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Abstract—This paper deals with a design problem of ro-
bust non-fragile controllers for linear continuous-time sys-
tems with uncertainties which are included in both the
system matrix and the input one. In this paper, we deal
with two classes of control gain perturbations and show
that sufficient conditions for the existence of the robust
non-fragile controller are given in terms of linear matrix
inequalities (LMIs). Finally, illustrative examples are pre-
sented.

I. Introduction

Robustness of control systems to uncertainties has al-
ways been the central issue in feedback control and there-
fore for uncertain dynamical systems, a large number
of robust controller design methods have been presented
(e.g. Ackermann 1980, Hagino and Komiriya 1989) Ro-
bust controller design methods can be classified roughly
into “quadratic stabilizing control (e.g. Petersen and Hol-
lot 1986)” and “H∞ control (e.g. Doyle et. al. 1989,
Khargonekar et. al. 1990)”.

By the way, there have been some efforts to tackle the
design problem of robust non-fragile controllers (e.g. Do-
rato 1998, Famularo et. al. 2000). Because controller im-
plementation is subject to imprecision inherent in analog-
digital and digital-analog conversion, finite word length,
and finite resolution measuring instruments and roundoff
errors in numerical computations and any useful design
procedure should generate a controller which also has suf-
ficient room for readjustment of its coefficients (Keel and
Bhattacharyya 1997). For linear continuous-time systems
with structured uncertainties existing in the system ma-
trix only, a design method of a robust non-fragile state
feedback controller and a have been suggested (Famularo
et. al. 2000). Also, a design method of a H∞ controller
for linear systems with additive controller gain variations
has been derived (Wang and Lin 2000). However, so far
the design problem of robust non-fragile controllers for
linear continuous-time systems with uncertainties which
are included in both the system matrix and the input one
has not been discussed.

From this viewpoint on the basis of the existing result
for quadratic stabilization, we present a design method of
a robust non-fragile controller for linear continuous-time
systems with structured uncertainties existing in both
the system matrix and the input one. Furthermore, we
deals with a design method of robust non-fragile H∞ con-
trollers. In this paper, we show that sufficient conditions
for the existence of the robust non-fragile controller are
given in terms of linear matrix inequalities (LMIs).

This paper is organized as follows. In Sect. 2, notation
and two useful lemmas which are used in this paper are

shown and in Sect. 3, we introduce the classes of uncer-
tain systems and the control gain variations under con-
sideration. Sect. 4 contains the main results. The design
method of the robust non-fragile controller is presented.
Finally, illustrative examples are included to illustrate the
results developed in this paper.

II. Preliminaries

In this section, we show notation and two useful lemmas
which are used in this paper.

In this paper, we use the following notation. The trans-
pose of matrix A and the inverse of one are denoted by AT

and A−1 respectively. Also He{A} means A+AT and In

represents n-dimensional identity matrix. For real sym-
metric matrices A and B, A > B (resp. A ≥ B) means
that A − B is positive (resp. nonnegative) definite ma-

trix. The symbol “
�
=” means equality by definition. Be-

sides, L2[0,∞) is L2-space (i.e. the collection of all square
integrable functions) and for a signal f(t) ∈ L2[0,∞) ,
||f(t)||L2 denotes its L2-norm.

Furthermore, the following two useful lemmas are used
in this paper.

Lemma 1: For given constant real symmetric matrix
Ξ, the following arguments are equivalent.

(i). Ξ
�
=

(
Ξ11 Ξ12

ΞT
12 Ξ22

)
> 0

(ii). Ξ11 > 0 and Ξ22 − ΞT
12Ξ

−1
11 Ξ12 > 0

(iii). Ξ22 > 0 and Ξ11 − Ξ12Ξ−1
22 ΞT

12 > 0
Proof: See Boyd et. al. (1994).

Lemma 2: For matrices G and H which have appro-
priate dimensions and a positive scalar γ, the following
relation holds.

GH + HTGT ≤ γGGT +
1
γ
HTH

Proof: The proof follows the same lines as Lemma
1 of Oya and Hagino (2003).

