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In this paper, the optimal Kalman filtering problem for multiparameter singularly perturbed

systems is considered. In order to obtain the filter gain, the solution of the multiparameter

algebraic Riccati equations (MAREs) is needed. The main contributions in this paper are

to propose a new recursive algorithm for solving the MARE and to establish sufficient condi-

tions related to the convergence property of the proposed algorithm. Using the recursive algo-

rithm, it is shown that the solution of the MARE converges to a positive semidefinite

stabilizing solution with the rate of convergence of Oðk�kiÞ. Moreover, it is proved that the

mean square error via the proposed high-order filter attain, the Oðk�k2iþ1Þ approximation

compared with the optimal filter.

1. Introduction

Filtering problems for the multiparameter singularly

perturbed systems (MSPSs) have been investigated

extensively (see for example, Coumarbatch and Gajić

(2000), and reference therein). The multimodelling pro-

blems arise in large-scale dynamic systems. For example,

the multimodel situation in practice is illustrated by the

passenger car model (Coumarbatch and Gajić 2000). In

order to obtain the optimal solution to the multimodel-

ling problems, the multiparameter algebraic Riccati

equation (MARE) needs to be solved. Various reliable

approaches to the theory of the algebraic Riccati equa-

tion (ARE) have been well documented in many publi-

cations (see for example Laub 1979). One of the

approaches is the invariant subspace approach which

is based on the Hamiltonian matrix (Laub 1979).

However, there is no guarantee of symmetry for the

computed solution if the ARE is ill conditioned

(Laub 1979). Note that it is very difficult to solve the

MARE owing to high dimension and numerical stiffness

(Coumarbatch and Gajić 2000).
A popular approach to deal with the MSPS is the

two-time-scale design method (see for example,

Khalil and Kokotović (1979), Kokotović et al. (1986),

Mukaidani (2003) and Mukaidani et al. (2003)).

However, it is known from the work of Coumarbatch

and Gajić (2000) that an Oðk�kÞ (where � :¼ ½ "1 "2 �)
accuracy is very often not sufficient. In particular, it is

important to note that the required solution must be

obtained perfectly because the corresponding bound on

the steady-state mean square error tends to infinity

when k�k ! 0. Furthermore, in order to construct the

filter, knowledge of the parameters is needed. Therefore,

special effort must be made to solve the MARE as long

as information on these parameters is available.
Recently, the exact slow–fast decomposition method

for solving the MARE of the MSPS has been proposed

(Coumarbatch and Gajić 2000). However, these results

are restricted to the MSPS such that the Hamiltonian

matrices for the fast subsystems have no eigenvalues

in common (see assumption 5 of the paper by

Coumarbatch and Gajić (2000)). More recently, the

Kleinman algorithm for solving the MARE has been

established (Mukaidani et al. 2002a,b). However, in

order to reduce the computational workspace, another

algorithm such as fixed-point iterations is needed.

As another important algorithm in the work of

Mukaidani et al. (2002d), the recursive algorithm for

the solution of the regulator-type MARE has been*Corresponding author. Email: mukaida@hiroshima-u.ac.jp
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proposed. On the other hand, even though the H1 filter-

ing problem via the recursive algorithm has been studied

(Mukaidani et al. 2002c), the recursive algorithm for sol-

ving the MARE corresponding to the Kalman filtering

problem has not been investigated. In particular, the

existence condition for the solution of the MARE

and its asymptotic property have not been studied.

Furthermore, so far, the loss of steady-state mean

square error between the optimal filter and the

proposed filters that are based on the useful numerical

methods such as the recursive technique or the exact

decomposition technique has not been established.
In this paper, the optimal Kalman filtering problem

for the MSPS is studied. In particular, two-parameter

singularly perturbed systems (TSPSs) are considered.

The results obtained are valid for the steady state.

First the uniqueness and boundedness of the solution

to such a MARE are investigated and its asymptotic

structure and the existence condition are derived. The

proof of the existence of the solution to the MARE

with asymptotic expansion is obtained by an implicit

function theorem (Gajić et al. 1990). The main result

of this paper is to propose a new recursive algorithm

for solving the MARE and to find the sufficient condi-

tions regarding the convergence of the recursive algo-

rithm by using the reduced-order ARE. It is important

to note that the sufficient conditions derived here are

independent of the small perturbation parameter �.
It is also proved that the solution of the MARE con-

verges to a positive semidefinite stabilizing solution

with the rate of convergence of Oðk�kiþ1Þ, where i is

the iteration number. As another important feature,

the assumption that the Hamiltonian matrices for the

fast subsystems have no eigenvalues in common is not

needed. Thus, the new results are applicable to a more

realistic MSPS. Moreover, it is shown that the high-

order approximate Kalman filter achieves a perfor-

mance which is Oðk�k2iþ1Þ close to the optimal mean

square error. It is worth pointing out that the feature

of the Oðk�k2iþ1Þ suboptimality is established for

the first time for the optimal filtering problem of

the MSPS.

1.1. Notation

The superscript T denotes matrix transpose. detL

denotes the determinant of the square matrix L.

In denotes the n� n identity matrix. k � k denotes its

Euclidean norm for a matrix. � denotes the

Kronecker product (Magnus and Neudecker 1999).

Ulm denotes a permutation matrix in the Kronecker

matrix sense (Magnus and Neudecker 1999) such

that Ulm vecM ¼ vecMT,M 2 Rl�m. Ef�g denotes the

expectation operator. Tr denotes the trace operator.

