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In this paper we study a continuous-time multiparameter algebraic Riccati equa-
tion (MARE) with an indefinite sign quadratic term. The existence of a unique and
bounded solution of the MARE is newly established. We show that the Kleinman
algorithm can be used to solve the sign indefinite MARE. The proof of the conver-
gence and the existence of the unique solution of the Kleinman algorithm is done by
using the Newton–Kantorovich theorem. Furthermore, we present new algorithms
for solving the generalized multiparameter algebraic Lyapunov equation (GMALE)
by means of the fixed-point algorithm.  2002 Elsevier Science (USA)

1. INTRODUCTION

The deterministic and stochastic multimodeling controls and their fil-
tering problems have been investigated extensively by several researchers
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(see e.g., [1–6]). The multimodeling problems arise in large-scale dynamic
systems. For example, these multimodel situations in practice are illustrated
by the multiarea power system [1] and the passenger car model [6]. In
order to obtain the optimal solution to the multimodeling problems, we
must solve the multiparameter algebraic Riccati equation (MARE), which
is parameterized by two small, positive, same-order parameters ε1 and ε2.
Various reliable approaches to the theory of the ordinary algebraic Ric-
cati equation (ARE) have been well documented in the literature (see,
e.g., [7, 8]). One of these approaches is the invariant subspace approach,
which is based on the Hamiltonian matrix. However, there is no guaran-
tee of symmetry for the solution of the ARE when the ARE is known to
be ill-conditioned [7]. Note that it is very hard to solve directly the sin-
gularly perturbed ARE and the MARE due to the presence of the small
parameters [5, 6, 15, 18].
A popular approach to dealing with the multiparameter singularly-

perturbed systems (MSPS) is the two-time-scale design method [l]. How-
ever, it is known from [5] that O��µ�� (where µ = �ε1� ε2�) accuracy is
very often not sufficient because the reduced-order controller which is
based on the two-time-scale design method might not produce satisfactory
results for the desired performance. More recently, the exact slow–fast
decomposition method for solving the MARE has been proposed in [5, 6].
The solutions are obtained by solving the Sylvester equations of lower
dimensions, which are nonsymmetric equations by means of the Newton
method or the fixed point algorithm. However, the results of [5, 6] need
the assumption that the sign of the quadratic term of the MARE corre-
sponding to both the optimal control and the filtering problem is positive
semidefinite and that Hamiltonian matrices for the fast subsystems have
no eigenvalues in common (Assumption 5 of [6]).
In this paper, we investigate the asymptotic expansions for the MARE

with an indefinite sign quadratic term and propose the iterative technique
for solving such a MARE. First, we relax the condition for the existence of
the solution compared with [3] in the sense that some of the assumptions
for the MARE are weakened. It is worth pointing out that the existence
of a unique and bounded solution of the MARE with an indefinite sign
quadratic term has not been established so far in the previous literature
[3]. Furthermore, note that the MSPS with either standard or nonstandard
singular perturbations [4] is considered. Second, we propose a new iterative
algorithm for solving the sign-indefinite MARE. The method studied here
is based on the Kleinman algorithm [9]. Therefore, the algorithm achieves
the quadratic convergence property. Note that the difference between the
results in [9] and the present paper is that the successive approximation
technique is used to prove the convergence in [9], while the approach
adopted here is composed of the Newton–Kantorovich theorem [10, 11].
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Thus, we do not assume here that the sign of the quadratic term for the
MARE is positive semidefinite. The Newton–Kantorovich theorem also
plays an important role in the proof of the existence of the unique solution.
The main objective in this paper is to provide a new algorithm for solving
the generalized multiparameter algebraic Lyapunov equation (GMALE).
The method presented in this paper is based on the fixed-point algorithm
[14]. Consequently, our proposed algorithm is extremely useful since we
have to solve only an algebraic Lyapunov equation (ALE) of lower dimen-
sion. In particular, it is important to note that so far the algorithm for
solving the GMALE has not been established. Finally, a numerical exam-
ple is given to complement the theoretical results. The resulting algorithms
are implemented for the multiparameter H∞ optimal-control problem.

2. PROBLEM FORMULATION AND PRIMARY RESULT

We consider the MARE

AT
�P� + P�A� − P�S�P� + Q = 0� (1)

where

P� =


P00 ε1P

T
10 ε2P

T
20

ε1P10 ε1P11
√

ε1ε2P
T
21

ε2P20
√

ε1ε2P21 ε2P22

 ∈ RN×N�

P00 = PT
00� P11 = PT

11� P22 = PT
22�

A� =


A00 A01 A02

ε−1
1 A10 ε−1

1 A11 0

ε−1
2 A20 0 ε−1

2 A22

 ∈ RN×N�

S� = ST
� =


S00 ε−1

1 S01 ε−1
2 S02

ε−1
1 ST

01 ε−2
1 S11 0

ε−1
2 ST

02 0 ε−2
2 S22

 ∈ RN×N�

S00 = ST
00� S11 = ST

11� S22 = ST
22�

Q = QT =


Q00 Q01 Q02

QT
01 Q11 0

QT
02 0 Q22

 ∈ RN×N�
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Q00 = QT
00� Q11 = QT

11� Q22 = QT
22�

P00� A00� S00� Q00 ∈ Rn0×n0� P11� A11� S11� Q11 ∈ Rn1×n1�

P22� A22� S22� Q22 ∈ Rn2×n2� ε1 > 0� ε2 > 0� N = n0 + n1 + n2�

If the sign of the MARE (1) is positive semidefinite, then the equa-
tion (1) is known as a regulator ARE, appearing in the multimodeling [3].
However, we do not assume in this paper that the sign of the MARE (1) is
positive semidefinite. That is, no assumption is made on the definiteness of
S�. In addition, we do not assume here that A11 and A22 are nonsingular
compared with [l, 3].
In order to avoid the ill-conditioning due to the large parameter ε−1

j

which is included in the MARE (1), we introduce the following useful
lemma.

Lemma 2.1. The MARE (1) is equivalent to the generalized multiparame-
ter algebraic Riccati equation (GMARE) (2a),

AT P + PT A − PT SP + Q = 0� (2a)

P� = ��P = PT ��� (2b)

where

�� =


In0

0 0

0 ε1In1
0

0 0 ε2In2

 � A =


A00 A01 A02

A10 A11 0

A20 0 A22

 �

S =


S00 S01 S02

ST
01 S11 0

ST
02 0 S22

 � P =


P00 ε1P

T
10 ε2P

T
20

P10 P11
1√
α

PT
21

P20
√

αP21 P22

 � α = ε1

ε2
�

Proof. First, by direct calculation we verify that P� = ��P . Second, it
is easy to verify that A = ��A�, S = ��S���. Hence,

AT P = AT
����−1

� P� = AT
�P��

By using a similar calculation, we can immediately rewrite (1) as (2a).

