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Abstract

In this paper, we study the mixed Ho/H, control problem for infinite horizon singularly perturbed systems.
In order to solve the problem, we must solve a pair of parameterized cross—coupled algebraic Riccati equations
with a small positive parameter €. Firstly, we solve the parameterized cross—coupled algebraic Riccati equations
by using a Lyapunov iteration approach. Sufficient conditions are provided such that the proposed Lyapunov
iterations converge to a positive semidefinite solution. Secondly, we propose a new algorithm, which combines
Lyapunov iterations and recursive techniques together, to solve the parameterized cross—coupled algebraic
Riccati equations. The new algorithm ensures that the solution of the parameterized cross—coupled algebraic
Riccati equations converges to a positive semidefinite solution with the rate of convergence of O(c*). As
another important feature of this paper, our method is applicable to both standard and nonstandard singularly
perturbed systems.
Key Words: Singularly perturbed systems, Mixed Hs/H. control problem, Generalized algebraic Riccati

equation, Lyapunov iterations, Recursive algorithm



1. Introduction

The cross—coupled algebraic Riccati equations play an important role to some problems of modern control
theory (see for example Starr et al. 1969, Abou-Kandil et al. 1993, Li and Gaji¢ 1994, Limebeer et al. 1994,
Freiling et al. 1996, Xu and Mizukami 1996, Xu and Mizukami 1997). In Limebeer et al. (1994), a state
feedback mixed Hs/H,, control problem is formulated as a dynamic Nash game, where one performance index
1s used to reflect an H., constraint and the other performance index reflects an Hs optimality requirement. This
problem is solved by using the established theory of nonzero-sum games and the resulting feedback controller
is characterized by the solution to a pair of cross-coupled algebraic Riccati equations.

It is well known that in order to obtain the Nash equilibrium strategies, we must solve the cross—coupled
algebraic Riccati equations. Li and Gaji¢ (1994) proposed an algorithm, called the Lyapunov iterations, to
solve the linear—quadratic Nash game. Freiling et al.(1996) found the solutions to the cross—coupled algebraic
Riccati equations of the mixed Ho/Ho, type by using the Riccati iterations. But, the convergence of the Riccati
iterations was not proved.

In recent years, the recursive algorithm for various control problems of not only singularly perturbed but
also weakly coupled systems have been developed in many literatures (Gaji¢ et ¢l.1990, Gaji¢ and Shen 1993,
Gajic et al. 1995, Mizukami and Suzumura 1993, Mukaidani et ¢l. 1998). It has been shown that the recursive
algorithm are very effective to solve the algebraic Riccati equations when the system matrices are functions of
a small perturbation parameter €. So far, dynamic Nash games of the weakly coupled systems were studied
in Gaji¢ et al. 1990 and Gaji¢ and Shen 1993 by means of a recursive algorithm. However, the recursive
algorithm for solving the cross—coupled algebraic Riccati equations with relation to the dynamic Nash games
of the singularly perturbed systems has not been investigated.

In this paper, we study the mixed Hy/H o, control problem for infinite horizon singularly perturbed systems
from a viewpoint of solving the parameterized cross—coupled algebraic Riccati equations. We first apply
the Lyapunov iterations to solve the parameterized cross—coupled algebraic Riccati equations. The sufficient
conditions are provided such that the proposed Lyapunov iterations converges to a positive semidefinite solution.
Since the singularly perturbed systems contain a small positive perturbation parameter ¢, it is difficult to
solve the resulted Lyapunov equations. We then propose a new algorithm, which combines the Lyapunov
iterations and the recursive techniques together, to solve the parameterized cross—coupled algebraic Riccati
equations. Using the new algorithm, we will overcome the computation difficulties caused by high dimensions
and numerical stiffness in the Lyapunov iteration method. The convergence of the algorithm is proved by
using the successive approximations of dynamic programming. It is worth to note that the recursive approach
to solve the linear—quadratic Nash games and the Hs/H, control problems for singularly perturbed systems
has never been studied. Also, we have not found any work concerning the Lyapunov iterations to solve the
mixed Hy/Ho, control problem. As another important feature of this paper, we do not assume that Asy is non-
singular. Therefore, our new algorithm is applicable to both standard and nonstandard singularly perturbed
systems.

This paper is organized as follows. In Section 2, the problem of the Hs/Ho, control is formulated for the
singularly perturbed systems. In Section 3, we apply the Lyapunov iterations to solve the parameterized cross—
coupled algebraic Riccati equations. The sufficient conditions are proven such that the Lyapunov iterations
converges to a positive semidefinite solution. In Section 4, we propose a new algorithm, which combines the
Lyapunov iterations and the recursive techniques together, to solve the parameterized cross—coupled algebraic
Riccati equations. In Section 5, to show the effectiveness of the proposed algorithm, numerical examples are
included. Finally, in Section 6 we conclude some discussions on the results.

Notation: The notations used in this paper are fairly standard. The superscript 1" denotes matrix transpose.
I, denotes the n x n identity matrix. |- |oo denotes its Ho, norm for a transfer matrix function. L[0, o)

2



stands for the space of square integrable vector functions over the interval [0, o0). |- |2 denotes its L3[0, o0)
norm for a continuous function over [0, co). | - | denotes its Euclidean norm for a matrix. ® denotes the

Kronecker product.
2. Problem Formulation

Consider a linear time—-invariant singularly perturbed system

l‘l(t) = A11$1(t)+A12$2(t)+D1w(t)+Blu(t), l‘l(O) IO, (1&)

El.‘z(t) = Azll‘l(t) + Azzl‘z(t) + Dzw(t) + Bzu(t), l‘z(O) = 0, (1b)
| Ca() REAO

z(t) = Lu(t) | z(t) = (1) ] , (1¢)

and a quadratic cost function
Iatue) = [ s = ol @

where ¢ is a small positive parameter, z; € R™ and z5 € R?? are states, v € R" is the control input, w € R/2
is the disturbance, z € R*? is the controlled output. All matrices above are of appropriate dimensions. We
suppose that LT L = I;,. The system (1) is said to be in the standard form if the matrix A, is nonsingular.
Otherwise, it is called the nonstandard singularly perturbed systems (Kokotovié et al. 1986).