2. Optimal Kalman filtering problem

Let us consider the following linear time-invariant
MSPS (TSPS):

_xx0 ¼ A00x0 þ A01x1 þ A02x2 þD01w1 þD02w2, ð1aÞ

"1 _xx1 ¼ A10x0 þ A11x1 þD11w1, ð1bÞ

"2 _xx2 ¼ A20x0 þ A22x2 þD22w2, ð1cÞ

with the corresponding measurements

yj ¼ Cj0x0 þ Cjjxj þ vj , j ¼ 1, 2, ð2Þ

where xj 2 Rnj , j ¼ 0, 1, 2, are the state vectors, yj 2 Rpj ,
j ¼ 0, 1, 2, are the system measurements, wj 2 Rqj ,
j ¼ 1, 2, and vj 2 Rrj , j ¼ 1, 2, are zero mean white
Gaussian noise processes with the following joint
covariance matrix, respectively:

W :¼ E
w1

w2

" #
wT
1 wT

2

� �( )
¼

W11 0

0 W22

" #
, ð3aÞ

V :¼ E
v1

v2

" #
vT1 vT2

� �( )
¼

V11 0

0 V22

" #
, ð3bÞ

E
w1

w2

" #
vT1 vT2

� �( )
¼

0 0

0 0

" #
: ð3cÞ

All the matrices are constant matrices of appropriate
dimensions. Moreover, "1 and "2 are two small positive
singular parameters of the same order of magnitude
such that

0 < k1 4� �
"1
"2

4 k2 < 1: ð4Þ

That is, it is assumed that the ratio of "1 to "2 is bounded
by some positive constants kj, j ¼ 1, 2.

In this paper the design method of the Kalman filter
gain for estimating the system states xj is established
under the following basic assumption.

Assumption 1: The limit of � exists as "1 and "2 tend to
zero (Khalil and Kokotović 1979, Kokotović et al. 1986),
that is

��� ¼ lim
"1!0þ

"2!0þ

�:
ð5Þ

The above assumption guarantees the existence for the
limiting solution of the MARE given later.
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The optimal Kalman filter of (1) and (2) is given by
(Coumarbatch and Gajić 2000)

_��0 ¼ A00�0 þ A01�1 þ A02�2 þ F01�1 þ F02�2, ð6aÞ

"1 _��1 ¼ A10�0 þ A11�1 þ F11�1 þ F12�2, ð6bÞ

"2 _��2 ¼ A20�0 þ A22�2 þ F21�1 þ F22�2, ð6cÞ

�j ¼ yj � Cj0�0 � Cjj�j , j ¼ 1, 2, ð6dÞ

where �j 2 Rnj , j ¼ 0, 1, 2; are the state estimates and
�j 2 Rpj , j ¼ 0, 1, 2, are the prediction errors.
The filter gain matrices that are represented as F0j

and Fjj , j ¼ 1, 2, are obtained from

Fe :¼

F01 F02

"�1
1 F11 "�1

1 F12

"�1
2 F21 "�1

2 F22

2
64

3
75 ¼ YeC

TV�1: ð7Þ

Ye satisfies the MARE

AeYe þ YeA
T
e � YeSYe þUe ¼ 0, ð8Þ

with

Ae :¼

A00 A01 A02

"�1
1 A10 "�1

1 A11 0

"�1
2 A20 0 "�1

2 A22

2
64

3
75,

De :¼

D01 D02

"�1
1 D11 0

0 "�1
2 D22

2
64

3
75, C :¼

C10 C11 0

C20 0 C22

� �
,

S :¼ CTV�1C ¼

S00 S01 S02

ST
01 S11 0

ST
02 0 S22

2
64

3
75,

Ue :¼ DeWDT
e ¼

U00 "�1
1 U01 "�1

2 U02

"�1
1 UT

01 "�2
1 U11 0

"�1
2 UT

02 0 "�2
2 U22

2
64

3
75:

Since the matrices Ae and De contain the term of "�1
j

order, the solution Ye of the MARE (8), if it exists,
must contain terms of "j order. Taking this fact into
account, the purpose of this paper is to look for the
solution Ye for the MARE (8) with the structure

Ye :¼

Y00 YT
10 YT

20

Y10 "�1
1 Y11 ð"1"2Þ

�1=2YT
21

Y20 ð"1"2Þ
�1=2Y21 "�1

2 Y22

2
64

3
75 2 RN�N ,

where N ¼ n0 þ n1 þ n2, Y00 ¼ YT
00, Y11 ¼ YT

11 and
Y22 ¼ YT

22.

In order to avoid the ill conditioning due to the large
parameter "�1

j which is included in the MARE (8), let us
introduce the following useful result (Mukaidani et al.
2002d).

The MARE (8) is equivalent to the following
generalized multiparameter algebraic Riccati equation
(GMARE) (9a):

FðYÞ :¼ AYT þ YAT � YSYT þU ¼ 0, ð9aÞ

Ye ¼ YTF�1
e ¼ F�1

e Y , ð9bÞ

where

Fe :¼

In0 0 0

0 "1In1 0

0 0 "2In2

2
6664

3
7775,

A :¼

A00 A01 A02

A10 A11 0

A20 0 A22

2
6664

3
7775,

U :¼

U00 U01 U02

UT
01 U11 0

UT
02 0 U22

2
6664

3
7775,

Y :¼

Y00 YT
10 YT

20

"1Y10 Y11 �1=2YT
21

"2Y20 ��1=2Y21 Y22

2
6664

3
7775:

3. The multiparameter algebraic Riccati equation

In the following analysis, the basic assumptions are
needed. Specifically, in order to guarantee the existence
of the reduced-order ARE and its standard stabili-
zability and the detectability conditions when k�k :¼
ð"21 þ "22Þ

1=2
! 0þ, assumptions 2, 3 and 4 are needed.

These assumptions play an important role in proving
theorem 1 which will be given later.

Assumption 2: The pairs ðAjj,CjjÞ, j ¼ 1, 2, are
detectable.

Assumption 3: The Hamiltonian matrices Zjj , j ¼ 1, 2,
have no eigenvalues on the imaginary axis, where

Zjj :¼
AT

jj �Sjj

�Ujj �Ajj

� �
:
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Assumption 4:

rank

sIn0 � AT
00 �AT

10 �AT
20 CT

10 CT
20

�AT
01 �AT

11 0 CT
11 0

�AT
02 0 �AT

22 0 CT
22

2
6664

3
7775 ¼ �nn, ð10aÞ

rank

sIn0 � A00 �A01 �A02 D01 D02

�A10 �A11 0 D11 0

�A20 0 �A22 0 D22

2
6664

3
7775 ¼ �nn, ð10bÞ

with 8s 2 C, Re½s�5 0 and �nn :¼ n1 þ n2.