ε1 and ε2 are two small positive singular perturbation parameters of the
same order of magnitude such that,

0 < k1 ≤ α = ε1

ε2
≤ k2 < ∞� (3)
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It is assumed that the limit of α exists as ε1 and ε2 tend to zero; that is,

ᾱ = lim
ε1→+0
ε2→+0

α�

The GMARE (2a) can be partitioned into

f1 = AT
00P00 + P00A00 + AT

10P10 + PT
10A10 + AT

20P20 + PT
20A20

− P00S00P00 − PT
10S

T
01P00 − P00S01P10

− PT
20S

T
02P00 − P00S02P20 − PT

10S11P10 − PT
20S22P20 + Q00 = 0� (4a)

f2 = P00A01 + PT
10A11 + ε1A

T
00P

T
10 + AT

10P11 + √
αAT

20P21

− ε1
(
P00S00P

T
10 + PT

10S
T
01P

T
10 + PT

20S
T
02P

T
10

) − P00S01P11 − PT
10S11P11

− √
α
(
P00S02P21 + PT

20S22P21
) + Q01 = 0� (4b)

f3 = P00A02 + PT
20A22 + ε2A

T
00P

T
20 + AT

20P22 + 1√
α

AT
10P

T
21

− ε2
(
P00S00P

T
20 + PT

10S
T
01P

T
20 + PT

20S
T
02P

T
20

) − P00S02P22 − PT
20S22P22

− 1√
α

(
P00S01P

T
21 + PT

10S11P
T
21

) + Q02 = 0� (4c)

f4 = AT
11P11 + P11A11 + ε1�AT

01P
T
10 + P10A01�

− ε1
(
ε1P10S00P

T
10 + P11S

T
01P

T
10 + √

αPT
21S

T
02P

T
10

)
− ε1�P10S01P11 + √

αP10S02P21�
− P11S11P11 − αPT

21S22P21 + Q11 = 0� (4d)

f5 = ε1P10A02 + ε2A
T
01P

T
20 − ε1ε2P10S00P

T
20

− ε2

(
P11S

T
01P

T
20 + √

αPT
21S

T
02P

T
20� − ε1�P10S02P22 + 1√

α
P10S01P

T
21

)
+ √

αPT
21�A22 − S22P22� + 1√

α
�A11 − S11P11�T PT

21 = 0� (4e)

and

f6 = AT
22P22 + P22A22 + ε2

(
AT

02P
T
20 + P20A02

)
− ε2

(
ε2P20S00P

T
20 + P22S

T
02P

T
20 + 1√

α
P21S

T
01P

T
20

)
− ε2

(
P20S02P22 + 1√

α
P20S01P

T
21

)
− P22S22P22 − 1

α
P21S11P

T
21 + Q22 = 0� (4f)
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By limiting solutions of the GMARE (2a) or (4) as ε1 → +0 and ε2 → +0,
we obtain the equations

AT
00

�P00 + �P00A00 + AT
10

�P10 + �P T
10A10 + AT

20
�P20 + �P T

20A20

− �P00S00�P00 − �P T
10ST

01
�P00 − �P00S01�P10 − �P T

20ST
02

�P00

− �P00S02�P20 − �P T
10S11�P10 − �P T

20S22�P20 + Q00 = 0� (5a)

�P00A01 + �P T
10A11 + AT

10
�P11 +

√
ᾱAT

20
�P21 − �P00S01�P11

− �P T
10S11�P11 −

√
ᾱ
(�P00S02�P21 + �P T

20S22�P21
) + Q01 = 0� (5b)

�P00A02 + �P T
20A22 + AT

20
�P22 + 1√

ᾱ
AT

10
�P T
21 − �P00S02�P22

− �P T
20S22�P22 − 1√

ᾱ

(�P00S01�P T
21 + �P T

10S11�P T
21

) + Q02 = 0� (5c)

AT
11

�P11 + �P11A11 − �P11S11�P11 − ᾱ�P T
21S22�P21 + Q11 = 0� (5d)

√
ᾱ�P T

21 �A22 − S22�P22� + 1√
ᾱ

�A11 − S11�P11� T �P T
21 = 0� (5e)

and

AT
22

�P22 + �P22A22 − �P22S22�P22 − 1
ᾱ

�P21S11�P T
21 + Q22 = 0� (5f)

where �P00, �P10, �P20, �P11, �P21, and �P22 are the 0-order solutions of the
GMARE (2a).
We shall set the following basic condition without loss of generality [15].

(H1) The AREs AT
jjP̃jj + P̃jjAjj − P̃jjSjjP̃jj + Qjj = 0, j = 1� 2, have

positive semidefinite stabilizing solutions.

If Condition (H1) holds, there exist matrices P̃jj� j = 1� 2, such that the
matrices Ajj − SjjP̃jj , j = 1� 2, are stable. Therefore, we chose the solutions
�Pjj� j = 1� 2, as P̃jj� j = 1� 2. Then, the unique solution of (5e) is given by
�P21 = 0 because the matrices Ajj − Sjj

�Pjj = Ajj − SjjP̃jj are stable. As a
consequence, the parameter ᾱ does not appear in (5) automatically; that is,
it does not affect the equation (5) in the limit when ε1 and ε2 tend to zero.
Thus the AREs (5d) and (5f) will produce the unique positive semidefinite
stabilizing solution under the conditions (H1).
We now obtain the 0-order equations

AT
s
�P00 + �P00As − �P00Ss

�P00 + Qs = 0� (6a)

�P T
j0 = �P00N0j − M0j� j = 1� 2� (6b)
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and

AT
jj

�Pjj + �PjjAjj − �PjjSjj
�Pjj + Qjj = 0� j = 1� 2� (6c)

where

As = A00 + N01A10 + N02A20 + S01M
T
01 + S02M

T
02

+ N01S11M
T
01 + N02S22M

T
02�

Ss = S00 + N01S
T
01 + S01N

T
01 + N02S

T
02 + S02N

T
02

+ N01S11N
T
01 + N02S22N

T
02�

Qs = Q00 − M01A10 − AT
10M

T
01 − M02A20 − AT

20M
T
02

− M01S11M
T
01 − M02S22M

T
02�

N0j = −D0jD
−1
jj � M0j = �Q0jD

−1
jj � �Q0j = AT

j0
�Pjj + Q0j�

D00 = A00 − S00�P00 − S01�P10 − S02�P20� D0j = A0j − S0j �Pjj�

Dj0 = Aj0 − ST
0j

�P00 − Sjj
�Pj0� Djj = Ajj − Sjj

�Pjj� j = 1� 2�

The matrices As� Ss, and Qs do not depend on �Pjj� j = 1� 2, because their
matrices can be computed using Tpq� p� q = 0� 1� 2, which is independent
of �Pjj� j = 1� 2 ([5, 6]); that is,

