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1. Introduction

The theory of optimal control for standard singularly perturbed systems has been well-
developed(cf. Kokotovi¢, Khalil and O’Reilly 1986, and the references therein). Among many
results available, a well-known result states that there exists the composite optimal control
which can achieve an O(&?) approximation of the optimal performance. Recently, there has
been interest in nonstandard singularly perturbed systems (Wang et al. 1988, Wang and
Frank 1992, Wang et al. 1994 and Khalil, 1989). In Wang et al. (1988) and Wang and Frank
(1992), the linear-quadratic regulator problem for nonstandard singularly perturbed systems
is studied. The sub-optimal control, where only the slow regulator problem is considered, is
proven to have the property of O(e) near-optimality. The results are then extended to the near-
optimal control problem of nonstandard multiparameter /multitime scale singularly perturbed
systems (Wang et al. 1994). On the other hand, static and dynamic feedback stabilizing
control of nonstandard singularly perturbed systems are investigated by Khalil (1989).

In view of the studies above, one natural question here is whether there exists the com-
posite optimal control for nonstandard singularly perturbed systems. In this paper, based
on a generalized algebraic Riccati equation arising in descriptor systems (Wang et al. 1993,
and Xu and Mizukami 1994), we study the composite optimal control problem for singularly
perturbed systems. A new composite optimal controller is obtained which is valid for both
standard and nonstandard singularly perturbed systems. It is shown that the composite op-
timal control can be obtained by revising the solution of the slow regulator problem. Since
the slow subsystem is a special kind of descriptor systems, a similar design procedure to the
linear regulator of descriptor systems can be used to find the composite optimal controller. As
in standard singularly perturbed systems, we prove that the composite optimal control can
achieve a performance which is O(e?) close to the optimal performance even if the system is
a nonstandard singularly perturbed system. Also, we prove that the new composite optimal
controller is equivalent to the existing one in the case of the standard singularly perturbed
systems. Therefore, we claim that the new composite optimal controller includes the existing
composite optimal controller (Kokotovi¢, Khalil and O’Reilly 1986) as a special case.

This paper is organized as follows. In next section, we will derive the optimal feedback
control for the full-order problem by using a generalized Hamilton-Jacobi equation. In Section

3, the full-order problem is decomposed into a slow regulator problem and a fast regulator
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problem. Their solutions are investigated. In Section 4, we will construct the new composite
optimal controller and discuss its near-optimality property. The equivalence between the new
composite optimal controller and the existing one is established for the standard singularly
perturbed systems. Section 5 is concerned with the design procedure of the composite optimal

controller. Finally, Section 6 discusses some conclusions.
2. Full-Order Regulator Problem

Consider the linear time-invariant singularly perturbed system
T = Alll' + Ang + Blu, l’(O) = Zg, (1&)
£ = Azll' + AQQZ + BQU, Z(O) = 20, (1b)
with a performance index
T
1 oo | 2 x T
J = —/ ( Q +uT Ru)d, (2)
2 Jo P P

which has to be minimized, where

crc, crc
Q _ Q;l Q12 _ 1T 1 1T 2 : R > 07 (3)
Q1 Q22 CyCy C5Cy

and ¢ is a small positive parameter, x(¢) € R" and z(f) € R™ are states, and u(t) € R”
is the control, and all matrices are of appropriate dimensions. The system (1) is called the
nonstandard singularly perturbed system if the matrix Ay, is singular.

In order to compare the near-optimal performance with the optimal performance in Section
4, we must have an exact expression of the optimal performance. Different from the existing
method (Kokotovi¢ et al. 1986 and Chow and Kokotovi¢ 1976), we derive the optimal feedback
control for the full-order problem by using a generalized Hamilton-Jacobi equation (Xu and
Mizukami 1993), and arrive at the optimal performance with the new form. Before doing
that, we make a temporary assumption that the final time of the performance (2) is finite and
fixed for the convenience of presentation. Let the optimal performance index for the full-order

problem take the form

VA(Eey(t),1) = (1/2)y" () EP()y().



is a symmetric matrix with I, I, denoting the n x n, m x m identity matrices, and P(t) is the

(n+m) x (n 4+ m) time-varying matrix satisfying the condition
E.P(t) = PT(t)E..

Then, applying the generalized Hamilton-Jacobi equation (Xu and Mizukami 1993)

%irggummwmw+wwwﬁmmwmm, (4a)
o =W (i) £, (1)

to the full-order regulator problem, where

L{y(t),u(t),t) = (1/2)(y" Qy + u” Ru), (5a)
Fly(t),u(t),t) = Ay + Bu (5)
W(y(1),t) = y" PT(1), (5c)
and
Ay Agg By
A= -0 (
Ay Ay B
we have
y E.Py = — rﬁitl)ﬂ{yTQy +u" Ru+2y" P (Ay + Bu)}. (7)

Carrying out the minimization on the right-hand side of (7) gives
w(t) = —R7'BTP(t)y(t). (8)
Substituting (8) into (7) and utilizing the relation

2" PT Ay =y (PTA+ AT P)y, (9)



yield
y'E.Py=—yT[Q+ ATP+ PTA— PTBR'BTPy. (10)

Since the above equation holds for all y(¢), we arrive at a generalized differential Riccati

equation
(1) BE.P=—-Q— AP — PTA+ PTBR'BTP, (11a)
(i1) B.P = PTE,, (11b)

where the boundary condition is omitted since we will consider the infinite-horizon problem
from now on. Taking into account the limiting case of (11), we obtain a generalized algebraic