Let �YY00, �YY10, �YY20, �YY11, �YY21 and �YY22 be the limiting
solutions of the GMARE (9a) as "j ! 0þ, j ¼ 1, 2.
In this case the following zeroth-order equations are
obtained by partitioning the GMARE (9a):

As
�YY00 þ �YY00A

T
s � �YY00Ss

�YY00 þUs ¼ 0, ð11aÞ

�YYT
j0 ¼ � �YY00 In0

� �
Z0jZ

�1
jj

Inj
�YYjj

" #
; ð11bÞ

Ajj
�YYjj þ �YYjjA

T
jj �

�YYjjSjj
�YYjj þUjj ¼ 0, ð11cÞ

where

Zs :¼ Z00 � Z01Z
�1
11 Z10 � Z02Z

�1
22 Z20 ¼

AT
s �Ss

�Us �As

� �
,

Z00 :¼
AT

00 �S00

�U00 �A00

� �
, Z0j :¼

AT
j0 �S0j

�U0j �A0j

" #
,

Zj0 :¼
AT

0j �ST
0j

�UT
0j �Aj0

" #
, j ¼ 1, 2:

It should be noted that, if (11c) has a stabilizing solu-
tion, then the Hamiltonian matrices Zjj have not eigen-
values on the imaginary axis and therefore these

matrices are non-singular (Zhou 1998).
In the rest of this section, relations between the

GMARE (9a) and the zeroth-order equations (11) are
considered. Before doing that, useful results for
the ARE (11a) are given.

Lemma 1: Under assumptions 1–4, there exists a matrix
C 2 R �pp�n0 , �pp :¼ p1 þ p2 and a matrix D 2 Rn0� �qq, �qq :¼
q1 þ q2 such that Ss ¼ C

TV�1C, Us ¼ DWDT.
Moreover, the triple ðAs, C,DÞ is stabilizable and

detectable.

Proof: Since the proof of lemma 1 is easy by a similar
argument to that of Mukaidani et al. (2002d), it is
omitted. œ

The limiting behaviour of Ye as the parameter
k�k :¼ ð"21 þ "22Þ

1=2
! 0þ is described by the following

theorem.

Theorem 1: Under Assumptions 1–4, there exists a small
�� such that for all k�k 2 ð0, ��Þ the MARE (8) admits
a symmetric positive semidefinite stabilizing solution Ye

which can be written as

Ye ¼

�YY00þOðk�kÞ �YYT
10þOðk�kÞ �YYT

20þOðk�kÞ

�YY10þOðk�kÞ "�1
1 ð �YY11þOðk�kÞÞ ð"1"2Þ

�1=2Oðk�kÞ

�YY20þOðk�kÞ ð"1"2Þ
�1=2Oðk�kÞ "�1

2 ð �YY22þOðk�kÞÞ

2
64

3
75,

ð12Þ

where � :¼ ½ "1 "2 �.

Proof: The proof of this theorem is acheived by using
the implicit function theorem (Gajić 1988, Gajić et al.
1998) to (9a). To do this, it is enough to show that
the corresponding Jacobian is non-singular at "j ¼ 0,
j ¼ 1, 2. It can be shown, after some algebra, that the
Jacobian of (9a) in the limit as � ! ��� ¼ ½ 0 0 � is
given by

J ¼

J00 J01 J02 0 0 0

J10 J11 0 J13 J14 0

J20 0 J22 0 J24 J25

0 0 0 J33 0 0

0 0 0 0 J44 0

0 0 0 0 0 J55

2
666666664

3
777777775
, ð13Þ

and

J00 ¼ In0 �H00 þH00 � In0 ,

J0j ¼ ðIn0 �H0jÞUn0nj þH0j � In0 ,

Jj0 ¼ Hj0 � In0 , Jjj ¼ Hjj � In0 ,

J13 ¼ In1 �H01, J14 ¼ ���1=2ðIn1 �H02ÞUn1n2 ,

J24 ¼
1

���1=2
ðIn2 �H01Þ, J25 ¼ In2 �H02,

J33 ¼ In1 �H11 þH11 � In1 ,

J44 ¼ ���1=2H22 � In1 þ
1

���1=2
In2 �H11,

J55 ¼ In2 �H22 þH22 � In2 ,

H00 ¼ A00 � �YY00S00 � �YYT
10S

T
01 �

�YYT
20S

T
02,

Hj0 ¼ Aj0 � �YYjjS
T
0j , H0j ¼ A0j � �YY00S0j � �YYT

j0Sjj,

Hjj ¼ Ajj � �YYjjSjj, j ¼ 1, 2:

The Jacobian (13) can be expressed as

det J ¼ det J11 det J22 det J33 det J44 det J55

� det½In0 �H0 þH0 � In0 �, ð14Þ
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where H0 � H00 �H01H
�1
11 H10 �H02H

�1
22 H20. Obvi-

ously, Jjj, j ¼ 1, . . . , 5 are non-singular because

the matrices Hjj ¼ Ajj � �YYjjSjj, j ¼ 1, 2, are stable.

