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1. Introduction

The theory of optimal control for standard singularly perturbed systems has been well-

developed(cf. Kokotovi�c, Khalil and O'Reilly 1986, and the references therein). Among many

results available, a well-known result states that there exists the composite optimal control

which can achieve an O("2) approximation of the optimal performance. Recently, there has

been interest in nonstandard singularly perturbed systems (Wang et al. 1988, Wang and

Frank 1992, Wang et al. 1994 and Khalil, 1989). In Wang et al. (1988) and Wang and Frank

(1992), the linear-quadratic regulator problem for nonstandard singularly perturbed systems

is studied. The sub-optimal control, where only the slow regulator problem is considered, is

proven to have the property of O(") near-optimality. The results are then extended to the near-

optimal control problem of nonstandard multiparameter/multitime scale singularly perturbed

systems (Wang et al. 1994). On the other hand, static and dynamic feedback stabilizing

control of nonstandard singularly perturbed systems are investigated by Khalil (1989).

In view of the studies above, one natural question here is whether there exists the com-

posite optimal control for nonstandard singularly perturbed systems. In this paper, based

on a generalized algebraic Riccati equation arising in descriptor systems (Wang et al. 1993,

and Xu and Mizukami 1994), we study the composite optimal control problem for singularly

perturbed systems. A new composite optimal controller is obtained which is valid for both

standard and nonstandard singularly perturbed systems. It is shown that the composite op-

timal control can be obtained by revising the solution of the slow regulator problem. Since

the slow subsystem is a special kind of descriptor systems, a similar design procedure to the

linear regulator of descriptor systems can be used to �nd the composite optimal controller. As

in standard singularly perturbed systems, we prove that the composite optimal control can

achieve a performance which is O("2) close to the optimal performance even if the system is

a nonstandard singularly perturbed system. Also, we prove that the new composite optimal

controller is equivalent to the existing one in the case of the standard singularly perturbed

systems. Therefore, we claim that the new composite optimal controller includes the existing

composite optimal controller (Kokotovi�c, Khalil and O'Reilly 1986) as a special case.

This paper is organized as follows. In next section, we will derive the optimal feedback

control for the full-order problem by using a generalized Hamilton-Jacobi equation. In Section

3, the full-order problem is decomposed into a slow regulator problem and a fast regulator
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problem. Their solutions are investigated. In Section 4, we will construct the new composite

optimal controller and discuss its near-optimality property. The equivalence between the new

composite optimal controller and the existing one is established for the standard singularly

perturbed systems. Section 5 is concerned with the design procedure of the composite optimal

controller. Finally, Section 6 discusses some conclusions.

2. Full-Order Regulator Problem

Consider the linear time-invariant singularly perturbed system

_x = A11x+ A12z +B1u; x(0) = x0; (1a)

" _z = A21x+ A22z +B2u; z(0) = z0; (1b)

with a performance index

J =
1

2

Z
1

0
(

2
64 x

z

3
75
T

Q

2
64 x

z

3
75+ uTRu)dt; (2)

which has to be minimized, where

Q =

2
64 Q11 Q12

QT
12 Q22

3
75 =

2
64 CT

1 C1 CT
1 C2

CT
2 C1 CT

2 C2

3
75 ; R > 0; (3)

and " is a small positive parameter, x(t) 2 Rn and z(t) 2 Rm are states, and u(t) 2 Rr

is the control, and all matrices are of appropriate dimensions. The system (1) is called the

nonstandard singularly perturbed system if the matrix A22 is singular.

In order to compare the near-optimal performance with the optimal performance in Section

4, we must have an exact expression of the optimal performance. Di�erent from the existing

method (Kokotovi�c et al. 1986 and Chow and Kokotovi�c 1976), we derive the optimal feedback

control for the full-order problem by using a generalized Hamilton-Jacobi equation (Xu and

Mizukami 1993), and arrive at the optimal performance with the new form. Before doing

that, we make a temporary assumption that the �nal time of the performance (2) is �nite and

�xed for the convenience of presentation. Let the optimal performance index for the full-order

problem take the form

V�(E"y(t); t) = (1=2)yT (t)E"P (t)y(t);
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where y(t) = [xT (t) zT (t)]T ,

E" =

2
64 In 0

0 "Im

3
75 ;

is a symmetric matrix with In; Im denoting the n�n;m�m identity matrices, and P (t) is the

(n+m)� (n+m) time-varying matrix satisfying the condition

E"P (t) = P T (t)E":

Then, applying the generalized Hamilton-Jacobi equation (Xu and Mizukami 1993)

@V�
@t

= �min
u(t)
fL(y(t); u(t); t) +W�(y(t))f(y(t); u(t); t)g; (4a)

f@V
�

@y
gT =W�(y(t))E"; (4b)

to the full-order regulator problem, where

L(y(t); u(t); t) = (1=2)(yTQy + uTRu); (5a)

f (y(t); u(t); t) = Ay +Bu; (5b)

W�(y(t); t) = yTP T (t); (5c)

and

A =

2
64 A11 A12

A21 A22

3
75 ; B =

2
64 B1

B2

3
75 ; (6)

we have

yTE"
_Py = �min

u(t)
fyTQy + uTRu+ 2yTP T (Ay +Bu)g: (7)

Carrying out the minimization on the right-hand side of (7) gives

u�(t) = �R�1BTP (t)y(t): (8)

Substituting (8) into (7) and utilizing the relation

2yTP TAy = yT (P TA+ ATP )y; (9)
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yield

yTE"
_Py = �yT [Q+ ATP + P TA� P TBR�1BTP ]y: (10)

Since the above equation holds for all y(t), we arrive at a generalized di�erential Riccati

equation

(i) E"
_P = �Q� ATP � P TA+ P TBR�1BTP; (11a)

(ii) E"P = P TE"; (11b)

where the boundary condition is omitted since we will consider the in�nite-horizon problem

from now on. Taking into account the limiting case of (11), we obtain a generalized algebraic

Riccati equation as follows.

(i) ATP + P TA� P TBR�1BTP +Q = 0; (12a)

(ii) E"P = P TE": (12b)

Corresponding to the parameter matrices of (12), P has the following partitioned form

P =

2
64 P11 "P T

21

P21 P22

3
75 ; P11 = P T

11; P22 = P T
22; (13)

since it satis�es (12b). It is worthy to note that P is not symmetric, but E"P is. From the

derivations above, we have

Theorem 1. Suppose that there exists a small positive parameter "� such that, for all " 2
(0; "�), the generalized algebraic Riccati equation (12) admits a unique solution P for which

E"P � 0. Then,

u�(t) = �R�1BTPy(t); (14)

constitutes the optimal feedback control for the full-order regulator problem, and the optimal

performance is

J� =
1

2
yT (0)E"Py(0): (15)

Remark 1. The existence conditions of a unique solution P , for all " 2 (0; "�), will be given

in Section 4.
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3. Decomposition of Slow and Fast Regulator Problems

Similar to the standard singularly perturbed systems, we decompose the full-order regulator

problem into two subsystem regulator problems.

