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In this paper, the optimal Kalman filtering problem for multiparameter singularly perturbed
systems is considered. In order to obtain the filter gain, the solution of the multiparameter
algebraic Riccati equations (MARES) is needed. The main contributions in this paper are
to propose a new recursive algorithm for solving the MARE and to establish sufficient condi-
tions related to the convergence property of the proposed algorithm. Using the recursive algo-
rithm, it is shown that the solution of the MARE converges to a positive semidefinite
stabilizing solution with the rate of convergence of O(|||’). Moreover, it is proved that the
mean square error via the proposed high-order filter attain, the O(||u||**") approximation

compared with the optimal filter.

1. Introduction

Filtering problems for the multiparameter singularly
perturbed systems (MSPSs) have been investigated
extensively (see for example, Coumarbatch and Gaji¢
(2000), and reference therein). The multimodelling pro-
blems arise in large-scale dynamic systems. For example,
the multimodel situation in practice is illustrated by the
passenger car model (Coumarbatch and Gaji¢ 2000). In
order to obtain the optimal solution to the multimodel-
ling problems, the multiparameter algebraic Riccati
equation (MARE) needs to be solved. Various reliable
approaches to the theory of the algebraic Riccati equa-
tion (ARE) have been well documented in many publi-
cations (see for example Laub 1979). One of the
approaches is the invariant subspace approach which
is based on the Hamiltonian matrix (Laub 1979).
However, there is no guarantee of symmetry for the
computed solution if the ARE is ill conditioned
(Laub 1979). Note that it is very difficult to solve the
MARE owing to high dimension and numerical stiffness
(Coumarbatch and Gaji¢ 2000).

A popular approach to deal with the MSPS is the
two-time-scale design method (see for example,
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Khalil and Kokotovic¢ (1979), Kokotovi¢ et al. (1986),
Mukaidani (2003) and Mukaidani et al. (2003)).
However, it is known from the work of Coumarbatch
and Gajic (2000) that an O(||u|)) (where w:=[eg; &])
accuracy is very often not sufficient. In particular, it is
important to note that the required solution must be
obtained perfectly because the corresponding bound on
the steady-state mean square error tends to infinity
when ||u]] — 0. Furthermore, in order to construct the
filter, knowledge of the parameters is needed. Therefore,
special effort must be made to solve the MARE as long
as information on these parameters is available.
Recently, the exact slow—fast decomposition method
for solving the MARE of the MSPS has been proposed
(Coumarbatch and Gaji¢ 2000). However, these results
are restricted to the MSPS such that the Hamiltonian
matrices for the fast subsystems have no eigenvalues
in common (see assumption 5 of the paper by
Coumarbatch and Gajic (2000)). More recently, the
Kleinman algorithm for solving the MARE has been
established (Mukaidani et al. 2002a,b). However, in
order to reduce the computational workspace, another
algorithm such as fixed-point iterations is needed.
As another important algorithm in the work of
Mukaidani er al. (2002d), the recursive algorithm for
the solution of the regulator-type MARE has been
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proposed. On the other hand, even though the H filter-
ing problem via the recursive algorithm has been studied
(Mukaidani et al. 2002c), the recursive algorithm for sol-
ving the MARE corresponding to the Kalman filtering
problem has not been investigated. In particular, the
existence condition for the solution of the MARE
and its asymptotic property have not been studied.
Furthermore, so far, the loss of steady-state mean
square error between the optimal filter and the
proposed filters that are based on the useful numerical
methods such as the recursive technique or the exact
decomposition technique has not been established.

In this paper, the optimal Kalman filtering problem
for the MSPS is studied. In particular, two-parameter
singularly perturbed systems (TSPSs) are considered.
The results obtained are valid for the steady state.
First the uniqueness and boundedness of the solution
to such a MARE are investigated and its asymptotic
structure and the existence condition are derived. The
proof of the existence of the solution to the MARE
with asymptotic expansion is obtained by an implicit
function theorem (Gaji¢ et al. 1990). The main result
of this paper is to propose a new recursive algorithm
for solving the MARE and to find the sufficient condi-
tions regarding the convergence of the recursive algo-
rithm by using the reduced-order ARE. It is important
to note that the sufficient conditions derived here are
independent of the small perturbation parameter pu.
It is also proved that the solution of the MARE con-
verges to a positive semidefinite stabilizing solution
with the rate of convergence of O(|lu|™*"), where i is
the iteration number. As another important feature,
the assumption that the Hamiltonian matrices for the
fast subsystems have no eigenvalues in common is not
needed. Thus, the new results are applicable to a more
realistic MSPS. Moreover, it is shown that the high-
order approximate Kalman filter achieves a perfor-
mance which is O(||u|**") close to the optimal mean
square error. It is worth pointing out that the feature
of the O(||u||**") suboptimality is established for
the first time for the optimal filtering problem of
the MSPS.