After some straightforward but tedious algebra, it can

be easily seen that As � �YY00Ss ¼ H00 �H01H
�1
11 H10�

H02H
�1
22 H20 ¼ H0. Therefore, the matrix H0 is stable if

the ARE (11a) has a positive semidefinite stabilizing

solution. Thus, det J 6¼ 0. The conclusion of Theorem 1

is obtained directly by using the implicit function

theorem. The remainder of the proof is to show that

Ye is a positive semidefinite stabilizing solution. How-

ever, the proof is omitted since it is similar to that

given by Mukaidani et al. (2002d). œ

4. The recursive algorithm

Now, let us define E :¼ ð"1"2Þ
1=2. By making use of

the zeroth-order solutions (11), the solution (12) can

be changed as follows:

Ypq ¼ �YYpq þ EMpq, pq ¼ 00, 10, 20, 11, 21, 22, ð15Þ

where M00 ¼ MT
00, M11 ¼ MT

11, M22 ¼ MT
22, and

�YY21 ¼ 0.
Substituting (15) into (9a) and subtracting (11) from

(9a), the following error equations (16) are given:

H00M00 þM00H
T
00 þH01M10 þMT

10H
T
01 þH02M20

þMT
20H

T
02 � EðM00S00M00 þMT

10S
T
01M00

þM00S01M10 þMT
20S

T
02M00 þM00S02M20

þMT
10S11M10 þMT

20S22M20Þ ¼ 0, ð16aÞ

M00H
T
10 þMT

10H11 þH01M11 þ �1=2H02M21

þ
"1
E
H00Y

T
10 � EðM00S01M11 þMT

10S11M11Þ

� E�1=2ðM00S02M21 þMT
20S22M21Þ

� "1ðM00S00 þMT
10S

T
01 þMT

20S
T
02ÞY

T
10 ¼ 0, ð16bÞ

M00H
T
20 þMT

20H22 þH02M22 þ
1

�1=2
H01M

T
21

þ
"2
E
H00Y

T
20 � EðM00S02M22 þMT

20S22M22Þ

�
E

�1=2
ðM00S01M

T
21 þMT

10S
T
11M

T
21Þ

� "2ðM00S00 þMT
10S

T
01 þMT

20S
T
02ÞY

T
20 ¼ 0, ð16cÞ

H11M11 þM11H
T
11 þ

"1
E
ðH10

�YYT
10 þ

�YY10H
T
10Þ

þ "1ðH10M
T
10 þM10H

T
10Þ �

"21
E
Y10S00Y

T
10

� "1ðM11S
T
01Y

T
10 þ Y10S01M11Þ

� "1�
1=2ðMT

21S
T
02Y

T
10 þ Y10S02M21Þ

� EðM11S11M11 þ �MT
21S22M21Þ ¼ 0, ð16dÞ

�1=2MT
21H22 þ

1

�1=2
H11M

T
21 þ

"1
E

�YY10H
T
20 þ

"2
E
H10

�YYT
20

þ "1M10H
T
20 þ "2H10M

T
20

� "1 Y10S02M22 þ
1

�1=2
Y10S01M

T
21

� �

� "2ðM11S
T
01Y

T
20 þ �1=2MT

21S
T
02Y

T
20Þ �

"1"2
E

Y10S00Y
T
20

� E �1=2MT
21S22M22 þ

1

�1=2
M11S

T
11M

T
21

� �
¼ 0, ð16eÞ

H22M22 þM22H
T
22 þ

"2
E
ðH20

�YYT
20 þ

�YY20H
T
20Þ

þ "2ðH20M
T
20 þM20H

T
20Þ �

"22
E
Y20S00Y

T
20

� "2ðM22S
T
02Y

T
20 þ Y20S02M22Þ

�
"2
�1=2

ðM21S
T
01Y

T
20 þ Y20S01M

T
21Þ

� E M22S22M22 þ
1

�
M21S11M

T
21

� �
¼ 0: ð16fÞ

Hence, the following iterative algorithm which is based

on the recursive algorithm is given:

H11M
ðiþ1Þ
11 þM

ðiþ1Þ
11 HT

11

¼ �
"1
E
ðH10

�YYT
10 þ

�YY10H
T
10Þ � "1ðH10M

ðiÞT
10 þM

ðiÞ
10H

T
10Þ

þ
"21
E
Y

ðiÞ
10 S00Y

ðiÞT
10 þ "1ðM

ðiÞ
11 S

T
01Y

ðiÞT
10 þ Y

ðiÞ
10 S01M

ðiÞ
11 Þ

þ "1�
1=2ðM

ðiÞT
21 ST

02Y
ðiÞT
10 þ Y

ðiÞ
10 S02M

ðiÞ
21 Þ

þ EðM
ðiÞ
11 S11M

ðiÞ
11 þ �M ðiÞT

21 S22M
ðiÞ
21 Þ, ð17aÞ

H22M
ðiþ1Þ
22 þM

ðiþ1Þ
22 HT

22

¼ �
"2
E
ðH20

�YYT
20 þ

�YY20H
T
20Þ � "2ðH20M

ðiÞT
20 þM

ðiÞ
20H

T
20Þ

þ
"22
E
Y

ðiÞ
20 S00Y

ðiÞT
20 þ "2ðM

ðiÞ
22 S

T
02Y

ðiÞT
20 þ Y

ðiÞ
20 S02M

ðiÞ
22 Þ

þ
"2
�1=2

ðM
ðiÞ
21 S

T
01Y

ðiÞT
20 þ Y

ðiÞ
20 S01M

ðiÞT
21 Þ

þ EðM
ðiÞ
22 S22M

ðiÞ
22 þ

1

�
M

ðiÞ
21 S11M

ðiÞT
21 Þ, ð17bÞ
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�1=2M
ðiþ1ÞT
21 H22 þ