Slow regulator problem: Find us to minimize

Js =
1

2

Z
1

0
(

2
64 xs

zs

3
75
T

Q

2
64 xs

zs

3
75+ uTs Rus)dt; (16)

for the slow subsystem

E _ys = Ays +Bus; Eys(0) = Ey0; (17)

where ys(t) = [xTs (t) zTs (t)]
T , E = E"j"=0, A, B are de�ned in (6), and Q in (3).

Remark 2. The slow subsystem (17) is formed by neglecting the fast mode, which is equivalent

to letting " = 0 in (1). Di�erent from the existing method to decompose the full-order system

into the slow and fast subsystems, we do not use the inverse of A22, which does not exist

in a nonstandard case, to eliminate zs in (16),(17). The slow subsystem (17) is viewed as a

descriptor system which may display an impulse phenomenon in the solution if A22 is singular.

It is clear that the descriptor system method permits us to study the standard and nonstandard

singularly perturbed system in a uni�ed way.

Fast regulator problem: Find uf to minimize

Jf =
1

2

Z
1

0
(zTf C

T
2 C2zf + uTfRuf )dt; (18)

for the fast subsystem

" _zf = A22zf +B2uf ; zf(0) = z0 � zs(0); (19)

where zf = z � zs, uf = u� us.

The fast subsystem (19) is derived by assuming that the slow variables are constant during

fast transients, that is, _zs = 0 and xs = a constant.

We now consider the solution of the slow and fast regulator problems under the following

assumptions.

Assumption 1. The slow subsystem (17) is stabilizable and detectable, that is, for all s with

Re[s] � 0,

Rank

2
64 sIn � A11 �A12 B1

�A21 �A22 B2

3
75 = n+m; (20a)
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Rank

2
64 sIn � AT

11 �AT
21 CT

1

�AT
12 �AT

22 CT
2

3
75 = n +m: (20b)

Assumption 2. The fast subsystem (19) is stabilizable and detectable.

Let us �rst consider the solution of the fast regulator problem.

Proposition 1. Under Assumption 2, the fast regulator problem admits a unique optimal

feedback control

u�f = �R�1B22P
+
22fzf ; (21)

where P+
22f is a unique stabilizing positive semide�nite symmetric solution of the algebraic

Riccati equation

P22fA22 + AT
22P22f � P22fB2R

�1BT
2 P22f + Q22 = 0: (22)

The slow regulator problem is similar to the regulator problem of descriptor systems except

that di�erent assumptions on the system parameters are required in two problems. In other

words, for the existence of the fast regulator problem, Assumption 2 is reasonable in the study

of the slow regulator problem. However, this assumption is unnecessarily strong in the study

of the regulator problem for a general descriptor system. Instead of Assumption 2, we only

need to assume that the system (17) is impulsively controllable and observable if it is a general

descriptor system, that is,

Rank[A22 B2] = m; Rank[AT
22 CT

2 ] = m: (23)

Obviously, Assumption 2 implies the conditions (23), but not vice versa.

In the following, we will consider the solution of the slow regulator problem. Before doing

that, we �rst introduce another generalized algebraic Riccati equation (Wang et al. 1993, and

Xu and Mizukami 1994),

(i) ATPs + P T
s A� P T

s BR
�1BTPs +Q = 0; (24a)

(ii) ETPs = P T
s E: (24b)

where Q is the same as that in (12). The solution Ps of (24) has a lower-triangular block form

Ps =

2
64 P11s 0

P21s P22s

3
75 ; PT

11s = P11s; (25)

7



because of (24b). It is worthy to note that P22s may not be symmetric. The algebraic Riccati

equation (24) can be partitioned into

P11sA11 + P T
21sA21 + AT

11P11s + AT
21P21s � P11sS11P11s

�P T
21sS

T
12P11s � P11sS12P21s � P T

21sS22P21s +Q11 = 0; (26a)

P T
22sA21 + AT

12P11s + AT
22P21s � P T

22sS
T
12P11s � P T

22sS22P21s +QT
12 = 0; (26b)

P T
22sA22 + AT

22P22s � P T
22sS22P22s +Q22 = 0; (26c)

where

S11 = B1R
�1BT

1 ; S12 = B1R
�1BT

2 ; S22 = B2R
�1BT

2 : (27)

The equation (26c) is an algebraic Riccati equation which admits at least a stabilizing positive

semide�nite symmetric solution under Assumption 2. Moreover, Assumption 2 ensures that

A22 � S22P22s is nonsingular (see proof of Lemma 1 below). Substituting the solution of (26c)

into (26b) yields

P21s = �NT
2s +NT

1sP11s; (28)

where

NT
2s = Â�T22sQ̂

T
12s; NT

1s = �Â�T22sÂT
12s;

Â12s = A12 � S12P22s; Â22s = A22 � S22P22s;

Q̂12s = Q12 + AT
21P22s:

Furthermore, substituting P21s into (26a) and making some lengthy calculations (the detail is

omitted for brevity), we get

P11sAs + AT
s P11s � P11sSsP11s +Qs = 0; (29)

where

Qs = Q11 �N2sA21 � AT
21N

T
2s �N2sS22N

T
2s; (30a)

As = A11 +N1sA21 + S12N
T
2s +N1sS22N

T
2s; (30b)
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Ss = S11 +N1sS
T
12 + S12N

T
1s +N1sS22N

T
1s: (30c)

Lemma 1. Under Assumptions 1,2, the following results hold.

(i) The algebraic Riccati equations (29) is decoupled to the algebraic Riccati equation

(26c).

(ii) There exist a n�r matrix Bs and a matrix Cs with the same dimension as C1 such that

Ss = BsR
�1BT

s , Qs = CT
s Cs. Moreover, the triple (As; Bs; Cs) is stabilizable and detectable.

Proof. see Appendix A. ■

Since the triple (As; Bs; Cs) is stabilizable and detectable, the algebraic Riccati equation

(29) admits a unique stabilizing positive semide�nite symmetric solution, denoted by P+
11s, and

As � SsP
+
11s is Hurwitz.