Ts = T00 − T01T
−1
11 T10 − T02T

−1
22 T20 =

[
As −Ss

−Qs −AT
s

]
�

T00 =
[

A00 −S00

−Q00 −AT
00

]
� T0j =

[
A0j −S0j

−Q0j −AT
j0

]
�

Tj0 =
[

Aj0 −ST
0j

−QT
0j −AT

0j

]
� Tjj =

[
Ajj −Sjj

−Qjj −AT
jj

]
� j = 1� 2�

Note that the Hamiltonian matrices

Tjj �=
[

Ajj −Sjj

−Qjj −AT
jj

]
� j = 1� 2�

are nonsingular under the condition (H1) because of

Tjj =
 Inj

0

�P T
jj Inj

[
Djj −Sjj

0 −DT
jj

][
Inj

0

−�Pjj Inj

]

⇐⇒ T−1
jj =

[
Inj

0

�Pjj Inj

]D−1
jj −D−1

jj SjjD
−T
jj

0 −D−T
jj

 Inj
0

−�P T
jj Inj

 �
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The required solution of the ARE (6a) exists under the following condition
[15].

(H2) The ARE (6a) has positive semidefinite stabilizing solution.

It should be remarked that the solution P� of (1) is a function of the
multiparameters ε1 and ε2. However, the solutions �P00 and �Pjj , j = 1� 2, of
(6a) and (6c) are independent of the multiparameters ε1 and ε2, respec-
tively. The following theorem will establish the relation between P� and the
reduced-order solutions (6) (see [3]).

Theorem 2.1. Under the conditions (H1) and (H2), there exist small ε∗
1

and ε∗
2 such that, for all ε1 ∈ �0� ε∗

1� and ε2 ∈ �0� ε∗
2�, the MARE (1) admits a

symmetric positive semidefinite stabilizing solution P� which can be written as

P� =


�P00 + �00 ε1��P10 + �10�T ε2��P20 + �20�T

ε1��P10 + �10� ε1��P11 + �11� √
ε1ε2�

T
21

ε2��P20 + �20� √
ε1ε2�21 ε1��P22 + �22�

 � (7)

where

�pq = O��µ��� pq = 00� 10� 20� 11� 21� 22�

In order to prove Theorem 2.1, we need the following lemma [1].

Lemma 2.2. Consider the system

ẋ0�t� = A00x0�t� + A01x1�t� + A02x2�t�� x0�t0� = x0
0�

ε1ẋ1�t� = A10x0�t� + A11x1�t� + ε3A12x2�t�� x1�t0� = x0
1�

and
ε2ẋ2�t� = A20x0�t� + ε3A21x1�t� + A22x2�t�� x2�t0� = x0

2�

where x0 ∈ Rn0� x1 ∈ Rn1 , and x2 ∈ Rn2 are the state vectors. ε3 is a small
weak coupling parameter and ε1 and ε2 are small positive singular perturbation
parameters of the same order of magnitude as (3). If A−1

jj , j = 1� 2, exists, and
if A0 ≡ A00 − A01A

−1
11 A10 − A02A

−1
22 A20� Ajj , j = 1� 2, are stable matrices,

then there exist small ε̂1 and ε̂2 such that for all ε1 ∈ �0� ε̂1� and ε2 ∈ �0� ε̂2�
the system is asymptotically stable.

Now, let us prove Theorem 2.1.

Proof. Since the MARE (1) is equivalent to the GMARE (2a) from
Lemma 2.1, we apply the implicit function theorem [3] to (2a). To do so, it
is enough to show that the corresponding Jacobian is nonsingular at ε1 = 0
and ε2 = 0. It can be shown, after some algebra, that the Jacobian of (2a)
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in the limit is given by

J = ∇F = ∂vec�f1� f2� f3� f4� f5� f6�
∂vec�P00� P10� P20� P11� P21� P22�T

∣∣∣∣
�µ���=�µ0��0�

=



J00 J01 J02 0 0 0

J10 J11 0 J13 J14 0

J20 0 J22 0 J24 J25

0 0 0 J33 0 0

0 0 0 0 J44 0

0 0 0 0 0 J55


� (8)

where vec denotes an ordered stack of the columns of its matrix [12] and

µ = �ε1� ε2�� µ0 = �0� 0��
� = �P00� P10� P20� P11� P21� P22��
�0 = ��P00� �P10� �P20� �P11� 0� �P22��
J00 = �In0

⊗ DT
00�Un0n0

+ DT
00 ⊗ In0

�

J0j = �In0
⊗ DT

j0�Un0nj
+ DT

j0 ⊗ In0
�

Jj0 = DT
0j ⊗ In0

� Jjj = DT
jj ⊗ In0

� j = 1� 2�

J13 = In1
⊗ D10� J14 =

√
ᾱ�In1

⊗ D20�Un1n2
�

J24 = 1√
ᾱ

In2
⊗ D10� J25 = In2

⊗ D20�

J33 = �In1
⊗ DT

11�Un1n1
+ DT

11 ⊗ In1
�

J44 =
√

ᾱDT
22 ⊗ In1

+ 1√
ᾱ

In2
⊗ DT

11�

and

J55 = �In2
⊗ DT

22�Un2n2
+ DT

22 ⊗ In2
�

where ⊗ denotes the Kronecker products and Unjnj
� j = 0� 1� 2, is the per-

mutation matrix in the Kronecker matrix sense [12].
The Jacobian (8) can be expressed as

detJ = detJ33 · detJ44 · detJ55 · det
 J00 J01 J02

J10 J11 0
J20 0 J22


= detJ33 · detJ44 · detJ55 · detJ11 · detJ22
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· det�J00 − J01J
−1
11 J10 − J02J

−1
22 J20�

= detJ11 · detJ22 · detJ33 · detJ44 · detJ55
· det�In0

⊗ DT
0 Un0n0

+ DT
0 ⊗ In0

�� (9)

where D0 ≡ D00 − D01D
−1
11 D10 − D02D

−1
22 D20. Obviously, Jjj , j = 1� � � � � 5,

are nonsingular because the matrices Djj = Ajj − Sjj
�Pjj� j = 1� 2, are non-

singular under the condition (H1). After some straightforward but tedious
algebra we see that As − Ss

�P00 = D00 − D01D
−1
11 D10 − D02D

−1
22 D20 = D0.