1

�1=2
H11M

ðiþ1ÞT
21

¼ �
"1
E

�YY10H
T
20 �

"2
E
H10

�YYT
20 � "1M

ðiÞ
10H

T
20 � "2H10M

ðiÞT
20

þ
"1"2
E

Y
ðiÞ
10S00Y

ðiÞT
20

þ "1 Y
ðiÞ
10S02M

ðiÞ
22 þ

1

�1=2
Y

ðiÞ
10S01M

ðiÞT
21

� �
þ "2ðM

ðiÞ
11S

T
01Y

ðiÞT
20 þ �1=2M

ðiÞT
21 ST

02Y
ðiÞT
20 Þ

þ E �1=2M
ðiÞT
21 S22M

ðiÞ
22 þ

1

�1=2
M

ðiÞ
11S

T
11M

ðiÞT
21

� �
, ð17cÞ

H0M
ðiþ1Þ
00 þM

ðiþ1Þ
00 HT

0

¼ �H01H
�1
11 L

ðiÞT
01 � L

ðiÞ
01H

�T
11 HT

01 �H02H
�1
22 L

ðiÞT
02

� L
ðiÞ
02H

�T
22 HT

02 þ EðM
ðiÞ
00S00M

ðiÞ
00 þM

ðiÞT
10 ST

01M
ðiÞ
00

þM
ðiÞ
00S01M

ðiÞ
10 þM

ðiÞT
20 ST

02M
ðiÞ
00 þM

ðiÞ
00S02M

ðiÞ
20

þM
ðiÞT
10 ST

11M
ðiÞ
10 þM

ðiÞT
20 S22M

ðiÞ
20Þ, ð17dÞ

M
ðiþ1ÞT
j0 ¼ ðL

ðiÞ
0j �M

ðiþ1Þ
00 HT

j0ÞH
�1
jj , ð17eÞ

where j ¼ 1, 2,

L
ðiÞ
01 ¼ �H01M

ðiþ1Þ
11 � �1=2H02M

ðiþ1Þ
21 �

"1
E
HT

00Y
T
10

þ EðM
ðiÞ
00S01M

ðiÞ
11 þM

ðiÞT
10 S11M

ðiÞ
11Þ

þ E�1=2ðM
ðiÞ
00S02M

ðiÞ
21 þM

ðiÞT
20 ST

22M
ðiÞ
21Þ

þ "1ðM
ðiÞ
00S00 þM

ðiÞT
10 ST

01 þM
ðiÞT
20 ST

02ÞY
ðiÞT
10 ,

L
ðiÞ
02 ¼ �H02M

ðiþ1Þ
22 �

1

�1=2
HT

01M
ðiþ1ÞT
21 �

"2
E
HT

00Y
T
20

þ EðM
ðiÞ
00S02M

ðiÞ
22 þM

ðiÞT
20 S22M

ðiÞ
22Þ

þ
E

�1=2
ðM

ðiÞ
00S01M

ðiÞT
21 þM

ðiÞT
10 ST

11M
ðiÞT
21 Þ

þ "2ðM
ðiÞ
00S00 þM

ðiÞT
10 ST

01 þM
ðiÞT
20 ST

02ÞY
ðiÞT
20 ,

Y
ðiÞ
j0 ¼ �YYj0 þ EM

ðiÞ
j0 , i ¼ 0, 1, . . . ;

M
ð0Þ
00 ¼ M

ð0Þ
10 ¼ M

ð0Þ
20 ¼ M

ð0Þ
11 ¼ M

ð0Þ
21 ¼ M

ð0Þ
22 ¼ 0:

The following theorem indicates the convergence of the
algorithm (17).

Theorem 2: Under assumptions 1–4, there exist unique
and bounded solutions Mpq of the error equation in a
neighbourhood of k�k ¼ 0. Moreover, the algorithm
(17) converges to the exact solutions Mpq with the rate
of the convergence of Oðk�kiÞ, that is

kMpq �MðiÞ
pqk ¼ Oðk�kiÞ, i ¼ 1, 2, . . . : ð18Þ

Proof: As a starting point it must be shown that there
exist the unique and bounded solutions of Mpq in a

neighbourhood of k�k ¼ 0. To prove that by the impli-
cit function theorem, it is enough to show that the
corresponding Jacobian J0 of (16) is non-singular at
k�k ¼ 0. The Jacobian is given by

J0 ¼ J: ð19Þ

Taking into consideration the fact that J is non-singular
at k�k ¼ 0, J0 is also non-singular. Therefore, there
exist unique and bounded solutions of the error
equations (16).

Secondly, the proof of (18) uses mathematical induc-
tion. Subtracting (17) from (16), the following equations
are derived:

H00ðM00 �M
ðiþ1Þ
00 Þ þ ðM00 �M

ðiþ1Þ
00 ÞHT

00

þH01ðM10 �M
ðiþ1Þ
10 Þ þ ðM10 �M

ðiþ1Þ
10 Þ

THT
01

þH02ðM20 �M
ðiþ1Þ
20 Þ þ ðM20 �M

ðiþ1Þ
20 Þ

THT
02

¼ EF 1ðM
ðiÞ
00,M

ðiÞ
10,M

ðiÞ
20, "1, "2Þ, ð20aÞ

ðM00 �M
ðiþ1Þ
00 ÞHT

10 þ ðM10 �M
ðiþ1Þ
10 Þ

TH11

þH01ðM11 �M
ðiþ1Þ
11 Þ þ �1=2H02ðM21 �M

ðiþ1Þ
21 Þ

¼ EF 2ðM
ðiÞ
00,M

ðiÞ
10,M

ðiÞ
20,M

ðiÞ
11,M

ðiÞ
21, "1, "2Þ, ð20bÞ

ðM00 �M
ðiþ1Þ
00 ÞHT

20 þ ðM20 �M
ðiþ1Þ
20 Þ

TH22

þH02ðM22 �M
ðiþ1Þ
22 Þ þ

1

�1=2
H01ðM21 �M

ðiþ1Þ
21 Þ

T

¼ EF 3ðM
ðiÞ
00,M

ðiÞ
10,M

ðiÞ
20,M

ðiÞ
21,M

ðiÞ
22, "1, "2Þ, ð20cÞ

H11ðM11 �M
ðiþ1Þ
11 Þ þ ðM11 �M

ðiþ1Þ
11 ÞHT

11

¼ EF 4ðM
ðiÞ
10,M

ðiÞ
11,M

ðiÞ
21, "1, "2Þ, ð20dÞ

�1=2ðM21 �M
ðiþ1Þ
21 Þ

TH22 þ
1

�1=2
H11ðM21 �M

ðiþ1Þ
21 Þ

T

¼ EF 5ðM
ðiÞ
10,M

ðiÞ
20,M

ðiÞ
11,M

ðiÞ
21,M

ðiÞ
22, "1, "2Þ, ð20eÞ

H22ðM22 �M
ðiþ1Þ
22 Þ þ ðM22 �M

ðiþ1Þ
22 ÞHT

22

¼ EF 6ðM
ðiÞ
20,M

ðiÞ
21,M

ðiÞ
22, "1, "2Þ, ð20fÞ

where F j, j ¼ 1, . . . , 6, are appropriate implicit func-
tions of the matrices MðiÞ

pq. When i¼ 0 for the equations
(20), using the standard properties of the algebraic
Lyapunov equation (ALE) (Zhou 1998), and taking
into consideration the stable matrices H11 and H22

it follows that

HjjðMjj �M
ð1Þ
jj Þ þ ðMjj �M

ð1Þ
jj ÞHT

jj ¼ Oðk�kÞ

) Mjj �M
ð1Þ
jj ¼ Oðk�kÞ, j ¼ 1, 2;