Proposition 2. Under Assumptions 1, 2, the slow regulator problem admits a unique optimal

open-loop control, which can be implemented by a class of linear feedback controls given by

u�s = �R�1BTPsys; (31)

where

Ps =

2
64 P+

11s 0

P21s P22s

3
75 ; (32)

is the solution of the generalized algebraic Riccati equation (24).

Proof. First, we prove that the linear feedback controls (31) are strictly feedback stabilizing

and under which xs(t); zs(t) are impulse-free and xs(t) ! 0, zs(t) ! 0 as t ! 1 for all Ey0.

Substituting (31) into (17) yields
2
64 In 0

0 0

3
75
2
64 _xs

_zs

3
75 =

2
64 Â11s Â12s

Â21s Â22s

3
75
2
64 xs

zs

3
75 ; (33)

where Â12s, Â22s are de�ned under the equation (28), and

Â11s = A11 � S11P
+
11s � S12P21s; Â21s = A21 � S21P

+
11s � S22P21s:

Since Â22s is nonsingular from the proof of Lemma 1, (33) can be further transformed to a

standard state space system and an algebraic equation

_xs = (Â11s � Â12sÂ
�1
22sÂ21s)xs; (34a)

zs = �Â�122sÂ21sxs: (34b)
9



Moreover, xs(t), zs(t) are impulse free for the same reason. Now, if we can prove that the

system matrix of (34a) is As � SsP
+
11s, then we have xs(t) ! 0, as t ! 1. That also implies

zs(t) ! 0 as t ! 1. Substituting (28) into the system matrix of (34a) and making some

manipulations yield

Â11s � Â12sÂ
�1
22sÂ21s = A11 � S11P

+
11s � S12(N

T
1sP

+
11s �NT

2s)

+N1s[A21 � S21P
+
11s � S22(N

T
1sP

+
11s �NT

2s)]

= A11 +N1sA21 + S12N
T
2s +N1sS22N

T
2s � (S11 +N1sS

T
12 + S12N

T
1s +N1sS22N

T
1s)P

+
11s

= As � SsP
+
11s: (35)

Therefore, (31) are the strictly feedback stabilizing controls.

Secondly, from the derivations before the proposition, we have known that Ps is a solution

of the generalized algebraic Riccati equation (24).

Finally, we will prove that (31) is really a optimal feedback control by using a \completion

of squares" method. Utilizing the algebraic Riccati equation (24) in (16), (17), we have

1

2
yTs (T )E

TPsys(T ) � 1

2
yT0 E

TPsy0 =
1

2

Z T

0

d

dt
[yTs E

TPsys]dt

=
1

2

Z T

0
yTs [�ATPs � P T

s A+ P T
s BR

�1BTPs �Q]ysdt

+
1

2

Z T

0
[ _yTs E

TPsys + yTs P
T
s E _ys]dt; (36)

Substituting E _ys(t) into (36) yields

1

2
yTs (T )E

TPsys(T ) � 1

2
yT0 E

TPsy0

=
1

2

Z T

0
[uTs B

TPsys + yTs P
T
s Bus � yTs Qys + yTs P

T
s BR

�1BTPsys]dt: (37)

Moving the left side of (37) to the right and adding Js(us;T ) to the both sides of it give

Js(us;T ) =
1

2
yT0 E

TPsy0 � 1

2
yTs (T )E

TPsys(T )

+
1

2

Z T

0
f[us +R�1BTPsys]

TR[us +R�1BTPsys]gdt: (38)

10



Letting T !1 and noting ys(t)! 0 as t!1 for all admissible us, we have

Js(us;1) =
1

2
yT0 E

TPsy0 +
1

2

Z
1

0
f[us +R�1BTPsys]

TR[us +R�1BTPsys]gdt: (39)

Since the �rst term above is independent of us and ETPs is unique (since P
+
11s is unique), it is

obvious that u�s given by (31) is the optimal feedback control. ■

Remark 2. The results of Proposition 2 can also be deduced from the corresponding results

of the regulator problem of descriptor systems (Wang et al. 1993 and Xu and Mizukami 1994).

However, the proof there is not so complete. Here, we have provided a di�erent, complete and

self-contained proof.

Remark 3. Similar to descriptor systems, an important feature of the slow regulator problem

is that the optimal feedback controls are not unique. This fact is easily seen by noting that any

solution of the algebraic Riccati equation (26c) can be used in the feedback gain of (31). But

ETPs = P T
s E � 0 is unique since only P+

11s � 0, the unique stabilizing positive semide�nite

symmetric solution of (29), is allowed in the feedback gain of (31).

4. Near-Optimality of Composite Optimal Control

In this section, we will construct the composite optimal control u�c = u�s+u�f as in standard

case (Kokotovi�c et al. 1986). It has been known that the optimal feedback control for the slow

regulator problem is not unique. However, the corresponding optimal feedback control for the

fast regulator problem is unique. We will select a particular optimal feedback control of the

slow regulator problem to construct the composite optimal control, that is,

u�+s = �R�1BTP+
s ys; (40)

where

P+
s =

2
64 P+

11s 0

P+
21s P+

22s

3
75 ; (41)

P+
22s is the unique stabilizing positive semide�nite symmetric solution of the algebraic Riccati

equation (26c), and P+
21s is the corresponding one in (28) with P22s = P+

22s, P11s = P+
11s.

Now, comparing (26c) with (22), we readily have an important relation P+
22s = P+

22f . As

the result, we obtain

u�c = u�+s + u�f = �R�1[BT
1 BT

2 ]

2
64 P+

11s 0

P+
21s P+

22s

3
75
2
64 xs

zs

3
75�R�1BT

2 P
+
22fzf

11



= �R�1[BT
1 BT

2 ]

2
64 P+

11s 0

P+
21s P+

22s

3
75
2
64 x

z

3
75 ; (42)

where x(t) � xs(t) and z(t) � zs(t) + zf (t).

Remark 4. Let us compare (42) with (40). Then, we can �nd that u�+s is di�erent from u�c

only in P22s, P21s and ys. This fact implies that u�c(t) can be obtained very simply by solving

the slow regulator problem (the design procedure will be given in Section 5), and then revising

its solution. In other words, we can select P+
22s as the solution of (26c), and change the slow

variable ys to the original variable y in (40) to obtain the composite optimal control u�c .

We now apply the composite optimal control u�c to the full-order system (1) and compare it

with the exact optimal control (14). In order to do that, we �rst study the existence conditions

of the unique solution P of the generalized algebraic Riccati equation (12).

