AT
10A

−T
11 Q̄T

01 − Q̄01D
−1
11 S11D

−T
11 Q̄T

01

−AT
10A

−T
11 P̄11S11P̄11A

−1
11 A10 − Q̄02D

−1
22 A20

−AT
20D

−T
22 Q̄T

02 + Q̄02A
−1
22 A20 + AT

20A
−T
22 Q̄T

02

−Q̄02D
−1
22 S22D

−T
22 Q̄T

02 − AT
20A

−T
22 P̄22S22P̄22A

−1
22 A20

= Q00 − Q̄01A
−1
11 A10 − AT

10A
−T
11 Q̄T

01 − Q̄02A
−1
22 A20

−AT
20A

−T
22 Q̄T

02 − Q̄01D
−1
11 A10 − AT

10D
−T
11 Q̄T

01

+Q̄01A
−1
11 A10 + AT

10A
−T
11 Q̄T

01 − Q̄01D
−1
11 S11D

−T
11 Q̄T

01

−Q̄02D
−1
22 A20 − AT

20D
−T
22 Q̄T

02 + Q̄02A
−1
22 A20

+AT
20A

−T
22 Q̄T

02 − Q̄02D
−1
22 S22D

−T
22 Q̄T

02. (43)

On the other hand, expanding Qs of (10a) and noting
Xjj = P̄jj lead to the conclusion that Qs is the same as
(43), which proves (32c). In consequence, we have X00 =
P̄00, hence, Xj0 = P̄j0, j = 1, 2. The proof of Theorem 3
is completed. �

V. Conclusions

In this paper, we have studied the Pareto near–optimal
strategy associated with the MSPS. We have proposed the
new Pareto near–optimal strategy. We have shown that an
O(||µ||) accuracy strategy achieves the cost functional J∗

j +
O(||µ||). Moreover, we have also shown that the resulting
strategy is equivalent to the existing one. Thus, our new
results are applicable to more realistic MSPS. In addition,
it is easy to apply our analysis to the optimal regulator
problem for the MSPS because the solution of such problem
is a special case of the Pareto optimal strategy when the
decision makers agree on a choice of a weighting factors.
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