Let us introduce the partitioned matrices

A = A A A = Arq Ara
Asy Ao | : e7lAy e7lAg |
B B D D
B ! ) Ba = ! ) D ! ) Da = ! )
Bz E_le D2 €_1D2
S. = B.BT = _‘f“T 5:2512 .S = BBT SlTl Siz |
£ 512 £ 522 512 522
Ua = DaD? = qllT E_lUlz ’ U - DDT = UlT1 U12 ’
o U12 €7 *Uss U12 Uas
cT Q11 Q12
Q = ¢Tc = | Y [01 02]: .
cy Ql, Qa2

We now consider the mixed Ha/He, control problems for singularly perturbed system (1) under the following
basic assumption (Gaji¢ et al. 1990, Gaji¢ and Shen 1993, Gaji¢ et al. 1995).

Assumption 1 The triplet (A., B:, C) and (A., D., C) are stabilizable and detectable fore € (0,¢*] (¢* > 0).
Assumption 2 The triplet (As2, Ba, C2) and (Asz, Da, C2) are stabilizable and detectable.

These conditions are quite natural since at least one control agent has to be able to control and observe
unstable modes.
The mixed Hs/H, control problem is formulated as a two—player Nash game associated with a prescribed

disturbance attenuation level 7,

Ji(, u,w) = /OOO Yl (w(t)dt — J(x,u) = 3 |w(b)]; - |0, (3a)

oz, u,w) = J(x,u) = |2(0)]5- (3b)



The first is used to reflect an H., criterion, while the second is used for an H, optimality requirement. The

purpose is to find a linear feedback controller u*(t) = Kax(t) such that

Jy(u*,w*) < Ji(u', w), (4a)
Jo(u, w*) < Ja(u,w”), (4b)
where w*(t) = Kyx(t) represents the worst-case disturbance. When Jy(u*, w*) > 0, we have
J(u*, w)
sup ~————— < 7, (5)
wery W)l

a Ho, criterion, where H,, denotes an appropriate Hilbert space. The second Nash inequality shows that «*(?)
regulates the state to zero with minimum output energy when the disturbance is at its worst value w*(¢). The

following lemma is already known (see Limebeer et al. 1994).

Lemma 1 Under Assumption 1, there exists an admissible controller such that (4) hold iff the following full-

order parameterized cross—coupled algebraic Riccati equations

(Ae = SY)T XL 4+ Xo(Ae = S.Y0) + Q + 77 ° XU Xe + Y2 5.Y. =0, (6a)
(A + 972U X)TYe + V(A +9770X0) +Q = V25.Y, =0, (6b)
have solutions X, > 0 and Y, > 0 where
v l Xuoexfi| o [ Yooevd ] |
eXo9 X |T° eY91 €Yo
Then, the strategies are given by
w*(t) = Kyz(t) = v DI X.z(1), (Ta)
w*(t) = Kox(t) = —BI Y.z(t). (7b)

However, it is difficult to solve the parameterized cross—coupled algebraic Riccati equations (6a) and (6b)
because of the different magnitudes of their coefficients caused by the small perturbation parameter £ and high

dimensions.
3. The Parameterized Cross—Coupled Generalized Algebraic Riccati Equations

To obtain the solutions of the parameterized cross—coupled algebraic Riccati equations (6a) and (6b), we

first define
II. = Iy 0 .
0 el
Then, we introduce the following useful lemma.

Lemma 2 The parameterized cross—coupled algebraic Riccati equations (6a) and (6b) are equivalent to the

following parameterized cross—coupled generalized algebraic Riccati equations (8a) and (8b) respectively.

(A-SY)YTX + XT(A-SY)+ Q4+ XTUX +YTSY =0, (8a)
(A+y72UX)Y +YT(A+ 472 UX)+Q - YTSY =0, (8h)
where
X11 EXT Y11 EYT
X.=nfx=x7n,, v.=nfvy=v7n,, x= 2y = 2
le X22 Y21 YZZ
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Proof: The proof is identical to the proof of Lemma 3 in Mukaidani et al. (1999). a

In Li and Gajié¢ (1994), only the Lyapunov iterations for solving cross—coupled algebraic Riccati equations
of Nash differential games are considered. In this paper, we give the Lyapunov iterations to solve the param-
eterized cross—coupled algebraic Riccati equations. An algorithm for the numerical solutions of (8) is defined

as follows.

(A+~20X 0 — gy )T x(n+l) | x (kDT (4 4 4=217 x () _ gy (n))

+Q — 4 2XxWTyx () 4 y(IT gy () — (9a)

(A4 20X — gy Ty (ndl) Ly (nd DT (4 4 4 =2p x (1) — gy (n))y
+Q+YWTgyt = (9b)
where n = 0, 1, 2, 3, --- and initial conditions X(®, V(% are obtained as solutions of following auxiliary

generalized algebraic Riccati equations
ATY© 4 yOT 4 4 g — y(OT gy (0 — g (10a)
(A= SYOYT x4 x(OT (4 _ 5y ) 4 Q 447 2XOTyx(®) 4 yOT gy (0 — ¢, (10b)

n n)T
Y1(1 ) 5Y2(1 )

) yin = n n
YZ(l ) YZ(Z )

s
Xyt Xay

We note that the unique positive semidefinite stabilizing solution of (10a) exists under Assumptions 1 and
2 (Gajié¢ et al.1990, Gaji¢ and Shen 1993, Gaji¢ et al. 1995). Concerning with the Riccati equation (10b), let

us define

71 = E(sI = A)7'D + Hloo, (11a)
Yo = [ Ea(sT = Agz) ™ Daleo, (11b)
where
1‘}11 Ay

A-Sy0 =

] . Q4+ YWOTgy®) —

B BT B BT
Ay Ag E.ET  EyET |7

A=A — ApaASs Aoy, D=D; — A1y AT} Do,

B= By~ ByApl Ay, H=—EyA5 D,
If Assumptions 1 and 2 hold, then for every v > ¥ = max{%;, 72}, the Riccati equation (10b) has the positive
definite stabilizing solutions since the Riccati equation (10a) has stabilizing solution (Dragan 1996, Mukaidani
1998).