Theorem 2. Under Assumptions 1, 2, there exists a small positive parameter "� such that,

for all " 2 [0; "�), the generalized algebraic Riccati equation (12) admits a unique stabilizing

solution P for which E"P � 0. Moreover, the solution P possesses a power series expansion

at " = 0, that is,

P =

2
64 P

(0)
11 "P

(0)T
21

P
(0)
21 P

(0)
22

3
75+

1X
i=1

"i

i!

2
64 P

(i)
11 "P

(i)T
21

P
(i)
21 P

(i)
22

3
75 : (43)

Proof. The algebraic Riccati equation (12) can be partitioned into

AT
11P11 + P11A11 + AT

21P21 + P T
21A21 � P11S11P11

�P T
21S22P21 � P11S12P21 � P T

21S
T
12P11 +Q11 = 0; (44a)

"P21A11 + P22A21 + AT
12P11 + AT

22P21 � "P21S11P11

�"P21S
T
12P21 � P22S

T
12P11 � P22S22P21 +QT

12 = 0; (44b)

AT
22P22 + P22A22 + "AT

12P
T
21 + "P21A12 � P22S22P22

�"P22S
T
12P

T
21 � "P21S12P22 � "2P21S

T
11P

T
21 +Q22 = 0: (44c)

Let " = 0, then the zero-order equations in (44) reduce to

P
(0)
11 A11 + P

(0)T
21 A21 + AT

11P
(0)
11 + AT

21P
(0)
21 � P

(0)
11 S11P

(0)
11

12



�P (0)T
21 ST

12P
(0)
11 � P

(0)
11 S12P

(0)
21 � P

(0)T
21 S22P

(0)
21 +Q11 = 0; (45a)

P
(0)
22 A21 + AT

12P
(0)
11 + AT

22P
(0)
21 � P

(0)
22 S

T
12P

(0)
11 � P

(0)
22 S22P

(0)
21 + QT

12 = 0; (45b)

P
(0)
22 A22 + AT

22P
(0)
22 � P

(0)
22 S22P

(0)
22 +Q22 = 0: (45c)

The zero-order equations in (45) are the same as those in (26) except that P (0)
22 here is required

to be symmetric. Hence, (45) has a solution P
(0)
11 = P+

11s, P
(0)
22 = P+

22s and P
(0)
21 = P+

21s

under Assumptions 1 and 2. Furthermore, applying the implicit function theorem at the point

(" = 0; P11 = P
(0)
11 ; P21 = P

(0)
21 ; P22 = P

(0)
22 ) to the equations (44) yields the following Jacobian

matrix.

Jacobi =

2
66664
J11 J12 J13

J21 J22 J23

J31 J32 J33

3
77775
(0;P

(0)
11 ;P

(0)
21 ;P

(0)
22 ):

(46)

Using the Kronecker product representation, we have

J31 = 0; J32 = 0; J33 = Im 
 (A22 � S22P
(0)
22 ) + (A22 � S22P

(0)
22 )

T 
 Im; (47)

from (44c), and

J22 = (A22 � S22P
(0)
22 )

T 
 In; (48)

from (44b). Furthermore, from (44b), we have

P21 = �NT
2 +NT

1 P11 +O("); (49)

where

NT
2 = Â�T22 Q̂

T
12; NT

1 = �Â�T22 ÂT
12;

Â12 = A12 � S12P22; Â22 = A22 � S22P22;

Q̂12 = Q12 + AT
21P22:

Substituting (49) into (44a) and calculating its derivative with respect to P11 at the point

(" = 0; P11 = P
(0)
11 ; P21 = P

(0)
21 ; P22 = P

(0)
22 ) yield

J11 = In 
 [A11 +N1sA21 + S12N
T
2s +N1sS22N

T
2s

13



�(S11 +N1sS
T
12 + S12N

T
1s +N1sS22N

T
1s)P

+
11s]

+[A11 +N1sA21 + S12N
T
2s +N1sS22N

T
2s

�(S11 +N1sS
T
12 + S12N

T
1s +N1sS22N

T
1s)P

+
11s]

T 
 In

= In 
 (As � SsP
+
11s) + (As � SsP

+
11s)

T 
 In; (50)

by noting P
(0)
11 = P+

11s, P
(0)
22 = P+

22s and P
(0)
21 = P+

21s. The exact expressions of J13, J21 and

J23 are not important in the analysis of the nonsingularity of Jacobian matrix Jacobi. Since

(A22 � S22P
+
22s) and (As � SsP

+
11s) are all Hurwitz matrices, J11, J22 and J33 are nonsingular.

Therefore,

Jacobi =

2
66664
J11 0 J13

J21 J22 J23

0 0 J33

3
77775 ; (51)

is nonsingular. Consequently, there exists a small positive parameter "� such that, for all

" 2 [0; "�), the generalized algebraic Riccati equation (12) admits a unique stabilizing solution

P for which E"P � 0. The property E"P � 0 follows from Q � 0 and R > 0. The uniqueness

of E"P � 0 follows from the fact that P (0)
11 = P+

11s and P
(0)
22 = P+

22s, hence P
(0)
21 = P+

21s, are all

unique. Finally, the existence of the series (43) at " = 0 follows also from the implicit function

theorem (Dieudonn�e 1982). ■

Remark 5. Similar to the standard case (Kokotovi�c et al. 1986), the existence conditions for

the solution of the full-order regulator problem are also described in terms of stabilizability-

detectability conditions on the slow and fast regulator problems, which are "-independent

(Assumptions 1 and 2). Moreover, it has been proven that Assumption 1 is equivalent to the

assumption that (As; Bs; Cs) is stabilizable and detectable (Lemma 1), a lower-order system

condition.

Now, we can compare the composite optimal control u�c with the exact optimal control u�

and show the O("2) approximation of J�. Applying the composite optimal control u�c to the

full-order system (1), we have

J c =
1

2
yT (0)E"Pcy(0); (52)

where Pc is the solution of the generalized Lyapunov equation

(i) (A� SP+
s )

TPc + P T
c (A� SP+

s ) = �P+T
s SP+

s �Q; (53a)
14



(ii) E"Pc = P T
c E"; (53b)

with S = BR�1BT .

Theorem 3. Under the conditions of Theorem 2, the �rst two terms of the power series of J c

and J� at " = 0 are the same, that is,

J c = J� +O("2); (54)

and hence the composite optimal control (42) is an O("2) near-optimal solution to the full-order

regulator problem (1),(2).