Therefore, the matrix D0 is nonsingular if the condition (H2) holds. Thus,
detJ �= 0; i.e., J is nonsingular at �µ��� = �µ0��0�. The conclusion of the
first part of Theorem 2.1 is obtained directly by using the implicit function
theorem. The second part of the proof of Theorem 2.1 is performed by
direct calculation. By using (7), we obtain

�−1
� �A − SP� = �−1

�

D00 D01 D02
D10 D11 0
D20 0 D22

 + O��µ��
 �

We know from Lemma 2.2 that for sufficiently small �µ� the matrix
�−1

� �A − SP� will be stable. On the other hand, since �P00 ≥ 0� �P11 ≥ 0 and
�P22 ≥ 0� P� is positive semidefinite as long as ε1 > 0 and ε2 > 0 by using
the Schur complement [13]. Therefore, the proof of Theorem 2.1 ends.

3. ITERATIVE ALGORITHM

We now develop an algorithm which converges quadratically to the
required solution of the MARE (1). So far, the exact decomposition
method for solving the MARE with a positive semidefinite sign quadratic
term has been proposed in [5, 6]. However, the result of [5, 6] needs the
assumption that Hamiltonian matrices for the fast subsystems have no
eigenvalues in common.
In this paper we develop an elegant and simple algorithm which con-

verges globally to the positive semidefinite solution of the MARE (1). Tak-
ing into account the fact that the MARE (1) is equivalent to the GMARE
(2a) from Lemma 2.1, the algorithm is given in terms of the GMALE, which
has to be solved iteratively. We present the iterative algorithm based on the
Kleinman algorithm [9]. Here we note that the Kleinman algorithm is based
on the Newton-type algorithm. In general, the stabilizable–detectable con-
ditions will guarantee the convergence of the Kleinman algorithm for the
standard linear-quadratic regulator-type GMARE to the required solutions.
However, there is no guarantee of quadratic convergence for the Kleinman
algorithm (2a) because the matrix S is in general indefinite [16, 18].
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In this paper we show that by using the Newton–Kantorovich theorem
[10, 11] the Kleinman algorithm guarantees the quadratic convergence
under the appropriate initial conditions.
We propose an algorithm for solving the GMARE (2a),

�A − SP�i��T P�i+1� + P�i+1�T �A − SP�i�� + P�i�T SP�i� + Q = 0 (10a)

P
�i�
� = ��P�i� = P�i�T ��� (10b)

i = 0� 1� 2� 3� � � � � with the initial condition obtained from

P�0� =

 �P00 0 0
�P10 �P11 0
�P20 0 �P22

 � (11)

where

P�i� =


P

�i�
00 ε1P

�i�T
10 ε2P

�i�T
20

P
�i�
10 P

�i�
11

1√
α

P
�i�T
21

P
�i�
20

√
αP

�i�
21 P

�i�
22

 �

P
�i�
00 = P

�i�T
00 � P

�i�
11 = P

�i�T
11 � P

�i�
22 = P

�i�T
22 �

and �Ppq� pq = 00� 10� 20� 11� 22, are defined by (6).
According to the Newton–Kantorovich theorem [10, 11], it is well known

that if the initial condition is very close to the exact solution of the consid-
ered equation, the Newton method has the quadratic convergence property.
Therefore, we choose the proposal for good choice of the initial conditions
as in (11).
Although the sign of the matrix S is in general indefinite, we can prove

the quadratic convergence for the resulting algorithm (10) by using the
Newton–Kantorovich theorem because the initial condition is very close to
the exact solution of the GMARE (2a) for sufficiently small �µ�. This idea
is derived from the fact that

�P − P�0�� =

∥∥∥∥∥∥∥∥∥


P00 ε1P

T
10 ε2P

T
20

P10 P11
1√
α

PT
21

P20
√

αP21 P22

 −


�P00 0 0

�P10 �P11 0

�P20 0 �P22


∥∥∥∥∥∥∥∥∥

= O��µ���
The algorithm (10) has the feature given in the following lemma.
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Lemma 3.1. Under the conditions (H1) and (H2), there exist an ε̄1 and an
ε̄2 such that for all 0 < ε1 ≤ ε̄1 ≤ ε∗

1 and 0 < ε2 ≤ ε̄2 ≤ ε∗
2, respectively, the

iterative algorithm (10) converges to the exact solution of P∗ with the rate of
quadratic convergence. Then, P�i�

� = ��P�i� = P�i�T �� is positive semidefinite.
Moreover, there exists a unique solution of the GMARE (2a) with the indefinite
sign quadratic term in the neighborhood of the required solution P∗. That is,
the conditions

�P�i� − P∗� ≤ O��µ�2i�
2iβγ

= O��µ�2i�� i = 0� 1� 2� � � � � (12a)

P
�i�
� = ��P�i� = P�i�T �� ≥ 0� i = 1� 2� 3� � � � � (12b)

and

�P�0� − P∗� ≤ 1
βγ

[
1 −

√
1 − 2θ

]
� (12c)

where

��P� = AT P + PT A − PT SP + Q� (13)

γ = 2�S� < ∞� β = ��∇��P�0���−1�� η = β · ���P�0���� θ = βηγ�

∇��P� = ∂vec��P�
∂�vecP�T

� and P∗ =


P∗
00 ε1P

∗T
10 ε2P

∗T
20

P∗
10 P∗

11
1√
α

P∗T
21

P∗
20

√
αP∗

21 P∗
22

 �

are satisfied.

Proof. This proof is equivalent to the proof of existence of the unique
solution for the GMARE (2a). Thus, the proof follows directly by applying
the Newton–Kantorovich theorem [10, 11] for the GMARE (2a). We now
verify that function ��P� is differentiable on a convex set �. Using the fact
that

∇��P� = �A − SP�T ⊗ IN + IN ⊗ �A − SP�T � (14)

we have

�∇��P1� − ∇��P2�� ≤ γ�P1 − P2�� (15)

where γ = 2�S�. Moreover, using the fact that

∇��P�0�� =
D00 D01 D02

D10 D11 0
D20 0 D22

T

⊗ IN + IN ⊗
D00 D01 D02

D10 D11 0
D20 0 D22

T

� (16)
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it follows that ∇��P�0�� is nonsingular because D0 and Djj� j = 1� 2, are
stable under the conditions (H1) and (H2). Therefore, there exists a β
such that ��∇��P�0���−1� ≡ β. On the other hand, since ��P�0�� < O��µ��,
there exists an η such that ��∇��P�0���−1� · ���P�0��� ≡ η = O��µ��. Thus,
there exists a θ such that θ ≡ βγη < 2−1 because η = O��µ��. Using the
Newton–Kantorovich theorem, the strict error estimate is given by (12a).
Now, let us define

t∗ ≡ 1
γβ

�1 −
√
1 − 2θ� = 1

2�S� · ��∇��P�0���−1��1 −
√
1 − 2θ�� (17)