The algorithm (9) is based on the Lyapunov iterations (Li and Gaji¢ 1994, Gaji¢ and Shen 1993, Gajié et al.
1995). Although the algorithm (9) is similar to as that of Li and Gajic (1994), different convergent conditions
are required. In Li and Gajic (1994), the stabilizable-detectable conditions will guarantee the convergence of
the Lyapunov iterations of Nash games to the positive semidefinite solutions. However, the convergence of the
Lyapunov iteration in this paper depends on the value of the parameter 4. In fact, if v is very small, Lyapunov
iteration (9a) may not yield the solution of X(+1) " Because the last three terms of the Lyapunov iteration
(9a), that is, Q@ — vy 2XT X () £ y(IT 5y () s not, always positive semidefinite.

In this paper, under the control-oriented assumptions and a new condition for v, we prove that the proposed
Lyapunov iterations (9) converge to the positive semidefinite solutions. The algorithm (9) has the feature given

in the following theorem.



Theorem 1 Under Assumptions 1 and 2, for a predescribed disturbance attenuation level y > ¥ = max{y1, 72}

and a small parameter ¢ > 0, the unique positive semidefinite solutions of the parameterized cross—coupled

algebraic Riccali equation (6) exist, where 31, Y2 are given by (11a) and (11b) respectively. It is obtained by

performing Lyapunov iterations (9a) and (9b).

Proof: We give the proof by using a method similar to that given in the proof of Theorem2.1 in Li and Gajié

(1994). The proof based on the method of successive approximations (Aganovic and Gajié 1995). Firstly, we
take any stabilizable linear control law u(®(, z) = —BaTYg(O)x(t) and disturbance w(®)(t, ) = 'y_zDaTXg(o)x(t)

where Xa(o) and Yg(o) are positive semidefinite stabilizing solutions of auxiliary generalized algebraic Riccati

equations (10). Then, let us consider the following two minimization problems.

2(t) = Acx(t)+ Dow(t)+ Bl () = [A. — S Y ONe(t) + Dow(t),
Ve 0 = min [ B 0l — () Qelr) 4 0, 2, a)}dr
= in [P () - T ()Q+ YIS et i,
#(t) = Acw(t)+ D (t) + Bou(t) = [A: + 7 UXNa(t) + Bou(t),
Ve, ) = min [ a7 Qe(r) + ulr)
where
(O _ [ X9 ex T VO _ v ey
: 6}(52) 6)?53) T ESC;E) 55@59)

Corresponding Hamiltonians to the Nash differential games for each control agent are respectively
Hy(t, =, w, ul®), p(lo)) =~12uwTw — 2T Qu — w7 40 —|—p(10)T(A€a: + D.w + Bau(o)),
Hy(t, =, w® u, p(zo)) =27Qz +u"u —|—p(20)T(A€a: + D.w® + B.u),

where

VO, =00, (1= 1,2), 60 = (A 470X — S Oatr),
xr

W0 0= [ OO0 - @ - YOS Oa(r)dr,
t

w%aw:/ T (1)@ + Y5, YOa(r)dr.
t

The equilibrium controls must satisfy

OH 1 _

—6w1 =0 = w(l)(t, z) = —57 2Dan(lo)(t),
OH 1

—6u2 =0 = uV(t, z) = —§B€Tp(20)(t).

Note that 6&%(0)(1‘, t) along the system trajectory can be calculated from (15).
x

9 1/ dz _ d 0 _
£VZ (z, 1) - i EVZ (x, 1), (i=1, 2).
In fact, we obtain the following equations (16).
gvl(())(xa t) - [A: + 7_2U€Xa(0) - SaYa(O)]x(t)
x
= —a()T [y XV X - Q - VU5 ¥ Va(t),

_aa VIO, 1) [Ae + 4720 X9 — S Y ONa(t) = —2()T[Q + YV 5. Y V) (t).
it
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These simple partial differential equations (16) have solutions of the following form

VIO, 1) = —2(@)T XDa(t), (17a)
VIO, t) = 2(0)" Y V(). (17b)

A partial differentiation to (17) gives

DV, 1) = —2X0at) = 70, (18a)
TV, 1) = 25 0(0) = 9000, (18b)

By using the following relation

227 (1)(A: + 7_2U€Xa(0) - Sa}/a(o))TXgl)$(t)
= $T(t)[(Aa + 7_2U€Xa(0) - SaYa(O))TXa(l) + Xa(l)(Aa + 7_2U€Xa(0) - SaYa(O))]x(t),

we have

(A + 7_2U€Xa(0) - SaYa(O))TXa(l) + Xa(l)(Aa + 7_2U€Xa(0) - SaYa(O))

= —(Q—v2XOU x4 y(0 g5 y(0) (19a)
(Aa + 7_2U5X(0)E - SE}/;_'(O))T}/;_'(l) + Yg(l)(AE + 7_2U€Xg(0) - Say(o))a
= —(Q+ Y V5. v™), (19b)

Since the Riccati equation (10b) has a positive semidefinite stabilizing solution by the bounded real lemma

(Dragan 1996, Zhou 1998), A. + 'y_ZUan(O) — SaYg(O) is a stable matrix. Furthermore, we see that the right—
hand side of equation (19b) is negative definite and x® = x¥ > 0 comparing equation (19a) with equation
(10b). Consequently, it follow that the Lyapunov equations (19a) and (19b) have unique positive semidefinite
solutions Xg(l) >0, Yg(l) > 0 respectively.