Riccati equation as follows.
(i) ATP+ PTA—-PTBR'B'P +Q =0, (12a)
(ii) E.P = PTE.. (12h)
Corresponding to the parameter matrices of (12), P has the following partitioned form

P11 €P211
P21 P22

p= , Pu=Pl, Py =P}, (13)
since it satisfies (12b). It is worthy to note that P is not symmetric, but F.P is. From the
derivations above, we have

Theorem 1. Suppose that there exists a small positive parameter ¢* such that, for all ¢ €

(0,£), the generalized algebraic Riccati equation (12) admits a unique solution P for which

E.P > 0. Then,
w'(t) = —RUBT Py(t) (14)

constitutes the optimal feedback control for the full-order regulator problem, and the optimal
performance is
1

I = SO Py(0). (15)

Remark 1. The existence conditions of a unique solution P, for all ¢ € (0,¢*), will be given

in Section 4.



3. Decomposition of Slow and Fast Regulator Problems

Similar to the standard singularly perturbed systems, we decompose the full-order regulator
problem into two subsystem regulator problems.

Slow regulator problem: Find u, to minimize

T
1 pee 5 5
Lo=s [T @ T+l Runa (16)
2 Jo 2

Zs

for the slow subsystem
E?)s - Ays + Bu57 EyS(O) = EyOv (17)

where y,(t) = [2T(t) 2I(#)]!, F = E.|.—o, A, B are defined in (6), and Q in (3).
Remark 2. The slow subsystem (17) is formed by neglecting the fast mode, which is equivalent
to letting ¢ = 0 in (1). Different from the existing method to decompose the full-order system
into the slow and fast subsystems, we do not use the inverse of Ayy, which does not exist
in a nonstandard case, to eliminate z; in (16),(17). The slow subsystem (17) is viewed as a
descriptor system which may display an impulse phenomenon in the solution if A, is singular.
It is clear that the descriptor system method permits us to study the standard and nonstandard

singularly perturbed system in a unified way.

Fast regulator problem: Iind u; to minimize
1 o]
Jy = —/ (Z?Cgczz‘f + u?Ruf)dt, (18)
2 Jo
for the fast subsystem
ez = Apzs + Bauy, z4(0) = z9 — 25(0), (19)

where 2y = 2 — z,, uy = u — u,.

The fast subsystem (19) is derived by assuming that the slow variables are constant during
fast transients, that is, z, = 0 and x; = a constant.

We now consider the solution of the slow and fast regulator problems under the following
assumptions.
Assumption 1. The slow subsystem (17) is stabilizable and detectable, that is, for all s with
Re[s] >0,

I, — Ay —A B
Rank | ~ " P =g, (20a)
—An Ay B
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I, — AL, —AL CT
Rank | ~ , " 2T1 lT =n+m. (20b)
—Ay, Ay G
Assumption 2. The fast subsystem (19) is stabilizable and detectable.
Let us first consider the solution of the fast regulator problem.

Proposition 1. Under Assumption 2, the fast regulator problem admits a unique optimal

feedback control
ujc == —R_IBQQPQ—;fo, (21)

where PQ‘;f is a unique stabilizing positive semidefinite symmetric solution of the algebraic

Riccati equation
Py Ay + AszPzzf - PzszzR_leszzf + ()22 = 0. (22)

The slow regulator problem is similar to the regulator problem of descriptor systems except
that different assumptions on the system parameters are required in two problems. In other
words, for the existence of the fast regulator problem, Assumption 2 is reasonable in the study
of the slow regulator problem. However, this assumption is unnecessarily strong in the study
of the regulator problem for a general descriptor system. Instead of Assumption 2, we only
need to assume that the system (17) is impulsively controllable and observable if it is a general

descriptor system, that is,
Rank[A,, B,] =m, Rank[Al, CT]=m. (23)

Obviously, Assumption 2 implies the conditions (23), but not vice versa.
In the following, we will consider the solution of the slow regulator problem. Before doing

that, we first introduce another generalized algebraic Riccati equation (Wang et al. 1993, and

Xu and Mizukami 1994),
(1) AP, + PTA— PTBR'B"P,+ Q =0, (24a)
(i) BT P, = PTE. (24b)
where () is the same as that in (12). The solution P; of (24) has a lower-triangular block form

P, 0
po=| " , Pl = Pus, (25)
P215 P225



because of (24b). It is worthy to note that Py, may not be symmetric. The algebraic Riccati

equation (24) can be partitioned into

Piis Ay + PngsAzl + Aiplpns + A;Flpzls — P115:511 Pras

_P2T155;[2P115 — P11,512 P — P2T15522P21s + @11 =0, (26a)

PL Ay + AL P, + AL Py, — PL ST Py — PL Sy Pory + QY =0, (26b)

PayAsy + Agy Pasy — Ppy SoaPags + Qo = 0, (26¢)
where

Sy =B R'Bf, S, =BR'BI' S,,=B,R'Bl (27)

The equation (26¢) is an algebraic Riccati equation which admits at least a stabilizing positive
semidefinite symmetric solution under Assumption 2. Moreover, Assumption 2 ensures that
Agy — S92 Py, is nonsingular (see proof of Lemma 1 below). Substituting the solution of (26¢)

into (26b) yields

Py, = = NI 4+ NL Py, (28)
where

N, = AghQt,,, N =—AzAL,,

Avgy = Ars — S12Paog, Aggy = Agy — Soo Pass,

Q125 = Q12 + AL Pass.

