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Abstract—1In this paper, we study the Pareto near—optimal
strategy for multiparameter singularly perturbed system
(MSPS). The main contribution is to propose a new method
for obtaining the Pareto near—optimal strategy. We show
that the resulting near—optimal strategy achieves the cost
functional J; + O(||u[). Moreover, we also show that the

resulting Pareto near—optimal strategy is equivalent to the
existing composite strategy.

I. INTRODUCTION

Multimodeling stability, control and filtering problems
have been investigated extensively (see e.g., [1]-[5]). The
multimodeling problems arise in large scale dynamic sys-
tems. For example, these multimodel situations in practice
are illustrated by the multi-area power system [1]. A pop-
ular approach to deal with the multiparameter singularly
perturbed systems (MSPS) is the two—time-scale design
method [1]-[5]. When the positive parameters ¢;, j =1, 2
are very small or unknown the previously used technique
is very efficient. However, in order to obtain the slow sub-
system, the nonsingularity of the fast state matrices are
needed.

In this paper, we study the Pareto near—optimal strat-
egy for the MSPS. We first investigate the uniqueness and
boundedness of the solution to the multiparameter alge-
braic Riccati equation (MARE) and establish its asymp-
totic structure. The proof of the existence of the solution
to the MARE with asymptotic expansion is obtained by
an implicit function theorem. This paper presents an im-
provement on some of the results of [4] in the sense that
there is no assumption for the nonsingularlity of the fast
state matrices. We also investigate the stabilizability and
detectability for the reduced—order algebraic Riccati equa-
tion (ARE). The main contribution is to propose a new
method for obtaining the Pareto near—optimal strategy.
We show that the proposed strategy achieves the cost func-
tional JX + O(|ul), 1 = [e1 e2] even if Aj; is nonsingular,
where J7 is the optimal cost. Thus, our new results are ap-
plicable to more realistic MSPS compared with [1]. More-
over, when A;; is nonsingular, we also show that the re-
sulting Pareto near—optimal strategy is equivalent to the
existing composite strategy [1]. Therefore, we claim that
the new Pareto near—optimal strategy includes the existing
one [1] as a special case.
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II. PARETO OPTIMAL STRATEGY

We consider the linear time—invariant MSPS

20(t) = Agozo(t) + Aorz1(t) + Agawa(t)
+Boyui (t) + Bogua(t), x0(0) =z, (1a)
e181(t) = Arozo(t) + Ana1(t) + Buiua(t), z1(0) = 29(1b)
€2io(t) = Agoo(t) + Agoxa(t) + Bagusa(t), 22(0) = 29,(1c)

where z; € R™, j = 0, 1, 2 are the state vector, u; €
R™i, j =1, 2 are the control input. All the matrices are
constant matrices of appropriate dimensions.

€1 and €2 are two small positive singular parameters of
the same order of magnitude such that

0<k1§azg—1§k2<oo. (2)
€2
Note that the fast state matrices A;;,7 = 1, 2 may be
singular. In the Pareto optimal strategy of the above MSPS
(1), a quadratic cost functional is given by

1

5= | EOR0 O R0l 7=12.6)

where Zj(t) = Cj().%'o(t) + ij.’L‘j(t) eR", 7=0,1, 2.
A Pareto solution is a pair w1, us which minimizes

J:71J1+V2J2,0<’)/j<1, ’Yl+’}/2:1 (4)

for some v; and 7. It is well known from [1] that the
solution of the Pareto optimal strategy is given by

1
ui(t) = —;RngjTEng(t), j=1, 2, (5)
J

where Pg satisfies the MARE

Af Pg+ PeAg — PeSePe +Q =0, (6)
with
Aogo Apy Aga
Ag = 81_1A10 61_1A11 0 5
e Ao 0 5 ' Aos
Bo1 BOQ

Big=| e/'Bi1 |, Bae= 0 ,

0 €5 Boo
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[ CLCw CLCy 0]
Q1= | CiCiy CLCu 0 |,
i 0 0 0 ]
I 027;)020 0 C%CQQ i
Q2 = 0 0 0 ;
| CBOw 0 CLOw |