Thus, from (14) and (18) we get

w(t, 2) =47 2DT XWe(r), XM >0, (20a)
uD(t, 2) = —BIYDa(t), vV > 0. (20b)

On the other hand, substituting w(® (¢, z), «(?)(¢, z), and (18) into Hamiltonians (13), it follows from the
parameterized cross—coupled algebraic Riccati equation (19) that equality (21) holds.

Hi(t, =, w(o), u(o), Pgo))

= 72w — 2T Qu — w7 (0 4 p(lo)T (Acx 4+ D.w™® + B.u®) =0, (21a)
Hy(t, &, w'®, oV, P(zo))
=2TQx + wlOT 4 (0) 4 p(ZO)T (Acz + D.w® + Bgu(o)) =0. (21b)

Thus, we obtain the inequality (22).

0 = —Hi({¢, =, w(o),

WD)

w(®

S

bl

; (22a)

= —Hy(t, 2, w® (22b)

bl



Secondly, we study a Lyapunov equations (9) for any n € N. Taking any stabilizable linear control law
uM(t, &) = —BaTYg(n)x(t) and disturbance w™(t, z) = 'y_zDaTXg(n)x(t), similarly to the case of n = 0, let us

consider the following two minimization problems.

2(t) = A.x(t)+ Dow(t) + Bl (1) = [A. — S.Y M 2(t) + Dow(?), (23a)
ife, ) = min /t Oo[vzw(r)Tw(T) —{2(nTQa(r) + uT (r)ul™(r)}dr, (23b)
#(t) = Acx(t)+ D.w™(t) + Bou(t) = [A: + 472U XMx(t) + Bou(t), (23¢)
V(1) = min /t Oo[x(T)TQx(T)—I—u(T)Tu(T)]dT, (23d)

where
w™(t, 2) =3 2DTXMet), u™(t, ) = =BTV Me(t).

Furthermore, A, — SaYg(n) and A, + 'y_ZUan(n) are stable (Gaji¢ et al 1995, Li and Gaji¢ 1994). According
to the minimum principle, the minimization problem formulated above is equal to the problem which minimize
Hamiltonian H:(¢, z, w, u(®), p(ln)) and Ho(t, x, w™, u, p(zn)) in respect of the w and u respectively.

By following the similar steps in the case of n = 0, we get

(e 720X YNNI X, 72 — S 0)

= Q-7 XIUXM + YY), (24)
(Aa + ,y—ZUaX(n)E _ Sa}/a(n))T}/a(n+1) + }/a(n-l—l)(Af + 7_2U5X€(n) _ Sa}/a(n))
= —(Q+Y!Msy) (24b)
0 = —Hi(t, 2, w™, w0 p(ln)), (24¢)
0 = —Hy(t, z, w'™, ul, p(zn)) (24d)
where
0

SV, 1) =AU, (=1, 2), 60 = [As 49720 X = 5V a(t),

X

Vi 1) = [ aT (b XU - Q - YIS a(r)dr = —a) X a(h),
1

Vi (a, 1) = / T(Q + YV a(r)dr = a(t)TY D a(0).
1

For the sequel, from the equality (24), it follows that

0 = —Hi(t o w™, o™ P") < —minHi(t, 2, w, u™, P

= CH(t, @, wTD, )] iy (25a)
0 = —Hot, 2, w, u, i) < —min Ha(t, 2, v, u, py)

= —HZ(t’ z, w(n)a u(n+1)’ p(Zn)) (25b)

On the other hand, by using the monotonicity result of the successive approximations and the minimization

technique in the negative gradient direction (Li and Gajié¢ 1994), we get a monotonically decrease sequences

Vl(n)(xa t) Z Vl(n-l—l)(xa t)a (26&)
VZ(n)(xa t) > V2(n+1)(xa t)a (26b)

where 0 > Vl(n)(x, t) > Vi, Vz(n)(x, t) > 0. We note that there exists lower bound V; (Limebeer et al. 1994,
Lemma 2.2). Thus, these sequences (26) are convergent. Note that the sequences pgn)(t), (i=1, 2), w™(t, )
8



VO, 1) = 70, (=1, 2), 0 () =~y D),

. 0

and u(™(t, ) are also convergent, since e
x

1 _ . . . . .

u(")(t, z) = ——Ban(zn 1)(15). Consequently, from the method of successive approximations (Aganovic and Gajié

1995), we have the convergence form (27) when n is very large.

—min Hy(t, 2, w, u'™), p(ln)) = —Hy(t, 2, WY ) p(ln))

— —Hy(t, x, wTD D)ty = (27a)
_Hgn Hsy(t, =, w(”), u, p(zn)) = —Hy(t, =, w(n)’ u(n+1)’ p(zn))

— —Hy(t, x, wtY D) gty = (27b)

It is easy to show that sequences {Xg(n)}, {Ya(n)}, (n =0, 1, 2, ---) are convergent since the matrices

corresponding Hamiltonians to tend to zero, that is, equation (27) holds for n — co. In addition, let {Xg(oo)}

and {Ya(oo)} be the limit points of the corresponding sequences, we have

(e 7720 X052 = SN 4 X4, 4320 - 5,Y()

+Q— 72X, X ) gy )5 v ) =g, (28a)
(A + 7_2U€Xa(oo) - SaYa(oo))TYa(oo) + Ya(oo)(Aa + 7_2U€Xa(oo) - SeYa(oo))
+Q+ Y ™Sy (™) =0, (28b)

that is, {Xg(oo)}, {Yg(oo)} satisfy the parameterized cross—coupled algebraic Riccati equations (6) so that they
represent the sought solutions of these equations.

