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Abstract

In this paper, we study the mixed H2=H1 control problem for in�nite horizon singularly perturbed systems.

In order to solve the problem, we must solve a pair of parameterized cross{coupled algebraic Riccati equations

with a small positive parameter ". Firstly, we solve the parameterized cross{coupled algebraic Riccati equations

by using a Lyapunov iteration approach. Su�cient conditions are provided such that the proposed Lyapunov

iterations converge to a positive semide�nite solution. Secondly, we propose a new algorithm, which combines

Lyapunov iterations and recursive techniques together, to solve the parameterized cross{coupled algebraic

Riccati equations. The new algorithm ensures that the solution of the parameterized cross{coupled algebraic

Riccati equations converges to a positive semide�nite solution with the rate of convergence of O("k). As

another important feature of this paper, our method is applicable to both standard and nonstandard singularly

perturbed systems.

Key Words: Singularly perturbed systems, Mixed H2=H1 control problem, Generalized algebraic Riccati

equation, Lyapunov iterations, Recursive algorithm
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1. Introduction

The cross{coupled algebraic Riccati equations play an important role to some problems of modern control

theory (see for example Starr et al. 1969, Abou{Kandil et al. 1993, Li and Gaji�c 1994, Limebeer et al. 1994,

Freiling et al. 1996, Xu and Mizukami 1996, Xu and Mizukami 1997). In Limebeer et al. (1994), a state

feedback mixed H2=H1 control problem is formulated as a dynamic Nash game, where one performance index

is used to re
ect anH1 constraint and the other performance index re
ects an H2 optimality requirement. This

problem is solved by using the established theory of nonzero-sum games and the resulting feedback controller

is characterized by the solution to a pair of cross-coupled algebraic Riccati equations.

It is well known that in order to obtain the Nash equilibrium strategies, we must solve the cross{coupled

algebraic Riccati equations. Li and Gaji�c (1994) proposed an algorithm, called the Lyapunov iterations, to

solve the linear{quadratic Nash game. Freiling et al.(1996) found the solutions to the cross{coupled algebraic

Riccati equations of the mixed H2=H1 type by using the Riccati iterations. But, the convergence of the Riccati

iterations was not proved.

In recent years, the recursive algorithm for various control problems of not only singularly perturbed but

also weakly coupled systems have been developed in many literatures (Gaji�c et al.1990, Gaji�c and Shen 1993,

Gaji�c et al. 1995, Mizukami and Suzumura 1993, Mukaidani et al. 1998). It has been shown that the recursive

algorithm are very e�ective to solve the algebraic Riccati equations when the system matrices are functions of

a small perturbation parameter ". So far, dynamic Nash games of the weakly coupled systems were studied

in Gaji�c et al. 1990 and Gaji�c and Shen 1993 by means of a recursive algorithm. However, the recursive

algorithm for solving the cross{coupled algebraic Riccati equations with relation to the dynamic Nash games

of the singularly perturbed systems has not been investigated.

In this paper, we study the mixed H2=H1 control problem for in�nite horizon singularly perturbed systems

from a viewpoint of solving the parameterized cross{coupled algebraic Riccati equations. We �rst apply

the Lyapunov iterations to solve the parameterized cross{coupled algebraic Riccati equations. The su�cient

conditions are provided such that the proposed Lyapunov iterations converges to a positive semide�nite solution.

Since the singularly perturbed systems contain a small positive perturbation parameter ", it is di�cult to

solve the resulted Lyapunov equations. We then propose a new algorithm, which combines the Lyapunov

iterations and the recursive techniques together, to solve the parameterized cross{coupled algebraic Riccati

equations. Using the new algorithm, we will overcome the computation di�culties caused by high dimensions

and numerical sti�ness in the Lyapunov iteration method. The convergence of the algorithm is proved by

using the successive approximations of dynamic programming. It is worth to note that the recursive approach

to solve the linear{quadratic Nash games and the H2=H1 control problems for singularly perturbed systems

has never been studied. Also, we have not found any work concerning the Lyapunov iterations to solve the

mixed H2=H1 control problem. As another important feature of this paper, we do not assume that A22 is non-

singular. Therefore, our new algorithm is applicable to both standard and nonstandard singularly perturbed

systems.

This paper is organized as follows. In Section 2, the problem of the H2=H1 control is formulated for the

singularly perturbed systems. In Section 3, we apply the Lyapunov iterations to solve the parameterized cross{

coupled algebraic Riccati equations. The su�cient conditions are proven such that the Lyapunov iterations

converges to a positive semide�nite solution. In Section 4, we propose a new algorithm, which combines the

Lyapunov iterations and the recursive techniques together, to solve the parameterized cross{coupled algebraic

Riccati equations. In Section 5, to show the e�ectiveness of the proposed algorithm, numerical examples are

included. Finally, in Section 6 we conclude some discussions on the results.

Notation: The notations used in this paper are fairly standard. The superscript T denotes matrix transpose.

In denotes the n � n identity matrix. jj � jj1 denotes its H1 norm for a transfer matrix function. L2[0; 1)
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stands for the space of square integrable vector functions over the interval [0; 1). jj � jj2 denotes its L2[0; 1)

norm for a continuous function over [0; 1). jj � jj denotes its Euclidean norm for a matrix. 
 denotes the

Kronecker product.

2. Problem Formulation

Consider a linear time{invariant singularly perturbed system

_x1(t) = A11x1(t) + A12x2(t) +D1w(t) +B1u(t); x1(0) = 0; (1a)

" _x2(t) = A21x1(t) +A22x2(t) +D2w(t) + B2u(t); x2(0) = 0; (1b)

z(t) =

"
Cx(t)

Lu(t)

#
; x(t) =

"
x1(t)

x2(t)

#
; (1c)

and a quadratic cost function

J(x(t); u(t)) =

Z 1

0
zT (t)z(t)dt = jjz(t)jj22; (2)

where " is a small positive parameter, x1 2 Rn1 and x2 2 Rn2 are states, u 2 Rl1 is the control input, w 2 Rl2

is the disturbance, z 2 Rk2 is the controlled output. All matrices above are of appropriate dimensions. We

suppose that LTL = Il1 . The system (1) is said to be in the standard form if the matrix A22 is nonsingular.

Otherwise, it is called the nonstandard singularly perturbed systems (Kokotovi�c et al. 1986).

Let us introduce the partitioned matrices

A =

"
A11 A12

A21 A22

#
; A" =

"
A11 A12

"�1A21 "�1A22

#
;

B =

"
B1

B2

#
; B" =

"
B1

"�1B2

#
; D =

"
D1

D2

#
; D" =

"
D1

"�1D2

#
;

S" = B"B
T
" =

"
S11 "�1S12

"�1ST12 "�2S22

#
; S = BBT =

"
S11 S12

ST12 S22

#
;

U" = D"D
T
" =

"
U11 "�1U12

"�1UT
12 "�2U22

#
; U = DDT =

"
U11 U12

UT
12 U22

#
;

Q = CTC =

"
CT
1

CT
2

# h
C1 C2

i
=

"
Q11 Q12

QT
12 Q22

#
:

We now consider the mixedH2=H1 control problems for singularly perturbed system (1) under the following

basic assumption (Gaji�c et al. 1990, Gaji�c and Shen 1993, Gaji�c et al. 1995).

Assumption 1 The triplet (A"; B"; C) and (A"; D"; C) are stabilizable and detectable for " 2 (0; "�] ("� > 0).

Assumption 2 The triplet (A22; B2; C2) and (A22; D2; C2) are stabilizable and detectable.

These conditions are quite natural since at least one control agent has to be able to control and observe

unstable modes.