III. Problem Formulation

Consider the uncertain linear continuous-time system
described by the following state equation.

d

dt
x(t) = A(t)x(t) + B(t)u(t) (1)

where x(t) ∈ �n and u(t) ∈ �m are the vectors of the
state (assumed to be available for feedback) and the con-
trol input, respectively. The matrices A(t) and B(t) are
supposed to have appropriate dimensions and the follow-
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ (S,W, γ, δ, µ, ν) SLT WTMT WTN T
M 0 E WTN T

M
LS −γIq 0 0 0 0 0
MW 0 −δIs 0 0 0 0
NMW 0 0 −µIm 0 0 0

0 0 0 0 −ΥM(ν) 0 0
ET 0 0 0 0 −νIr 0

NMW 0 0 0 0 0 −νIlM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0 (7)

Γ (S,W, γ, δ, µ)
�
= He{AS + BW} + γDDT + δEET + µεMBFMFT

MBT (8)
d

dt
V(x, t) = xT (t)

[
He{P(A + BK + D∆A(t)L + E∆B(t)MK + BFM∆KM(t)NMK

+ E∆B(t)MFM∆KM(t)NMK)}]x(t) (9)

Φ(P,K)
�
= He{P(A + BK + D∆A(t)L + E∆B(t)MK + BFM∆KM(t)NMK + E∆B(t)MFM∆KM(t)NMK)}
< 0 (10)

ing time-varying structure.

A(t) = A + D∆A(t)L
B(t) = B + E∆B(t)M (2)

In eq.(2), the matrices A and B denote the known nom-
inal values and the matrices D, E ,L and M represent
the structure of uncertainties. The matrices ∆A(t) ∈
�p×q and ∆B(t) ∈ �r×s denote uncertainties and satisfy
∆A(t)∆T

A(t) ≤ Ip and ∆B(t)∆T
B(t) ≤ Ir, respectively.

In order to consider the control gain perturbations, the
actual control input implemented is assumed to be

u(t)
�
=K(t)x(t) (3)

where K(t) ∈ �m×n represent the control gain matrix
with uncertainties. In this paper, the following two
classes of the control gain matrix K(t) are considered.

• the multiplicative form :

K(t)
�
=K + FM∆KM(t)NMK (4)

• the additive form :

K(t)
�
=K + FA∆KA(t)NA (5)

where K is the nominal control gain matrix. In eqs.(4)
and (5), FM,FA,NM and NA are known constant
matrices with appropriate dimensions and the matri-
ces ∆KM(t) ∈ �kM×lM and ∆KA(t) ∈ �kA×lA repre-
sent the control gain variations and satisfy the relation
∆KM(t)∆T

KM(t) ≤ εMIkM and ∆KA(t)∆T
KA(t) ≤ εAIkA

where εM and εA are known positive scalars.
Note that the manipulated input for the uncertain sys-

tem eq.(1) is u(t)
�
= Kx(t), because the control gain vari-

ations ∆KM(t) ∈ �kM×lM and ∆KM(t) ∈ �kA×lA cannot
be handled. In this paper, we simply consider the actual
control input u(t) described by eqs.(3), (4) and (5) so as
to design the robust stabilizing state feedback controller
under control gain variations.

From eqs.(1) and (3), we get

d

dt
x(t) = (A(t) + B(t)K(t))x(t) (6)

From the above discussion, our control objective in this
paper is to design the state feedback gain matrix K which
stabilizes the closed-loop system eq.(6).

IV. Robust Non-Fragile Controllers

In this section, we show that the design method of the
robust non-fragile controller based on the linear matrix
inequality (LMI) framework.

Firstly, we give the following theorem for the robust
stabilizing controller under multiplicative control gain
perturbations of the form eq.(4).

Theorem 1: Consider the uncertain system eq.(1).
There exists the state feedback gain matrix K (it is given

by K
�
=WS−1, if there exist) such that the control law

eq.(3) with the multiplicative control gain perturbations
of the form eq.(4) is a stabilizing control for the closed-
loop system eq.(6), if there exist S > 0,W, γ > 0, δ >
0, µ > 0 and ν > 0 satisfying the LMI condition eq.(7).

In eq.(7), ΥM(ν) is the matrix given by ΥM(ν)
�
= Is −

ν(Is + εMMFMFT
MMT ) and Γ (S,W, γ, δ, µ) is the ma-

trix given by eq.(8).
Proof: Using a symmetric positive definite ma-

trix P ∈ �n×n, we introduce the quadratic function
V(x, t)

�
=xT (t)Px(t) as a Lyapunov function candidate.