Thirdly, we prove that Xg(n-l_l), Yg(n-l_l) are positive semidefinite and A, + 'y_ZUan(n) — Sng(n) = A(n) is
stable. The first stage is to prove that A(n) is stable. The proof is done by using mathematical induction.
When n = 0, A(0) is stable by taking into account bounded real lemma for the equation (10b). Next n =4, we
assume that A(7) is stable. Substituting n = ¢ into (23), the minimization problem (23) produce a stabilizing

control given by
wi (L, ) =y 2DF XEDp), D, 2) = =BT Y +D (1),

It is obvious from the method of successive approximations (Aganovic and Gaji¢ 1995) that A(7 + 1) is stable
since it is the stable matrix of the closed-loop system, ie. #(t) = [A: + 'y_ZUan(H_l) — Sng(iH)]x(t) =
A(i 4+ 1)x(t). Thus, A(n) is stable for all n € N. Furthermore, A(c0) = A, + ’y_zUan(oo) — SaYg(oo) 1s also
stable because the sequences {Xg(n)}, {Yg(n)} are convergence when n — oo .

a(n+1) and }/a(n+1)

The next stage is to prove that X are positive semidefinite. Rearranging the Lyapunov

equation (24a), we get
(Aa _ Saya(n))TXa(n+1) + Xg(n-l—l)(AE _ SEY;_'(”))
= Q- XX = XML (XLH) - X)) X, X 4 Y8, Y]
Note that the Lyapunov equation (24a) has a unique positive semidefinite solution Xg(n-l_l) >0 forall n e N
with ng < n since A, —SaYg(n) is stable matrix for all n € N (Li and Gaji¢ 1994). Here Aa—i—'y_zUan(n) —SaYg(n)
is stable and there exist ny € IN such that right—-hand side of above equation is negative definite for all n € N
with ng < n. On the other hand, the Lyapunov equation (24b) has a unique positive semidefinite solution
y ) > 0 for all n € N since the right—hand side of equation (24b) is negative definite and .A(n) is stable.
Finally, rearranging (24a) and (24b), we have (9a) and (9b) respectively since
Xa(”) - HaT)((”) = xTy_ ya(”) - HaTy(”) —yTy,,
XD = T x () = y (DT ) Z Ty (D) — y ek DT

A, =M7'4, B.=1_'B, D. =1I7'D.



Thus, the proof of Theorem 1 is completed. a

Remark 1 Subtracting (24a) from (24b) we have

(A 49 720X = ST — X ()
+(Y D) XDy A, 44720 XD — 5 vy 472X XD =,

Since A, + 'y_ZUan(n) — SaYg(n) 15 stable for alln € N, it 1s easy to establish that
ya(n) Z)(a(n)’ n=1,2 3 ..

For each 0 < v* < v < 7, one natural question here is whether the Lyapunov iterations can be apply to
the parameterized cross—coupled algebraic Riccati equations, where v* is an infimum of (5). We show that
a stronger result than the one stated in Theorem 1 can be similarly obtained by choosing the initial value
matrices Xa(o) and Yg(o) such that A, + 'y_ZUan(O) — SaYg(o) is stable. In this case, we have the following

theorem.

Theorem 2 Under Assumptions 1 and 2, for a predescribed disturbance attenuation level v* < v < 7 and a
small parameter € > 0, if solutions of the parameterized cross—coupled algebraic Riccati equations (6) exist, then
the Lyapunov iterations (9a) and (9b) converge to the unique positive semidefinite solutions of the parameterized
cross—coupled algebraic Riccati equations (6). Here we choose the initial value of the positive semidefinite
symmetric matrices Xa(o) and Ya(o) such that A, + 'y_ZUan(O) — Sng(o) 15 stable.

Proof: Since A, —1—7_2U€X€(0) — SaYg(O) is stable matrix, the Riccati equation (19a), (19b) have unique positive
semidefinite solution Xg(l) > 0 and Yg(l) > 0 respectively. By repeating the similar steps to the proof of

Theorem 1, the theorem can be proved. a

4. The Recursive Reduced—Order Algorithm for mixed H./H., Control Problem of Singularly
Perturbed Systems

In this section, we will derive the recursive reduced—order algorithm for solving the mixed Hs/H,, control
problem of singularly perturbed systems. In order to obtain the solutions for the parameterized cross—coupled

generalized algebraic Riccati equations (6), we introduce the notation

- Al 40
A4y 2UX M — gy = A = | AL TR (29a)
Ay Ay
- Q(n) Q(n)
Q- 2xWTyx () 4 y(IT gy (n) — gln) = ,(}Ll)T ,(15) , (29Db)
Q12 22
T : QY Q)
Q+ y(T gy (n) — Q(n) _ Q(n)T Sl (29¢)
12 22
The following set of equations can be produced by substituting (29) into (9).
A(n)TX(n+1) + X(n+1)TA(n) + Q(n) — 0’ (30&)

The algorithm (30) is the Lyapunov iteration. The proof for the convergence has been given in Theorem 1.
Thus, we can obtain the solution of the parameterized cross—coupled algebraic Riccati equations by performing
Lyapunov iteration (30) directly. However, the Lyapunov iteration (30) involves the small positive parameter
¢ when we consider the singularly perturbed system. To remedy this, we propose a new combined algorithm

10



to find the solution to the Lyapunov iteration (30) or the generalized Lyapunov equation (30). The main point
is to separate the solution of the generalized Lyapunov equation (30) into two terms, that is, the O—order term
and the error terms. The 0—order terms are obtained by reduced—order e-independent Lyapunov iteration and
the error terms are obtained by a reduced—order recursive technique. By combining the Lyapunov iteration
and the recursive technique, we can overcome the computation difficulties caused by the small parameter ¢ and
the high dimension.

In order to use the combined algorithm above to solve the problem, we have to strictly establish the
convergent conditions related to the recursive algorithm. If it is less conservative than the conditions of
convergence for the Lyapunov iterations, then the truncation error of the algorithm (30) increases by performing
iteration because the solutions X(**1) and Y1) are not exact. Also, we note that ¢ has to be very small.
The number of iterations required for desired accuracy depends on the parameter €. If € is not very small, then
error term of the solutions X+t and Y(**+1) are not bounded. The recursive algorithm diverges in a finite
iteration. Therefore, the Lyapunov iterations can not yield the required solutions. However, if the oriented
above conditions are satisfied, then proposed new algorithm converges in a finite number of steps.