1.1. Notation

The superscript T denotes matrix transpose. detL
denotes the determinant of the square matrix L.
I, denotes the n x n identity matrix. || -| denotes its
Euclidean norm for a matrix. ® denotes the
Kronecker product (Magnus and Neudecker 1999).
U, denotes a permutation matrix in the Kronecker
matrix sense (Magnus and Neudecker 1999) such
that U, vec M = vec MY, M € R”". E{.} denotes the
expectation operator. Tr denotes the trace operator.

2. Optimal Kalman filtering problem

Let us consider the following linear time-invariant
MSPS (TSPS):

Xo = Aooxo + Ao1x1 + Aoax2 + Doiwy + Doowa,  (la)
e1x1 = Aroxo + A11x1 + Dyywy, (1b)

€2X2 = AzXo + Anx2 + Danwa, (Ic)
with the corresponding measurements

yi = Coxo+ Cyxj+vi, j=1,2, (@)
where x; € RY, j =0, 1,2, are the state vectors, y; € R?,
j=0,1,2, are the system measurements, w; € R%,
j=12, and v;eR", j=1,2, are zero mean white
Gaussian noise processes with the following joint
covariance matrix, respectively:

. Wy 0
wz] = W, ,  (3a)

0
vl [T i 0 (3b)
= v v = s
) b 0 Vn

E _Wl}[ﬂ vg]}z[g 2}. (30)

| w2

All the matrices are constant matrices of appropriate
dimensions. Moreover, ¢; and &, are two small positive
singular parameters of the same order of magnitude
such that

8—1 < ky < o0. (4)
&

0<k1<0{£

That is, it is assumed that the ratio of &, to &, is bounded
by some positive constants k;, j =1,2.

In this paper the design method of the Kalman filter
gain for estimating the system states x; is established
under the following basic assumption.

Assumption 1:  The limit of « exists as €, and &, tend to
zero (Khalil and Kokotovi¢ 1979, Kokotovié et al. 1986),
that is

e —0" ’ (5)

The above assumption guarantees the existence for the
limiting solution of the MARE given later.
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The optimal Kalman filter of (1) and (2) is given by
(Coumarbatch and Gaji¢c 2000)

£ = Aooko + A&l + Aok + Foum + Fooma,  (62)

e1861 = A1oko + Ané + Funi + Fan, (6b)
£262 = Anoko + Axnér + Fainy + Faamp, (6¢)
n =y — Cobo — Cy§j, j=1,2, (6d)

where & € RY, j=0,1,2, are the state estimates and
nj€ RY, j=0,1,2, are the prediction errors.

The filter gain matrices that are represented as Fy;
and Fj, j=1,2, are obtained from

For Foo
F,.=|¢e'Fy e'Fn | =Y,CTV 1 (7
851F21 SEIFQZ
Y, satisfies the MARE
A Y, + Y A — Y, SY, + U, =0, 8)
with
[ Aoo Ao Aoz
A, = El_lAlo 81_1A11 0 S
_82_11420 0 82_1/422
[ Do Do
i Co Cn 0
D, :=| & D 0 , C:= s
o Coy 0 Cxn
L 0 &y D22
Soo Sor So2
S=Cc'v'c=|5S§ Su 0 |,
ng 0 S»
Uw &'Un &'Up
Ue:=DWD} = | e7'Us; 72Uy 0
82_1Ug2 0 82_2U22

Since the matrices 4, and D, contain the term of 8;‘
order, the solution Y, of the MARE (8), if it exists,
must contain terms of &; order. Taking this fact into
account, the purpose of this paper is to look for the
solution Y, for the MARE (8) with the structure

Yoo YIIE) Y;;)
Yo:=| Yy &' Y (e162)7'2 Y5, | e RVY,
Yo (e182) 2 Yy &' Y
where N =ng+n +nm, Yo=7Ys, Y=Y and

Yo = Y%

In order to avoid the ill conditioning due to the large
parameter g;l which is included in the MARE (8), let us
introduce the following useful result (Mukaidani et al.
2002d).