Furthermore, substituting Py, into (26a) and making some lengthy calculations (the detail is

omitted for brevity), we get

PrigAs + AJ Pris = PrisSePras + Q, = 0, (29)
where

Qs = Q11 — Nyy Ay — A NG, — Ny SNy, (30a)

Ay = Apy + NigAg + S12N3, + NigSaa Ny, (30Db)
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Ss =511 + N1551[2 + 512N11; + N15522N11;- (30c)

Lemma 1. Under Assumptions 1,2, the following results hold.

(i) The algebraic Riccati equations (29) is decoupled to the algebraic Riccati equation
(26¢).

(ii) There exist a n xr matrix B, and a matrix Cs with the same dimension as C such that
S, = B,R'BT Q, = CTC,. Moreover, the triple (A,, B,, C,) is stabilizable and detectable.
Proof. see Appendix A. [

Since the triple (A, Bs, Cs) is stabilizable and detectable, the algebraic Riccati equation
(29) admits a unique stabilizing positive semidefinite symmetric solution, denoted by Py, and
A, — S, Pj, is Hurwitz.
Proposition 2. Under Assumptions 1, 2, the slow regulator problem admits a unique optimal

open-loop control, which can be implemented by a class of linear feedback controls given by

u: = —R'BTPy,, (31)
where
P 0
PS — 11s , (32)
P215 P225

is the solution of the generalized algebraic Riccati equation (24).
Proof. First, we prove that the linear feedback controls (31) are strictly feedback stabilizing
and under which x4(1), z5(¢) are impulse-free and x4(t) — 0, z,(t) — 0 as t — oo for all Eyq.

Substituting (31) into (17) yields

]n 0 xs A S A S xs
_ A11 A12 7 (33)
0 0 Zs Agrs Agas Zs

where 121125, Aqgy, are defined under the equation (28), and
Ay = Ay — S P, — S12Pas, Agry = Agy — Sa1 P, — SaaPors.

Since 121225 is nonsingular from the proof of Lemma 1, (33) can be further transformed to a

standard state space system and an algebraic equation
&5 = (Aq1s — AlzsAz_zlsAzls)l's, (34a)

Zs = —AQ_QISAQlSl’S. (34b)



Moreover, x4(t), zs(t) are impulse free for the same reason. Now, if we can prove that the
system matrix of (34a) is A, — S, P, then we have z,(t) — 0, as t — co. That also implies
zs(t) — 0 as t — oo. Substituting (28) into the system matrix of (34a) and making some

manipulations yield
Avrs = AuzsAgy Agiy = Ay — Su P, — Si(NL P, — N7
+ N1 [Agy — Sn P, — Saa( NP, — o))
= A 4 NigAsr + S12NJ, + NigSaa Ny, — (S11 + NigSTy + SioNL 4 NygSo, NP
= A, — S, P (35)

Therefore, (31) are the strictly feedback stabilizing controls.

Secondly, from the derivations before the proposition, we have known that P, is a solution
of the generalized algebraic Riccati equation (24).

Finally, we will prove that (31) is really a optimal feedback control by using a “completion

of squares” method. Utilizing the algebraic Riccati equation (24) in (16), (17), we have
LT ET Py = LT ET Py = L [ LT ET Py
ys (1) sys(T) Yo sYo = [Ys sys)dt
2 2 2Jo dt

1 T
- 5/0 yI[=ATP, — PTA+ PTBRBTP, — Qy,di

1 (T
5 [ GTET Py, + g T PT B, (36)
0
Substituting Eys(t) into (36) yields
1 1
§yZ(T)ETPSyS(T) - §ygETPsy0
1 (T
T P+ P B, T Qu+ T PTBRC BT P o)
0
Moving the left side of (37) to the right and adding J,(u,; T) to the both sides of it give
1 1
Js(us; T) = éygETPsyO - éyg(T)ETPsys(T)
1 (T
5 [ Alus+ BB Py ) Rlu, + BB Pyt (38)
0

10



Letting 7' — oo and noting y,(t) — 0 as ¢ — oo for all admissible u,, we have
1 1 e
Joluss00) = Syt B P + 5 / ([us + R BY Py )T Rlu, + R BT Pyy,] ). (39)
0

Since the first term above is independent of u; and ET P, is unique (since Pj, is unique), it is
obvious that u} given by (31) is the optimal feedback control. n
Remark 2. The results of Proposition 2 can also be deduced from the corresponding results
of the regulator problem of descriptor systems (Wang et al. 1993 and Xu and Mizukami 1994).
However, the proof there is not so complete. Here, we have provided a different, complete and
self-contained proof.

Remark 3. Similar to descriptor systems, an important feature of the slow regulator problem
is that the optimal feedback controls are not unique. This fact is easily seen by noting that any
solution of the algebraic Riccati equation (26¢) can be used in the feedback gain of (31). But
ETP, = PTE > 0 is unique since only P, > 0, the unique stabilizing positive semidefinite

symmetric solution of (29), is allowed in the feedback gain of (31).
4. Near-Optimality of Composite Optimal Control

In this section, we will construct the composite optimal control u} = uj +u} as in standard
case (Kokotovi¢ et al. 1986). It has been known that the optimal feedback control for the slow
regulator problem is not unique. However, the corresponding optimal feedback control for the
fast regulator problem is unique. We will select a particular optimal feedback control of the

slow regulator problem to construct the composite optimal control, that is,

wt = —R'BTPYy,, (40)

P 0 ) (41)
P, P,
Pi. is the unique stabilizing positive semidefinite symmetric solution of the algebraic Riccati
equation (26¢), and Py} is the corresponding one in (28) with Py, = P, Py, = P,

Now, comparing (26¢) with (22), we readily have an important relation P, = PQ‘;f. As
the result, we obtain
Ph., 0 Ts
Py Phy || s

11

w=ut+u}=—R'[B] Bj] — R7'B] P2y



Pl"is 0 T

= —R7'[B] B,]
Py P || 2

where (1) &~ x,4(t) and z(t) & z,(t) + z4(1).