Proof. Subtracting (12) from (53) and rearranging, we obtain a generalized Lyapunov equa-

tion for W = Pc � P :

(i) (A� SP+
s )

TW +WT (A� SP+
s ) = �(P � P+

s )
TS(P � P+

s ); (55a)

(ii) E"W = W TE": (55b)

Also from the application of the implicit function theorem to (53), Pc possesses a power series

at " = 0. Thus W can also be extended as follows:

W =

2
64 W

(0)
11 "W

(0)T
21

W
(0)
21 W

(0)
22

3
75+

1X
i=1

"i

i!

2
64 W

(i)
11 "W

(i)T
21

W
(i)
21 W

(i)
22

3
75 : (56)

From (41), (42) and the result that P (0)
11 = P+

11s and P
(0)
22 = P+

22s, we have

(P � P+
s )

TS(P � P+
s ) = O("2); (57)

and, since (A22 � S22P
+
22s) and (As � SsP

+
11) are Hurwitz matrices, the substitution of (56)

into (55) yields W (0)
11 = 0, W (0)

21 = 0, W (0)
22 = 0, and W

(1)
11 = 0, W (1)

21 = 0, W (1)
22 = 0. Hence,

E"W = O("2); which proves (54). ■

We have therefore provided a complete theoretic analysis of the near-optimality of the

composite optimal control for both standard and nonstandard singularly perturbed systems.

To the end of this section, we will show that the composite optimal controller (42) is equivalent

to the existing composite optimal controller (Kokotovi�c et al. 1986) in the case of the standard

singularly perturbed systems. Let A22 of (1) be nonsingular, that is, the standard singularly

perturbed system. Then, the composite optimal controller is

u�c = �R�1
�
BT
1 BT

2 ="

� 264 Ks 0

"KT
m "Kf

3
75
2
64 x

z

3
75

15



= �R�1
�
BT
1 BT

2

� 264 Ks 0

KT
m Kf

3
75
2
64 x

z

3
75 : (58)

In the above, Ks is the unique stabilizing positive semide�nite symmetric solution of the

algebraic Riccati equation

0 = �Ks(A0 �B0R
�1
0 NT

0 M0)� (A0 � B0R
�1
0 NT

0 M0)
TKs

+KsB0R
�1
0 BT

0 Ks �MT
0 (I �N0R

�1
0 NT

0 )M0; (59)

where

R0 = R+NT
0 N0; (60a)

A0 = A11 � A12A
�1
22 A21; B0 = �A12A

�1
22 B2 +B1; (60b)

M0 = C1 � C2A
�1
22 A21; N0 = �C2A

�1
22 B2; (60c)

Kf is the unique stabilizing positive semide�nite solution of the algebraic Riccati equation

0 = �KfA22 � AT
22Kf +KfB2R

�1BT
2 Kf � CT

2 C2; (61)

and Km is

Km = [Ks(B1R
�1BT

2 Kf � A12)� (AT
21Kf + CT

1 C2)](A22 �B2R
�1BT

2 Kf)
�1: (62)

Theorem 4. Suppose that the system (1) is the standard singularly perturbed system and

Assumptions 1, 2 are satis�ed. Then, the following identities hold.

Kf = P+
22s; KT

m = P+
21s; Ks = P+

11s; (63)

and hence the composite optimal controller (58) is the same as the composite optimal controller

(42).

Proof. see Appendix B. ■

From Theorem 4, we claim that the new composite optimal controller includes the existing

composite optimal controller (Kokotovi�c, Khalil and O'Reilly 1986) as the special case.

5. Design Procedure and Example

16



As stated in Remark 4, the composite optimal control u�c(t) can be obtained by revising

the solution of the slow regulator problem. Therefore, the design procedure of the composite

optimal controller is similar to that of the regulator problem for descriptor systems (Wang et

al. 1993). The basic steps are as follows.

Step 1. Calculate As; Ss; Qs by using

Hs :=

2
64 As �Ss

�Qs �As

3
75 = T1 � T2T

�1
4 T3; (64)

where the matrices Ti; i = 1; 2; 3; 4; are de�ned in Appendix A.

Step 2. Find the unique positive semide�nite stabilizing solutions P+
22s, P

+
11s of the algebraic

Riccati equations (26c), (29), respectively.

Step 3. Calculate P+
21s in (28) by using P+

22s, P
+
11s.

Step 4. Substitute ys(t) of (40) by y(t) to obtain the composite optimal controller (42).

The main part (Step 2) of the above design procedure involves solving two reduced-order

algebraic Riccati equations (26c), (29). Since (26c), (29) are decoupled algebraic Riccati

equations (Lemma 1), parallel computations for the solutions are possible.

Example. Consider a nonstandard singularly perturbed system
2
64 1 0

0 "

3
75
2
64 _x(t)

_z(t)

3
75 =

2
64 1 2

2 0

3
75
2
64 x(t)

z(t)

3
75+

2
64 2

1

3
75u(t); x(0) = 1; z(0) = 1: (65)

The performance index to be minimized is

J =
1

2

Z
1

0
f
2
64 x

z

3
75
T 2
64 4 2

2 1

3
75
2
64 x

z

3
75+ u2gdt: (66)

It is obvious that the existing method (Kokotovi�c et al. 1986) to �nd the composite optimal

control is not valid for this example. However, it is solvable by using the method of this paper.

Referring the design procedure, the matrices Ti, i=1,2,3,4, are, respectively,

T1 =

2
64 1 �4
�4 �1

3
75 ; T2 =

2
64 2 �2
�2 �2

3
75 ;

T3 =

2
64 2 �2
�2 �2

3
75 ; T4 =

2
64 0 �1
�1 0

3
75 :

17



Hence

Hs = T1 � T2T
�1
4 T3 =

2
64 �7 �4
�4 7

3
75 :

Associated with the Hamiltonian matrices T4 and Hs are two completely decoupled algebraic

Riccati equations,

(i) 1 � p222s = 0;

(ii) 2 � 7p11s � 2p211s = 0;

where, the small letters are used to denote scalars. From (i), p+22s = 1. On the other hand, (ii)

has a unique positive semide�nite solution p+11s = (
p
65 � 7)=4 � 0:2656. Therefore, p+21s = 4

from (28). The composite optimal control is

u�c = �[2 1]

2
64 0:2656 0

4 1

3
75
2
64 x(t)

z(t)

3
75 : (67)

Now, letting " = 0:1, the optimal feedback control is

u� = �[2 1]

2
64 0:7217 0:2472

2:4723 0:9158

3
75
2
64 x(t)

z(t)

3
75 : (68)

The values of the performance index are J c = 0:6845, J� = 0:6539. Hence, the loss of

performance Jc = 0:6845 is less than 4:48% compared with J� = 0:6539. When " = 0:01,

the optimal feedback control becomes

u� = �[2 1]

2
64 0:3544 0:0371

3:714 0:997

3
75
2
64 x(t)

z(t)

3
75 : (69)

The values of the performance index are J c = 0:2216, J� = 0:2193, with the loss less than

1:08%. For " = 0:001, the optimal feedback control is

u� = �[2 1]

2
64 0:2755 0:00397

3:9676 0:9997

3
75
2
64 x(t)

z(t)

3
75 : (70)

The values of the performance index are J c = 0:14227, J� = 0:14224, with the loss less than

0:0211%. These computation results show a trend that u�c ! u� and Jc ! J� as "! 0.