The mixed H2=H1 control problem is formulated as a two{player Nash game associated with a prescribed

disturbance attenuation level 
,

J1(x; u; w) =

Z 1

0


2wT (t)w(t)dt� J(x;u) = 
2jjw(t)jj22 � jjz(t)jj
2
2; (3a)

J2(x; u; w) = J(x; u) = jjz(t)jj22: (3b)
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The �rst is used to re
ect an H1 criterion, while the second is used for an H2 optimality requirement. The

purpose is to �nd a linear feedback controller u�(t) = K2x(t) such that

J1(u
�; w�) � J1(u

�; w); (4a)

J2(u
�; w�) � J2(u;w

�); (4b)

where w�(t) = K1x(t) represents the worst-case disturbance. When J1(u�; w�) � 0, we have

sup
w2Hw

p
J(u�; w)

jjw(t)jj2
� 
; (5)

a H1 criterion, where Hw denotes an appropriate Hilbert space. The second Nash inequality shows that u�(t)

regulates the state to zero with minimum output energy when the disturbance is at its worst value w�(t). The

following lemma is already known (see Limebeer et al. 1994).

Lemma 1 Under Assumption 1, there exists an admissible controller such that (4) hold i� the following full{

order parameterized cross{coupled algebraic Riccati equations

(A" � S"Y")
TX" +X"(A" � S"Y") +Q+ 
�2X"U"X" + Y"S"Y" = 0; (6a)

(A" + 
�2U"X")
TY" + Y"(A" + 
�2U"X") +Q � Y"S"Y" = 0; (6b)

have solutions X" � 0 and Y" � 0 where

X" =

"
X11 "XT

21

"X21 "X22

#
; Y" =

"
Y11 "Y T

21

"Y21 "Y22

#
:

Then, the strategies are given by

w�(t) = K1x(t) = 
�2DT
" X"x(t); (7a)

u�(t) = K2x(t) = �BT
" Y"x(t): (7b)

However, it is di�cult to solve the parameterized cross{coupled algebraic Riccati equations (6a) and (6b)

because of the di�erent magnitudes of their coe�cients caused by the small perturbation parameter " and high

dimensions.

3. The Parameterized Cross{Coupled Generalized Algebraic Riccati Equations

To obtain the solutions of the parameterized cross{coupled algebraic Riccati equations (6a) and (6b), we

�rst de�ne

�" =

"
In1 0

0 "In2

#
:

Then, we introduce the following useful lemma.

Lemma 2 The parameterized cross{coupled algebraic Riccati equations (6a) and (6b) are equivalent to the

following parameterized cross{coupled generalized algebraic Riccati equations (8a) and (8b) respectively.

(A � SY )TX +XT (A� SY ) + Q+ 
�2XTUX + Y TSY = 0; (8a)

(A + 
�2UX)TY + Y T (A+ 
�2UX) +Q� Y TSY = 0; (8b)

where

X" = �T
"X = XT�"; Y" = �T

" Y = Y T�"; X =

"
X11 "XT

21

X21 X22

#
; Y =

"
Y11 "Y T

21

Y21 Y22

#
:
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Proof: The proof is identical to the proof of Lemma 3 in Mukaidani et al. (1999). 2

In Li and Gaji�c (1994), only the Lyapunov iterations for solving cross{coupled algebraic Riccati equations

of Nash di�erential games are considered. In this paper, we give the Lyapunov iterations to solve the param-

eterized cross{coupled algebraic Riccati equations. An algorithm for the numerical solutions of (8) is de�ned

as follows.

(A + 
�2UX(n) � SY (n))TX(n+1) +X(n+1)T (A+ 
�2UX(n) � SY (n))

+Q � 
�2X(n)TUX(n) + Y (n)TSY (n) = 0; (9a)

(A + 
�2UX(n) � SY (n))TY (n+1) + Y (n+1)T (A+ 
�2UX(n) � SY (n))

+Q+ Y (n)TSY (n) = 0; (9b)

where n = 0; 1; 2; 3; � � � and initial conditions X(0); Y (0) are obtained as solutions of following auxiliary

generalized algebraic Riccati equations

ATY (0) + Y (0)TA +Q� Y (0)TSY (0) = 0; (10a)

(A � SY (0))TX(0) +X(0)T (A� SY (0)) +Q+ 
�2X(0)TUX(0) + Y (0)TSY (0) = 0; (10b)

X(n) =

"
X

(n)
11 "X

(n)T
21

X
(n)
21 X

(n)
22

#
; Y (n) =

"
Y
(n)
11 "Y

(n)T
21

Y
(n)
21 Y

(n)
22

#
:

We note that the unique positive semide�nite stabilizing solution of (10a) exists under Assumptions 1 and

2 (Gaji�c et al.1990, Gaji�c and Shen 1993, Gaji�c et al. 1995). Concerning with the Riccati equation (10b), let

us de�ne

�
1 = jjÊ(sI � Â)�1D̂ + Ĥjj1; (11a)

�
2 = jj �E2(sI � �A22)
�1D2jj1; (11b)

where

A � SY (0) =

"
�A11

�A12

�A21
�A22

#
; Q+ Y (0)TSY (0) =

"
�E1

�ET
1

�E1
�ET
2

�E2
�ET
1

�E2
�ET
2

#
;

Â = �A11 � �A12
�A�122

�A21; D̂ = D1 � �A12
�A�122 D2;

Ê = �E1 � �E2
�A�122

�A21; Ĥ = � �E2
�A�122 D2:

If Assumptions 1 and 2 hold, then for every 
 > �
 = maxf�
1; �
2g, the Riccati equation (10b) has the positive

de�nite stabilizing solutions since the Riccati equation (10a) has stabilizing solution (Dragan 1996, Mukaidani

1998).

The algorithm (9) is based on the Lyapunov iterations (Li and Gaji�c 1994, Gaji�c and Shen 1993, Gaji�c et al.

1995). Although the algorithm (9) is similar to as that of Li and Gajic (1994), di�erent convergent conditions

are required. In Li and Gajic (1994), the stabilizable{detectable conditions will guarantee the convergence of

the Lyapunov iterations of Nash games to the positive semide�nite solutions. However, the convergence of the

Lyapunov iteration in this paper depends on the value of the parameter 
. In fact, if 
 is very small, Lyapunov

iteration (9a) may not yield the solution of X(n+1). Because the last three terms of the Lyapunov iteration

(9a), that is, Q� 
�2X(n)TUX(n) + Y (n)TSY (n), is not always positive semide�nite.

In this paper, under the control{oriented assumptions and a new condition for 
, we prove that the proposed

Lyapunov iterations (9) converge to the positive semide�nite solutions. The algorithm (9) has the feature given

in the following theorem.
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Theorem 1 Under Assumptions 1 and 2, for a predescribed disturbance attenuation level 
 > �
 = maxf�
1; �
2g

and a small parameter " > 0, the unique positive semide�nite solutions of the parameterized cross{coupled

algebraic Riccati equation (6) exist, where �
1, �
2 are given by (11a) and (11b) respectively. It is obtained by

performing Lyapunov iterations (9a) and (9b).

Proof: We give the proof by using a method similar to that given in the proof of Theorem2.1 in Li and Gaji�c

(1994). The proof based on the method of successive approximations (Aganovic and Gaji�c 1995). Firstly, we

take any stabilizable linear control law u(0)(t; x) = �BT
" Y

(0)
" x(t) and disturbance w(0)(t; x) = 
�2DT

" X
(0)
" x(t)

where X
(0)
" and Y

(0)
" are positive semide�nite stabilizing solutions of auxiliary generalized algebraic Riccati

equations (10). Then, let us consider the following two minimization problems.