Remark 4. Let us compare (42) with (40). Then, we can find that u** is different from w}
only in Pays, Pais and y,. This fact implies that u2(?) can be obtained very simply by solving
the slow regulator problem (the design procedure will be given in Section 5), and then revising
its solution. In other words, we can select Pjf as the solution of (26¢), and change the slow
variable y, to the original variable y in (40) to obtain the composite optimal control .

We now apply the composite optimal control u} to the full-order system (1) and compare it
with the exact optimal control (14). In order to do that, we first study the existence conditions
of the unique solution P of the generalized algebraic Riccati equation (12).

Theorem 2. Under Assumptions 1, 2, there exists a small positive parameter ¢* such that,
for all ¢ € [0,¢%), the generalized algebraic Riccati equation (12) admits a unique stabilizing
solution P for which E_P > 0. Moreover, the solution P possesses a power series expansion

at ¢ =0, that is,

PR e | e | Py et
P=1 o o |20 o0 p0 (43)
Py Py =1 | Py Py
Proof. The algebraic Riccati equation (12) can be partitioned into
Aian + P Ay + AQTlel + P2T1A21 — PSPy
—P2T1522P21 — P11512Py — P2T151TQP11 + Q11 =0, (44a)
ePy A1 + PooAgr + A{QPII + Aszle — Py 511 Py
—€P215;[2P21 - PQQSlTQPII — P35 P + sz =0, (44b)
AszPzz + Py Ags + €A1T2P2T1 + e Py Avg — P SeaPoy
—&":PQQSIJ;PQ]; — €P21512P22 — €2P2151TIP211 + QQQ =0. (44C)

Let ¢ = 0, then the zero-order equations in (44) reduce to

P Ay + P Ay + AT PY + AL PY — P 5y, P
12



—Pz(?)T&Tsz?) — PS5, PY — P 50, P + iy = 0, (45a)

PY Ay + ALPY + ALPY — P STPY — PR S, PY + QT =0, (45b)
Pz(S)Azz + Aszpz(g) - Pz(g)szzpz(g) + (22 = 0. (45¢)

The zero-order equations in (45) are the same as those in (26) except that PQ(S) here is required
to be symmetric. Hence, (45) has a solution Pl(?) = P, PQ(S) = P, and Pz(f) = P,
under Assumptions 1 and 2. Furthermore, applying the implicit function theorem at the point

(e=0,Py = Pl(?), Py = Pz(?), Py, = PQ(S)) to the equations (44) yields the following Jacobian

matrix.
Jll J12 J13
Jacobi — J21 J22 J23 (46)
J31 J32 J33

(0.PY P P,

Using the Kronecker product representation, we have

T =0, Jay =0, Js3 =1L, @ (Agy — S5 PY)) + (Agy — S0P © 1, (47)
from (44c), and

oz = (Agy — Sp P @ 1., (48)

from (44b). Furthermore, from (44b), we have

Py = =N + NPy +0(e), (49)
where
NzT = Az_zT Afzv N1T = _Az_zTAirza

12112 = Ay — S12Ps, 12122 = Ay — S92 P2,
le = Q12+ A;Flpzz-

Substituting (49) into (44a) and calculating its derivative with respect to Pp; at the point
(e=0,Py =Py, Py = PY), Py = PY) yield

Jiin =1, @ [An + NisAn + SlzNgj; + N15522N2T5
13



— (St 4 NiS, + SNy, + N1y SN P

+[A11 + Ny Aoy + S1aNL + NioSpa N

—(Sy1 4 NioSE + S1aNT 4+ Ny Sy, NPT @ 1,

— 1,0 (A, = S,P,) + (A — S,PE )T O T, (50)

by noting Pl(?) = Pt PQ(S) = P, and Pz(?) = Pj,. The exact expressions of Jy3, Jy; and
Jo3 are not important in the analysis of the nonsingularity of Jacobian matrix J,..;. Since

(Aga — SaoPhy) and (A, — S, Pfh,) are all Hurwitz matrices, Ji;, Joy and Jaz are nonsingular.

Therefore,

Jll 0 J13
Jacobi — J21 J22 J23 5 (51)
0 0 Js3

is nonsingular. Consequently, there exists a small positive parameter £* such that, for all
e € [0,e%), the generalized algebraic Riccati equation (12) admits a unique stabilizing solution
P for which E_P > 0. The property E.P > 0 follows from ) > 0 and R > 0. The uniqueness
of E.P > 0 follows from the fact that Pl(f) = P, and PQ(S) = P, hence Pz(f) = P, are all
unique. Finally, the existence of the series (43) at £ = 0 follows also from the implicit function
theorem (Dieudonné 1982). ]
Remark 5. Similar to the standard case (Kokotovic et al. 1986), the existence conditions for
the solution of the full-order regulator problem are also described in terms of stabilizability-
detectability conditions on the slow and fast regulator problems, which are e-independent
(Assumptions 1 and 2). Moreover, it has been proven that Assumption 1 is equivalent to the
assumption that (A, B, Cy) is stabilizable and detectable (Lemma 1), a lower-order system
condition.