In the next section we derive the recursive algorithms for the generalized algebraic Lyapunov equations

(30).
4.1 The Recursive Algorithm for X(+1)

Here we study the generalized algebraic Lyapunov equation (30a). The generalized algebraic Lyapunov

equation (30a) can be partitioned into

ARG L XGETAG 4 AGTXGT 4 XSG 4 0 =0, (310)
XA + XA + AT X+ ARG 4 QT =0, (310)
TG 4 XRG4 AT 4 XA + Q) =0 (310)

Let us define the following O(e) perturbation of XET-H), XéT-H) and X;;H_l) for (31)

AR 4 ETAT ¢ AT RETY + ALY 4 QY = o, (32a)
XA + AT AT 4 AT RETY 1 QT =0, (32b)
AT XY+ xETTAL + Q8 = 0. (32¢)

Note that we do not set ¢ = 0 in Ag?) (¢, j=1, 2) and QE;L) (7, =1, 2) (Gaji¢ et al. 1990). In the rest of
section, we assume that all matrices are function of €. However, the explicit dependence on £ of the problem
matrices is omitted in order to simplify notation (Gajié¢ et al. 1990).

If Assumption 2 holds, then the matrix fi({é) i1s non—singular. Therefore, we obtain the following O-order

equations
AT 4 XA 4 0 o (33
>(n T(n)— >(n T +(n ()T -(n ~(n)T
X§1+1) = _[A(zz)] T (Xéz-l—l) A(21) + A(12) X51+1) + Q(12) ) (33b)
AR X 4 XETITAL 1 Q) =0, (33¢)
where

A = A - A AL,
Q) = Q) — QAR AL — AGT LAY QT 4 AT TAS )T QAR AL
The O-order solutions Xﬁl-l_l), X§T+1) and Xég-l_l) are O(e) close to the exact one. Defining the error term
EZ»(;L-H) (i = 11, 21, 22) with respect to XZ(;L-H) (i = 11, 21, 22) the exact solutions can be produced in the
11



following form
n+1 (n+1 n+1 n+1 o(n+1 n+1 n+1 o(n+1 n+1
Xil '= Xil )+5E§1 )a X;l '= Xél )+5E§1 )a Xéz )= Xéz )+5E§2 g (34)
Substituting (34) into (31) and subtracting (32) from (31), we arrive at the error equation (35).

B TAR + AP BT = AT AT A LA A

FAT X AT T AGY 4+ AGDT AT T X (T AT, (35a)
EGTY = (AT (AT BT ¢ mGIT AT ¢ XD AR, (35b)
ESIT AR ¢ AT EGTY 4 gD =, (35¢)

where
r(n >(n+1 n+1)\ 7(n ()T , -(n+1 n+1
HO D = (X§1+ ) +5E§1+ ))A(12) + A(12) (Xél-l— ) +5E§1+ ))T~
These equations have very nice form since the unknown quantity E9; in equations for £ and E95 are multiplied

by a small parameter ¢. This fact suggests that a fixed point algorithm can be efficient for their solutions.

Therefore we proposed the following recursive algorithm for solving (35)

EGEVD A + AT EGEYD, = —AQTIAG T AV 1A T ALY

AT XS A T ASY + AT LAG T XAV AR, (36a)
BGE = = AT AT BN, + EGEY, A + XD AT, (36b)
Eég&?%ﬁ({;) + Ag)TEég(;?u + H((;L)H) =0, (36¢)

(]CIO’ 1a 2a 3a"')a
where

A0 = (XD 4o gty A L AT (XD e plnt DT pnt ) — g

) 21(k) 21(k) 100) =
n+1 o(n+1 n+1 ..
XTE) = XGH e B (5 =11,21,22).

The following theorem indicates the convergence of the recursive algorithm (36).

Theorem 3 Under the conditions stated in Assumptions 1 and 2, there exists € > 0 such that, for every
¢ € (0, €], Lyapunov equation (35) admits a positive semidefinite solution E+D - Moreover, the following
results hold:

[ECD — EGHO = 06, (k=1, 2, 3, (37)

or equivalently

|ECHD — EGED = 0@ B — EGFVLL (k=1, 2, 3,--) (38)
where
IV (E)] < e < 00, Ve € (0, £,
B = B, B e) = B,
=[S ) e[ 0 ST
21(k) 22(k) 21 22
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Proof: As a starting point we need to show the existence of a bounded solution of £(*+1) in neighborhood of
¢ = 0. To prove that by the implicit function theorem (Gaji¢ et al. 1990, Gaji¢ 1986), it is enough to show

that the corresponding Jacobian is non-singular at ¢ = 0. The Jacobian is given by

Jii 0 0
Jlezo = Jor Jaz Jas (39)
0 0 Jas
where, using the Kronecker products representation we have
Jii = I, ®Aén)+fién)T®fnl, Joo = In, ®A(22), Jaz = In2®ﬁ({§)+ﬁ(£)T®In2,
Jm1 = %k:o, Jma = %E:o, Jms = %k:o, (m:1,2,3),
L, = E£T+1)Tﬁén) +Agn)TE£T+1)_|_A(Zq)T[A(zg)]—TH(n+1)[A(Zg)]—lﬁ(zq)
— AT XGTITAG A - AT IAS T XA
Lo = ATEQY 4 AGTET 4 EOAD 4 XA
Lo = EVAR 4 ARG 4 A0

The matrix A(zg) is non-singular for all n € N because of Assumption 2. On the other hand, for all n € N the
matrix fiéﬂ) is also stable because of Assumption 1 (Gajié et al. 1990, Gaji¢ 1986) for a small parameter ¢.
Thus, the Jacobian (39) is non-singular. As a result, we can achieve the O(¢*) approximation of EZ(;H'l) (ij =
11, 21, 22) by performing only k € N iterations using algorithm (36). Similarly, existence of £ is shown directly
by again using the implicit function theorem.