Clearly, � ≡ �P � �P − P�0�� ≤ t∗� is in the convex set �. In the follow-
ing, since �P∗ − P�0�� = O��µ�� holds for small ε1 and ε2, we show that
P∗ is the unique solution in � .
On the other hand, using (12a), we have

P
�i�
� =


�P00 + O��µ�� ε1��P10 + O��µ���T ε2��P20 + O��µ���T

ε1��P10 + O��µ��� ε1��P11 + O��µ��� √
ε1ε2O��µ��T

ε2��P20 + O��µ��� √
ε1ε2O��µ�� ε2��P22 + O��µ���

 �

Since �P00 ≥ 0� �P11 ≥ 0, and �P22 ≥ 0� P
�i�
� is positive semidefinite by using

the Schur complement [13]. Therefore, the proof is completed.

4. MAIN RESULTS

Now, we consider a method for solving the GMALE (10a). So far, there
is little argument as to the numerical method for solving the GMALE.
Therefore, in order to obtain the solution of the GMALE (10a), we present
a new algorithm by applying the fixed point algorithm [5, 6, 14]. Let us
consider the following GMALE in general form.

%T Y + YT % + U = 0� (18)

where Y is the solution of the GMALE (18) and % and U are known
matrices defined by

Y =


Y00 ε1Y

T
10 ε2Y

T
20

Y10 Y11
1√
α

YT
21

Y20
√

αY21 Y22

 ∈ RN×N�

Y00 = YT
00� Y11 = YT

11� Y22 = YT
22�
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% =


%00 %01 %02

%10 %11 �%12

%20 �%21 %22

 ∈ RN×N�

U = UT =


U00 U01 U02

UT
01 U11 �U12

UT
02 �UT

12 U22

 ∈ RN×N�

U00 = UT
00� U11 = UT

11� U22 = UT
22�

Y00� %00� U00 ∈ Rn0×n0� Y11� %11� U11 ∈ Rn1×n1�

Y22� %22� U22 ∈ Rn2×n2�

ε1 > 0� ε2 > 0� �µ� = � = √
ε1ε2�

The required solution of the GMALE (18) exists under the standard
condition [1].

(H3) The matrices %jj� j = 1� 2, are nonsingular and %0 ≡ %00 −
%01%

−1
11 %10 − %02%

−1
22 %20� %jj� j = 1� 2, are stable.

The GMALE (18) can be partitioned into

%T
00Y00 + Y00%00 + %T

10Y10 + YT
10%10

+ %T
20Y20 + YT

20%20 + U00 = 0� (19a)

Y00%01 + YT
10%11 + �YT

20%21 + ε1%
T
00Y

T
10 + %T

10Y11

+ √
α%T

20Y21 + U01 = 0� (19b)

Y00%02 + YT
20%22 + �YT

10%12 + ε2%
T
00Y

T
20 + %T

20Y22

+ 1√
α

%T
10Y

T
21 + U02 = 0� (19c)

%T
11Y11 + Y11%11 + ε1�%T

01Y
T
10 + Y10%01�

+ √
α��%T

21Y21 + YT
21%21� + U11 = 0� (19d)

ε1Y10%02 + ε2%
T
01Y

T
20 + √

αYT
21%22 + 1√

α
%T

11Y
T
21

+��Y11%12 + %T
21Y22� + �U12 = 0� (19e)

%T
22Y22 + Y22%22 + ε2�%T

02Y
T
20 + Y20%02�

+ 1√
α
��%T

12Y
T
21 + Y21%12� + U22 = 0� (19f)
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For the equations (19) above, in the limit, as ε1 → +0 and ε2 → +0, we
obtain the equations

%T
00

�Y00 + �Y00%00 + %T
10

�Y10 + �YT
10%10

+ %T
20

�Y20 + �YT
20%20 + U00 = 0� (20a)

�Y00%01 + �YT
10%11 + %T

10
�Y11 +

√
ᾱ%T

20
�Y21 + U01 = 0� (20b)

�Y00%02 + �YT
20%22 + %T

20
�Y22 + 1√

ᾱ
%T

10
�YT
21 + U02 = 0� (20c)

%T
11

�Y11 + �Y11%11 + U11 = 0� (20d)
√

ᾱ�YT
21%22 + 1√

ᾱ
%T

11
�YT
21 = 0� (20e)

%T
22

�Y22 + �Y22%22 + U22 = 0� (20f)

Note that the unique solution of (20e) is given by �Y21 = 0 since the
matrices %jj� j = 1� 2, are nonsingular under the condition (H3). Thus the
parameter ᾱ does not appear in (20). Consequently, we obtain the 0-order
equations

%T
0
�Y00 + �Y00%0 + U00 − U01%

−1
11 %10 − %T

10%
−T
11 UT

01

− U02%
−1
22 %20 − %T

20%
−T
22 UT

02

+ %T
10%

−T
11 U11%

−1
11 %10 + %T

20%
−T
22 U22%

−1
22 %20 = 0� (21a)

�YT
j0 = −��Y00%0j + %T

j0
�Yjj + U0j�%−1

jj � j = 1� 2� (21b)

and

%T
jj

�Yjj + �Yjj%jj + Ujj = 0� j = 1� 2� (21c)

Now, let us introduce

Y =


�Y00 + �'00 ε1��Y10 + �'10�T ε2��Y20 + �'20�T

�Y10 + �'10 �Y11 + �'11
�√
α

'T
21

�Y20 + �'20
√

α�'21 �Y22 + �'22

 � (22)

The approximation of the error terms 'pq� pq = 00� 10� 20� 11� 21� 22,
will result in an approximation of the required matrix Ypq. That is why we
are interested in finding equations of the error terms and a convenient algo-
rithm to find their solutions. Substituting (22) into (19) and subtracting (20)
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from (19), we arrive at the error equations.