The MARE (8) is equivalent to the following
generalized multiparameter algebraic Riccati equation
(GMARE) (9a):

F(Y) =AY+ YAT —YSYT+U =0, (9a)

Y.=Y'o ' =]y, (9b)
where
(L, O 0
G,:=| 0 el 0 |,
L 0 0 &1y,
[ Ao Ao Aoe

U .= U(—)r] U11 0 ,
UL 0 Uxn
™ Yoo Yh Y5

Y = 81Y10 Y11 Oll/zY;rl

L&Y a2y Y»

3. The multiparameter algebraic Riccati equation

In the following analysis, the basic assumptions are
needed. Specifically, in order to guarantee the existence
of the reduced-order ARE and its standard stabili-
zability and the detectability conditions when |u| :=
(e3 + 8%)1/2 — 0%, assumptions 2, 3 and 4 are needed.
These assumptions play an important role in proving

theorem | which will be given later.
Assumption 2:  The pairs (A, Cy),
detectable.

=12, are

Assumption 3:  The Hamiltonian matrices Zj, j=1,2,
have no eigenvalues on the imaginary axis, where

AT _S,
e Ji i
% [ U —4; ]



4 H. Mukaidani

Assumption 4:

[shy —Agy —Aly —A3 Cly G

rank| —AL —AT, 0 Cf, 0 |=n (10a)
—Ag 0 -4 0
[ sL, — Ao —Aor —Aw Do Do

rank —A —An 0 Dy O =n, (10b)
— A 0 —A» 0 Dy

with Vs € C, Re[s] = 0 and n .= n| + n».

Let ?00, Y]o, )_720, illa }_’21 and ?22 be the limiting
solutions of the GMARE (9a) as ¢ — 0%, j=1,2.
In this case the following zeroth-order equations are
obtained by partitioning the GMARE (9a):

A Yoo + YooAl — YooSs Yoo + Uy =0, (11a)

- _ 1,
Y;T) =[-Yoo Iy ]Z()jZ,;l L (11b)
‘ LY
A Y+ YAp — VS Y+ Uy =0, (11c)
where
—1 -1 AI —SS
Zy:=Zo — Lo L, Zio — ZonZsy Zoo = ,
U, —A,
AL =, AT S,
Zoo = [ o v ], Zoji=| v
—Uyp —Aoo —Uy —Ao,

It should be noted that, if (11¢) has a stabilizing solu-
tion, then the Hamiltonian matrices Z; have not eigen-
values on the imaginary axis and therefore these
matrices are non-singular (Zhou 1998).

In the rest of this section, relations between the
GMARE (9a) and the zeroth-order equations (11) are
considered. Before doing that, useful results for
the ARE (11a) are given.

Lemma 1: Under assumptions 1-4, there exists a matrix
CeRP™, p:=p +py and a matrix D e R, §:=
g +q>» such that S;=C'V-'Cc, U,=DWD".
Moreover, the triple (A;,C,D) is stabilizable and
detectable.

Proof: Since the proof of lemma 1 is easy by a similar
argument to that of Mukaidani er al. (2002d), it is
omitted. O

The limiting behaviour of Y, as the parameter

Il := (63 + €3)"/? — 0T is described by the following
theorem.
Theorem 1:  Under Assumptions 14, there exists a small

o* such that for all || € (0,0%) the MARE (8) admits
a symmetric positive semidefinite stabilizing solution Y,
which can be written as

Yoo+ O(lul)  Yio+O0(rl) Y3 +O0dlnl)
Ye=| Yio+0(ul) &' (Pu+03ul) (e1e)” 20kl |,
Yoo+ O0(lul)  (e162)”20(Ikl) &3 (Y22 +O(Inl)
(12)
where uw:=[e; &].
Proof: The proof of this theorem is acheived by using
the implicit function theorem (Gaji¢ 1988, Gajic et al.

1998) to (9a). To do this, it is enough to show that
the corresponding Jacobian is non-singular at & =0,

j =1,2. It can be shown, after some algebra, that the

Jacobian of (9a) in the limit as u — = [0 0] is
given by

[Joo Jor Joo O 0 07
Jo Ju 0 Jiz Jig 0
3y Jo 0 Jn 0 Ju Js ) (13)
0 0 0 J;3 0 0
0 0 0 0 Jgu O
L 0 0 0 0 0 Jss |

and

Joo = 1, ® Hoo + Hoo ® Iy,
J()j - (I}’lo ® HOj)Unon,- + HOj ® Inoa
Jio = Hjo ® In,,  Jjj = Hj Iy,
Jis =1, ® Hyt, Jia = a"*(I, ® Hp)Upynys
1

Jo = W(lnz ® Ho1), Jos =1, ® Hp,
Jyun=1, H+H®1,,

_ 1
Ju=a&"*Hn 1, + =75 In, ® Hun,

a

Jss =1, ® Hyp + Hyp ® I,
Hoo = Aoo — Yo0So0 — Y oS3 — Yo Stos
Hjo = Ajo — Y;Sy;,  Hoj = Ao — YooSoy — Y5y,
Hjy =4 = Y;Sj, j=1.2