_x(t) = A"x(t) +D"w(t) +B"u
(0)(t) = [A" � S"Y

(0)
" ]x(t) +D"w(t); (12a)

V1(x; t) = min
w(t)

Z
1

t

[
2w(�)Tw(�) � fx(�)TQx(� ) + u(0)(�; x)Tu(0)(�; x)g]d�

= min
w(t)

Z
1

t

[
2w(� )Tw(�)� xT (� )fQ+ Y (0)
" S"Y

(0)
" gx(� )]d�; (12b)

_x(t) = A"x(t) +D"w
(0)(t) +B"u(t) = [A" + 
�2U"X

(0)
" ]x(t) +B"u(t); (12c)

V2(x; t) = min
u(t)

Z 1

t

[x(� )TQx(� ) + u(� )Tu(� )]d�; (12d)

where

X(0)
" =

"
X

(0)
11 "X

(0)T
21

"X
(0)
21 "X

(0)
22

#
; Y (0)

" =

"
Y
(0)
11 "Y

(0)T
21

"Y
(0)
21 "Y

(0)
22

#
:

Corresponding Hamiltonians to the Nash di�erential games for each control agent are respectively

H1(t; x; w; u
(0); p

(0)
1 ) = 
2wTw � xTQx � u(0)Tu(0) + p

(0)T
1 (A"x+D"w +B"u

(0)); (13a)

H2(t; x; w
(0); u; p

(0)
2 ) = xTQx + uT u+ p

(0)T
2 (A"x+D"w

(0) +B"u); (13b)

where

@

@x
V
(0)
i (x; t) = p

(0)
i (t); (i = 1; 2); _x(t) = [A" + 
�2U"X

(0)
" � S"Y

(0)
" ]x(t);

V
(0)
1 (x; t) =

Z
1

t

xT (� )[
�2X(0)
" U"X

(0)
" �Q � Y (0)

" S"Y
(0)
" ]x(� )d�;

V
(0)
2 (x; t) =

Z 1

t

xT (� )[Q+ Y (0)
" S"Y

(0)
" ]x(�)d�:

The equilibrium controls must satisfy

@H1

@w
= 0 ) w(1)(t; x) = �

1

2

�2DT

" p
(0)
1 (t); (14a)

@H2

@u
= 0 ) u(1)(t; x) = �

1

2
BT
" p

(0)
2 (t): (14b)

Note that
@

@x
V
(0)
i (x; t) along the system trajectory can be calculated from (15).

@

@x
V
(0)
i (x; t) �

dx

dt
=

d

dt
V
(0)
i (x; t); (i = 1; 2): (15)

In fact, we obtain the following equations (16).

@

@x
V
(0)
1 (x; t) � [A" + 
�2U"X

(0)
" � S"Y

(0)
" ]x(t)

= �x(t)T [
�2X(0)
" U"X

(0)
" � Q� Y (0)

" S"Y
(0)
" ]x(t); (16a)

@

@x
V
(0)
2 (x; t) � [A" + 
�2U"X

(0)
" � S"Y

(0)
" ]x(t) = �x(t)T [Q+ Y (0)

" S"Y
(0)
" ]x(t): (16b)
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These simple partial di�erential equations (16) have solutions of the following form

V
(0)
1 (x; t) = �x(t)TX(1)

" x(t); (17a)

V
(0)
2 (x; t) = x(t)TY (1)

" x(t): (17b)

A partial di�erentiation to (17) gives

@

@x
V
(0)
1 (x; t) = �2X(1)

" x(t) = p
(0)
1 (t); (18a)

@

@x
V
(0)
2 (x; t) = 2Y (1)

" x(t) = p
(0)
2 (t): (18b)

By using the following relation

2xT (t)(A" + 
�2U"X
(0)
" � S"Y

(0)
" )TX(1)

" x(t)

= xT (t)[(A" + 
�2U"X
(0)
" � S"Y

(0)
" )TX(1)

" +X(1)
" (A" + 
�2U"X

(0)
" � S"Y

(0)
" )]x(t);

we have

(A" + 
�2U"X
(0)
" � S"Y

(0)
" )TX(1)

" +X(1)
" (A" + 
�2U"X

(0)
" � S"Y

(0)
" )

= �(Q� 
�2X(0)
" U"X

(0)
" + Y (0)

" S"Y
(0)
" ); (19a)

(A" + 
�2U"X
(0)

" � S"Y
(0)
" )TY (1)

" + Y (1)
" (A" + 
�2U"X

(0)
" � S"Y

(0))"

= �(Q + Y (0)
" S"Y

(0)
" ): (19b)

Since the Riccati equation (10b) has a positive semide�nite stabilizing solution by the bounded real lemma

(Dragan 1996, Zhou 1998), A" + 
�2U"X
(0)
" � S"Y

(0)
" is a stable matrix. Furthermore, we see that the right{

hand side of equation (19b) is negative de�nite and X(1)
" = X

(0)
" � 0 comparing equation (19a) with equation

(10b). Consequently, it follow that the Lyapunov equations (19a) and (19b) have unique positive semide�nite

solutions X
(1)
" � 0, Y

(1)
" � 0 respectively.

Thus, from (14) and (18) we get

w(1)(t; x) = 
�2DT
" X

(1)
" x(t); X(1)

" � 0; (20a)

u(1)(t; x) = �BT
" Y

(1)
" x(t); Y (1)

" � 0: (20b)

On the other hand, substituting w(0)(t; x); u(0)(t; x), and (18) into Hamiltonians (13), it follows from the

parameterized cross{coupled algebraic Riccati equation (19) that equality (21) holds.

H1(t; x; w
(0); u(0); p

(0)
1 )

= 
2w(0)Tw(0) � xTQx� u(0)Tu(0) + p
(0)T
1 (A"x+D"w

(0) +B"u
(0)) � 0; (21a)

H2(t; x; w
(0); u(0); p

(0)
2 )

= xTQx + u(0)Tu(0) + p
(0)T
2 (A"x+D"w

(0) +B"u
(0)) � 0: (21b)

Thus, we obtain the inequality (22).

0 � �H1(t; x; w
(0); u(0); p

(0)
1 ) � �min

w
H1(t; x; w; u

(0); p
(0)
1 )

= �H1(t; x; w
(1); u(0); p

(0)
1 ); (22a)

0 � �H2(t; x; w
(0); u(0); p

(0)
2 ) � �min

u
H2(t; x; w

(0); u; p
(0)
2 )

= �H2(t; x; w
(0); u(1); p

(0)
2 ): (22b)
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Secondly, we study a Lyapunov equations (9) for any n 2 N. Taking any stabilizable linear control law

u(n)(t; x) = �BT
" Y

(n)
" x(t) and disturbance w(n)(t; x) = 
�2DT

" X
(n)
" x(t), similarly to the case of n = 0, let us

consider the following two minimization problems.

_x(t) = A"x(t) +D"w(t) +B"u
(n)(t) = [A" � S"Y

(n)
" ]x(t) +D"w(t); (23a)

V1(x; t) = min
w(t)

Z 1

t

[
2w(� )Tw(� )� fx(�)TQx(� ) + u(n)T (�)u(n)(� )g]d�; (23b)

_x(t) = A"x(t) +D"w
(n)(t) +B"u(t) = [A" + 
�2U"X

(n)
" ]x(t) + B"u(t); (23c)

V2( x; t) = min
u(t)

Z
1

t

[x(� )TQx(� ) + u(� )Tu(� )]d�; (23d)

where

w(n)(t; x) = 
�2DT
" X

(n)
" x(t); u(n)(t; x) = �BT

" Y
(n)
" x(t):

Furthermore, A" � S"Y
(n)
" and A" + 
�2U"X

(n)
" are stable (Gaji�c et al. 1995, Li and Gaji�c 1994). According

to the minimum principle, the minimization problem formulated above is equal to the problem which minimize

Hamiltonian H1(t; x; w; u(n); p
(n)
1 ) and H2(t; x; w(n); u; p

(n)
2 ) in respect of the w and u respectively.