18



6. Conclusions

In this paper, using the generalized algebraic Riccati equation arising in descriptor systems,

we have studied the composite optimal regulator problem for singularly perturbed systems.

The new composite optimal controller has been obtained which is valid for both standard and

nonstandard singularly perturbed systems. We show that the composite optimal control can

be obtained simply by a procedure of solving the slow regulator problem, and then revising its

solution. Moreover, the existence conditions for the solution of the full-order regulator problem

can also be described in terms of the stabilizability-detectability conditions of the slow and

fast regulator problems which are "-independent and lower-order. As in standard singularly

perturbed systems, we prove that the composite optimal control can achieve a performance

which is O("2) close to the optimal performance even if the system is a nonstandard singularly

perturbed system. Finally, we prove that the new composite optimal controller is equivalent to

the existing one in the case of the standard singularly perturbed systems. Therefore, we claim

that the new composite optimal controller includes the existing composite optimal controller

(Kokotovi�c, Khalil and O'Reilly 1986) as a special case.

Appendix A: proof of Lemma 1.

(i) Let us de�ne four partitioned matrices (Wang et al. 1988)

T1 =

2
64 A11 �S11
�Q11 �AT

11

3
75 ; T2 =

2
64 A12 �S12
�Q12 �AT

21

3
75 ; (71a)

T3 =

2
64 A21 �ST

12

�QT
12 �AT

12

3
75 ; T4 =

2
64 A22 �S22
�Q22 �AT

22

3
75 : (71b)

Note that T4 is a Hamiltonian matrix. Associate with T4 is the algebraic Riccati equation

(26c) or (22) which admits at least a symmetric positive semide�nite stabilizing solution P+
22s

under Assumption 2. Let P22s be an arbitrary solution of (26c). Then, we have
2
64 A22 �S22
�Q22 �AT

22

3
75 =

2
64 I 0

P22s I

3
75
2
64 Â22s �S22

0 �ÂT
22s

3
75
2
64 I 0

�P22s I

3
75 ; (72)

where Â22s is de�ned below (28). Since T4 is nonsingular (Lemma 1, Wang et al. 1988), Â22s

19



is also nonsingular. This means that T�14 can be expressed explicitly in terms of Â�122s. Fur-

thermore, the algebraic Riccati equation (29) corresponds to the Hamiltonian matrix, namely,

Hs :=

2
64 As �Ss

�Qs �AT
s

3
75 : (73)

Therefore, it su�ces the proof of (i) to show that Hs = T1 � T2T
�1
4 T3. This can be done by a

lengthy, but direct algebraic manipulations, which are omitted here for brevity.

(ii) From (30c), it is seen that Bs = B1 + N1sB2. However, it seems di�cult to �nd Cs

from (30a). In order to do that, we introduce a dual algebraic Riccati equation of (26c), that

is,

A22K22s +K22sA
T
22 �K22sQ22K22s + S22 = 0; (74)

which admits at least a symmetric positive semide�nite solution K+
22s under Assumption 2.

Similar to the analysis of (72), we have
2
64 A22 �S22
�Q22 �AT

22

3
75 =

2
64 I �K22s

0 I

3
75
2
64

~A22s 0

�Q22 � ~AT
22s

3
75
2
64 I K22s

0 I

3
75 ; (75)

where ~A22s = AT
22 � Q22K22s is nonsingular since T4 is nonsingular. After the calculation of

T1 � T2T
�1
4 T3, we arrive at another set of expressions for As, Ss and Qs, that is,

Qs = Q11 +Q12M
T
2s +M2sQ

T
12 +M2sQ22M

T
2s; (76a)

As = A11 +M1sQ
T
12 + A12M

T
2s +M1sQ22M

T
2s; (76b)

Ss = S11 � A12M
T
1s �M1sA

T
12 �M1sQ22M

T
1s; (76c)

M1s = ~S12s ~A
�1
22s; M2s = � ~A21s

~A�122s; (76d)

~A21s = AT
21 �Q12W22s; ~S12s = S12 + AT

12W22s: (76e)

Hence, it is easy to �nd Cs = C1 + C2M
T
2s from (76a).

Let us now prove the second part of (ii). Note the relation
2
64 In �Â12sÂ

�1
22s

0 �Â�122s

3
75
2
64 sIn � A11 �A12 B1

�A21 �A22 B2

3
75

20



�

2
66664

In 0 0

�Â�122sA21 Im Â�122sB2

�BT
2 P22sÂ

�1
22sA21 BT

2 P22s Ir +BT
2 P22sÂ

�1
22sB2

3
77775

=

2
64 sIn � (A11 + N1sA21) 0 Bs

0 Im 0

3
75 ; (77)

where the formulas under the equation (28) have been used in the above to simplify the

expressions. Hence,

rank

2
64 sIn � A11 �A12 B1

�A21 �A22 B2

3
75 = n+m; for all s with Re[s] � 0; (78)

if and only if rank[sIn� (A11+N1sA21) Bs] = n; for all s with Re[s] � 0. In other words,

the matrix pair (A11 +N1sA21; Bs) is stabilizable. Since

As = A11 +N1sA21 +BsR
�1BT

2 N
T
2s;

and the feedback R�1BT
2 N

T
2s does not change the stabilizable property of (A11 + N1A21; Bs),

we arrive at the conclusion that the matrix pair (As; Bs) is also stabilizable. Similarly, we can

prove that (As; Cs) is detectable if and only if (20b) is satis�ed. In this case, the formulas in

(76) are used for the purpose. The detail is omitted for brevity. Thereby, we have �nished the

proof of Lemma 1. ■

Appendix B: proof of Theorem 4.

First, comparing (61) with (26c) yields Kf = P+
22s directly.