Sje = BjeR;'Blg, j=1, 2,

1 1
Sg = —S1e + —52¢, Q=701+ 10Q2,
et Y2
Soo €1 So1 €5 So2
Se=| e 'Sy eSu 0 ;
~1aoT —2
€2 502 0 €y S22
Qoo Qo1 Qo2
RQ=1|QH Qu 0
Qi 0 Qn

A solution Pg of the MARE (6), if it exists, must contain
the parameters €; because the matrices Ag and Sg contain
the e;lforder parameter. Taking into account this fact, we
look for a solutions Pg¢ of the MARE (6) with the structure

T T
PQ() €1P10 €2P20

T NXxN

Pg = 61P10 €1P11 \/€1€2P21 ceR s
€2P20 (fE1€2P21  €2Pa

where N = ng+ni1+ns, Py = P(%, P = Pﬂ, Pyy = Pg;

A near—optimal Pareto strategy for the MSPS has been
proposed in [1]. The algorithm consists of solving three
separate subproblems, one in a slow time scale and two in
fast time scale, and then combining the solutions of these
problems to the specific form of the control law. However,
in order to separate the MSPS, the nonsingularity of the
matrices A;;, j = 1, 2 are required. To avoid these as-
sumptions we propose a method which is different from
the existing method [1].

III. MARE

Before we present the Pareto near—optimal strategy, we
first study the asymptotic structure for the MARE (6).
The MARE (6) can be partitioned into

f1 = AfoPoo + PooAgo + AfyPro + PiyA1g
+ A2 Pag + Py Asg — PooSooPoo — PiySE Poo
—PooSo1 Pro — P3ySE, Poo — PooSo2 Pao
—P{S11P1g — PjySaz Pag + Qoo = 0, (Ta)
f2 = PooAo + PlyArr + e1 AJgPly + Al P14+ Va AL Py
—e1(PooSoo Pl + Pio Sty Pi + PaoSga Pio)
—PyoSo1 P11 — PiySi1 Py

—\/@(PooSo2Pa1 + PJySa2Po1) + Qo1 = 0, (7b)
1
f3 = P00A02 + Pg(;A22 + EQAgOP% + A§0P22 + ﬁA?OPgI
—&2(PooSo0 Pay + Py Sa1 Pao + PaoSoaPo)
—PyoSo2 Paz — PsySo2 Pas
1 T T T
_ﬁ(POOSOIPm + PipS11P3;) + Qo2 = 0, (7c)
0-7803-7108-9/01/$10.00 (C)2001 |IEEE

fo= AT Py + P Ay + a1 (AL P 4 PioAor)
—€1 (Elplosoopljg] + PHSOTlPlTO + \/EP%S&P%)
—e1(P10So1 Pi1 + vV aPi9So2 Pa1) — Pi1S11 P

—aP)S29Po1 + Q11 = 0, (7d)
fs = e1P1o Aoz + e2 AL, Pay
—ée2(1P10So0 Py + P11S3y Pl + VaP) SL, PY)
1
—e1(P1oSo2 Pa2 + ﬁPmSmPS{)
+V/ P (Agg — Sao Pao)
1
—l—ﬁ(An — S Pi)''P =0, (7e)
fo = A3y Pos + Pag Aoy + e2( AL Py + PagAg2)
1
—é£2(£2P20S00 Py + Pa2 Sty Py + ﬁPmSgng[;)
1
—&2(Pa0So2 Pa2 + ﬁonSmPng) — P23522 P2
1
—5P21511P2T1 + Q22 = 0. (7f)

It is assumed that the limit of « exists as 1 and &9 tend
to zero [1]-[5], that is
lim «.

e1—+0
ego——+0

(8)

a =

Let P()O, F)l()7 Pgo, PH, pgl and PQQ be the hmltlng solutions

of the above equation (7) as e; — +0, j =1, 2, then we

obtain the following equations

A Poo + PooAgo + ATy Pro + P A1 + A3y Pao + Pi Asg
—PooSoo Poo — PySty Poo — PooSo1 Pro — Py Sas Poo