�1=2ðM21 �M
ð1Þ
21 Þ

TH22 þ
1

�1=2
H11ðM21 �M

ð1Þ
21 Þ

T
¼ Oðk�kÞ

) M21 �M
ð1Þ
21 ¼ Oðk�kÞ:
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Since H11 and H22 are stable, the following ALE holds:

H0ðM00�M
ð1Þ
00 Þþ ðM00�M

ð1Þ
00 ÞH

T
0 ¼Oðk�kÞ,

ðMj0�M
ð1Þ
j0 Þ

T
¼�ðM00�M

ð1Þ
00 ÞH

T
j0H

�1
jj þOðk�kÞ, j¼ 1,2:

Using the above similar technique, and by stability of
H0, the following relation holds:

kMpq �Mð1Þ
pq k ¼ Oðk�kÞ, pq ¼ 00, 10, 20, 11, 21, 22:

When i ¼ k ði � 2Þ, it is assumed that kMpq �MðkÞ
pq k ¼

Oðk�kkÞ. Using this assumption, the right-hand side
of the equation (20a) can be changed as follows:

EF 1ðM
ðkÞ
00 ,M

ðkÞ
10 ,M

ðkÞ
20 , "1, "2Þ

¼ EðM00S00M00 þMT
10S

T
01M00 þM00S01M10

þMT
20S

T
02M00 þM00S02M20 þMT

10S11M10

þMT
20S22M20Þ � EðM

ðkÞ
00 S00M

ðkÞ
00 þM

ðkÞT
10 ST

01M
ðkÞ
00

þM
ðkÞ
00 S01M

ðkÞ
10 þM

ðkÞT
20 ST

02M
ðkÞ
00 þM

ðkÞ
00 S02M

ðkÞ
20

þM
ðkÞT
10 S11M

ðkÞ
10 þM

ðkÞT
20 S22M

ðkÞ
20 Þ

¼ EOðk�kkÞ ¼ Oðk�kkþ1Þ:

Similarly, the following equations are satisfied:

H00ðM00�M
ðkþ1Þ
00 ÞþðM00�M

ðkþ1Þ
00 ÞHT

00

þH01ðM10�M
ðkþ1Þ
10 ÞþðM10�M

ðkþ1Þ
10 Þ

THT
01

þH02ðM20�M
ðkþ1Þ
20 ÞþðM20�M

ðkþ1Þ
20 Þ

THT
02¼Oðk�kkþ1Þ,

ðM00�M
ðkþ1Þ
00 ÞHT

10þðM10�M
ðkþ1Þ
10 Þ

TH11

þH01ðM11�M
ðkþ1Þ
11 Þþ�1=2H02ðM21�M

ðkþ1Þ
21 Þ

¼Oðk�kkþ1Þ,

ðM00�M
ðkþ1Þ
00 ÞHT

20þðM20�M
ðkþ1Þ
20 Þ

TH22

þH02ðM22�M
ðkþ1Þ
22 Þþ

1

�1=2
H01ðM21�M

ðkþ1Þ
21 Þ

T

¼Oðk�kkþ1Þ,

HjjðMjj�M
ðkþ1Þ
jj ÞþðMjj�M

ðkþ1Þ
jj ÞHT

jj

¼Oðk�kkþ1Þ, j¼1,2,

�1=2ðM21�M
ðkþ1Þ
21 Þ

TH22þ
1

�1=2
H11ðM21�M

ðkþ1Þ
21 Þ

T

¼Oðk�kkþ1Þ:

By cancelling the appropriate terms, a similar proof will
show that

kMpq �Mðkþ1Þ
pq k ¼ Oðk�kkþ1Þ,

pq ¼ 00, 10, 20, 11, 21, 22: ð21Þ

Consequently, (18) holds for all i 2 N. Thus, the proof
of theorem 2 is completed. œ

In the paper by Mukaidani et al. (2002c), theH1 opti-
mal filtering problem for an MSPS has been studied via
the recursive approach. In that paper, a MARE that has
a sign indefinite quadratic term has been considered.
However, the existence condition for the solution of the
MARE imposes conservative conditions. Moreover,
the stabilizability and detectability conditions for the
reduced-order ARE were not investigated.

5. Application

A positive semidefinite stabilizing solution of the
MARE (8) exists under assumptions 1–4. Attention is
focused on the design of the high-order Kalman
filters. Such a filter is obtained by using the iterative
solution (17):

F ðiÞ
e :¼Y ðiÞ

e CTV�1

¼

�YY00þEM
ðiÞ
00 ð �YY10þEM

ðiÞ
10Þ

T
ð �YY20þEM

ðiÞ
20Þ

T

�YY10þEM
ðiÞ
10 "�1

1 ð �YY11þEM
ðiÞ
11Þ ð"1"2Þ

�1=2
EM

ðiÞT
21

�YY20þEM
ðiÞ
20 ð"1"2Þ

�1=2
EM

ðiÞ
21 "�1

2 ð �YY22þEM
ðiÞ
22Þ

2
664

3
775

�CTV�1: ð22Þ

Theorem 3: Under assumptions 1–4, the use of the
high-order Kalman filter gain (22) results in

TrWe ¼ TrYe þOðk�k2iþ1Þ, ð23Þ

where TrYe is the optimal steady-state mean square error,
while TrWe is the near-optimal steady-state mean square
error and We is a positive semidefinite solution of the
following multiparameter algebraic Lyapunov equation
(MALE):