Second, comparing (62) with (28) and noting that Kf = P+
22s, we have the conclusion that

KT
m = P+

21s if Ks = P+
11s. Therefore, the remainder of the proof is to show that Ks = P+

11s. In

order to do that, we only need to show that the algebraic Riccati equations (29),(59) are the

same equations, that is,

A0 �B0R
�1
0 NT

0 M0 = As; (79a)

B0R
�1
0 BT

0 = Ss; (79b)

MT
0 (I �N0R

�1
0 NT

0 )M0 = Qs: (79c)
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Before showing these relations, let us de�ne (pp.115, Kokotovi�c et al. 1986)

H = I +R�1BT
2 Kf (A22 � S22Kf )

�1B2: (80)

Then,

H�1 = I �R�1BT
2 KfA

�1
22 B2; (81)

and

R�10 = HR�1HT

= R�1 +R�1BT
2 (A22 � S22Kf )

�TKfB2R
�1 + R�1BT

2 Kf(A22 � S22Kf )
�1B2R

�1

+R�1BT
2 Kf (A22 � S22Kf)

�1B2R
�1BT

2 (A22 � S22Kf)
�TKfB2R

�1: (82)

Let us further introduce four useful identities.

A�122 + A�122 S22Kf(A22 � S22Kf )
�1 = (A22 � S22Kf )

�1; (83a)

A�122 + (A22 � S22Kf )
�1S22KfA

�1
22 = (A22 � S22Kf )

�1; (83b)

I + S22Kf(A22 � S22Kf )
�1 = A22(A22 � S22Kf )

�1; (83c)

I +KfS22(A22 � S22Kf )
�T = AT

22(A22 � S22Kf )
�T : (83d)

Then,

NT
0 M0 = �BT

2 A
�T
22 C

T
2 (C1 � C2A

�1
22 A21)

= �BT
2 A

�T
22 C

T
2 C1 +BT

2 A
�T
22 [KfS22Kf � AT

22Kf �KfA22]A
�1
22 A21

= �BT
2 A

�T
22 C

T
2 C1 �BT

2 A
�T
22 KfS22KfA

�1
22 A21 �BT

2 KfA
�1
22 A21 �BT

2 A
�T
22 KfA21: (84)

Combining (82) and (84), and utilizing the identities (83a,b) to simplify the corresponding

expressions give

R�10 NT
0 M0 = �R�1BT

2 (A22 � S22Kf)
�TCT

2 C1 �R�1BT
2 (A22 � S22Kf )

�TKfA21

�R�1BT
2 KfA

�1
22 A21 �R�1BT

2 Kf (A22 � S22Kf )
�1S22(A22 � S22Kf )

�TCT
2 C1

�R�1BT
2 Kf (A22 � S22Kf)

�1S22(A22 � S22Kf)
�TKfA21
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�R�1BT
2 Kf (A22 � S22Kf)

�1S22KfA
�1
22 A21: (85)

Hence,

A0 �B0R
�1
0 NT

0 M0 = A11 � A12A
�1
22 A21 � [B1 � A12A

�1
22 B2]�

[�R�1BT
2 (A22 � S22Kf )

�TCT
2 C1 �R�1BT

2 (A22 � S22Kf)
�TKfA21

�R�1BT
2 KfA

�1
22 A21 �R�1BT

2 Kf (A22 � S22Kf )
�1S22(A22 � S22Kf )

�TCT
2 C1

�R�1BT
2 Kf (A22 � S22Kf)

�1S22(A22 � S22Kf)
�TKfA21

�R�1BT
2 Kf (A22 � S22Kf)

�1S22KfA
�1
22 A21]

= A11 � A12(A22 � S22Kf)
�1A21 + S12Kf (A22 � S22Kf)

�1A21

+S12(A22 � S22Kf )
�TCT

2 C1 + S12(A22 � S22Kf)
�TKfA21

+S12Kf (A22 � S22Kf)
�1S22(A22 � S22Kf )

�TCT
2 C1

+S12Kf (A22 � S22Kf)
�1S22(A22 � S22Kf )

�TKfA21

�A12(A22 � S22Kf)
�1S22(A22 � S22Kf)

�TCT
2 C1

�A12(A22 � S22Kf)
�1S22(A22 � S22Kf)

�TKfA21; (86)

where, the identities (83a,b) have also been used to simplify the expressions. After expanding

As of (30b), we arrive at the conclusion that As is the same as (86), which proves (79a). Now,

considering (79b), we have

B0H = (B1 � A12A
�1
22 B2)[I +R�1BT

2 Kf (A22 � S22Kf)
�1B2]

= B1 + S12Kf (A22 � S22Kf )
�1B2 � A12[A

�1
22 + A�122 S22Kf(A22 � S22Kf )

�1]B2

= B1 + S12Kf (A22 � S22Kf )
�1B2 � A12(A22 � S22Kf )

�1B2

= B1 � (A12 � S12Kf )(A22 � S22Kf)
�1B2

= B1 +N1sB2: (87)
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Therefore,

B0R
�1
0 BT

0 = B0HR�1HTBT
0

= (B1 +N1sB2)R
�1(B1 +N1sB2)

T

= BsR
�1BT

s = Ss; (88)

which proves (79b). Finally,

�MT
0 N0R

�1
0 NT

0 M0 =

[�CT
1 C2A

�1
22 B2 � AT

21KfA
�1
22 B2 � AT

21A
�T
22 KfB2 + AT

21A
�T
22 KfS22KfA

�1
22 B2]

�[R�1BT
2 (A22 � S22Kf )

�TCT
2 C1 +R�1BT

2 (A22 � S22Kf )
�TKfA21

+R�1BT
2 KfA

�1
22 A21 +R�1BT

2 Kf (A22 � S22Kf)
�1S22(A22 � S22Kf )

�TCT
2 C1

+R�1BT
2 Kf(A22 � S22Kf )

�1S22(A22 � S22Kf)
�TKfA21

+R�1BT
2 Kf(A22 � S22Kf )

�1S22KfA
�1
22 A21]

= �CT
1 C2A

�1
22 S22(A22 � S22Kf )

�TCT
2 C1 � CT

1 C2A
�1
22 S22(A22 � S22Kf)

�TKfA21

�CT
1 C2A

�1
22 S22Kf (A22 � S22Kf)

�1S22(A22 � S22Kf )
�TCT

2 C1

�CT
1 C2A

�1
22 S22Kf (A22 � S22Kf)

�1S22(A22 � S22Kf )
�TKfA21

�CT
1 C2A

�1
22 S22KfA

�1
22 A21 � CT

1 C2A
�1
22 S22Kf(A22 � S22Kf )

�1S22KfA
�1
22 A21

�AT
21KfA

�1
22 S22(A22 � S22Kf )

�TCT
2 C1 � AT

21KfA
�1
22 S22(A22 � S22Kf )