%T
00'00 + '00%00 + %T

10'10 + 'T
10%10 + %T

20'20 + 'T
20%20 = 0� (23a)

'00%01 + 'T
10%11 + %T

10'11 + √
α%T

20'21

= −�YT
20%21 − ε1

�
%T

00
�YT
10 − ε1%

T
00'

T
10 − �'T

20%21� (23b)

'00%02 + 'T
20%22 + %T

20'22 + 1√
α

%T
10'

T
21

= −�YT
10%12 − ε2

�
%T

00
�YT
20 − ε2%

T
00'

T
20 − �'T

10%12� (23c)

%T
11'11 + '11%11 = ε1

�
�%T

01
�YT
10 + �Y10%01� − ε1�%T

01'
T
10 + '10%01�

−�
√

α�%T
21'21 + 'T

21%21�� (23d)

%T
22'22 + '22%22 = −ε2

�
�%T

02
�YT
20 + �Y20%02� − ε2�%T

02'
T
20 + '20%02�

− �√
α

�%T
12'

T
21 + '21%12�� (23e)

√
α'T

21%22 + 1√
α

%T
11'

T
21 = −ε1

�
�Y10%02 − ε2

�
%T

01
�YT
20 − �Y11%12 − %T

21
�Y22

− U12 − ε1'10%02 − ε2%
T
01'

T
20

−��%T
21'22 + '11%12�� (23f)

These equations (23) have very nice form since the unknown quantities
'pq in the right-hand side are multiplied by the small parameters ε1� ε2,
and �. This fact suggests that a fixed-point algorithm can be efficient for
their solutions. Hence, we propose the following algorithm (24).

%T
jj'

�i+1�
jj + '

�i+1�
jj %jj + �jj�i� = 0� j = 1� 2� (24a)

√
α'

�i+1�T
21 %22 + 1√

α
%T

11'
�i+1�T
21 + �12�i� = 0� (24b)

%T
0 '

�i+1�
00 + '

�i+1�
00 %0 + �00�i� = 0� (24c)

'
�i+1�T
j0 = −�'�i+1�

00 %0j + �0j�i��%−1
jj � j = 1� 2� i = 0� 1� 2� � � � � (24d)

where

�11�i� = ε1

�
�%T

01
�YT
10 + �Y10%01� + ε1�%T

01'
�i�T
10 + '

�i�
10%01�

+�
√

α�%T
21'

�i�
21 + '

�i�T
21 %21��



asymptotic expansions of riccati equation 225

�22�i� = ε2

�
�%T

02
�YT
20 + �Y20%02� + ε2�%T

02'
�i�T
20 + '

�i�
20%02�

+ �√
α

�%T
12'

�i�T
21 + '21%12��

�12�i� = ε1

�
�Y10%02 + ε2

�
%T

01
�YT
20 + �Y11%12 + %T

21
�Y22 + U12

+ ε1'
�i�
10%02 + ε2%

T
01'

�i�T
20 + ��%T

21'
�i�
22 + '

�i�
11%12��

�01�i� = %T
10'

�i+1�
11 + √

α%T
20'

�i+1�
21 + �YT

20%21

+ ε1

�
%T

00
�YT
10 + ε1%

T
00'

�i�T
10 + �'

�i�T
20 %21�

�02�i� = %T
20'

�i+1�
22 + 1√

α
%T

10'
�i+1�T
21 + �YT

10%12

+ ε2

�
%T

00
�YT
20 + ε2%

T
00'

�i�T
20 + �'

�i�T
10 %12�

�00�i� = −�%T
10%

−T
11 �01�i�T + �01�i�%−1

11 %10

+ %T
20%

−T
22 �02�i�T + �02�i�%−1

22 %20��

%T
11'

�0�
11 + '

�0�
11 %11 + ε1

�
�%T

01
�YT
10 + �Y10%01� = 0� (25a)

%T
22'

�0�
22 + '

�0�
22 %22 + ε2

�
�%T

02
�YT
20 + �Y20%02� = 0� (25b)

√
α'

�0�T
21 %22 + 1√

α
%T

11'
�0�T
21 + ε1

�
�Y10%02 + ε2

�
%T

01
�YT
20

+ �Y11%12 + %T
21

�Y22 + U12 = 0� (25c)

%T
0 '

�0�
00 + '

�0�
00 %0 − %T

10%
−T
11 (T

01 − (01%
−1
11 %10

− %T
20%

−T
22 (T

02 − (02%
−1
22 %20 = 0� (25d)

'
�0�T
10 = −�'�0�

00 %01 + (01�%−1
11 � (25e)

'
�0�T
20 = −�'�0�

00 %02 + θ02�%−1
22 � (25f)

(01 = %T
10'

�0�
11 + √

α%T
20'

�0�
21 + �YT

20%21 + ε1

�
%T

00
�YT
10�

and
(02 = %T

20'
�0�
22 + 1√

α
%T

10'
�0�T
21 + �YT

10%12 + ε2

�
%T

00
�YT
20�

The following theorem indicates the convergence of the algorithm (24).
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Theorem 4.1. The fixed-point algorithm (24) converges to the exact solu-
tion of 'pq with the rate of convergence of O��µ�i+1�; that is,

�'pq − '
�i�
pq� = O��µ�i+1��

i = 0� 1� 2� � � � � pq = 00� 10� 20� 11� 21� 22� (26)

Proof. The proof is done by using mathematical induction. When i = 0
for the equations (24), the first-order approximations 'pq corresponding
to the small parameters ε1� ε2, and � satisfy the equations (25). It follows
from these equations that

�'pq − '
�0�
pq� = O��µ��� pq = 00� 10� 20� 11� 21� 22�

When i = k �k ≥ 1�, we assume that �'pq − '
�k�
pq � = O��µ�k+1�. Subtract-

ing (24) from (23), we arrive at the equations

%T
00�'00 − '

�k+1�
00 � + �'00 − '

�k+1�
00 �%00

+ %T
10�'10 − '

�k+1�
10 � + �'10 − '

�k+1�
10 �T %10

+ %T
20�'20 − '

�k+1�
20 � + �'20 − '

�k+1�
20 �T %20 = 0�

�'00 − '
�k+1�
00 �%01 + �'10 − '

�k+1�
10 �T %11

+ %T
10�'11 − '

�k+1�
11 � + √

α%T
20�'21 − '

�k+1�
21 �

= −ε1%
T
00�'10 − '

�k�
10 �T − ��'20 − '

�k�
20 �T %21�

�'00 − '
�k+1�
00 �%02 + �'20 − '

�k+1�
20 �T %22

+ %T
20�'22 − '

�k+1�
22 � + 1√

α
%T

10�'21 − '
�k+1�
21 �T

= −ε2%
T
00�'20 − '

�k�
20 �T − ��'10 − '

�k�
10 �T %12�

%T
11�'11 − '

�k+1�
11 � + �'11 − '

�k+1�
11 �%11

= −ε1
[
%T

01�'10 − '
�k�
10 �T + �'10 − '