The Jacobian (13) can be expressed as

det J = det J;; detJy, detJ3;3 detJyy det Jss
x det[l,, ® Hy + Hy ® I, ], (14)
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where Hy= Hy — HolHﬁlHl() — HozH{lego. Obvi-
ously, Jy j=1,...,5 are non-singular because
the matrices Hj; = A4; — Y;S;, j=1,2, are stable.
After some straightforward but tedious algebra, it can
be easily seen that A — Y0S; = Hop — Ho Hyy Hio—
Hoszlezo = H,. Therefore, the matrix H is stable if
the ARE (11a) has a positive semidefinite stabilizing
solution. Thus, det J # 0. The conclusion of Theorem 1
is obtained directly by using the implicit function
theorem. The remainder of the proof is to show that
Y, is a positive semidefinite stabilizing solution. How-
ever, the proof is omitted since it is similar to that
given by Mukaidani et al. (2002d). ]

4. The recursive algorithm

Now, let us define & := (¢16,)"/%. By making use of
the zeroth-order solutions (11), the solution (12) can
be changed as follows:

Ypg = Yoy + EM,y.  pg=00,10,20,11,21,22, (15)

where My =M, Mx»=MJ], and
Y21 =0.
Substituting (15) into (9a) and subtracting (11) from

(9a), the following error equations (16) are given:

T
Moy = M()()s

HooMoo + Moo Hgyy + Hoy Mo + M| Hy, + Hox Mg
+ My, Hy, — E(MooSoo Moo + M1y Sg; Moo
+ MooSo1 M 1o + M3y Sg> Moo + Moo So2 Mo
+ ML S1 Mg+ M1,S2Mag) =0, (16a)
MooH ) + M Hyy + Hoy My + o'/? Hoy Mo

€1 T
+ gHOO Y

— Ea' A (MopSoaMay + M}, SanMay)

— E(MooSor M1y + M [,S1 1 M)

—&1(MopSoo —‘rMT ST +M20S02)Y (16b)
MooH +M20H22+H02M22+ H01M21

€
+22 Hy Y

< — E(MooS02 M + M3y S» M)

e (M00501M21 + M, S{ M)

— &2(MooSoo + M|, S;, + M3, S3,) Yoy =0, (16¢c)

Hy My + My HY, + (H10Y10 + YioH )

+e1(HyoM )+ My H ) — YloSoo Y

—e1(M11Sg, Yo + Y10501M11)
— e (MY, SLY L 4 Y10S0aMay)
— E(M11S11 My + oM SyMay) =0, (16d)

1/2M21H22+ H11M21+ YloH%—l- Hyg Yy,

& &

+ &1 Mg Hyy + e HigM,
1
— £ (Y10502M22 +— Y10501M21>

8182

— &2(M 1S3, Yoo + ' 2 M S, V) — === Y10S00 Yy

1
g( '/2M21S22M22+ M“SITIMZTI) =0, (l6e)

Hy My + My H,, +2 (Hzo Yy, + YaoHy,)

+ e2(Hao Moy, + My Hy)) — 2 Y20500 Y
- 82(M22502 Yy + YzoSonzz)

1/2 (leS(Tl Yo + Ya0So1M3,)

1
—S(M22S22M22—|—aM21S“M;) =0. (16f)

Hence, the following iterative algorithm which is based
on the recursive algorithm is given:

Hy MY 4 MUV HT

— —(H10 Y5+ YioHY) — ei(HioM 0T + MO HT,

+4 2 Y(’)SOOY(’)T +e(M)Sy YT+ Y SaMY)

+ glal/z(M(OTST Y(')T Y(i)S 2M(l))

+ EMOS MY + am DTSy ML), (17a)
H Mz(;_l)—}-M(Hl)HT

= —E(Hzo Yy + YaoHy,) — 82(H20M2(6)T + M2(6)H2TO)

2
8 - -
+2 Y0 Sw Vg + ex(M3)Siy Yoy + Vg S M)

€ () oT v (OT 0) 0T
al/z(Mzi So1Yag + Yoy SotMy)

) | i ;
+ EMYSHMY + - M s MO, (17b)
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1/2M(’+1)TH22 + H11M511+1