By following the similar steps in the case of n = 0, we get

(A" + 
�2U"X
(n)
" � S"Y

(n)
" )TX(n+1)

" +X(n+1)
" (A" + 
�2U"X

(n)
" � S"Y

(n)
" )

= �(Q� 
�2X(n)
" U"X

(n)
" + Y (n)

" S"Y
(n)
" ); (24a)

(A" + 
�2U"X
(n)" � S"Y

(n)
" )TY (n+1)

" + Y (n+1)
" (A" + 
�2U"X

(n)
" � S"Y

(n)
" )

= �(Q+ Y (n)
" S"Y

(n)
" ) (24b)

0 � �H1(t; x; w
(n); u(n); p

(n)
1 ); (24c)

0 � �H2(t; x; w
(n); u(n); p

(n)
2 ) (24d)

where

@

@x
V
(n)
i (x; t) = p

(n)
i (t); (i = 1; 2); _x(t) = [A" + 
�2U"X

(n)
" � S"Y

(n)
" ]x(t);

V
(n)
1 (x; t) =

Z 1

t

xT (� )[
�2X(n)
" U"X

(n)
" �Q � Y (n)

" S"Y
(n)
" ]x(� )d� = �x(t)TX(n+1)

" x(t);

V
(n)
2 (x; t) =

Z 1

t

xT (� )[Q+ Y (n)
" S"Y

(n)
" ]x(� )d� = x(t)TY (n+1)

" x(t):

For the sequel, from the equality (24), it follows that

0 � �H1(t; x; w
(n); u(n); p

(n)
1 ) � �min

w
H1(t; x; w; u

(n); p
(n)
1 )

= �H1(t; x; w
(n+1); u(n); p

(n)
1 ); (25a)

0 � �H2(t; x; w
(n); u(n); p

(n)
2 ) � �min

u
H2(t; x; w

(n); u; p
(n)
2 )

= �H2(t; x; w
(n); u(n+1); p

(n)
2 ): (25b)

On the other hand, by using the monotonicity result of the successive approximations and the minimization

technique in the negative gradient direction (Li and Gaji�c 1994), we get a monotonically decrease sequences

V
(n)
1 (x; t) � V

(n+1)
1 (x; t); (26a)

V
(n)
2 (x; t) � V

(n+1)
2 (x; t); (26b)

where 0 � V
(n)
1 (x; t) � �V1, V

(n)
2 (x; t) � 0. We note that there exists lower bound �V1 (Limebeer et al. 1994,

Lemma 2.2). Thus, these sequences (26) are convergent. Note that the sequences p
(n)
i (t); (i = 1; 2), w(n)(t; x)
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and u(n)(t; x) are also convergent, since
@

@x
V
(n)
i (x; t) = p

(n)
i (t); (i = 1; 2), w(n)(t; x) = �

1

2

�2DT

" p
(n�1)
1 (t),

u(n)(t; x) = �
1

2
BT
" p

(n�1)
2 (t). Consequently, from the method of successive approximations (Aganovic and Gaji�c

1995), we have the convergence form (27) when n is very large.

�min
w

H1(t; x; w; u
(n); p

(n)
1 ) = �H1(t; x; w

(n+1); u(n); p
(n)
1 )

! �H1(t; x; w
(n+1); u(n+1); p

(n+1)
1 ) � 0 (27a)

�min
u

H2(t; x; w
(n); u; p

(n)
2 ) = �H2(t; x; w

(n); u(n+1); p
(n)
2 )

! �H2(t; x; w
(n+1); u(n+1); p

(n+1)
2 ) � 0 (27b)

It is easy to show that sequences fX(n)
" g, fY (n)

" g, (n = 0; 1; 2; � � �) are convergent since the matrices

corresponding Hamiltonians to tend to zero, that is, equation (27) holds for n! 1. In addition, let fX
(1)
" g

and fY
(1)
" g be the limit points of the corresponding sequences, we have

(A" + 
�2U"X
(1)
" � S"Y

(1)
" )TX(1)

" +X(1)
" (A" + 
�2U"X

(1)
" � S"Y

(1)
" )

+Q� 
�2X(1)
" U"X

(1)
" + Y (1)

" S"Y
(1)
" = 0; (28a)

(A" + 
�2U"X
(1)
" � S"Y

(1)
" )TY (1)

" + Y (1)
" (A" + 
�2U"X

(1)
" � S"Y

(1)
" )

+Q+ Y (1)
" S"Y

(1)
" = 0; (28b)

that is, fX
(1)
" g, fY

(1)
" g satisfy the parameterized cross{coupled algebraic Riccati equations (6) so that they

represent the sought solutions of these equations.

Thirdly, we prove that X(n+1)
" , Y (n+1)

" are positive semide�nite and A" + 
�2U"X
(n)
" � S"Y

(n)
" � A(n) is

stable. The �rst stage is to prove that A(n) is stable. The proof is done by using mathematical induction.

When n = 0, A(0) is stable by taking into account bounded real lemma for the equation (10b). Next n = i, we

assume that A(i) is stable. Substituting n = i into (23), the minimization problem (23) produce a stabilizing

control given by

w(i+1)(t; x) = 
�2DT
" X

(i+1)
" x(t); u(i+1)(t; x) = �BT

" Y
(i+1)
" x(t):

It is obvious from the method of successive approximations (Aganovic and Gaji�c 1995) that A(i+ 1) is stable

since it is the stable matrix of the closed{loop system, i.e. _x(t) = [A" + 
�2U"X
(i+1)
" � S"Y

(i+1)
" ]x(t) =

A(i + 1)x(t). Thus, A(n) is stable for all n 2 N. Furthermore, A(1) = A" + 
�2U"X
(1)
" � S"Y

(1)
" is also

stable because the sequences fX
(n)
" g, fY

(n)
" g are convergence when n!1 .

The next stage is to prove that X
(n+1)
" and Y

(n+1)
" are positive semide�nite. Rearranging the Lyapunov

equation (24a), we get

(A" � S"Y
(n)
" )TX(n+1)

" +X(n+1)
" (A" � S"Y

(n)
" )

= �[Q� 
�2(X(n+1)
" �X(n)

" )U"(X
(n+1)
" �X(n)

" ) + 
�2X(n+1)
" U"X

(n+1)
" + Y (n)

" S"Y
(n)
" ]:

Note that the Lyapunov equation (24a) has a unique positive semide�nite solution X
(n+1)
" � 0 for all n 2 N

with n0 � n since A"�S"Y
(n)
" is stable matrix for all n 2N (Li and Gaji�c 1994). Here A"+


�2U"X
(n)
" �S"Y

(n)
"

is stable and there exist n0 2N such that right{hand side of above equation is negative de�nite for all n 2 N

with n0 � n. On the other hand, the Lyapunov equation (24b) has a unique positive semide�nite solution

Y
(n+1)
" � 0 for all n 2 N since the right{hand side of equation (24b) is negative de�nite and A(n) is stable.

Finally, rearranging (24a) and (24b), we have (9a) and (9b) respectively since

X(n)
" = �T

" X
(n) = X(n)T�"; Y (n)

" = �T
" Y

(n) = Y (n)T�";

X(n+1)
" = �T

" X
(n+1) = X(n+1)T�"; Y (n+1)

" = �T
" Y

(n+1) = Y (n+1)T�";

A" = ��1" A; B" = ��1" B; D" = ��1" D:
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Thus, the proof of Theorem 1 is completed. 2

Remark 1 Subtracting (24a) from (24b) we have

(A" + 
�2U"X
(n)
" � S"Y

(n)
" )T (Y (n+1)

" �X(n+1)
" )

+(Y (n+1)
" �X(n+1)

" )(A" + 
�2U"X
(n)
" � S"Y

(n)
" ) + 
�2X(n)

" U"X
(n)
" = 0:

Since A" + 
�2U"X
(n)
" � S"Y

(n)
" is stable for all n 2N, it is easy to establish that

Y (n)
" � X(n)

" ; n = 1; 2; 3; � � � :

For each 0 < 
� < 
 � �
, one natural question here is whether the Lyapunov iterations can be apply to

the parameterized cross{coupled algebraic Riccati equations, where 
� is an in�mum of (5). We show that

a stronger result than the one stated in Theorem 1 can be similarly obtained by choosing the initial value

matrices X
(0)
" and Y

(0)
" such that A" + 
�2U"X

(0)
" � S"Y

(0)
" is stable. In this case, we have the following

theorem.