�k�
10 �%01

]
−�

√
α
[
%T

21�'21 − '
�k�
21 � + �'21 − '

�k�
21 �T %21

]
�

%T
22�'22 − '

�k+1�
22 � + �'22 − '

�k+1�
22 �%22

= −ε2
[
%T

02�'20 − '
�k�
20 �T + �'20 − '

�k�
20 �%02

]
− �√

α

[
%T

12�'21 − '
�k�
21 �T + �'21 − '

�k�
21 �%12

]
�
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√
α�'21 − '

�k+1�
21 �T %22 + 1√

α
%T

11�'21 − '
�k+1�
21 �T

= −ε1�'10 − '
�k�
10 �%02 − ε2%

T
01�'20 − '

�k�
20 �T

−�
[
%T

21�'22 − '
�k�
22 � + �'11 − '

�k�
11 �%12

]
�

Using the assumption �'pq − '
�k�
pq � = O��µ�k+1�, we have

%T
00�'00 − '

�k+1�
00 � + �'00 − '

�k+1�
00 �%00

+ %T
10�'10 − '

�k+1�
10 � + �'10 − '

�k+1�
10 �T %10

+ %T
20�'20 − '

�k+1�
20 � + �'20 − '

�k+1�
20 �T %20 = 0�

�'00 − '
�k+1�
00 �%01 + �'10 − '

�k+1�
10 �T %11 + %T

10�'11 − '
�k+1�
11 �

+ √
α%T

20�'21 − '
�k+1�
21 � = O��µ�k+2��

�'00 − '
�k+1�
00 �%02 + �'20 − '

�k+1�
20 �T %22 + %T

20�'22 − '
�k+1�
22 �

+ 1√
α

%T
10�'21 − '

�k+1�
21 �T = O��µ�k+2��

%T
11�'11 − '

�k+1�
11 � + �'11 − '

�k+1�
11 �%11 = O��µ�k+2��

%T
22�'22 − '

�k+1�
22 � + �'22 − '

�k+1�
22 �%22 = O��µ�k+2��

√
α�'21 − '

�k+1�
21 �T %22 + 1√

α
%T

11�'21 − '
�k+1�
21 �T = O��µ�k+2��

After the cancellation takes place, since %0� %jj , j = 1� 2, are stable from
the condition (H3), we get

%T
0 �'00 − '

�k+1�
00 � + �'00 − '

�k+1�
00 �%0 = O��µ�k+2��

�'j0 − '
�k+1�
j0 �T = −�'00 − '

�k+1�
00 �%0j%

−1
jj + O��µ�k+2�� j = 1� 2�

'jj − '
�k+1�
jj = O��µ�k+2�� j = 1� 2�

'21 − '
�k+1�
21 = O��µ�k+2��

Therefore, we have

�'pq − '
�k+1�
pq � = O��µ�k+2�� pq = 00� 10� 20� 11� 21� 22�

Consequently, the equation (26) holds for all i ∈ N. This completes the
proof of Theorem 4.1 concerned with the fixed-point algorithm.
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5. MULTIPARAMETER H∞ OPTIMAL CONTROL PROBLEM

5.1. The Design Problem and Preliminaries

In this section, we study the H∞ control problem by using the state feed-
back control law for the MSPS,

ẋ0 = A00x0 + A01x1 + A02x2 + B01u1 + B02u2

+ F01w1 + F02w2� x0
0 = 0� (27a)

ε1ẋ1 = A10x0 + A11x1 + ε3A12x2

+ B11u1 + ε3B12u2 + F11w1 + ε3F12w2� x0
1 = 0� (27b)

ε2ẋ2 = A20x0 + ε3A21x1 + A22x2

+ ε3B21u1 + B22u2 + ε3F21w1 + F22w2� x0
2 = 0� (27c)

z =


C00 C01 0
C10 0 C12
0 0 0
0 0 0


x0

x1
x2

 +


0 0
0 0

H1 0
0 H2

[
u1
u2

]
� (27d)

where x0 ∈ Rn0 , x1 ∈ Rn1 , and x2 ∈ Rn2 are the state vector; uj ∈ Rmj ,
j = 1� 2, is the control input; wj ∈ Rlj , j = 1� 2, is the disturbance; and
z ∈ Rn is the controlled output. In order to simplify derivations, without
loss of generality we assume that the fast state variables are not connected
among themselves; i.e., ε3 ≡ 0 [3, 5, 6].

We now discuss the H∞ optimal control problem that the closed-loop
system is internally stable and �G��∞ < γ, where

G� = �C + HK���sIN − A� − B�K��−1F��

B� =
 B01 B02

ε−1
1 B11 0
0 ε−1

2 B22

 � F� =
 F01 F02

ε−1
1 F11 0
0 ε−1

2 F22

 � (28)

C =


C00 C01 0
C10 0 C12
0 0 0
0 0 0

 � H =


0 0
0 0

H1 0
0 H2

 � HT H > 0�

by using the state feedback controller (29),

u = K�

[
xT
0 xT

1 xT
2

]T = K�x� (29)

The next result was shown by Doyle et al. [19].

Lemma 5.1. The following are equivalent:

(i) A� + B�K� is stable and the transfer matrix G� satisfies the
inequality �G��∞ < γ.
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(ii) The MARE (30) has the positive semidefinite stabilizing solution

AT
�X� + X�A� + γ−2X�F�FT

� X�

− X�B��HT H�−1BT
�X� + CT C = 0� (30)

Moreover, one such optimal controller that guarantees the γ level of opti-
mality is given by

u = K�x = −�HT H�−1BT
�X�x� (31)

Note that the MARE (30) is not a convex function with respect to P�

because the matrix γ−2F�FT
� − B��HT H�−1BT

� is in general indefinite.

5.2. The Solvability Condition

The H∞ control problem for the MSPS defined in (27) will be solved
using the algorithm (10). In that respect, we set

X� ⇒ P�� B��HT H�−1BT
� − γ−2F�FT

� ⇒ S�� CT C ⇒ Q� (32)

where ⇒ stands for the replacement.
The AREs (6c) will produce the unique positive semidefinite stabilizing

solution under the condition (H1) if γ is large enough. Therefore, let us
define the sets as in [17, 18];

4jf �= �γ > 0� the pair of AREs (6c) have the positive semidefinite
stabilizing solutions�,

γjf �= inf�γ�γ ∈ 4jf �.
Moreover, let us define the set as

41s �= �γ > 0� the ARE (6a) has a positive semidefinite stabilizing
solution�,

γ1s �= inf�γ�γ ∈ 41s�.
As a result, for every γ > γ̄ = max�γ1s� γjf �, the MARE (30) has the

positive semidefinite stabilizing solutions if ε1 > 0 and ε2 > 0 are small
enough. Then, we have the following result.