—Po0So2Pao — PioS11Pio — P3ySa2Pag + Qoo = 0, (9a)
PooAor + PlyAv1 + ALy Py + VaAL Por — PoogSor1 Pia

— Pl S11 P11 — Va(PooSoa Pay + PilySaaPay)

+Qo1 =0, (9b)

1
NG
_ , 1 _ _ _ _
7P21;J522P22 — E(POO*S’OLPQ,Z; + PI%SUPZID

Poo Aoz + pzToA22 + AQTOP22 + A1Top2T1 — PooSo2P2o

+Qo2 = 0, (9c)
A1T1P11 + P11An — PSP
—&PgiSQQPQl + Qll =0, (9d)

_ _ 1 _ _
\/EPQZI(AZZ — Sa9Pag) + E(AH — 511P11)TP211 =0, (%)

A3y Poy + PaoAgy — Py2S20Poo

1 _
*5P21511P2T1 + Q22 =0. (9f)
Assumption 1: The triples (4;;, Bjj, Cj;), i =1, 2 are

stabilizable and detectable.
Assumption 2:
slhy — Aoo —Aor —Ao2 Boi Bo2
rank —A10 —A11 0 Bll 0 = N,
— Az 0 —Azx 0 By
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$In, — AOTO _AlTo _AzTo ClTo CzTo
rank — AL -AT 0 CL 0 =N,
— A%, 0 AL o CL

where Vs € C with Re[s] > 0.

If the assumption 1 holds, there exist the matrices P
such that the matrices A;; — 5, P] j are nonsmgular Where
AT Py + PjjAj; — PjjSiiPi + Qi =0, j =1, 2. If
we chose Pj; as P] ;, the unique solution of (9e) is given by
P51 = 0 because the matrices A;; —S;; P;; are nonsingular.
Thus the parameter @ does not appear in (9). Therefore,
we obtain the following O—order equations

AT Poo + PooAs — PooSsPoo + Qs = 0, (10a)
Py = PooNoj — Mo, (10b)
AT;Pjj + PjjAj; — PjjSiiPjj + Q5 =0, (10c)
where
A = Ago + No1 A1 + Nog Aag + Sor M, + Soa M,
+No1S11 My + Noz S22 Mg,
Ss = Soo + No1Sty + So1 Ngy + No2Sdy + So2Ngs
+No1S11Ng; + Noz2S22 Ny,
Qs = Qoo — Mor Ao — ATy Mgy — Moz Az — Ay Mg,
—Mo1 S11 Mg, — Moz S22 Mgy,
Noj = —Do; D;', Moj = Qo;D;;', Quj = AlpPjj + Quj,
Doo = Aoo — So0Poo — So1Pro — So2 Pao,
Do; = Aoj — So;Pjj, Djo = Ajo — S5, Poo — Sj;Pjo,
Dj; = Aj; — 8Py, j=1, 2.

r_[:he matrices A,, Ss; and Q. do not depend on P;; and
Py because their matrices can be computed by using
Tpe, p, ¢ =0, 1, 2 which is independent of Pi; and Ps
[5], that is,

_ _ As =S
Ty = Too — TorT1; ' Tho — Too T3 Tao = [ _Q, —AT } )
Aoo —S00 Aoj —So; }
Too = To: =
00 l: _QOO _AT :| s 10j |: _QOJ _Ag"o )
A‘O ] { A‘ ‘ _S‘ | }
Tio — J 7 _ i i,
J0 [ _QoTj 72 Tj; —Qjj _AjTj
7=1 2

Lemma 1: Under the assumptions 1 and 2, there exist
a matrix B, € RV*M M = m; + my and a matrix C,
with the same dimension as [ cl, cl }T such that Sy =
BsR™'BT, Q, = CTC,. Moreover, the triple (As, Bs, Cs)
is stabilizable and detectable.
Proof: From (10a), it is easy to verify that