Theorem 2 Under Assumptions 1 and 2, for a predescribed disturbance attenuation level 
� < 
 � �
 and a

small parameter " > 0, if solutions of the parameterized cross{coupled algebraic Riccati equations (6) exist, then

the Lyapunov iterations (9a) and (9b) converge to the unique positive semide�nite solutions of the parameterized

cross{coupled algebraic Riccati equations (6). Here we choose the initial value of the positive semide�nite

symmetric matrices X
(0)
" and Y

(0)
" such that A" + 
�2U"X

(0)
" � S"Y

(0)
" is stable.

Proof: Since A"+
�2U"X
(0)
" �S"Y

(0)
" is stable matrix, the Riccati equation (19a), (19b) have unique positive

semide�nite solution X
(1)
" � 0 and Y

(1)
" � 0 respectively. By repeating the similar steps to the proof of

Theorem 1, the theorem can be proved. 2

4. The Recursive Reduced{Order Algorithm for mixed H2=H1 Control Problem of Singularly

Perturbed Systems

In this section, we will derive the recursive reduced{order algorithm for solving the mixed H2=H1 control

problem of singularly perturbed systems. In order to obtain the solutions for the parameterized cross{coupled

generalized algebraic Riccati equations (6), we introduce the notation

A + 
�2UX(n) � SY (n) = �A(n) =

"
�A
(n)
11

�A
(n)
12

�A
(n)
21

�A
(n)
22

#
; (29a)

Q � 
�2X(n)TUX(n) + Y (n)TSY (n) = �Q(n) =

"
�Q
(n)
11

�Q
(n)
12

�Q
(n)T
12

�Q
(n)
22

#
; (29b)

Q + Y (n)TSY (n) = Q̂(n) =

"
Q̂
(n)
11 Q̂

(n)
12

Q̂
(n)T
12 Q̂

(n)
22

#
: (29c)

The following set of equations can be produced by substituting (29) into (9).

�A(n)TX(n+1) +X(n+1)T �A(n) + �Q(n) = 0; (30a)

�A(n)TY (n+1) + Y (n+1)T �A(n) + Q̂(n) = 0: (30b)

The algorithm (30) is the Lyapunov iteration. The proof for the convergence has been given in Theorem 1.

Thus, we can obtain the solution of the parameterized cross{coupled algebraic Riccati equations by performing

Lyapunov iteration (30) directly. However, the Lyapunov iteration (30) involves the small positive parameter

" when we consider the singularly perturbed system. To remedy this, we propose a new combined algorithm
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to �nd the solution to the Lyapunov iteration (30) or the generalized Lyapunov equation (30). The main point

is to separate the solution of the generalized Lyapunov equation (30) into two terms, that is, the 0{order term

and the error terms. The 0{order terms are obtained by reduced{order "{independent Lyapunov iteration and

the error terms are obtained by a reduced{order recursive technique. By combining the Lyapunov iteration

and the recursive technique, we can overcome the computation di�culties caused by the small parameter " and

the high dimension.

In order to use the combined algorithm above to solve the problem, we have to strictly establish the

convergent conditions related to the recursive algorithm. If it is less conservative than the conditions of

convergence for the Lyapunov iterations, then the truncation error of the algorithm (30) increases by performing

iteration because the solutions X(n+1) and Y (n+1) are not exact. Also, we note that " has to be very small.

The number of iterations required for desired accuracy depends on the parameter ". If " is not very small, then

error term of the solutions X(n+1) and Y (n+1) are not bounded. The recursive algorithm diverges in a �nite

iteration. Therefore, the Lyapunov iterations can not yield the required solutions. However, if the oriented

above conditions are satis�ed, then proposed new algorithm converges in a �nite number of steps.

In the next section we derive the recursive algorithms for the generalized algebraic Lyapunov equations

(30).

4.1 The Recursive Algorithm for X(n+1)

Here we study the generalized algebraic Lyapunov equation (30a). The generalized algebraic Lyapunov

equation (30a) can be partitioned into

�A
(n)T
11 X

(n+1)
11 +X

(n+1)T
11

�A
(n)
11 + �A

(n)T
21 X

(n+1)
21 +X

(n+1)T
21

�A
(n)
21 + �Q

(n)
11 = 0; (31a)

"X
(n+1)
21

�A(n)
11 +X

(n+1)T
22

�A(n)
21 + �A(n)T

12 X
(n+1)
11 + �A(n)T

22 X
(n+1)
21 + �Q(n)T

12 = 0; (31b)

�A(n)T
22 X

(n+1)
22 +X

(n+1)T
22

�A(n)
22 + " �A(n)T

12 X
(n+1)T
21 + "X

(n+1)
21

�A(n)
12 + �Q(n)

22 = 0: (31c)

Let us de�ne the following O(") perturbation of X(n+1)
11 , X

(n+1)
21 and X

(n+1)
22 for (31)

�A
(n)T
11

�X
(n+1)
11 + �X

(n+1)T
11

�A
(n)
11 + �A

(n)T
21

�X
(n+1)
21 + �X

(n+1)T
21

�A
(n)
21 + �Q

(n)
11 = 0; (32a)

�X
(n+1)T
22

�A
(n)
21 + �A

(n)T
12

�X
(n+1)
11 + �A

(n)T
22

�X
(n+1)
21 + �Q

(n)T
12 = 0; (32b)

�A
(n)T
22

�X
(n+1)
22 + �X

(n+1)T
22

�A
(n)
22 + �Q

(n)
22 = 0: (32c)

Note that we do not set " = 0 in �A
(n)
ij (i; j = 1; 2) and �Q

(n)
ij (i; j = 1; 2) (Gaji�c et al. 1990). In the rest of

section, we assume that all matrices are function of ". However, the explicit dependence on " of the problem

matrices is omitted in order to simplify notation (Gaji�c et al. 1990).

If Assumption 2 holds, then the matrix �A
(n)
22 is non{singular. Therefore, we obtain the following 0{order

equations

�A
(n)T
0

�X
(n+1)
11 + �X

(n+1)T
11

�A
(n)
0 + �Q

(n)
0 = 0; (33a)

�X
(n+1)
21 = �[ �A

(n)
22 ]

�T � ( �X
(n+1)T
22

�A
(n)
21 + �A

(n)T
12

�X
(n+1)
11 + �Q

(n)T
12 ); (33b)

�A
(n)T
22

�X
(n+1)
22 + �X

(n+1)T
22

�A
(n)
22 + �Q

(n)
22 = 0; (33c)

where

�A
(n)
0 = �A

(n)
11 �

�A
(n)
12 [ �A

(n)
22 ]

�1 �A
(n)
21 ;

�Q
(n)
0 = �Q

(n)
11 �

�Q
(n)
12 [ �A

(n)
22 ]

�1 �A
(n)
21 �

�A
(n)T
21 [ �A

(n)
22 ]

�T �Q
(n)T
12 + �A

(n)T
21 [ �A

(n)
22 ]

�T �Q
(n)
22 [ �A

(n)
22 ]

�1 �A
(n)
21 :

The 0{order solutions �X
(n+1)
11 , �X

(n+1)
21 and �X

(n+1)
22 are O(") close to the exact one. De�ning the error term

E
(n+1)
ij (ij = 11; 21; 22) with respect to X(n+1)

ij (ij = 11; 21; 22) the exact solutions can be produced in the

11



following form

X
(n+1)
11 = �X

(n+1)
11 + "E

(n+1)
11 ; X

(n+1)
21 = �X

(n+1)
21 + "E

(n+1)
21 ; X

(n+1)
22 = �X

(n+1)
22 + "E

(n+1)
22 : (34)

Substituting (34) into (31) and subtracting (32) from (31), we arrive at the error equation (35).