From eqs.(2), (4) and (6), the time derivative of the
quadratic function V(x, t) along the trajectory of the
closed-loop system eq.(6) can be computed as eq.(9).
Therefore if there exist the state feedback gain matrix
K ∈ �m×n and the symmetric positive definite matrix
P ∈ �n×n which satisfy the condition eq.(10), then the
quadratic function V(x, t) satisfies the following relation
eq.(11) and the quadratic function V(x, t) becomes a Lya-
punov function for the closed-loop system eq.(6). Namely,
the closed-loop system eq.(6) is asymptotically stable.

d

dt
V(x, t) < 0 for ∀x(t) �= 0 (11)

Let us introduce the matrix S �
=P−1 and consider

the change of variable W �
= KS. Then pre- and post-
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Ψ(S,W, γ, δ, µ)
�
= Γ (S,W, γ, δ, µ) +

1
γ
SLTLS +

1
δ
WTMTMW +

1
µ
WTN T

MNMW

+
(
E∆B(t) + WTN T

M∆T
KM(t)FT

MMT
)(

E∆B(t) + WTN T
M∆T

KM(t)FT
MMT

)T

< 0 (12)⎛
⎜⎜⎜⎜⎝

Γ (S,W, γ, δ, µ) SLT WTMT WTN T
M 0

LS −γIq 0 0 0
MW 0 −δIs 0 0
WNM 0 0 −µIm 0

0 0 0 0 −Is

⎞
⎟⎟⎟⎟⎠

+ He

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

E∆B(t) WTN T
M

0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎠

(
0 0 0 0 Is

0 0 0 0 ∆T
KM(t)FT

MMT

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

< 0 (13)

⎛
⎜⎜⎜⎜⎜⎝

Γ (S,W, γ, δ, µ) +
1
ν
EET +

1
ν
WTN T

MNMW SLT WTMT WTN T
M 0

LS −γIq 0 0 0
MW 0 −δIs 0 0
WNM 0 0 −µIm 0

0 0 0 0 −ΥM(ν)

⎞
⎟⎟⎟⎟⎟⎠

< 0 (14)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ (S,W, γ, δ, µ) SLT WTMT SN T
A 0 E SN T

A
LS −γIq 0 0 0 0 0
MW 0 −δIs 0 0 0 0
NAS 0 0 −µIm 0 0 0

0 0 0 0 −ΥA(ν) 0 0
ET 0 0 0 0 −νIr 0
NAS 0 0 0 0 0 −νIlA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0 (15)

multiplying eq.(10) by S ∈ �n×n and using Lemma
2, we get the inequality eq.(12). Furthermore applying
Lemma 1 to the inequality eq.(12) and simple algebraic
manipulation gives the matrix inequality eq.(13). Also by
using Lemma 2, the condition eq.(14) can be obtained.
Therefore by applying Lemma 1 to the matrix inequal-
ity eq.(14), it is easy to verify that the condition eq.(14)
is equivalent to the LMI condition eq.(7) for S,W, γ, δ, µ
and ν.

It follows that the result of the theorem is true. Thus
the proof of Theorem 1 is completed.

Theorem 1 provides a sufficient condition for the exis-
tence of the robust controller under multiplicative control
gain perturbations of the form eq.(4). Next, we show the
theorem for the robust controller under additive control
gain perturbations of the form eq.(5).

Theorem 2: Consider the uncertain system eq.(1).
There exists the state feedback gain matrix K (it is given

by K
�
=WS−1, if there exist) such that the control law

eq.(3) with the additive control gain perturbations of the
form eq.(5) is a stabilizing control for the closed-loop
system eq.(6), if there exist S > 0,W, γ > 0, δ > 0,
µ > 0 and ν > 0 satisfying the LMI condition eq.(15).

In eq.(15), ΥA(ν) is the matrix given by ΥA(ν)
�
= Is−

ν(Is + εAMFAFT
AMT ) and Γ (S,W, γ, δ, µ) is the ma-

trix given by eq.(8).

Proof: The result of the Theorem 2 is derived in
a similar way as for Theorem 1.

Remark 1: In this paper, we present a LMI-based de-
sign method of robust non-fragile stabilizing controllers
for linear continuous-time systems with uncertainties
which are included in both system matrix and input one.
Therefore, the proposed design method can be imple-
mented for more practical uncertain systems. Besides,
the proposed design method can be easily extended to
robust non-fragile H∞ controllers (see Appendix).

V. Illustrative Examples

In order to demonstrate the efficiency of the proposed
robust non-fragile stabilizing controller, we have run a
simple example. In this example, we consider the robust
non-fragile controller under the multiplicative control
gain perturbations of the form eq.(4). Also, the simula-
tion results are shown for the proposed robust non-fragile
stabilizing controller and the conventional quadratic sta-
bilizing controller designed without thinking of control
gain perturbations. The control problem considered here
are not necessary practical. However, the simulation re-
sults stated below illustrate the distinct feature of the
proposed robust non-fragile controller.