Sy = [ Boi + No1Bi1  Boz + No2Ba |

0 Ry* BL, + BLNE
0-7803-7108-9/01/$10.00 (C)2001 |IEEE

1 _ 1
ThUS, we have BS = [B()l + N01B11 BQQ + NOQBQQ}. How-
ever, it seems difficult to find Cs from (10a). In order to
do that, we introduce a dual ARE

where By; =

Wi AL + Ay Wi — WQuWis + S5 =0, j =1, 2,(12)

which admits at least a symmetric positive semidefinite
solution W;; under the assumption 1. Using (12), we find

that
o e Wi |[ By O Ln; W
7 0 In, —Qjj E}; 0 In, |’
where Ej; = Aj; — QN ji» 7 =1, 2 is nonsingular under

the assumption 1. After the calculatlon of T, we arrive at
another expression for @), that is,

Qs = Qoo + L1yQ%1 + Qo1L1o + L3,Q%, + QoaLao
+L{yQ11L10 + L3y Qa22Lao,
WhCI‘O Ljo = —Ej_lejo, Ej() = Ajo — Wjj@%}, j = 1, 2

Hence, it is easy to find that

Qs=[Cly+
_cTe,,
where Cjo = \/7;Cj0, Cj; = /7 Cij» J

Let us now prove the second part of stabilizability and
detectability. Note the relation

thct cf+ L1,CcL ] [ Chio+ CiiLio }

Cao + CaaLag

I, —DuD;' —DoaDy
0 Dt 0
0 0 D5y
[ sI, — Ao —Aor —Aoz Bor Bog
—A1o -An 0 B 0
| —A2 0 —A» 0 By
[ I, 0O 0 0 0
—D;llAlo I, 0 7 0
—D2_21A20 0 I,, 0 22
11 m1 0wy O
i T12 0 m2 0 7y
Iny — Aoo — No1A1g — No2Azyg 0 0
- 0 I, 0
0 0 I,
Bo1 + No1Bi1 Boa + NoaBas
0 0 : (13)
0 0

where m; = —R; ' B, Pj;Dyi' Ajo, ma; = Dj; B]J, T3 =
R7'BE Py, may = In7 +R 1BTP”D 13”, j=1, 2
Hence the couple (As, Bs ) is stablhzable if and only if
rank[s[no — Agg — No1A19 — No2Aog BS] =ng, Vs € C. In
other words, the matrix pair (Agp+No1 A10+No2 A2, Bs) is
stabilizable. Since As = Ago+ No1 A10+ No2 Az + BsK and
the feedback X does not change the stabilizable property of

502



IECON'01: The 27th Annual Conference of the IEEE Industrial Electronics Society

(AOO + N01A10 + NOQAQQ, BS), we arrive at the conclusion
that the matrix pair (As, Bs) is also stabilizable. Similarly,
we can prove that (AT, CT') is detectable if and only if the
assumption 2 is satisfied. The detail is omitted for brevity.
Thereby, we have finished the proof of Lemma 1. O

The following theorem will establish the relation between
Pg¢ and reduced—order solutions (10).

Theorem 1: Under the assumptions 1 and 2, there exist
small €%, j = 1, 2 such that for alle; € (0, }), the MARE
(6) admits a symmetric positive semidefinite stabilizing so-
lution P¢ which can be written as

Pe =

1’590 + Foo
1(Pro + Fio)
2(Pao + Fao)

e1(Pro + Fr0)" e2(Pao + Fao)”
e1(Pr1 + Fi1) \/5152}—5 )
VEreaFa £2(Pag + Fa2)
(14)

where (1) = O(lpl) with

pg =00, 10, 20, 11, 21, 22, pu = [e; 2] .
Proof: We apply the implicit function theorem [4] to (7).
To do so, it is enough to show that the corresponding Ja-
cobian is nonsingular at e; =0, 7 = 1, 2. It can be shown,
after some algebra, that the Jacobian of (7) in the limit is
given by