Now, we can compare the composite optimal control u> with the exact optimal control u*
and show the O(e?) approximation of J*. Applying the composite optimal control u* to the

full-order system (1), we have

7 = ST O)B.Py(0), (52)

where P. is the solution of the generalized Lyapunov equation

(i) (A= SPHTP. 4+ PT(A = SPF) = —PTSP} — Q. (53a)
14



(i1) E.P. = PTE,, (53h)

with S = BR™'BT.
Theorem 3. Under the conditions of Theorem 2, the first two terms of the power series of J¢

and J* at ¢ = 0 are the same, that is,
J¢=J 4+ 0(e?), (54)

and hence the composite optimal control (42) is an O(g?) near-optimal solution to the full-order
regulator problem (1),(2).
Proof. Subtracting (12) from (53) and rearranging, we obtain a generalized Lyapunov equa-

tion for W = P, — P:
(i) (A= SPHTW + WA= 8P} = —(P = PFY'S(P - P}), (55a)
(i) EW = WTEL. (55h)

Also from the application of the implicit function theorem to (53), P. possesses a power series

at € = 0. Thus W can also be extended as follows:

o | WA e e 56)
Tl o | TET e o |
21 22 =1 21 22
From (41), (42) and the result that Pl(?) = P, and PQ(S) = Pi_, we have
(P = PHTS(P - PF) = 0(?), (57)

and, since (Agyy — Sy P5h;) and (A, — S,Pj) are Hurwitz matrices, the substitution of (56)
into (hH) yields Wl(f) = 0, Wz(f) =0, WQ(S) = 0, and Wl(ll) = 0, Wz(ll) =0, WQ(%) = 0. Hence,
E.W = O(g?), which proves (54). [

We have therefore provided a complete theoretic analysis of the near-optimality of the
composite optimal control for both standard and nonstandard singularly perturbed systems.
To the end of this section, we will show that the composite optimal controller (42) is equivalent
to the existing composite optimal controller (Kokotovic et al. 1986) in the case of the standard
singularly perturbed systems. Let Ay, of (1) be nonsingular, that is, the standard singularly

perturbed system. Then, the composite optimal controller is

K, 0 T
ekl cK; z

15

w = —R!

C

BT BY/e




K, 0 x

KT K; || =

= R (58)

Bi B}

In the above, K is the unique stabilizing positive semidefinite symmetric solution of the

algebraic Riccati equation

0=—K,(Ag— BoRy' NI My) — (Ag — BoRy' NI My)' K,

+K,ByRy'BIK, — MI(I — NoR;'NI) My, (59)
where
Ro = R+ NI Ny, (60a)
Ag = Ay — Ap A Ay, By = — A AL By + By, (60b)
My = Cy — Cy Az Agy, No = —Cy Ay By, (60c)

K is the unique stabilizing positive semidefinite solution of the algebraic Riccati equation

0=—K;Ap— ALK, + K;ByR'BIK,; — CTC,, (61)
and K, is
K, = [KyBR'BIK; — Ayy) — (ALK, + CTCy)(Ay — BoRT'BIK )t (62)

Theorem 4. Suppose that the system (1) is the standard singularly perturbed system and
Assumptions 1, 2 are satisfied. Then, the following identities hold.

[(f = P2-;sv Kg; = P;is? [(5 = Pl-lisv (63)

and hence the composite optimal controller (58) is the same as the composite optimal controller

(42).

Proof. see Appendix B. [
From Theorem 4, we claim that the new composite optimal controller includes the existing

composite optimal controller (Kokotovi¢, Khalil and O’Reilly 1986) as the special case.

5. Design Procedure and Example
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As stated in Remark 4, the composite optimal control u*(#) can be obtained by revising
the solution of the slow regulator problem. Therefore, the design procedure of the composite
optimal controller is similar to that of the regulator problem for descriptor systems (Wang et
al. 1993). The basic steps are as follows.

Step 1. Calculate A, 5,, (), by using

As _Ss -1
Hs = = Tl — T2T4 j—‘37 (64)

—Qs —A,

where the matrices T;,2 = 1,2, 3,4, are defined in Appendix A.

Step 2. Find the unique positive semidefinite stabilizing solutions Py}, P, of the algebraic
Riccati equations (26¢), (29), respectively.

Step 3. Calculate P, in (28) by using P, Pf..

Step 4. Substitute y,(¢) of (40) by y(¢) to obtain the composite optimal controller (42).

The main part (Step 2) of the above design procedure involves solving two reduced-order
algebraic Riccati equations (26¢), (29). Since (26¢), (29) are decoupled algebraic Riccati
equations (Lemma 1), parallel computations for the solutions are possible.

Example. Consider a nonstandard singularly perturbed system

The performance index to be minimized is

T
1 oo | 2 4 2 x 5
J=5 [ +ut)dt, (66)
2 Jo z 21 z
It is obvious that the existing method (Kokotovi¢ et al. 1986) to find the composite optimal

control is not valid for this example. However, it is solvable by using the method of this paper.