�TKfA21

�AT
21KfA

�1
22 S22KfA

�1
22 A21

�AT
21KfA

�1
22 S22Kf (A22 � S22Kf )

�1S22(A22 � S22Kf )
�TCT

2 C1

�AT
21KfA

�1
22 S22Kf (A22 � S22Kf )

�1S22(A22 � S22Kf )
�TKfA21

�AT
21KfA

�1
22 S22Kf (A22 � S22Kf )

�1S22KfA
�1
22 A21

�AT
21A

�T
22 KfS22(A22 � S22Kf)

�TCT
2 C1 � AT

21A
�T
22 KfS22(A22 � S22Kf)

�TKfA21
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�AT
21A

�T
22 KfS22Kf(A22 � S22Kf )

�1S22(A22 � S22Kf)
�TCT

2 C1

�AT
21A

�T
22 KfS22Kf(A22 � S22Kf )

�1S22(A22 � S22Kf)
�TKfA21

�AT
21A

�T
22 KfS22KfA

�1
22 A21 � AT

21A
�T
22 KfS22Kf (A22 � S22Kf)

�1S22KfA
�1
22 A21

+AT
21A

�T
22 KfS22KfA

�1
22 S22(A22 � S22Kf )

�TCT
2 C1

+AT
21A

�T
22 KfS22KfA

�1
22 S22(A22 � S22Kf )

�TKfA21

+AT
21A

�T
22 KfS22KfA

�1
22 S22(A22 � S22Kf )

�TKfA21

+AT
21A

�T
22 KfS22KfA

�1
22 S22Kf (A22 � S22Kf )

�1S22(A22 � S22Kf )
�TCT

2 C1

+AT
21A

�T
22 KfS22KfA

�1
22 S22Kf (A22 � S22Kf )

�1S22(A22 � S22Kf )
�TKfA21

+AT
21A

�T
22 KfS22KfA

�1
22 S22Kf (A22 � S22Kf )

�1S22KfA
�1
22 A21: (89)

Using the identities of (83), (89) reduces to

�MT
0 N0R

�1
0 NT

0 M0 =

�CT
1 C2(A22 � S22Kf )

�1S22(A22 � S22Kf )
�TCT

2 C1

�CT
1 C2(A22 � S22Kf )

�1S22(A22 � S22Kf )
�TKfA21

�CT
1 C2(A22 � S22Kf )

�1S22KfA
�1
22 A21

�AT
21Kf(A22 � S22Kf )

�1S22(A22 � S22Kf)
�TCT

2 C1

�AT
21Kf(A22 � S22Kf )

�1S22(A22 � S22Kf)
�TKfA21

�AT
21Kf(A22 � S22Kf )

�1S22KfA
�1
22 A21

�AT
21A

�T
22 KfA22(A22 � S22Kf )

�1S22(A22 � S22Kf )
�TCT

2 C1

�AT
21A

�T
22 KfA22(A22 � S22Kf )

�1S22(A22 � S22Kf )
�TKfA21

�AT
21A

�T
22 KfA22(A22 � S22Kf )

�1S22KfA
�1
22 A21

+AT
21A

�T
22 KfS22Kf (A22 � S22Kf )

�1S22(A22 � S22Kf )
�TCT

2 C1
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+AT
21A

�T
22 KfS22Kf (A22 � S22Kf )

�1S22(A22 � S22Kf )
�TKfA21

+AT
21A

�T
22 KfS22Kf (A22 � S22Kf )

�1S22KfS22KfA
�1
22 A21

= �CT
1 C2(A22 � S22Kf )

�1S22(A22 � S22Kf )
�TCT

2 C1

�CT
1 C2(A22 � S22Kf )

�1S22(A22 � S22Kf )
�TKfA21

�CT
1 C2(A22 � S22Kf )

�1S22KfA
�1
22 A21

�AT
21Kf(A22 � S22Kf )

�1S22(A22 � S22Kf)
�TCT

2 C1

�AT
21Kf(A22 � S22Kf )

�1S22(A22 � S22Kf)
�TKfA21

�AT
21Kf(A22 � S22Kf )

�1S22KfA
�1
22 A21

�AT
21A

�T
22 KfS22(A22 � S22Kf)

�TCT
2 C1

�AT
21A

�T
22 KfS22(A22 � S22Kf)

�TKfA21

�AT
21A

�T
22 KfS22KfA

�1
22 A21: (90)

Therefore,

MT
0 M0 �MT

0 N0R
�1
0 NT

0 M0 =

CT
1 C1 � AT

21A
�T
22 C

T
2 C1 � CT

1 C2A
�1
22 A21

+AT
21A

�T
22 [�KfA22 � AT

22Kf +KfS22Kf ]A
�1
22 A21

�CT
1 C2(A22 � S22Kf )

�1S22(A22 � S22Kf )
�TCT

2 C1

�CT
1 C2(A22 � S22Kf )

�1S22(A22 � S22Kf )
�TKfA21

�CT
1 C2(A22 � S22Kf )

�1S22KfA
�1
22 A21

�AT
21Kf(A22 � S22Kf )

�1S22(A22 � S22Kf)
�TCT

2 C1

�AT
21Kf(A22 � S22Kf )

�1S22(A22 � S22Kf)
�TKfA21

�AT
21Kf(A22 � S22Kf )

�1S22KfA
�1
22 A21
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�AT
21A

�T
22 KfS22(A22 � S22Kf)

�TCT
2 C1

�AT
21A

�T
22 KfS22(A22 � S22Kf)

�TKfA21

�AT
21A

�T
22 KfS22KfA

�1
22 A21

= CT
1 C1 � AT

21(A22 � S22Kf )
�TCT

2 C1 � CT
1 C2(A22 � S22Kf)

�1A21

�CT
1 C2(A22 � S22Kf )

�1S22(A22 � S22Kf )
�TCT

2 C1

�CT
1 C2(A22 � S22Kf )

�1S22(A22 � S22Kf )
�TKfA21

�AT
21Kf(A22 � S22Kf )

�1S22(A22 � S22Kf)
�TCT

2 C1

�AT
21Kf(A22 � S22Kf )

�1S22(A22 � S22Kf)
�TKfA21

�AT
21Kf(A22 � S22Kf )

�1A21 � AT
21(A22 � S22Kf )

�TKfA21: (91)

On the other hand, expanding Qs of (30a) and noting Kf = P+
22s lead to the conclusion that Qs

is the same as (91), which proves (79c). In consequence, we have Ks = P+
11s, hence, K

T
m = P+

21s.

The proof of Theorem 4 is completed. ■
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