J=VF
6VeC(f17 f27 f37 f47 f57 fﬁ)

ovec(Poo, Pro, Pao, P11, Po1, Pa2)7 lu=po, P=Po

Joo Jo1 Jo2 O 0 0

Jo Juu 0 Jiz Jiu O

| Jeo 0 Jao O Jog Jos
B 0 0 0 Js3 O 0 <15)

0 0 0 0 Jaa 0

0 0 0 0 0 Jss

where vec denotes an ordered stack of the columns of its
matrix [7] and

p=[e1 €], po =10 0],

P = (Poo, Pio, Pao, P11, Po1, Pa2),

Po = (Poo, Pro, Pao P11, 0, Pa3),

Joo = (Ing @ DIUpony + D& @ Iy,

Joj = (Ing ® D}5)Ungn, + Djo @ I,

Jio = Dg; ® Iy, Jjj = D} @ Iy,

Jiz=Dl, @I, Ju=vaDi &I, U n,,
Joy = LDIT0 @ Iy, Jos = DIy @ I,,,

Va
Js3 = (In, @ D{)Upyn, + D} © Iy,
Ju =VaDl, @ I, + %IM ® DI,
Js5 = (Iny ® D35)Ungny + D3y ® Iy, j=1, 2
where ® denotes Kronecker products and Up,n;, j =
0, 1, 2 is the permutation matrix in Kronecker matrix sense

7).
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The Jacobian (15) can be expressed as

detJ = detJy1 - detJos - detJs3 - detJyy - detJss

'det[Ino ® D(Y;Unono + Dg ® Ino] (16)

where D() = DOO — DOlDﬂlDlo — D02D521D20. Obvi-
ously, Jj;, j = 1,---,5 are nonsingular because the ma-
trices D;; = A;; — S;j;Pj;, j =1, 2 are nonsingular under
the assumption 1. After some straightforward algebra but
tedious, we see that A; — SsPyg = Doo — D01D1_11D10 —
D02D2_21 Dyy = Dgy. Therefore, the matrix Dg is nonsingu-
lar if the assumption 2 holds. Thus, detJ # 0, i.e., J is
nonsingular at (y, P) = (o, Po). The conclusion of The-
orem 1 is obtained directly by using the implicit function
theorem. |

With respect to the results of [4], we do not require sin-
gularity of A;;, 7 =1, 2. Moreover, we believe that our
proof is very directly. Thus, our new results are applicable
to more realistic MSPS.

IV. PARETO NEAR—OPTIMAL STRATEGY

Our attention is focused on the near—optimal strategy
design. Such a strategy is obtained by using the reduced—
order solutions (10). Hence, we can get the Pareto near—
optimal strategy

1 - = .
j
where
~ E’oo 0 0 In, 0 0
P=|Po Pu 0 |,P=| 0 el 0 ,
Py 0 Poo 0 0 eoln,

Pe =®¢P, Bj = ®¢Bje, j=1, 2.

Theorem 2: Under the assumptions 1 and 2, the use of
the near—optimal strategy (17) results in J; satisfying

Jj=J; +0(lul), i=1, 2 (18)
where the value of the actual cost is
_ 1 T )
Jj = E.T(O) Y}‘g(E(O), J = 1, 2, (19)

and Yj¢ is a positive semidefinite solution of the multipa-
rameter algebraic Lyapunov equation (MALE)

Yje(As — SePe) + (Ag — Se Pe)"Yie
1 - _
+Qj + ?PgSngg =0,757=1, 2. (20)

J
Proof: When the Pareto optimal strategy (5) is given, they
result in

1
Ji = 5w(0) Xjex(0), j =1, 2, (21)
where Xj¢ is a positive semidefinite solution of the MALE
ng(Ag — SegPe)+ (Ag — SgPE)TXjS

1
+Q; + 7—2P55j€P£ =0,j=1, 2. (22)

J
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In order to calculate the loss of performance (j] = J7), we
subtract (22) from (20) and obtain the MALE for Z;¢ =
Yie — X;

_ _ 1 - —
Zig(Ag — SePe) + (As — Se Pe)" Zje + ?PESJ'SPE
J
1 —
7?PgSng5 + Xjé‘SjE(PE - Pf)
J