] )T

= —g Y10H20 — EH]() Y20 — 81M§[0)H;ro — 82H10Mg0)
L8182 40 (T
g YIE)SOOYZ)

i i 1 i i
+el <Y{0>502M§2> + 17 Vo Sor M 1>T>
+ &5( M(l) ST (I)T +o 1/2 M(z)T ST (z)T)
, 1
T i i i
+ 8<a1/2M§3 S M) + 7 MYIST MY ) (17¢)
HoM ™ + MV HT
= _HOIHHIL(I)T - L(I)HHTHOTI - H02H221L§)2T
- Lg;szTHOTZ + M) SooM) + MO ST M)
M )+ TS + s

M(’)TST MO+ MTs 2M@) (17d)
M(1+1)T (L(z) M(H—I)HO) J/ ’ (17¢)
where j = 1,2,

; ; ; £
L = —Hy MY — o' 2 Hyy MY — L gl v

3

+ EM§G Sy M) + M S M)

+ Ea'A(M) S MS) + M5y ST, MS))

+ a1 (Mg Soo + M1 Sgy + My SR Y
1

Ly = —Hop M5y — 5 Hoy My ™" — = 2 ug v,
+ E(M(’)Song’g + M5 SH M)
W (M(()IO)SOI Mgl)T MY(;TST M(/)T)

+ex(M{Soo + M1y Sy + MY S Vg
yj%’ = on—i-EM]%), i=0,1,...,

0) _
Moy =

©0) _ 470 _ 300 _ 470) _ 5 7(0)
My = My = M)y = My = M3, =0.
The following theorem indicates the convergence of the
algorithm (17).

Theorem 2: Under assumptions 14, there exist unique
and bounded solutions M, of the error equation in a
neighbourhood of |||l = 0. Moreover, the algorithm
(17) converges to the exact solutions M, with the rate
of the convergence of O(||i|l'), that is

IMpg — MO = Ol i=1,2,.... (18)
Proof: As a starting point it must be shown that there
exist the unique and bounded solutions of M,, in a

neighbourhood of ||ju|| = 0. To prove that by the impli-
cit function theorem, it is enough to show that the
corresponding Jacobian Jy, of (16) is non-singular at
lie]l = 0. The Jacobian is given by

Jo=J. (19)

Taking into consideration the fact that J is non-singular
at ||u]l =0, Jo is also non-singular. Therefore, there
exist unique and bounded solutions of the error
equations (16).

Secondly, the proof of (18) uses mathematical induc-
tion. Subtracting (17) from (16), the following equations
are derived:

Hoo(Moo — M((f;r])) + (Moo — M&)H))Hgo

+ Ho (Mg — MUy + (Mg — MY H,
+ Hoy (M — M(Hl)) + (M>y — Mﬁ’o“’)THoTz
= EF (M, MO M e, 62), (20a)

(Moo — M(()ZOH))H + (Mo — Mﬁ)H))THn
+ Hoy (M1 — MDY+ o' 2 Hoy (Mo — MYTD)
= EFA(Mg), M), MYy, M|}, MY) e1, 2), (20b)

(Moo — (l+l))H 20 + (M — (Hl)) Hy

+ Hop (M2 — MS’J”) + 73 Hor(M21 — Mglﬂ))

= EFs(M, M, M, Mg;, Mgg, e1,6), (20c)
Hy (M —M(l+1))+(M M(l+1))H1T1

= EFAM), M), M), 1, €2), (20d)
o' 2(My — MUY Hoy, +oin 5 H1 (Mo — MEHT

= EF (Mg, My, MY, MS?, Mé’z), £1.€2), (20¢)
Hop (M — MDY+ (M — MYV HY,

= EFs(MY, Mé’f, M), &1, &), (20f)

where F;, j=1,...,6, are appropriate implicit func-
tions of the matrices M'). When i =0 for the equations
(20), using the standard properties of the algebraic
Lyapunov equation (ALE) (Zhou 1998), and taking
into consideration the stable matrices Hy; and H»
it follows that

Hy(My — M) + (M — M{)H] = O(||n)
= M;— M =o(ul), j=12
o' (M — Mél))Tsz + Hll(le - MS)) = O(||ul)

= My — M) = 0(||u||>.
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Since H;, and Hy, are stable, the following ALE holds:

Ho(Moo — M(()lo)) + (Moo — M&)))HOT = O(l[pID,

(Mjo = Mjg")" = —(Mog — Mo Hi\ Hi '+ O(lel). j=1.2.

Using the above similar technique, and by stability of
H,, the following relation holds:

1Mpg = My, | = OClil).  pg = 00,10,20,11,21,22.