Consider the uncertain linear continuous-time system
eq.(16). In this example, we assume that kM = lM = 1
(i.e. ∆KM(t) ∈ �1×1,FM ∈ �1×1 and NM ∈ �1×1) and
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d

dt
x(t) =

( −1.0 1.0
0.0 5.0

)
x(t) +

(
1.00
1.25

)
∆A(t)

(
0.25 0.05

)
x(t) +

(
0.0
2.0

)
u(t) +

(
0.050
0.175

)
∆B(t)u(t) (16)

• Case 1) : ∆A(t) = sin(5.00πt), ∆B(t) = − cos(2.00πt), ∆KM(t) =
√

εM sin(10.00πt) (20)

• Case 2) : ∆A(t) = 1.0, ∆B(t) = −1.0, ∆K(t) =
√

εM for 0 ≤ t ≤ 1.0
∆A(t) = −1.0, ∆B(t) = 1.0, ∆K(t) =

√
εM for 1.0 < t ≤ 2.0

∆A(t) = −1.0, ∆B(t) = 1.0, ∆K(t) = −√
εM for t > 2.0

(21)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

S
ta

te

Time

Proposed
Conventional

Fig. 1. Transient time-response of the state variable x1(t) : Case
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Fig. 2. Transient time-response of the state variable x2(t) : Case
1)

FM and NM in eq.(5) and εM are given as FM = NM =
1.0 and εM = 0.35, respectively. Namely from eqs.(3)
and (4), the actual control input u(t) can be written as

u(t)
�
= (1.0 + ∆KM(t))Kx(t) (17)

By applying Theorem 1 and solving the LMI condi-
tion eq.(7), we obtain the following state feedback gain
matrix.

K =
( −3.88076 × 10−1 −19.57276

)
(18)

On the other hand, the feedback gain matrix for the
conventional quadratic stabilizing control, denoted by
KC , has been derived as

KC =
( −8.23760 × 10−1 −3.36386

)
(19)

In this example, we assume that the initial value
for the uncertain system eq.(16) is selected as x(0) =(

1.0 0.0
)T and the uncertain parameters ∆A(t) and

∆B(t) and the control gain perturbations ∆KM(t) are set
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Fig. 3. Time histories of the manipulated input u(t)
�
= Kx(t) :

Case 1)
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Fig. 4. Time histories of the actual control input u(t)
�
= K(t)x(t) :

Case 1)

as Case 1) and Case 2) (see eqs.(20) and (21)). The re-
sults of the simulation of this example are depicted in
Figs. 1–8. In these figures, Proposed represents the tran-
sient time-response, the manipulated control input and
the actual control input generated by the proposed ro-
bust stabilizing controller. Furthermore, Conventional
shows time histories of the state, the manipulated con-
trol input and the actual control input for the conven-
tional quadratic stabilizing controller designed without
thinking of control gain perturbations.

From Figs. 1–4, we find that both the proposed robust
stabilizing controller (Proposed in figures) and the con-
ventional quadratic stabilizing controller (Conventional
in figures) stabilize the uncertain linear system eq.(16)
under the control gain perturbation eq.(20).

On the other hand, we see from Figs. 5–8 that
though Conventional cannot stabilize the uncertain sys-
tem eq.(16) under the control gain perturbation eq.(21),
Proposed stabilizes it. Namely this result shows that al-
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though, the conventional quadratic stabilizing controller
designed without thinking of control gain perturbations is
fragile under the control gain perturbation, the proposed
robust controller is not fragile.

Therefore the effectiveness of the proposed robust non-
fragile stabilizing controller is shown.

VI. Conclusions

In this paper, a LMI-based design method of a robust
non-fragile stabilizing controller for linear continuous-
time systems with structured uncertainties which are in-
cluded in both the system matrix and the input one un-
der multiplicative or additive control gain variations has
been presented. Furthremore, simple examples are given
for illustration of the proposed controller design, and the
simulation result has shown that the closed-loop system is
well stabilized in spite of plant uncertainties and control
gain variations.

We have shown that the proposed robust non-fragile
controller can be easily obtained by solving LMI condi-
tions. Therefore, the proposed robust controller for linear
systems with structured uncertainties and control gain
perturbations can be easily obtained by using software
such as MATLAB’s LMI Control Toolbox and Scilab’s
LMITOOL. Moreover, the proposed design method can
be easily extended to robust non-fragile H∞ controllers.