Referring the design procedure, the matrices T}, i=1,2,3.4, are, respectively,

1 -4 2 =2
Tl = ’ T2 = ’
—4 -1 -2 =2
2 =2 0 -1
15 = , Ty =
-2 =2 -1 0
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Hence

HS — T1 - T2T4_1T3 —

-7 —4
—4 7|
Associated with the Hamiltonian matrices Ty and H; are two completely decoupled algebraic

Riccati equations,
(Z) 1 - p§25 = 07
(”) 2 — 7}7115 - 2p%15 = 07

where, the small letters are used to denote scalars. From (i), p3;, = 1. On the other hand, (ii)
has a unique positive semidefinite solution pf;, = (v/65 — 7)/4 &~ 0.2656. Therefore, pj;, = 4

from (28). The composite optimal control is

o g | 0265 o] {x(t)]‘ o
4 1

Now, letting £ = 0.1, the optimal feedback control is

07217 02472 | [ w(t)
24723 09158 | | z(t) |

The values of the performance index are J¢ = 0.6845, J* = 0.6539. Hence, the loss of
performance J¢ = 0.6845 is less than 4.48% compared with J* = 0.6539. When ¢ = 0.01,

u* = —[2 1] (68)

the optimal feedback control becomes
0.3544 0.0371 t
w = —2 1] ol (69)
3.714  0.997 z(1)

The values of the performance index are J¢ = 0.2216, J* = 0.2193, with the loss less than
1.08%. For e = 0.001, the optimal feedback control is

v b { 0.2755 0.00397 ] { (1) ] | -
3.9676  0.9997 | | =(1)

The values of the performance index are J¢ = 0.14227, J* = 0.14224, with the loss less than

0.0211%. These computation results show a trend that u* — u* and J* — J* as ¢ — 0.
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6. Conclusions

In this paper, using the generalized algebraic Riccati equation arising in descriptor systems,
we have studied the composite optimal regulator problem for singularly perturbed systems.
The new composite optimal controller has been obtained which is valid for both standard and
nonstandard singularly perturbed systems. We show that the composite optimal control can
be obtained simply by a procedure of solving the slow regulator problem, and then revising its
solution. Moreover, the existence conditions for the solution of the full-order regulator problem
can also be described in terms of the stabilizability-detectability conditions of the slow and
fast regulator problems which are e-independent and lower-order. As in standard singularly
perturbed systems, we prove that the composite optimal control can achieve a performance
which is O(e?) close to the optimal performance even if the system is a nonstandard singularly
perturbed system. Finally, we prove that the new composite optimal controller is equivalent to
the existing one in the case of the standard singularly perturbed systems. Therefore, we claim
that the new composite optimal controller includes the existing composite optimal controller

(Kokotovi¢, Khalil and O’Reilly 1986) as a special case.

Appendix A: proof of Lemma 1.
(i) Let us define four partitioned matrices (Wang et al. 1988)

All _Sll A12 _512
Tl = B _AT , T2 = B _AT R (71&)
L Qll 11 ] L Q12 21 ]
| A21 _Ssz ] _ A22 _522 _
L= ", | L=~ o | (71b)
L QIZ 12 ] L Q22 22 ]

Note that T is a Hamiltonian matrix. Associate with T is the algebraic Riccati equation
(26¢) or (22) which admits at least a symmetric positive semidefinite stabilizing solution Py,

under Assumption 2. Let Py, be an arbitrary solution of (26¢). Then, we have

A22 _522 . ] 0 A225 _522 ] 0 (72)
—Qy AL J P 0 —AL || =Pu 1|’

where Ay, is defined below (28). Since T} is nonsingular (Lemma 1, Wang et al. 1988), Agos
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is also nonsingular. This means that 7, ' can be expressed explicitly in terms of 1212_215. Fur-

thermore, the algebraic Riccati equation (29) corresponds to the Hamiltonian matrix, namely,

Ay =5
H, = . (73)
_Qs _AZ
Therefore, it suffices the proof of (i) to show that Hy, =T — T2T4_1T3. This can be done by a
lengthy, but direct algebraic manipulations, which are omitted here for brevity.
(ii) From (30c), it is seen that B, = By + N;,B,. However, it seems difficult to find C;
from (30a). In order to do that, we introduce a dual algebraic Riccati equation of (26¢), that

18,

AgaKo9s + KzzsAgz — K325Q22 K225 + S92 = 0, (74)

which admits at least a symmetric positive semidefinite solution K, under Assumption 2.

Similar to the analysis of (72), we have

Ay =Sy | |1 —Kp, || Apn, 0 I Ky, 75)
~Qn AL U ~Qu —AL |0 1 |

where Agq, = A;Fz — (92K 33, 1s nonsingular since T} is nonsingular. After the calculation of

Ty — TyT; ' Ty, we arrive at another set of expressions for A,, S, and Q,, that is,

Qs = Qu1 + QM + My, Q7 + My, Q5 M, (76a)
Ay = A+ My,Q 1, + A My, + My Qo My, (76b)
Sy = St — AwpM{, — My Al, — MiQa MY, (76¢)
My, = S12,Az),, My, = — Ay, A, (76d)
Agis = AL — Q12Wagg, Sigs = Sia + AL, Wy, (76e)

Hence, it is easy to find Oy = C) + Co ML from (76a).

Let us now prove the second part of (ii). Note the relation

SIn—An _A12 By

]n _AIQSAQ_QIS
_A21 _A22 B2

0 - A 2_215

20



I, 0 0
X _A2_215A21 ]m A2_215 B2
_BgPQZSAQ_QISAQI BgPQZS ]7’ —I_ BgP?QsAZ_QISBQ

, (77)

sl, — (Ay + NisAy) 0 By
0 L, 0

where the formulas under the equation (28) have been used in the above to simplify the

expressions. Hence,

SIn—An _A12 By

=n+m, for all s with Re[s] >0, (78)
—Ay —Ayp By

rank

if and only if rank[sl, — (A1; + NisA9) B =n, for all s with Re[s] > 0. In other words,
the matrix pair (A1 + N1sAa1, By) is stabilizable. Since

As = All —I_ N15A21 —I_ BsR_leTsz;a

and the feedback R™'BI NI does not change the stabilizable property of (Ay; + NyAs, By),
we arrive at the conclusion that the matrix pair (A,, B;) is also stabilizable. Similarly, we can
prove that (As, C5) is detectable if and only if (20b) is satisfied. In this case, the formulas in
(76) are used for the purpose. The detail is omitted for brevity. Thereby, we have finished the

proof of Lemma 1. [

Appendix B: proof of Theorem 4.