E
(n+1)T
11

�A
(n)
0 + �A

(n)T
0 E

(n+1)
11 = � �A

(n)T
21 [ �A

(n)
22 ]

�T �H(n+1)[ �A
(n)
22 ]

�1 �A
(n)
21

+ �A
(n)T
11 X

(n+1)T
21 [ �A

(n)
22 ]

�1 �A
(n)
21 + �A

(n)T
21 [ �A

(n)
22 ]

�TX
(n+1)
21

�A
(n)
11 ; (35a)

E
(n+1)
21 = �[ �A(n)

22 ]
�T � [ �A(n)T

12 E
(n+1)
11 +E

(n+1)T
22

�A(n)
21 +X

(n+1)
21

�A(n)
11 ]; (35b)

E
(n+1)T
22

�A
(n)
22 + �A

(n)T
22 E

(n+1)
22 + �H(n+1) = 0; (35c)

where

�H(n+1) = ( �X
(n+1)
21 + "E

(n+1)
21 ) �A

(n)
12 + �A

(n)T
12 ( �X

(n+1)
21 + "E

(n+1)
21 )T :

These equations have very nice form since the unknown quantityE21 in equations for E11 and E22 are multiplied

by a small parameter ". This fact suggests that a �xed point algorithm can be e�cient for their solutions.

Therefore we proposed the following recursive algorithm for solving (35)

E
(n+1)T
11(k+1)

�A
(n)
0 + �A

(n)T
0 E

(n+1)
11(k+1) = � �A

(n)T
21 [ �A

(n)
22 ]

�T �H
(n+1)
(k) [ �A

(n)
22 ]

�1 �A
(n)
21

+ �A
(n)T
11 X

(n+1)T
21(k) [ �A

(n)
22 ]

�1 �A
(n)
21 + �A

(n)T
21 [ �A

(n)
22 ]

�TX
(n+1)
21(k)

�A
(n)
11 ; (36a)

E
(n+1)
21(k+1) = �[ �A

(n)
22 ]

�T � [ �A
(n)T
12 E

(n+1)
11(k+1) +E

(n+1)
22(k+1)

�A
(n)
21 +X

(n+1)
21(k)

�A
(n)
11 ]; (36b)

E
(n+1)T
22(k+1)

�A(n)
22 + �A(n)T

12 E
(n+1)
22(k+1) +

�H(n+1)
(k) = 0; (36c)

(k = 0; 1; 2; 3; � � �);

where

�H(n+1)
(k)

= ( �X(n+1)
21 + "E

(n+1)
21(k)

) �A(n)
12 + �A(n)T

12 ( �X(n+1)
21 + "E

(n+1)
21(k)

)T ; E(n+1)
21(0)

= 0

X
(n+1)
ij(k) = �X

(n+1)
ij + "E

(n+1)
ij(k) ; (ij = 11; 21; 22):

The following theorem indicates the convergence of the recursive algorithm (36).

Theorem 3 Under the conditions stated in Assumptions 1 and 2, there exists �" > 0 such that, for every

" 2 (0; �"], Lyapunov equation (35) admits a positive semide�nite solution E(n+1). Moreover, the following

results hold:

jjE(n+1) �E
(n+1)
(k) jj = O("k); (k = 1; 2; 3; � � �) (37)

or equivalently

jjE(n+1) � E
(n+1)
(k+1) jj = O(")jjE(n+1) � E

(n+1)
(k) jj; (k = 1; 2; 3; � � �) (38)

where

jjE
(n+1)
(k) (")jj � ce <1; 8" 2 (0; �"];

E
(n+1)
(k) (") = E

(n+1)
(k) ; E(n+1)(") = E(n+1);

E
(n+1)
(k) =

"
E
(n+1)
11(k) E

(n+1)T
21(k)

E
(n+1)
21(k) E

(n+1)
22(k)

#
; E(n+1) =

"
E
(n+1)
11 E

(n+1)T
21

E
(n+1)
21 E

(n+1)
22

#
:
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Proof: As a starting point we need to show the existence of a bounded solution of E(n+1) in neighborhood of

" = 0. To prove that by the implicit function theorem (Gaji�c et al. 1990, Gaji�c 1986), it is enough to show

that the corresponding Jacobian is non{singular at " = 0. The Jacobian is given by

J j"=0 =

2
64 J11 0 0

J21 J22 J23

0 0 J33

3
75 (39)

where, using the Kronecker products representation we have

J11 = In1 

�A
(n)
0 + �A

(n)T
0 
 In1 ; J22 = In1 


�A
(n)
22 ; J33 = In2 


�A
(n)
22 + �A

(n)T
22 
 In2 ;

Jm1 =
@Lm

@E
(n+1)
11

j"=0; Jm2 =
@Lm

@E
(n+1)
21

j"=0; Jm3 =
@Lm

@E
(n+1)
22

j"=0; (m = 1; 2; 3);

L1 = E
(n+1)T
11

�A(n)
0 + �A(n)T

0 E
(n+1)
11 + �A(n)T

21 [ �A(n)
22 ]

�T �H(n+1)[ �A(n)
22 ]

�1 �A(n)
21

� �A(n)T
11 X

(n+1)T
21 [ �A(n)

22 ]
�1 �A(n)

21 �
�A(n)T
21 [ �A(n)

22 ]
�TX

(n+1)
21

�A(n)
11

L2 = �A
(n)T
22 E

(n+1)
21 + �A

(n)T
12 E

(n+1)
11 + E

(n+1)
22

�A
(n)
21 +X

(n+1)
21

�A
(n)
11

L3 = E
(n+1)T
22

�A
(n)
22 + �A

(n)T
12 E

(n+1)
22 + �H(n+1)

The matrix �A
(n)
22 is non{singular for all n 2 N because of Assumption 2. On the other hand, for all n 2 N the

matrix �A
(n)
0 is also stable because of Assumption 1 (Gaji�c et al. 1990, Gaji�c 1986) for a small parameter ".

Thus, the Jacobian (39) is non{singular. As a result, we can achieve the O("k) approximation of E
(n+1)
ij (ij =

11; 21; 22) by performing only k 2 N iterations using algorithm (36). Similarly, existence of �" is shown directly

by again using the implicit function theorem.