When i =k (i > 2), it is assumed that | M,, — M| =
O(||1|I¥). Using this assumption, the right-hand side
of the equation (20a) can be changed as follows:

EFI(M), M), M), 1. €2)
= E(MooSoo Moo + M 1,Sg, Moo + MooSor Mo
+ M3y Sg, Moo + MooSoaMag + M [, S11 Mo
+ M;0S22M20) — 5(M(()l6)SQOMgB> + MEI({))TS(TI M(()Ig)
+ MG Sor Mg+ M3 S5, Mg + Mg Soo MY
+ MY SuMiG + My Sn M)
= £0(Iull*) = O] **).
Similarly, the following equations are satisfied:
Hoo(Moo —M(()18+1))+(M00 —M(()ISH))HOTO
+ Ho1 (Mo —M%H))WL(Mlo —M%H))TH&
+ Hon(Mag — My ™)+ (Mg — MY HE, = O |4,
(Moo — M(()/(;+l))H1r0 +(Myo— MY(C)H))THU
+Ho (M —Mﬁﬂ))-%-al/zHoz(le —Mék{*”)
=O(|| ],
(Moo — Mg H + (Mg — M) H
1
+Hp (M —M§l§+l))+mH01(M21 —Mé’i“’)T
=O(|lI*™),
k+1 k+1
Hy(My— M)+ (M — M) H
=0(ul*), j=1.2,
1
a'2(My —Mé’i“))Tsz +——Hi1(Ms — Mé’i*”)T

al/?
= O(||]I*T).

By cancelling the appropriate terms, a similar proof will
show that

1Mpg — MGV = O],
pq = 00,10,20,11,21,22. (1)

Consequently, (18) holds for all i € N. Thus, the proof
of theorem 2 is completed. L]

In the paper by Mukaidani et al. (2002c¢), the H., opti-
mal filtering problem for an MSPS has been studied via
the recursive approach. In that paper, a MARE that has
a sign indefinite quadratic term has been considered.
However, the existence condition for the solution of the
MARE imposes conservative conditions. Moreover,
the stabilizability and detectability conditions for the
reduced-order ARE were not investigated.

5. Application

A positive semidefinite stabilizing solution of the
MARE (8) exists under assumptions 1-4. Attention is
focused on the design of the high-order Kalman
filters. Such a filter is obtained by using the iterative
solution (17):
F=y0cTy!
I?00+5]\4(()2 (?1o+5M§2)T (Yao +5M53)T
=| Yio+EM) &' (Y11 +EMY)) (e1e2) ' 2EMY)T

}720+5M§i0) (8182)71/2£M§? 851(Y22+£M§2)
x CTy—1, (22)
Theorem 3: Under assumptions 1-4, the use of the

high-order Kalman filter gain (22) results in
Tr W, =Tr Y, + O(|ul*™), (23)

where Tr Y, is the optimal steady-state mean square error,
while Tr W, is the near-optimal steady-state mean square
error and W, is a positive semidefinite solution of the

following multiparameter algebraic Lyapunov equation

(MALE):

(A, — YOSYW, + WA, — YISO + YOSYD 4 U, =0.
(24)
Proof: Subtracting (8) from (24), it is easy to verify
that T, = W, — Y, satisfies the following MALE:
(Ae — YOS)T, + T, (4. — YI'S);
+ (Y, = YNS(Y, — YD) =0. (25
It is assumed that the solution 7, of the MALE (25) has
the following structure:
Too T% T2T0
T.=| T er' Ty (e182)" 2T,
Ty (s182) 2Ty &' T

c RNXN,
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where Too = T(;IE), T11 = T;rl and T22 = T;rz

Using the similar technique in the work of Mukaidani
et al. (2002d), the MALE (25) is equivalent to the fol-
lowing generalized multiparameter algebraic Lyapunov
equation (GMALE) (26):

A—-YOHTT + T4 — YOS)!
+ (Y —YNS(Yy — YNHT =0, (26a)
T,=T"¢;' =&;'T. (26b)

Since ¥ — Y@ = O(|j|™") under (18), the following
GMALE holds:

(A=YOHTT + T(4 - YO + 0(|pn)?*) = 0.
(27)

Partitioning the GMALE (27), the following equa-
tions hold:

HooToo + TooﬁloTo + Hy Tio + TlToﬁgl + Hp Ty

+ THHL = O(|w]*Y), (28a)
TooﬁlTo + TlToﬁll + Hy Ty

+ o' PHp T = O(| D), (28b)
TOOI:IQTO + T2T0ﬁ22 + ﬁoszz

| i

+ 15 Ho T3 = Ol *™*D), (28¢)

BTy + T;HY = 0(|ul?™Y), j=1.2, (28d)
N 1 A .

o BTy Hop + —5 Hin Ty = O(IlP*0), (28¢)
where

Hy Hy Hp

A=YPS=|Hy Hy 0
Hy 0 Hy
Hoo + O(l|ell)  Hor + O(llpell)  Hoz + O(ll )
= | Hio+O(llull) Hu +O(rl) O(ll11)
H> + O(llnll) O(llil) Hy + O(||iell)