+(Pe — Pe)'SjeXje =0, j =1, 2. (23)

Using the result established in (14), it is easy to verify that

| Pe = Pel| = O(ul)- (24)
It follows from (24) that
ng(Ag — Sgpg) + (Ag — Sgpg)Tng + O(||,u||) =0,
j=1, 2. (25)

Since D11, Dss and Dy are stable, Ag —Sg Ps is stable from
Theorem 1 [1]. Hence

Zig =0(lpl), 5 =1, 2 (26)

implying (18). d

In the rest of this section, we will show that the Pareto
near—optimal strategy (17) is equivalent to the existing
composite strategy [1] as the special case. Let Aj;, j =1, 2
of (1) be nonsingular. In this case, the composite strategy
is

1
Ucom (1) = —TRj*lBjTXx(t)
J

1 Xoo 0 0
=——R;'Bl'| X1o Xuu 0 |a(t), j=1,2(27)
K X 0 Xoo

In the above, X is the unique stabilizing positive semidef-
inite symmetric solution of the following ARE

(A, — B.R;'EFC.)" Xoo + Xoo(A, — B,R,'EFC,)
—XooB, R, BT Xo9 + CT(I,,, — E,RYET)C, =0, (28)
where
R, =R+ ETE,, A, = Ao — A A7 Ao — Az Ayt Aso,
BT = [ BOl — AOlAl_lléll BOQ - A02A2_21§22 ] )
c, - [ Gn= Gt

Coo — 022142_211420
B o= [ 611A1_11B11 ~ 0 ~
" 0 Cao Ay Boo
Xjj, 7 =1, 2 are the unique stabilizing positive semidefi-
nite solution of the following AREs
AT X5+ XjiAj5 — X358 X55 + Q5 =0, j=1, 2 (29)
and Xjg are
Xjo = [Xoo(S0; X5 — Aoj) — (AJo X

J
+Qo)I(Aj; — 85 X))~ j=1, 2. (30)

0-7803-7108-9/01/$10.00 (C)2001 |IEEE

Theorem 3: Under the assumptions 1 and 2, the follow-

ing identities hold.
Xj; = Pjj, Xjo = Pjo, Xoo=Poo, j=1, 2, (31)

and hence the resulting near—optimal controller (17) is
the same as the composite optimal controller (27).
Proof: It can be carried out via a similar technique used
in [8]. Firstly, comparing (29) with (10c) yields X;; =
Pjj, j = 1, 2 directly. Secondly, comparing (30) with
(10b) and noting that X;; = P;;, we have the conclusion
that Xj(] = Pj07 ] = 1, 2 if Xoo = P(](). TI}erefore, the
remainder of the proof is to show that Xog = Pyg. In order
to do that, we only need to show that the ARE (28) and
(10a) are the same equations, that is,

A, — B.R;'ErC, = A,, (32a)
B.R;'BF = S, (32b)
CT (I, — E,R'ENC, = Qs. (32c)

Before showing these relations, let us define (pp.115, [6])

H= ni+ng
N { R{'Bf,P.Dy' B 0 )
0 R5 ' BY, Pyy Dy Boo

Then,

} (33)

-1 _
H — Ini+ng

B { Ry'BE P A Bl 0
0

Ry BYy Pyy Ay, B } 34)
Thus, using (34) and the ARE (10c) we have
HTRH'=R+E'E, =R, < HR'HT = R,;'. (35)

Let us further introduce six useful identities.