The second step in the proof of the given theorem is to give an estimate of the rate of convergence. Setting

k = 0 for equations (36) and subtracting (36) from (35), we obtain the following equations

(E(n+1)
11 � E

(n+1)
11(1) )

�A(n)
0 + �A(n)T

0 (E(n+1)
11 �E

(n+1)
11(1) ) = "F1(E

(n+1)
21 �E

(n+1)
21(0) ) (40a)

(E(n+1)
21 � E

(n+1)
21(1)

)T �A(n)
22 = "F2(E

(n+1)
21 �E

(n+1)
21(0)

) (40b)

(E
(n+1)
22 � E

(n+1)
22(1) )

�A
(n)
22 + �A

(n)T
22 (E

(n+1)
22 �E

(n+1)
22(1) ) = "F3(E

(n+1)
21 �E

(n+1)
21(0) ) (40c)

where, F1, F2 and F3 are appropriate implicit functions with " and E
(n+1)
21 � E

(n+1)
21(0) . By making use of

stability of �A
(n)
22 and �A

(n)
0 for all n 2 N and existence of the bounded solutions of (35), we have

jjE
(n+1)
11 �E

(n+1)
11(1) jj = O("); jjE

(n+1)
21 �E

(n+1)
21(1) jj = O("); jjE

(n+1)
22 �E

(n+1)
22(1) jj = O("): (41)

Continuing the same procedure it can easily be shown that

jjE
(n+1)
11 �E

(n+1)
11(k0)

jj = O("k0); jjE
(n+1)
21 � E

(n+1)
21(k0)

jj = O("k0); jjE
(n+1)
22 �E

(n+1)
22(k0)

jj = O("k0 ): (42)

Thus jjE(n+1) �E
(n+1)
(k0)

jj = O("k0), jjE(n+1) �E
(n+1)
(k) jj = O("k).

On the other hand, for the boundedness of E
(n+1)
(k) on ", we show that jjE

(n+1)
(k) jj � jjE(n+1)jj+O("k) � ce <1

since jjE(n+1)jj is bounded by using the implicit function theorem (Gaji�c 1986). This completes the proof of

Theorem 3. 2

4.2 The Recursive Algorithm for Y (n+1)

In this section we now turn to the recursive algorithm for Y (n+1). By following the similar steps in the

matrix X(n+1) case, the algebraic Riccati equation (30b) can be partitioned into

�A(n)T
0

�Y
(n+1)
11 + �Y (n+1)T

11
�A(n)
0 + Q̂

(n)
0 = 0; (43a)

�Y (n+1)
21 = �[ �A(n)

22 ]
�T ( �Y (n+1)T

22
�A(n)
21 + �A(n)T

12
�Y (n+1)
11 + Q̂

(n)T
12 ); (43b)

�A
(n)T
22

�Y
(n+1)
22 + �Y

(n+1)T
22

�A
(n)
22 + Q̂

(n)
22 = 0; (43c)
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De�ning the error term F
(n+1)
ij (ij = 11; 21; 22) with respect to Y

(n+1)
ij (ij = 11; 21; 22) the exact solutions

can be produced in the following form

Y
(n+1)
11 = �Y

(n+1)
11 + "F

(n+1)
11 ; Y

(n+1)
21 = �Y

(n+1)
21 + "F

(n+1)
21 ; Y

(n+1)
22 = �Y

(n+1)
22 + "F

(n+1)
22 : (44)

In this case, matrices �Y
(n+1)
11 , �Y

(n+1)
21 , �Y

(n+1)
22 , F

(n+1)
11 , F

(n+1)
21 and F

(n+1)
22 satisfy coupled algebraic Lyapunov

equations (45) and (46) respectively.

�A(n)T
0

�Y (n+1)
11 + �Y (n+1)T

11
�A(n)
0 + Q̂

(n)
0 = 0; (45a)

�Y
(n+1)
21 = �[ �A

(n)
22 ]

�T ( �Y
(n+1)T
22

�A
(n)
21 + �A

(n)T
12

�Y
(n+1)
11 + Q̂

(n)T
12 ); (45b)

�A
(n)T
22

�Y
(n+1)
22 + �Y

(n+1)T
22

�A
(n)
22 + Q̂

(n)
22 = 0; (45c)

F
(n+1)T
11

�A
(n)
0 + �A

(n)T
0 F

(n+1)
11 = � �A

(n)T
21 [ �A

(n)
22 ]

�T Ĥ(n)[ �A
(n)
22 ]

�1 �A
(n)
21

+ �A
(n)T
11 ( �Y

(n+1)
21 + "F

(n+1)
21 )T [ �A

(n)
22 ]

�1 �A
(n)
21 + �A

(n)T
21 [ �A

(n)
22 ]

�T ( �Y
(n+1)
21 + "F

(n+1)
21 ) �A

(n)
11 ; (46a)

F
(n+1)
21 = �[ �A(n)

22 ]
�T � [ �A(n)T

12 F
(n+1)
11 + F

(n+1)
22

�A(n)
21 + (�Y (n+1)

21 + "F
(n+1)
21 ) �A(n)

11 ]; (46b)

F
(n+1)T
22

�A
(n)
22 + �A

(n)T
22 F

(n+1)
22 + Ĥ(n+1) = 0; (46c)

where

Q̂
(n)
0 = Q̂

(n)
11 � Q̂

(n)
12 [

�A(n)
22 ]

�1 �A(n)
21 �

�A(n)T
21 [ �A(n)

22 ]
�T Q̂

(n)T
12 + �A(n)T

21 [ �A(n)
22 ]

�T Q̂
(n)
22 [

�A(n)
22 ]

�1 �A(n)
21 ;

Ĥ(n+1) = (�Y
(n+1)
21 + "F

(n+1)
21 ) �A

(n)
12 + �A

(n)T
12 ( �Y

(n+1)
21 + "F

(n+1)
21 )T :

Similar to the derivations in Section 4.1, we also obtain the following algorithm for solving (46)

F
(n+1)T
11(k+1)

�A
(n)
0 + �A

(n)T
0 F

(n+1)
11(k+1) = � �A

(n)T
21 [ �A

(n)
22 ]

�T Ĥ
(n+1)
(k) [ �A

(n)
22 ]

�1 �A
(n)
21

+ �A
(n)T
11 Y

(n+1)T
21(k) [ �A

(n)
22 ]

�1 �A
(n)
21 + �A

(n)T
21 [ �A

(n)
22 ]

�TY
(n+1)
21(k)

�A
(n)
11 ; (47a)

F
(n+1)
21(k+1) = �[ �A(n)

22 ]
�T � [ �A(n)T

12 F
(n+1)
11(k+1) + F

(n+1)
22(k+1)

�A(n)
21 + Y

(n+1)
21(k)

�A(n)
11 ]; (47b)

F
(n+1)T
22(k+1)

�A
(n)
22 + �A

(n)T
22 F

(n+1)
22(k+1) + Ĥ

(n+1)
(k) = 0; (47c)

(k = 0; 1; 2; 3; � � �)

where

Ĥ
(n+1)
(k) = (�Y

(n+1)
21 + "F

(n+1)
21(k) )

�A
(n)
12 + �A

(n)T
12 ( �Y

(n+1)
21 + "F

(n+1)
21(k) )

T ; F
(n+1)
21(0) = 0;

Y
(n+1)
ij(k) = �Y

(n+1)
ij + "F

(n+1)
ij(k) ; (ij = 11; 21; 22):

The following theorem indicates the convergence of the algorithm (47).

Theorem 4 Under the conditions stated in Assumptions 1 and 2, there exists "̂ > 0 such that, for every

" 2 (0; "̂], Lyapunov equation (46) admits a positive semide�nite solution F (n+1). Moreover, the following

results hold:

jjF (n+1) � F
(n+1)
(k) jj = O("k); (k = 1; 2; 3; � � �) (48)

or equivalently

jjF (n+1) � F
(n+1)
(k+1) jj = O(")jjF (n+1) � F

(n+1)
(k) jj; (k = 1; 2; 3; � � �) (49)
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where

jjF
(n+1)
(k) (")jj � cf <1; 8" 2 (0; "̂];

F
(n+1)
(k) (") = F

(n+1)
(k) ; F (n+1)(") = F (n+1);

F
(n+1)
(k)

=

"
F
(n+1)
11(k) F

(n+1)T
21

F
(n+1)
21(k) F

(n+1)
22(k)

#
; F (n+1) =

"
F
(n+1)
11 F

(n+1)T
21

F
(n+1)
21 F

(n+1)
22

#
:

Proof: The proof is omitted since it is similar to the proof of Theorem 4. 2

Note that if " is very small, then the truncation error in the algorithms (36) and (47) is a little bit too small

since the equations (37) and (48) hold. Therefore, for the Lyapunov equation (9), a�ection of the truncation

error in the algorithms (36) and (47) is very small.