ðAe � Y ðiÞ
e SÞWe þWeðAe � Y ðiÞ

e SÞT þ Y ðiÞ
e SY ðiÞ

e þUe ¼ 0:

ð24Þ

Proof: Subtracting (8) from (24), it is easy to verify
that Te ¼ We � Ye satisfies the following MALE:

ðAe � Y ðiÞ
e SÞTe þ TeðAe � Y ðiÞ

e SÞTe

þ ðYe � Y ðiÞ
e ÞSðYe � Y ðiÞ

e Þ ¼ 0: ð25Þ

It is assumed that the solution Te of the MALE (25) has
the following structure:

Te ¼

T00 TT
10 TT

20

T10 "�1
1 T11 ð"1"2Þ

�1=2TT
21

T20 ð"1"2Þ
�1=2T21 "�1

2 T22

2
64

3
75 2 RN�N ,
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where T00 ¼ TT
00,T11 ¼ TT

11 and T22 ¼ TT
22.

Using the similar technique in the work of Mukaidani
et al. (2002d), the MALE (25) is equivalent to the fol-
lowing generalized multiparameter algebraic Lyapunov
equation (GMALE) (26):

ðA� Y ðiÞSÞTT þ TðA� Y ðiÞSÞT

þ ðY � Y ðiÞÞSðY � Y ðiÞÞ
T
¼ 0, ð26aÞ

Te ¼ TTF�1
e ¼ F�1

e T : ð26bÞ

Since Y � Y ðiÞ ¼ Oðk�kiþ1Þ under (18), the following
GMALE holds:

ðA� Y ðiÞSÞTT þ TðA� Y ðiÞSÞT þOðk�k2ðiþ1ÞÞ ¼ 0:

ð27Þ

Partitioning the GMALE (27), the following equa-
tions hold:

ĤH00T00 þ T00ĤH
T
00 þ ĤH01T10 þ TT

10ĤH
T
01 þ ĤH02T20

þ TT
20ĤH

T
02 ¼ Oðk�k2ðiþ1ÞÞ, ð28aÞ

T00ĤH
T
10 þ TT

10ĤH11 þ ĤH01T11

þ �1=2ĤH02T21 ¼ Oðk�k2ðiþ1ÞÞ, ð28bÞ

T00ĤH
T
20 þ TT

20ĤH22 þ ĤH02T22

þ
1

�1=2
ĤH01T

T
21 ¼ Oðk�k2ðiþ1ÞÞ, ð28cÞ

ĤHjjTjj þ TjjĤH
T
jj ¼ Oðk�k2ðiþ1ÞÞ, j ¼ 1, 2, ð28dÞ

�1=2TT
21ĤH22 þ

1

�1=2
ĤH11T

T
21 ¼ Oðk�k2ðiþ1ÞÞ, ð28eÞ

where

A� Y ðiÞS ¼

ĤH00 ĤH01 ĤH02

ĤH10 ĤH11 0

ĤH20 0 ĤH22

2
64

3
75

¼

H00 þOðk�kÞ H01 þOðk�kÞ H02 þOðk�kÞ

H10 þOðk�kÞ H11 þOðk�kÞ Oðk�kÞ

H20 þOðk�kÞ Oðk�kÞ H22 þOðk�kÞ

2
64

3
75:

Since for sufficiently small k�k, ĤHjj ¼ Hjj þOðk�kÞ,
j ¼ 1, 2 is stable, it is easy to verify that Tjj ¼

Oðk�k2ðiþ1ÞÞ and T21 ¼ Oðk�k2ðiþ1ÞÞ from (28d) and
(28e). Moreover, using the relations Tjj ¼ Oðk�k2ðiþ1ÞÞ

and T21 ¼ Oðk�k2ðiþ1ÞÞ and the non-singularlity of
ĤHjj, j ¼ 1, 2, the following equations hold:

½H0 þOðk�kÞ�T00 þ T00½H0 þOðk�kÞ�T ¼ Oðk�k2ðiþ1ÞÞ,

ð29aÞ

TT
j0 ¼ ½T00ĤH

T
10 þOðk�k2ðiþ1ÞÞ�ĤH�1

11 , j ¼ 1, 2: ð29bÞ

Hence, T00 ¼ Oðk�k2ðiþ1ÞÞ and Tj0 ¼ Oðk�k2ðiþ1ÞÞ are

satisfied. Therefore T ¼ Oðk�k2ðiþ1ÞÞ, that is Te ¼

F�1
e T ¼Oðk�k2iþ1Þ. Finally, Te ¼We�Ye ¼Oðk�k2iþ1Þ

results in (23). œ

As an extension of the well-known result of one

small parameter (Kokotović et al. 1999), the following

corollary is easily seen in view of theorem 3.

Corollary 1: Under assumptions 1–4, the use of the

near-optimal Kalman filter

F ð0Þ
e ¼ Y ð0Þ

e CTV�1 ¼ F�1
e

�YY00
�YYT
10

�YYT
20

�YY10
�YY11 0

�YY20 0 �YY22

2
64

3
75CTV�1

ð30Þ

means that TrWe satisfies

TrWe ¼ TrYe þOðk�kÞ: ð31Þ

Proof: Since the result of corollary 1 can be proved by

using a similar technique to that for theorem 3, the

proof is omitted. œ

It should be noted that the result is derived by setting

i¼ 0 for (23). Moreover, if the parameter k�k is suffi-

ciently small, it is expected that the approximate

Kalman filter (31) will be used as the optimal filter.