Since for sufficiently small |jul|, ﬁl-,ij,-—i—O(HuH),
j=1,2 is stable, it is easy to verify that 7} =
O(|ul*™V) and Toy = O(JulI*™*P) from (28d) and
(28¢). Moreover, using the relations 7j = O(||u[*™V)
and Ty = O(|x|I*™*P) and the non-singularlity of
Hj, j=1,2, the following equations hold:

[Ho + O(IxID] Too + Too[Ho + O(lIDIT = 0|21y,
(29a)

Ty = [TooHf) + O(| P ONHY,  j=1,2. (29b)

Hence, Too = O(|ulI*™") and Tjp = O(|u|***") are
satisfied. Therefore 7 = O(||u|?*Y), that is 7T, =
@' T=0(|pl*"). Finally, T, = W, — Y, = O(||u|I**")
results in (23). [

As an extension of the well-known result of one
small parameter (Kokotovi¢ et al. 1999), the following
corollary is easily seen in view of theorem 3.

Corollary 1: Under assumptions 1-4, the use of the
near-optimal Kalman filter

Yoo Y Y5

RO = yOCTV =0t By By o [Ty
Yo 0 Yn
(30)
means that Tr W, satisfies
Tr W, =Tr Y, + O(|| D). (31

Proof: Since the result of corollary 1 can be proved by
using a similar technique to that for theorem 3, the
proof is omitted. ]

It should be noted that the result is derived by setting
i=0 for (23). Moreover, if the parameter ||u| is suffi-
ciently small, it is expected that the approximate
Kalman filter (31) will be used as the optimal filter.

6. Numerical example

In order to demonstrate the efficiency of the proposed
algorithm, a numerical example is tested. The system
matrices are given by

0 0 45 0 1
00 0 45 -1
Aw=|0 0 —005 0 —0.1|,
00 0 —005 0.1
(0 0 327 327 0
o _[-00s 0.05] -2
/Lo —01) o
0 0 0 0
0 0 0 0
A =101 0], Ap=| 0 0],
0 0 0.1 0
0 0 0 0
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0 0 0 0 0
Al()— >
0 0 —04 0 O
0 0 0 0 0
Az()— >
0 0 0 —04 O
0
0
Dy=Dyp=1|0 Dy =Dy = 0
01 = Y02 = 5 11 = 22 = 0.1 5
0
0
1 0 0 0 O 00 0 0 O
Cip = , Cy= )
01 0 0 O 00 0 0O

Ci = Gy =diag(L, 1),

V' =diag(0.1,0.2,0.1,0.2), W =0.4 diag(1,1).
The small parameters are chosen as ¢y = ¢, = 0.01. Note
that the technique proposed by Coumarbatch and
Gaji¢ (2000) for the MSPS cannot be applied because

the Hamiltonian matrices Z;, j = 1,2, have eigenvalues
in common. The solution of the GMARE (9a) is

Table 1. Error | F(Y)].

£ & Iteration Error

1x 1072 1 x 1072 20 4.1659 x 107"
1 x 1072 5% 1073 16 2.2378 x 1071
1 x 1073 1 x 1073 6 2.3606 x 10713
1x1073 5x 107 6 1.5423 x 10713
1x10* 1x10* 4 1.3164 x 107"
1 x 107 5%107° 3 2.5980 x 10713
1x107° 1x107° 2 2.6053 x 1071

It can be seen that the solution of the GMARE (9a)
converge to the exact solution with accuracy of
IF(YD) <1072 after 20 iterations. For different
values of &, and ¢,, in order to verify the exactitude of
the solution, the errors (i.e. || F(Y®)|)) and the necessary
iteration numbers of the algorithm (17) are given
in table 1. From table 1, since for sufficiently small
perturbation parameters the convergence speed is
quite good, the resulting algorithm of this paper
is very useful.