An algorithm which solves the parameterized cross{coupled algebraic Riccati equation (6) with small posi-

tive parameter " is as follows.

Step 1. Calculate �
1 and �
2 by using the norm conditions (11).

Step 2. Choose 
 such that 
 > �
 = maxf�
1; �
2g and solve the algebraic Riccati equations (10) by using the

recursive technique proposed by Mukaidani et al. (1999). Starting with an initial matrices of X(0) and

Y (0).

Step 3 Calculate �An, �Qn and Q̂n by using the relation (29).

Step 4. Compute the solutions X(n+1), Y (n+1) of the parameterized cross{coupled algebraic Riccati equation

(9) by using the recursive algorithms (36) and (47).

Step 5. If minfjjF1(X
(n)
" ; Y

(n)
" )jj; jjF2(X

(n)
" ; Y

(n)
" )jjg < O("N ) for a given integer N > 0, go to Step 6.

Otherwise, increment n! n+ 1 and go to Step 3. Here F1(�), F2(�) are given by (51) after.

Step 6. Calculate w�(t) = 
�2DT
" X"x(t), u�(t) = K2x(t) = �BT

" Y"x(t).

5. Numerical Example

In order to demonstrate the e�ciency of the proposed algorithm, we have run a simple numerical example.

Matrices A", D" and B" are chosen randomly. These matrices are given by

A11 =

"
0 0:4

0 0

#
; A12 =

"
0 0

0:345 0

#
;

A21 =

"
0 �0:524

0 0

#
; A22 =

"
0 0:262

0 �1

#
;

D1 =

"
1

0

#
; D2 =

"
0:2

1:2

#
; B1 =

"
0

0

#
; B2 =

"
0

1

#
;

and a quadratic cost function

J(x(t); u(t)) =

Z 1

0
[x(t)TQx(t) + u(t)Tu(t)]dt; (50)

where Q = diag
�
1 0 1 0

�
.

Since detA22 = 0, the system (1) is a nonstandard singularly perturbed system.

Here, �
1 = 10:9316 and �
2 = 2:9058 from (11). Then, for every boundary value of 
 > �
 = maxf�
1; �
2g =

10:9316 the parameterized cross{couple algebraic Riccati equations (6) have positive semi{de�nite solutions.
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On the other hand, the minimum values of disturbance attenuation level 
 such that there exists H2=H1

controller is 
� = 9:1980. The entries show the results obtained for small parameter " = 0:0001. Now, we

choose 
 = 12:0 > �
 = 10:9316 to design the controller.

Firstly, we give the following solutions of the algebraic Riccati equations (10):

X(0) =

"
X

(0)
11 "X

(0)T
21

X
(0)
21 X

(0)
22

#

=

2
6664

8:6262480 3:8257410 6:8423004� 10�4 1:4811918� 10�4

3:8257410 7:7141072 3:0497997� 10�4 2:2865074� 10�5

6:8423004 3:0497997 4:7775023 1:0165454

1:4811918 2:2865074� 10�1 1:0165454 2:3869035 � 10�1

3
7775 ;

Y (0) =

"
Y
(0)
11 "Y

(0)T
21

Y
(0)
21 Y

(0)
22

#

=

2
6664

6:2844935 2:8987718 4:7119089� 10�4 1:0000000� 10�4

2:8987718 7:2863698 2:2108915� 10�4 4:4757142� 10�6

4:7119089 2:2108915 4:7122624 1:0000763

1:0000000 4:4757142� 10�2 1:0000763 2:3452014 � 10�1

3
7775 :

Secondly, it can be seen that the solutions of the parameterized cross{coupled algebraic Riccati equations (6)

converge to the following solutions with accuracy of O(10�8) after 23 Lyapunov iterations.

X(23)
" =

"
X

(23)
11 "X

(23)T
21

"X
(23)
21 "X

(23)
22

#

=

2
6664

8:3126876 3:6708548 6:5605827� 10�4 1:4199535� 10�4

3:6708548 7:6380956 2:9112022� 10�4 1:9850687� 10�5

6:5605827� 10�4 2:9112022� 10�4 4:7774746� 10�4 1:0165392� 10�4

1:4199535� 10�4 1:9850687� 10�5 1:0165392� 10�4 2:3868896� 10�5

3
7775 ;

Y (23)
" =

"
Y
(23)
11 "Y

(23)T
21

"Y
(23)
21 "Y

(23)
22

#

=

2
6664

9:8895917 4:2091443 8:0863985� 10�4 1:7735270� 10�4

4:2091443 7:8666697 3:4322839� 10�4 3:1503598� 10�5

8:0863985� 10�4 3:4322839� 10�4 4:8425400� 10�4 1:0329538� 10�4

1:7735270� 10�4 3:1503598� 10�5 1:0329538� 10�4 2:4284243� 10�5

3
7775 :

In order to verify the exactitude of the solution, we calculate the remainder when substitute X(23)
" and Y

(23)
"

into the parameterized cross-coupled algebraic Riccati equations (6a) and (6b) respectively.

jjF1(X
(23)
" ; Y (23)

" )jj = 2:914 � 10�9; jjF2(X
(23)
" ; Y (23)

" )jj = 2:911� 10�10

where the errors F1(X"; Y") and F2(X"; Y") are de�ned as follows

(A" + 
�2U"X" � S"Y")
TX" +X"(A" + 
�2U"X" � S"Y")

+Q � 
�2X"U"X" + Y"S"Y" � F1(X"; Y"); (51a)

(A" + 
�2U"X" � S"Y")
TY" + Y"(A" + 
�2U"X" � S"Y")

+Q + Y"S"Y" � F2(X"; Y"): (51b)
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Therefore, the numerical example illustrates the e�ectiveness of the proposed algorithm since the solutions

X
(n)
" and Y

(n)
" converge to the exact solutions X" and Y" which are de�ned by (6a) and (6b). Indeed, we can

obtain the solution of the parameterized cross{coupled algebraic Riccati equations (6a) and (6b) even though

A22 is singular.

6. Conclusions

We have developed an algorithm for solving the parameterized cross{coupled algebraic Riccati equations

with a small positive parameter " for mixed H2=H1 control problem. So far, there were no condition ensuring

the existence of solutions of the parameterized cross{coupled algebraic Riccati equations and proof of conver-

gence. Furthermore, the recursive algorithm for solving the cross{coupled algebraic Riccati equations with

relation to the dynamic Nash games of the singularly perturbed systems had not been investigated. In this pa-

per, we �rst derived the new su�cient condition for 
 such that the solution of the parameterized cross{coupled

algebraic Riccati equations converges to a positive semi{de�nite solution. We have also given the convergence

proof for the new Lyapunov iteration algorithm. That is, if we choose any 
 > maxf�
1; �
2g as a new su�cient

condition, then there exist the mixed H2=H1 controller to attain the disturbance attenuation level 
 and min-

imize the performance index. Next we proposed the new algorithm to solve the parameterized cross{coupled

algebraic Riccati equations with a small positive parameter " by combining the Lyapunov iteration and the

recursive technique. By using the new algorithm, we overcame the computation di�culties caused by high

dimensions and numerical sti�ness in the Lyapunov iteration method. In this case, the Lyapunov iteration and

the recursive algorithm converge to positive semi{de�nite solutions with the rate of convergence of O("k). In

addition, our new results are applicable to both standard and nonstandard singularly perturbed systems and

include the existing methods (Li and Gaji�c 1994, Gaji�c and Shen 1993) as a special case.
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