First, comparing (61) with (26¢) yields K; = Py, directly.

Second, comparing (62) with (28) and noting that K; = P4, we have the conclusion that
KT = pf if K, = P},. Therefore, the remainder of the proof is to show that K, = Pji,. In
order to do that, we only need to show that the algebraic Riccati equations (29),(59) are the

same equations, that is,

Ao — BoRg'N{ My = A, (79a)
BoRy'BL = S, (79D)
MI(I — NoRG'NIYM,y = Q. (79¢)
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Before showing these relations, let us define (pp.115, Kokotovi¢ et al. 1986)

H =1+ R"'B]K;(Ay — Sy K¢)™' B,. (80)
Then,

H™'=1— R'BIK; A3 By, (81)
and

Ry' = HR'HT

= R4+ RT'BI (A — S K ) T K ByR™ + RTBIK (Agy — Sy K;) ' ByR™
+RTBIK(Ayy — SouKf) ' ByR™Y B (Agy — Sy K ;) T K B,R™. (82)

Let us further introduce four useful identities.

AZy + AZ) Spa K (Agg — Syu K1) = (Agg — Sy K ;)7 (83a)

AZy + (Agy — Spa K )1 S5 Ky AZ = (Agg — Sy Kp) 7, (83b)

T+ SpuK j(Agy — SoaK ;)™ = Agy(Agy — Spa ;)7L (83¢)

T4 KS5(Ag — Sy K ;)71 = AL (A — Sy K )T (83d)
Then,

NEMy = =B AT CT(Cy — CL AT} Ayy)
= —BI AL CTCy + BEA[K ;90K — ALK, — KAy AT Ay
= —BIAL CTCy — BI AL K Sy K ;AL Ayy — BY K AS Ay — B AZT KAy, (84)

Combining (82) and (84), and utilizing the identities (83a,b) to simplify the corresponding

expressions give
Ry'NI My = —R7'BI(Agy — Sy Kp)TCTCy — RTYBI(Agy — Sy K ) T KAy
—R'BI KA Ayy — RTVBT K j(Ayy — Sop K ) 71S50(Age — Sy K ;)1 CT Oy

—R'BI K (Agy — SpaK ;)7 S90(Agy — SouK ;)T K Agy
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— R BIK(Agy — Sy K )1 S5 Ky AL Ay (85)
Hence,
Ao — BoRg'NI My = Ay — Ay A} Ay — [By — A AS) Byl x
[—R'Bl (A — Sy K TCECy — RTYBL(Ayy — Sy K ;) VK Ay
—R'BIK;AL Ay — RTVBIK j(Ayy — Sop K )7 S50(Age — Sy K ;)T CT Oy
—RTBIK (Ayy — S0 K )7 S00(Agy — Spa K ;)" TK Ay
—RT'BI K (Agy — Spa K ()1 S5 K s AZS Ay
= Ay — Aya(Agy — Soa K1)  Agy + S1aK5(Agy — SouK5) ™ Ay
+512(Agg — Sya K ;) TCT O 4 S19(Agy — Sya K ) T K Ay
512K 1 (Agy — S9aK )7 S99 (Agy — Sao K1) T CT Cy
4512 K 1 (Agy — Sy ) 71800 (Agg — Sy K ;) T KAy
—Ayg(Agy — Sy K 1) Soy(Agy — Sou Kp)TCTCY
—Aya(Agy — S9a K 1)1 S50(Agy — Sou K ;)T K p Aoy, (86)

where, the identities (83a,b) have also been used to simplify the expressions. After expanding
A, of (30b), we arrive at the conclusion that A is the same as (86), which proves (79a). Now,

considering (79b), we have
BoH = (By — A1y A By)[I + RTBIK(Agy — Sy K ;)™ By)
= By 4 S19K ((Agy — Sy K ;) By — Apg[AZ) + AZ) Spa K p(Agy — S50 K ;)Y By
= By + S12K§(Agy — SouK) ' By — Ajy(Agy — S K ;) ' By
= By — (A1 — S12K)(Agy — 530K ;)™ By

— Bl —|— NISBQ' (87)
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Therefore,
BoR;'BY = BoHR™'HT BT
= (B1 + N1 By) R (By + NioBs)"
= B,R'BT = 3,,
which proves (79b). Finally,
—MINGRG'NE M,y =
[—CTCy A By — ALK A By — AJAGT KBy + AL AZF K S5, K A7) By
X[R7'B] (Agy — Saa K ;)" TCYCy + RV B (Agy — Sau K ;)T K Ay
R BIK ;A Ay + RV BT K (Agy — Soa K §) 71 S50(Agy — Sy K )1 CLCy
+ R BT K j(Agy — SpaK ;)71 Sy0(Agy — SouK ;)T K ¢ Ay
R BIK j(Agy — Spa K )71 S50 K AZS Ay
= —CT Oy AL Soy(Agy — Spa K ) TCTCy — CTCY AL Son(Agy — Soa K f) T K ; Ay
—CT Oy AT Sy K j(Agy — Sou K §) 71 S50(Agy — Sy K )1 CLCy
—CTCy AT Sy K j(Agy — Soa K §) 1 S90(Agy — SouK ;) T K Agy
—CTCyAZ; Sy Ky AZ; Ay — CT Oy A} S0 K ((Agy — Sy K ) 1 S0 K AS) Ay
— AL K AS) Sy(Agy — SouK )T CTCy — ALK ;A Sgo(Agg — Sya K ;)T K Ay
— ALK AS) Sy K AZ Ay
— AL KA S50 K f(Agy — Sy K ;)7 S00(Agy — Sy K ) 10T Oy
— AL KA} S50 K f(Agy — SoaK ;)7 S00(Agg — Sya K ;)T K Ay
— AL K A S0 K f(Agy — Sy K )7 S0 K Agy Ay