6. Numerical example

In order to demonstrate the efficiency of the proposed

algorithm, a numerical example is tested. The system

matrices are given by

A00 ¼

0 0 4:5 0 1

0 0 0 4:5 �1

0 0 �0:05 0 �0:1

0 0 0 �0:05 0:1

0 0 32:7 �32:7 0

2
6666664

3
7777775
,

Ajj ¼
�0:05 0:05

0 �0:1

� �
, j ¼ 1, 2,

A01 ¼

0 0

0 0

0:1 0

0 0

0 0

2
6666664

3
7777775
, A02 ¼

0 0

0 0

0 0

0:1 0

0 0

2
6666664

3
7777775
,
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A10 ¼
0 0 0 0 0

0 0 �0:4 0 0

� �
,

A20 ¼
0 0 0 0 0

0 0 0 �0:4 0

� �
,

D01 ¼ D02 ¼

0

0

0

0

0

2
6666664

3
7777775
, D11 ¼ D22 ¼

0

0:1

� �
,

C10 ¼
1 0 0 0 0

0 1 0 0 0

� �
, C20 ¼

0 0 0 0 0

0 0 0 0 0

� �
,

C11 ¼ C22 ¼ diag ð1, 1Þ,

V ¼ diag ð0:1, 0:2, 0:1, 0:2Þ, W ¼ 0:4 diag ð1, 1Þ:

The small parameters are chosen as "1 ¼ "2 ¼ 0:01. Note
that the technique proposed by Coumarbatch and
Gajić (2000) for the MSPS cannot be applied because
the Hamiltonian matrices Zjj , j ¼ 1, 2, have eigenvalues
in common. The solution of the GMARE (9a) is

It can be seen that the solution of the GMARE (9a)

converge to the exact solution with accuracy of

kFðY ðiÞÞk < 10�12 after 20 iterations. For different

values of "1 and "2, in order to verify the exactitude of

the solution, the errors (i.e. kFðY ðiÞÞk) and the necessary

iteration numbers of the algorithm (17) are given

in table 1. From table 1, since for sufficiently small

perturbation parameters the convergence speed is

quite good, the resulting algorithm of this paper

is very useful.

Y ¼

9:6879� 10�2 �2:6722� 10�2 �2:0725� 10�3 5:7249� 10�3 4:1482� 10�2

�2:6722� 10�2 2:2304� 10�1 5:0994� 10�3 �6:4236� 10�4 �1:0658� 10�1

�2:0725� 10�3 5:0994� 10�3 9:8888� 10�4 1:5656� 10�4 7:0704� 10�4

5:7249� 10�3 �6:4236� 10�4 1:5656� 10�4 1:0044� 10�3 �6:3283� 10�4

4:1482� 10�2 �1:0658� 10�1 7:0704� 10�4 �6:3283� 10�4 3:1888� 10�1

�1:9368� 10�4 �7:8976� 10�4 1:3949� 10�5 �1:5901� 10�5 3:1474� 10�4

1:7003� 10�5 �8:4749� 10�4 �2:5143� 10�5 �7:5306� 10�6 2:4563� 10�4

�6:4823� 10�5 1:7925� 10�5 �4:6900� 10�7 2:3353� 10�5 �8:1998� 10�5

�1:1670� 10�4 1:0288� 10�6 �3:6354� 10�6 �9:8118� 10�6 4:4271� 10�5

2
6666666666666666666666664
�1:9368� 10�2 1:7003� 10�3 �6:4823� 10�3 �1:1670� 10�2

�7:8976� 10�2 �8:4749� 10�2 1:7925� 10�3 1:0288� 10�4

1:3949� 10�3 �2:5143� 10�3 �4:6900� 10�5 �3:6354� 10�4

�1:5901� 10�3 �7:5306� 10�4 2:3353� 10�3 �9:8118� 10�4

3:1474� 10�2 2:4563� 10�2 �8:1998� 10�3 4:4271� 10�3

2:4411� 10�3 3:2486� 10�3 1:9140� 10�5 3:7477� 10�5

3:2486� 10�3 1:4741� 10�2 4:7563� 10�6 2:0034� 10�5

1:9140� 10�5 4:7563� 10�6 2:0714� 10�3 2:9300� 10�3

3:7477� 10�5 2:0034� 10�5 2:9300� 10�3 1:4415� 10�2

3
7777777777777777777777775

:

Table 1. Error kFðYÞk.

"1 "2 Iteration Error

1� 10�2 1� 10�2 20 4:1659� 10�13

1� 10�2 5� 10�3 16 2:2378� 10�13

1� 10�3 1� 10�3 6 2:3606� 10�13

1� 10�3 5� 10�4 6 1:5423� 10�13

1� 10�4 1� 10�4 4 1:3164� 10�13

1� 10�4 5� 10�5 3 2:5980� 10�13

1� 10�5 1� 10�5 2 2:6053� 10�13
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Finally, the steady-state mean square error is

evaluated using the high-order Kalman filter (22).

When "1 ¼ "2 ¼ 0:01, the high-order Kalman filter

gain F exa
e is as follows:

The near-optimal steady-state mean square per itera-
tions that is, i ¼ 0, 1, 2, are given in table 2, where
�ðiÞ ¼ ðTr We � Tr YeÞ=ð"1"2Þ

2iþ1. Table 2 verifies that
F ðiÞ
e has improved the steady-state mean square error

as the number of iterations increases. Moreover, it is
shown that the property (23) is satisfied because
the indices �(i) are the same order for the different
parameters "1 and "2.
When the parameters "1 and "2 are less than

0:0001 ¼ 10�4, the index �ð2Þ is beyond the guaranteed
precision because ð"1"2Þ

�5 becomes very large. In that
case, it should be noted that in table 2 the index �ð2Þ

has no value, which is indicated by the symbol — .

7. Conclusion

In this paper, the new recursive algorithm for solving the
MARE has been proposed. It has been proven that the
solution of the MARE converges to a positive semidefi-
nite stabilizing solution with a convergence rate
of Oðk�kiþ1Þ. As another important feature, since the
assumption that the Hamiltonian matrices Zjj, j ¼ 1, 2,

for the fast subsystems have no eigenvalues in

common is not needed compared with the work of

Coumarbatch and Gajić (2000), the new results are

applicable to a more realistic MSPS. Moreover, it is

newly proved that the resulting Kalman filter achieves

a performance which is Oðk�k2iþ1Þ, close to the optimal
mean square error.
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