The future research subjects are the extension of pro-
posed controller to uncertain large-scale systems, uncer-
tain discrete-time systems and so on.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ (S,W, γ, δ, µ) E SCT + WT DT SLT WTMT WTN T
M WTN T

M 0 E WTN T
M

ET −(γ∗)2Iw 0 0 0 0 0 0 0 0
CS + DW 0 −Π(ν) 0 0 0 0 0 0 0

LS 0 0 −γIq 0 0 0 0 0 0
MW 0 0 0 −δIs 0 0 0 0 0
NMW 0 0 0 0 −µIm 0 0 0 0
NMW 0 0 0 0 0 −νIm 0 0 0

0 0 0 0 0 0 0 −ΥM(ξ) 0 0
ET 0 0 0 0 0 0 0 −ξIr 0

NMW 0 0 0 0 0 0 0 0 −ξIlM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0 (A.3)
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Appendix

A. Extention to Robust Non-Fragile H∞ Controllers

In this appendix, we extend the proposed design
method of robust non-fragile stabilizing controllers to ro-
bust non-fragile H∞ controllers.

Consider the uncertain linear dynamical system de-
scribed by the following state equation.

d

dt
x(t) = A(t)x(t) + B(t)u(t) + Ew(t)
z(t) = Cx(t) + Du(t)

(A.1)

where x(t) ∈ �n and u(t) ∈ �m are the vectors of
the state (assumed to be available for feedback) and the
control input, respectively. In eq.(A.1), z(t) ∈ �z and
w(t) ∈ �w are the controlled output and the distur-
bance input which is assumed to be square integrable,
i.e. w(t) ∈ L2[0,∞), respectively and the matrices A(t)
and B(t) are given by eq.(2). Furthermore, the matrices
C,D and E have appropriate dimensions.

In this appendix, we consider the design problem of
a robust state feedback H∞ control with multiplicative
control gain variations eq.(4) only, because the design
method for the uncertain system with additive control
gain perturbations (5) can be easily obtained by similar
way for the multiplicative case.

From eqs.(3) and (A.1), the closed-loop system with
uncertainties and control gain variations is given by

d

dt
x(t) = (A(t) + B(t)K(t))x(t) + Ew(t) (A.2)

For the problem of robust non-fragile state feedback
H∞ control with control gain perturbations, namely, the
controller of the form eq.(4) with the feedback gain matrix
K to be designed, the following theorem gives a LMI-
based design method.

Theorem A.1: Consider the uncertain linear system
eq.(A.1) with the multiplicative control gain variations
eq.(4). There exists the state feedback gain matrix K

(it is given by K
�
=WS−1, if there exist) such that the

closed-loop system eq.(A.2) is internally stable and the
relation ||z(t)||L2 < γ∗||w(t)||L2 holds, if for a constant

scalar γ∗ > 0, there exist the matrices S > 0 and W and
the scalars γ > 0, δ > 0, µ > 0, ν > 0 and ξ > 0 satisfying
the LMI eq.(A.3). In eq.(A.3), the matrix Γ (S,W, γ, δ, µ)
is given by eq.(8) and Π(ν) and ΥM(ξ) are the matrices
expressed as eqs.(A.5) and (A.6), respectively.

Π(ν)
�
= Iz − νεMDFMFT

MDT (A.5)

ΥM(ξ)
�
= Is − ξ(Is + εMMFMFT

MMT ) (A.6)

Proof: We consider the quadratic function V(x, t)
�
=

xT (t)Px(t). By evaluating the time derivative of the
quadratic function V(x, t) along the trajectory of the un-
certain closed-loop system eq.(A.2) we consider the fol-
lowing Hamiltonian.

H(z, w)
�
=

d

dt
V(x, t) + zT (t)z(t) − (γ∗)2wT (t)w(t)

(A.7)

Introducing two matrices S �
=P−1 and W �

= KS and us-
ing the similar procedure for proof of Theorem 1, we
easily see that if there exist the matrices S > 0 and W
and the scalars γ > 0, δ > 0, µ > 0, ν > 0 and ξ > 0
satisfying the LMI condition eq.(A.3), then the closed-
loop system eq.(A.2) with uncertainties and control gain
variations is internally stable and the following relation
holds.

H(z, w) < 0 (A.8)

By integrating both sides of the inequality eq.(A.8) from
0 to ∞ with x(0) = 0, we easily see from V(x, 0) = 0 that∫ ∞

0

zT (t)z(t)dt − (γ∗)2
∫ ∞

0

wT (t)w(t)dt + V(x,∞)

< 0 (A.9)

The relation eq.(A.9) means

||z(t)||L2 < γ∗||w(t)||L2 (A.10)

From the above discussion, if there exist the matrices
S > 0,W, γ > 0, δ > 0, µ > 0 and ν > 0 satisfying
the LMI condition eq.(A.3) then the closed-loop system
eq.(A.2) with uncertainties and control gain variations
eq.(4) is internally stable and the relation eq.(A.10) holds.

It follows that the result of the theorem is true. There-
fore the proof of Theorem A.1 is completed.
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