The second step in the proof of the given theorem is to give an estimate of the rate of convergence. Setting

k = 0 for equations (36) and subtracting (36) from (35), we obtain the following equations

(B — EED A + AT (Y - EGEY) = em (G — BREY) (40a)

(B — EGENTAS) = emy (BT — EED) (40b)
n n 1(n 1 ()T n n n n

(Egz-l—l) o Eéz(ﬁ))A(zz) + A(zz) (Egz-l_l) o Egz(%)) = EfS(Eng) o E§1(-I(—)§)) (40c)

where, F1, F» and Fs3 are appropriate implicit functions with € and EgT-H) — Eé?&;;)

stability of A(ZZ) and Aén) for all n € N and existence of the bounded solutions of (35), we have

[EGH = BNV = 0(e), |ESTY = BUEV = 0e), 1EGTY — EGE V] = 0. (41)

By making use of

Continuing the same procedure it can easily be shown that

[T — BUED ) = 0GR, |BSTY — EGED = 0(r), [ESTY — EGEY|= O(eh). (42)

Thus | B0 — BV = 0(e*) & B0+ — B = 0(e).
On the other hand, for the boundedness of E((Z)-I_l) on ¢, we show that ||E(n+1)|| < EPHD|40(eF) < e < 0

(k)
since |[E(*+1)|| is bounded by using the implicit function theorem (Gaji¢ 1986). This completes the proof of

Theorem 3. i
4.2 The Recursive Algorithm for Y (?+1)

In this section we now turn to the recursive algorithm for Y (*+1) By following the similar steps in the

matrix X (1) case, the algebraic Riccati equation (30b) can be partitioned into

APTYH 4 VAR 4 =, (432)
VA = AT (VAL 4 ATV + Q) (13b)
AT 4 VAR + Q) =0, (130)

13



Defining the error term Fijn-l_l) (i = 11, 21, 22) with respect to YZ»(]»H-I_l) (i = 11, 21, 22) the exact solutions

can be produced in the following form
n+1 (n+1 n+1 n+1 (n+1 n+1 n+1 (n+1 n+1
Y1(1 = Y1(1 ) + 5F1(1 )a Y2(1 = Y2(1 ) + 5F2(1 )a Yz(z = Yz(z ) + 5F2(2 ) (44)

In this case, matrices }71(1n+1)’ Y2(1n+1)’ }72(271+1)’ F1(T+1), Fz(?-l_l) and Fz(;H_l) satisfy coupled algebraic Lyapunov

equations (45) and (46) respectively.

APTYPED Loy T A 4 i) = o, (45a)
Vit = (AR T (v T AYY - ATV Y 4 1T, (45b)
ATV vt T AR 4 QG = o, (45¢)

FRFOTAGY 4 AP = AR AR H A ALY

FAT (Y 4 e FIOYTLAG LAY + ATYT AR T (v e mTTY) ALY, (46a)
FY = (AT AT R ¢ RV AT ¢ (VY 4 e A, (46b)
Fyy P A ¢ ADT ERY 4 gt = g, (46¢)

where
QY = QY — QWA 11 ALY — AGTIAGITT QN + AY T AT QY TAS) T ALY,
HOHD = (VY 4 e PP AT + AT (v 4 e PO

Similar to the derivations in Section 4.1, we also obtain the following algorithm for solving (46)

FOEODAY + AT R = — AT AT (A ALY

AT YT A A 4+ AST LAY Ty DAY, (47a)
Fz(?(:i)m = —[A5T [AQZ)TFS(:&) + Fz(;(:i)mﬁ(zq) + Yz(f(;;)l)ﬁ(ﬁ)]’ (47b)
Fz(;(:i)f)fi(zg) + f‘i(zg)TFz(;(:i)m + ﬁ((g;rl) =0, (47¢)

(k=0,1,2 3,

where
r(n41 S(n+1 n+1)\ 7(n ()T (n+1 n+1 nt1
H((k)-l— ) = (YZ(l + )+€F2(1(:)))A(12) + A(lz) (YZ(l + )+€F2(1(-I];)))T’ Fz(l(-l(;)) — 0’
Vijin) = Vi e Rty (i = 11,21,22)

The following theorem indicates the convergence of the algorithm (47).

Theorem 4 Under the conditions stated in Assumptions 1 and 2, there exists € > 0 such that, for every
g € (0, €], Lyapunov equation (46) admits a positive semidefinite solution F+tD - Moreover, the following
results hold:

[P+ — O = 0h), (k=1 2, 3,--) (48)
or equivalently

[P0 — FGE | = OE)[FU+D) — FEFD), (=1, 2,3, ) (49)
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where
IE @ < ¢ < o0, Ve € (0, &)

Fiort(e) = FiHY, FOD(e) = pnth),

(n+1) (n+1)T n+1 n+1)T
Fit = Fl(l(k)) FZ% ) FOtY = F1E1 ; F2(% )) ]
k - n+1 n+1 ’ - n+1 n+1
W FZl(k) Fzz(k) Iy Iy
Proof: The proof is omitted since it is similar to the proof of Theorem 4. a

Note that if ¢ is very small, then the truncation error in the algorithms (36) and (47) is a little bit too small
since the equations (37) and (48) hold. Therefore, for the Lyapunov equation (9), affection of the truncation
error in the algorithms (36) and (47) is very small.

An algorithm which solves the parameterized cross—coupled algebraic Riccati equation (6) with small posi-

tive parameter ¢ is as follows.
Step 1. Calculate 7 and %, by using the norm conditions (11).

Step 2. Choose v such that v > 4 = max{¥, ¥2} and solve the algebraic Riccati equations (10) by using the
recursive technique proposed by Mukaidani et al. (1999). Starting with an initial matrices of X©) and
Y0,

Step 3 Calculate A", Q™ and Q" by using the relation (29).

Step 4. Compute the solutions X (1) y(*+1) of the parameterized cross—coupled algebraic Riccati equation
(9) by using the recursive algorithms (36) and (47).

Step 5. If min{”Fl(Xg(n), Yg(n))H, ||F2(X€(n), Yg(n))H} < O(eV) for a given integer N > 0, go to Step 6.
Otherwise, increment n — n + 1 and go to Step 3. Here Fi(+), Fa(+) are given by (51) after.