— AL AT K S0y(Agy — Sou K () TCTCy — AL AT K 1899(Agg — SyaK ;) T K Ay
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— AL AGT K S0y K (Agy — SyaK 1) Sop(Agy — Sou K ) 1O CY
— AL AT K S0y K (Agy — SyaK 1)1 Sop(Agy — Sou Kf) T K ; Ay
— AL AT K S0y K AG) Agy — AL AST K1 Soy K (Agy — Spa K )1 Sou Ky AZ; Agy
+ AL AGT K S0y K AS) S99 (Agy — Sy K ;)T CT Oy
AL AT K S0y K AS) Sg0(Agg — Sy K ) T KAy
AL AT K S0y K AS) Sg0(Agg — Sy K ) T KAy
+ AL AT K S0y K A} S0 K f(Agg — S30K )7 S00(Agy — Spa K ) TCTC4
+ AL AT K S0y K p A} Saa K f(Agg — S30K )7 S0 (Agy — Spa K )T K j Ay
+ AL AT K S0y K AS) Sy K (Agy — Sy K 5) ™1 Sy K § AS) Ay
Using the identities of (83), (89) reduces to
—MINyRG'NI M, =
—C{Cy(Agg — Sy K )1 Soa(Agy — Sau K ) T CTCy
—CTCy(Agy — Sy ;) S09(Agg — Syu K ;) T K Ay
—CTCy(Agy — SyaK ;) S0 K AS) Ay
— ALK (Agg — S50 K ;) Sop(Agy — Sou K p) 1L Cy
— AL K (Agg — S50 K ;) Sop(Agy — Soa K f) T K ; Ap
— ALK ((Agy — Sy K ;) Soa K AS) Ay
— AL AGT K Agy(Agy — Sou K ()71 850(Age — Sy K ;)T CT Oy
— AL AT K Agy(Agy — SouK¢) 71 S50(Agg — Sy ;) T KAy
— AL AT K Agy(Agy — Sou K ()T S50 K 1 AZy Ay

+ AL ATT K S0y K (Agy — Sy0 K1) Son(Agy — Sou K p) T CTCy
25
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AL AGT K S0y K (Agy — S0 K 1)1 Sop(Agy — SouKf) T K Ay
+ AL AGT K Soy K i (Agy — Spa K f) 1S90 K 1590 K ;AT Ay
= —CT Oy (Ayy — Spa K )1 850(Agy — Sy K )T CLCy
—CTCy(Agy — Sy ) 71S09(Agg — Sy K ;) T KAy
—CTCy(Agy — Sy K ;) S0 K AS) Ay
— AL K ((Agg — S50 K ;)1 Sop(Agy — Spu K ) TCT Oy
— AL K ((Agg — S50 K ;) Sop(Agy — Sy Kp) T K ; Ay
— ALK ((Agy — Sy K ;) S0 K AG)} Ay
— AL AT K Soy(Agy — Spu K ) TCECY
— AL AT K Soy(Agy — SpuKf) T K ; Ay
— AL AT K S0y K AG) Agy.

Therefore,

MI My — MINoRG* NI My =

clcy, — AL AGF ooy — clre,AL) Ay
+ AL AT - KAy — ALK + K So Kf) Az Ay
—CTCy(Agy — Sy )7 S09(Agy — Sy K ) T CT Oy
—CTCy(Agy — Sy ;) S09(Agg — Syu K ;) T K Ay
—CTCy(Agy — SyaK ;) S0 K AS) Ay
— ALK (Agg — S50 K ;) Sop(Agy — Sou K p) 1L Cy
— AL K (Agg — S50 K ;) Sop(Agy — Soa K f) T K ; Ap

— ALK ((Agy — Sy K ;) Soa K AS) Ay
26



— AL AGT K Soy(Agy — Spu K ) 1O CY

— AL AT K S0y(Agy — SoaKf) T K ;A

— AL AT K S0y K AS) Ay

= CTCy — AL (Agy — Sy K ) 10T Oy — CT Oy(Agy — Sy K ;)P Ay

—CT Oy (Agy — Sy K ) 71S99(Agy — Sy K ) T CT Oy

—CTCy(Agy — Sy ;) S09(Agg — Syu K ;) T K Ay

— ALK (Agg — S50 K ;) Sop(Agy — Sou K p) 1L Cy

— AL K (Agg — S50 K ;) Sop(Agy — Soa K f) T K ; Ap

— ALK (Agy — Sy K ) Agy — AL (Agy — Spa K )T K Agy. (91)

On the other hand, expanding @, of (30a) and noting K; = P35, lead to the conclusion that @,
is the same as (91), which proves (79¢). In consequence, we have K, = Pj;,, hence, K1 = P} .

The proof of Theorem 4 is completed. [
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