Al + AGlS; Py D = Dyl (36a)
Al + DS P A = DL (36b)
In; + Sj; P D = Aj; DL, (36¢)
In, + P;;S;;D;;F = ALD T, (36d)
Qd; — Qi54A5; Ajo = Qo + DJ; P A7 Ajo, (36e)
—Doj + No;jS;jPjj = NojAjj, 5 =1, 2. (36f)
Then, we get
—~B.R'E,

= [ Sor— AotA;;'S11 Soz — A2 A5, S22 |
) Di"CH + PuDyy' Su Dy CFy
0

0

o~ _T rar | (3T
Dyl CFy + Pay D3yt Sop Doyt CF (37)

Hence,

A, - B.R'ElC,
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= Ao — Ao Aji' Aro — A2 A5y Asg

+ [ So1 — A01Af11311 So2 — A02A§21522 ]
(In, + P1uD3 S11) D1y (QF; — QuuALy Avg)
(Iny + Poa D5 S22) Dy (Qfy — Q22455 Azo)
= Ao — An Ay Ao — App A5y Asg

+(So1 + No1tS11) D1y (Qgy + Dy Pui Ay Aso)

+(S02 + No2S22) Doy’ (Qiz + Dio Paz Agy Aso)
= Ao + No1S11 Mgy + Noz2 S22 Mg,

—Do1Ajy' A1g — DoaAsy Asg

+No1 S11 P11 AT At + NoaSao Pag Ay A

+S01 Mgy + So2 Mgy,

(38)

where the identities (36) have also been used to simplify
the expressions. After expanding As of (10a), we arrive at
the conclusion that A, is the same as (38), which proves
(32a). Now, considering (32b), we have
B.H

= [ Bo1 Boe ] — [ D1 Dy'Bii D2 Dy, Boo }

+[ A D' Bii AoaDsy Bao ]

— [ AonAy' Bi1 Ry 'BY, P1Dyy' B

Ao A3y Boa Ry ' B3, Poy D3y By |

—[ Ao AT Bin AgeAy, Bas |

[ Bor Bo2 |+ [ NouBii No2Ba: |
= [ Bo1+No1Bi1  Boz + No2 By | = B,.

(39)
Hence, using (39), we have
B.R;'BT = B.HR'H"BY = B,R™'BT = 5,, (40)

which proves (32b).
Finally, using the identities of (36), it is straightforward
but tedious to verify that

E.R'ET
_ CuDiy Su Dy O _ 0 ~ (41)
0 Co2Ds5y' Sa2 Dyt Cy
Moreover, we get
cro, = Qoo — Qoi Aty A1o — A1T01j1f1TQg1
—Q02A2_21/{20 - /{50A2_2TQ52
+ AL AT PSP AT A
+ A3 Ayl PagSas Pos Ay Ay (42)

Since —Qj; = AT, Pj; + PjjAj; — Pj;S;iPij, j =1, 2, it
follows that
cre, - CcrE.rR7'ETC,
= Cl'C, — Qui Dy Ao — Al D" Q1 + Qui Ay Aro
+AT AL QG — QoD Su Dy Qg
— AT AT PiiSii PriAr Avg — Qo2Dayt Aso
— A3, D3 Qfy + Qu2Az; Azo + Agg Az QF
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—Qu2D33" S22 D3y QF, — AL A3 PazSos Pas A3y Asg
= Qoo — Qo147 A10 — ATGAT QFy — Qo245 Ao

— Ay A5y QG — Qui D1y Avo — AT D1 QF,

+QuiAr Ao + ATy AL QG — Qo Diy S Dy Qg

—Qo2 D5y Ao — ALy D33 QF; + Qo2 Az Ao

+A2TOA52TQ(:)F2 - Q02D521 S22D52TQoTz- (43)

On the other hand, expanding Qs of (10a) and noting
X;; = Pjj lead to the conclusion that Qs is the same as
(43), which proves (32c). In consequence, we have Xo =
Py, hence, Xjo = Pjo, j =1, 2. The proof of Theorem 3
is completed. |

V. CONCLUSIONS

In this paper, we have studied the Pareto near—optimal
strategy associated with the MSPS. We have proposed the
new Pareto near—optimal strategy. We have shown that an
O(||ll) accuracy strategy achieves the cost functional J7 +
O(||#]). Moreover, we have also shown that the resulting
strategy is equivalent to the existing one. Thus, our new
results are applicable to more realistic MSPS. In addition,
it is easy to apply our analysis to the optimal regulator
problem for the MSPS because the solution of such problem
is a special case of the Pareto optimal strategy when the
decision makers agree on a choice of a weighting factors.
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