Step 6. Calculate w*(t) = vy 2DT X, z(t), u*(t) = Kqz(t) = —BIY.2(2).
5. Numerical Example

In order to demonstrate the efficiency of the proposed algorithm, we have run a simple numerical example.

Matrices A., D, and B, are chosen randomly. These matrices are given by

0 04 0 0
A= ,A =
H [0 0 ] 2 [0.345 0

0 0.262
3 AZZ = [ ] )

bl

0 -1

1 0.2 0
D, = Dy = B =
1 [ 0 ] 3 2 [ 1.9 ] 3 1 [ 0

and a quadratic cost function

WhereQ:diag( 101 0).

Since detAsp = 0, the system (1) is a nonstandard singularly perturbed system.

Here, 7 = 10.9316 and 32 = 2.9058 from (11). Then, for every boundary value of vy > 7 = max{%1, 72} =
10.9316 the parameterized cross—couple algebraic Riccati equations (6) have positive semi-definite solutions.
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On the other hand, the minimum values of disturbance attenuation level 4 such that there exists Ha/Hqo
controller is v* = 9.1980. The entries show the results obtained for small parameter ¢ = 0.0001. Now, we
choose v = 12.0 > 4 = 10.9316 to design the controller.

Firstly, we give the following solutions of the algebraic Riccati equations (10):
() X exiH”
Xy Xy

8.6262480 3.8257410 6.8423004 x 10=* 1.4811918 x 10~*

3.8257410 7.7141072 3.0497997 x 10~*  2.2865074 x 1073

6.8423004 3.0497997 4.7775023 1.0165454

1.4811918 2.2865074 x 1071 1.0165454 2.3869035 x 107!
Yl(lo) 5Y2(10)T
vy Yy
6.2844935 2.8987718 4.7119089 x 10=*  1.0000000 x 10~*
2.8987718 7.2863698 2.2108915 x 10=*  4.4757142 x 1075
4.7119089 2.2108915 4.7122624 1.0000763
1.0000000 4.4757142 x 10~2 1.0000763 2.3452014 x 1071

v —

Secondly, it can be seen that the solutions of the parameterized cross—coupled algebraic Riccati equations (6)

converge to the following solutions with accuracy of O(1078) after 23 Lyapunov iterations.

23 23)T
x(23) — [ Xil : 5X§1 : ]
= (23) (23)
eXs) X35

8.3126876 3.6708548 6.5605827 x 10™* 1.4199535 x 10~*
3.6708548 7.6380956 2.9112022 x 10~* 1.9850687 x 1073
6.5605827 x 10™% 2.9112022 x 10~% 4.7774746 x 10~* 1.0165392 x 10~*
14199535 x 10~*  1.9850687 x 107> 1.0165392 x 10~* 2.3868896 x 1073

23 23)T
y(23) — Y1(1 ) 5Y2(1 ) ]
e = (23) (23)
€Yo €Yy,
9.8895917 4.2091443 8.0863985 x 10=* 1.7735270 x 10~*
4.2091443 7.8666697 3.4322839 x 10~*  3.1503598 x 1073

8.0863985 x 10=* 3.4322839 x 10~% 4.8425400 x 10=* 1.0329538 x 10~*
1.7735270 x 10=%  3.1503598 x 107° 1.0329538 x 10~* 2.4284243 x 10~°

In order to verify the exactitude of the solution, we calculate the remainder when substitute X€(23) and Y€(23)

into the parameterized cross-coupled algebraic Riccati equations (6a) and (6b) respectively.
IF(XED YO 22914 x 107, [F(XED, YD) = 2.911 x 10719
where the errors F1(X., ;) and Fa(X,, Y:) are defined as follows

(Aa + 7_2U5Xa - Sa}/a)TXa + Xa(Aa + 7_2U5Xa - Sa}/a)

+Q_7_2X6U5Xa +Y.5. Y, EFl(Xa, }/a), (51&)
(Aa + 7_2U5Xa - Sa}/a)T}/a + }/a(Aa + 7_2U5Xa - Sa}/a)
+Q + VLS. Y. = Fy(X., V2). (51b)
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Therefore, the numerical example illustrates the effectiveness of the proposed algorithm since the solutions
Xg(n) and Yg(n) converge to the exact solutions X. and Y. which are defined by (6a) and (6b). Indeed, we can
obtain the solution of the parameterized cross—coupled algebraic Riccati equations (6a) and (6b) even though

Asy 1s singular.
6. Conclusions

We have developed an algorithm for solving the parameterized cross—coupled algebraic Riccati equations
with a small positive parameter ¢ for mixed Hs/Hy, control problem. So far, there were no condition ensuring
the existence of solutions of the parameterized cross—coupled algebraic Riccati equations and proof of conver-
gence. Furthermore, the recursive algorithm for solving the cross—coupled algebraic Riccati equations with
relation to the dynamic Nash games of the singularly perturbed systems had not been investigated. In this pa-
per, we first derived the new sufficient condition for v such that the solution of the parameterized cross—coupled
algebraic Riccati equations converges to a positive semi—definite solution. We have also given the convergence
proof for the new Lyapunov iteration algorithm. That is, if we choose any v > max{¥;, 72} as a new sufficient
condition, then there exist the mixed Hy/H. controller to attain the disturbance attenuation level v and min-
imize the performance index. Next we proposed the new algorithm to solve the parameterized cross—coupled
algebraic Riccati equations with a small positive parameter € by combining the Lyapunov iteration and the
recursive technique. By using the new algorithm, we overcame the computation difficulties caused by high
dimensions and numerical stiffness in the Lyapunov iteration method. In this case, the Lyapunov iteration and
the recursive algorithm converge to positive semi-definite solutions with the rate of convergence of O(¢*). In
addition, our new results are applicable to both standard and nonstandard singularly perturbed systems and

include the existing methods (Li and Gaji¢ 1994, Gaji¢ and Shen 1993) as a special case.
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