[ 9.6879 x 1072 —2.6722 x 1072 —2.0725x 1073 57249 x 107°  4.1482 x 1072
—2.6722 x 1072 2.2304 x 1071 5.0994 x 1073 —6.4236 x 10* —1.0658 x 10~!
—2.0725x 1073 5.0994 x 107 9.8888 x 10~*  1.5656 x 10~*  7.0704 x 10~*

57249 x 1073 —6.4236 x 107 1.5656 x 10~*  1.0044 x 107>  —6.3283 x 10~*
Y= 41482 x 1072 —1.0658 x 10~"  7.0704 x 10~* —6.3283 x 10™*  3.1888 x 10~
—1.9368 x 10™*  —7.8976 x 10~*  1.3949 x 10> —1.5901 x 10>  3.1474 x 10~*
1.7003 x 107> —8.4749 x 107* —2.5143 x 10> —7.5306 x 10°°  2.4563 x 10~*
—6.4823 x 107> 1.7925 x 107°  —4.6900 x 10~7 23353 x 10~>  —8.1998 x 10~

| —1.1670 x 107*  1.0288 x 107®  —3.6354 x 107® —9.8118 x 107  4.4271 x 1077
—1.9368 x 1072 1.7003 x 1073 —6.4823 x 10° —1.1670 x 1072
—7.8976 x 1072 —8.4749 x 107> 1.7925x 10> 1.0288 x 10~*

1.3949 x 1073 —2.5143 x 1073 —4.6900 x 10~°> —3.6354 x 10~*
—1.5901 x 1073 —7.5306 x 10~*  2.3353 x 1073 —9.8118 x 10*
3.1474 x 1072 2.4563 x 1072 —8.1998 x 10~ 4.4271 x 1073
24411 x 1073 32486 x 107> 1.9140 x 107> 3.7477 x 10~°
3.2486 x 1073 1.4741 x 1072 4.7563 x 107°  2.0034 x 10~°
1.9140 x 1075 4.7563 x 107®  2.0714 x 107> 2.9300 x 1073
37477 x 107 2.0034 x 107> 2.9300 x 10~ 1.4415 x 1072
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Table 2. ?,i=0,1,2.
& & n® e n®
1x 1072 1x 1072 8.1720 x 107! 2.9464 x 10° 1.1316 x 10°
1x1072 5% 1073 9.8700 x 107" 2.1797 x 107 6.6314 x 10*
1x107° 1 x 1073 2.3933 x 107! 3.3844 x 10! 1.2335 x 10*
1x1073 5% 107 3.2528 x 107! 3.5179 x 10 8.1193 x 10°
1x107* 1x107* 1.8561 x 107! 9.0949 —
1x107* 5% 107° 2.6007 x 107! 1.7364 x 10 —
1x107° 1x107° 1.8028 x 107! 4.5475 x 10° —

Finally, the steady-state mean square error is
evaluated using the high-order Kalman filter (22).
When &) =&, =0.01, the high-order Kalman filter
gain FJ* is as follows:

" 7.7511 x 107!
—1.0570 x 1
—6.7760 x 103
4.1348 x 1072
7.2956 x 10!
2.2474 x 1072
3.2656 x 1072
—4.5683 x 1074
| —7.9221 x 10~

F:xa = ngo) — Ygzo) CT V71 — ®‘:1

The near-optimal steady-state mean square per itera-
tions that is, i =0,1,2, are given in table 2, where
7 = (Tr W, — Tr Y,)/(g162)*"!. Table 2 verifies that
F has improved the steady-state mean square error
as the number of iterations increases. Moreover, it is
shown that the property (23) is satisfied because
the indices n” are the same order for the different
parameters &; and &,.

When the parameters e&; and &, are less than
0.0001 = 107, the index n® is beyond the guaranteed
precision because (1£,)"> becomes very large. In that
case, it should be noted that in table 2 the index n®
has no value, which is indicated by the symbol — .

7. Conclusion

In this paper, the new recursive algorithm for solving the
MARE has been proposed. It has been proven that the
solution of the MARE converges to a positive semidefi-
nite stabilizing solution with a convergence rate
of O(|lul™™"). As another important feature, since the
assumption that the Hamiltonian matrices Zj,j = 1,2,

for the fast subsystems have no -eigenvalues in

common is not needed compared with the work of
Coumarbatch and Gajic (2000), the new results are
applicable to a more realistic MSPS. Moreover, it is

—1.2511 x 107! —6.4823 x 1072 —5.8349 x 1072]

6.9146 x 107! 1.7925 x 1072 5.1442 x 1074

1.2926 x 1072 —4.6900 x 1074 —1.8177 x 103

—6.9771 x 1073 2.3353 x 1072 —4.9059 x 1073

—4.1007 x 1071 —8.1998 x 1072 2.2135 x 1072 (32)
1.2294 x 1072 1.9140 x 10*  1.8738 x 10~*

6.9469 x 1072 4.7563 x 1075 1.0017 x 10~*

1.1341 x 107*  2.0714 x 1072 1.4650 x 1072

1.0532 x 107*  2.9300 x 1072 7.2075 x 1072 |

newly proved that the resulting Kalman filter achieves
a performance which is O(||u||**1), close to the optimal
mean square error.
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