Corollary 5.1. If we select a parameter γ > γ̄ = max�γ1s� γjf �, then
there exist small ε̃1 and ε̃2 such that for all ε1 ∈ �0� ε̃1� and ε2 ∈ �0� ε̃2� the
MARE (30) admits a solution such that P� is the symmetric positive semidef-
inite stabilizing solution, which can be written as (7).

Proof. Since the proof is similar to that for Theorem 2.1, it is omitted.

Remark 5�1. Note that a condition such as γ > γ̄ = max�γ1s� γjf � corre-
sponding to the parameter γ is equivalent to the conditions that the AREs
(6c) have the positive semidefinite stabilizing solutions under the conditions
(H1) and (H2).
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5.3. Numerical Example

In the rest of this section, in order to demonstrate the efficiency of our
proposed algorithm we run a numerical example. The system matrix is given
as a modification of Appendix A in [1].

A00 =


0 0 4�5 0 1
0 0 0 4�5 −1
0 0 −0�05 0 −0�1
0 0 0 −0�05 0�1
0 0 32�7 −32�7 0

 �

A01 =


0 0
0 0
0�1 0
0 0
0 0

 � A02 =


0 0
0 0
0 0
0�1 0
0 0

 �

A10 =
[
0 0 0 0 0
0 0 −0�4 0 0

]
� A20 =

[
0 0 0 0 0
0 0 0 −0�4 0

]
�

A11 = A22 =
[−0�05 0�05

0 −0�1

]
� F11 = F22 =

[
0

0�01

]
�

F01 = F02 = B01 = B02 =


0
0
0
0
0

 � B11 = B22 =
[

0
0�1

]
�

CT C = diag�1� 1� 1� 1� 1� 0�5� 0�5� 0�5� 0�5�� HT H = diag�20� 20��
First, the numerical results are obtained for a small parameter ε1 = ε2 =

10−3. The simulation results for the different parameter εj will be dis-
cussed later. Note that we cannot apply the technique proposed in [5, 6]
to the MARE (30) since the Hamiltonian matrices Tjj , j = 1� 2, have
eigenvalues in common. The two basic quantities for the system are γjf =
9�7590 × 10−2 and γ1s = 4�4721 × 10−1. Thus, for every boundary value
γ > γ̄ = max�γ1s� γjf � = 4�472 × 10−1, the AREs (6c) and (6a) have
positive semidefinite stabilizing solutions. On the other hand, by using
MATLAB, the minimum value γ̂ such that there exists a feedback con-
troller is γ̂ = 4�472 × 10−1.
Now, we choose γ = 1�0 (>γ̄) to solve the MARE (30). We give a solu-

tion of the MARE (30).

P� =
 P00 ε1P

T
10 ε2P

T
20

ε1P10 ε1P11
√

ε1ε2P
T
21

ε2P20
√

ε1ε2P21 ε2P22
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P00 =


6�0730e + 000 8�4607e − 001 5�1386e + 001
8�4607e − 001 6�0730e + 000 −1�3695e − 001
5�1386e + 001 −1�3695e − 001 6�9744e + 002

−1�3695e − 001 5�1386e + 001 −2�3924e + 002
2�5846e − 001 −2�5846e − 001 5�0568e + 000

−1�3695e − 001 2�5846e − 001
5�1386e + 001 −2�5846e − 001

−2�3924e + 002 5�0568e + 000
6�9744e + 002 −5�0568e + 000

−5�0568e + 000 1�3473e + 000


ε1P10 =

[
1�0158e − 001 −9�0348e − 005 1�3678e + 000
5�0000e − 002 7�2948e − 015 6�6053e − 001

−4�7187e − 001 8�3654e − 003
−2�3187e − 001 3�7279e − 003

]
ε2P20 =

[−9�0348e − 005 1�0158e − 001 −4�7187e − 001
6�0176e − 015 5�0000e − 002 −2�3187e − 001

1�3678e + 000 −8�3654e − 003
6�6053e − 001 −3�7279e − 003

]
ε1P11 =

[
7�6993e − 003 2�9751e − 003
2�9751e − 003 3�9561e − 003

]
ε2P22 =

[
7�6993e − 003 2�9751e − 003
2�9751e − 003 3�9561e − 003

]
√

ε1ε2P21 =
[−9�3283e − 004 −4�5889e − 004

−4�5889e − 004 −2�2587e − 004

]
We find that the solution of the MARE (30) converges to the exact

solution with an accuracy of ���P�i�
� �� < 10−10 after three iterations. In

order to verify the exactitude of the solution, we calculate the remainder
per iteration by substituting P

�i�
� into the MARE (30). In Table I we present

TABLE I
Errors per Iteration

i ��(P�i�
�

)�
0 3�2505e − 010
1 1�0193e − 002
2 5�0362e − 005
3 4�2618e − 012
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TABLE II
Error ���P���

ε1 = ε2 Revised Kleinman Algorithm MATLAB

10−2 8�8142e − 011 3�3465e − 010
10−3 5�9038e − 012 1�7864e − 009
10−4 3�4592e − 011 2�2509e − 008
10−5 4�1606e − 012 1�3073e − 005
10−6 8�7978e − 012 5�2618e − 004
10−7 6�1600e − 012 1�4103e − 003
10−8 1�5099e − 011 3�0732e − 002

results for the error ���P�i�
� ��. It can be seen that the initial guess (11) for

the algorithm (10) is quite good.
In order to verify the exactness of the solution, when we substitute the

obtained reference solution Psch
� into the MARE (30) by using the function

are of MATLAB, the remainder is ���Psch
� �� = 1�7864e − 009. For the

different values of ε1 and ε2, the remainders of the algorithm (10) versus
MATLAB are given in Table II.
From Table II, it should be noted that, although the dimensionality of the

MARE (30) is small, when the parameter εj is quite small the loss of accu-
racy corresponding to the error ���P��� for MATLAB is obvious for this
numerical example. On the other hand, the resulting algorithm which com-
bines the Kleinman algorithm (10) and the fixed point algorithm (24) com-
putes the solution to full accuracy for all εj . Hence, the resulting algorithm
of this paper is very useful at least in this example. In Table III, we give
the resulting CPU times when we ran the new method versus MATLAB.
From Table III, it can be seen that although the iterative algorithm (10)
takes a lot of CPU time in the case of a not very small value of the singular
perturbation parameter, the new algorithm converge to the exact solution.

TABLE III
CPU Time [s]

ε1 = ε2 Revised Kleinman Algorithm MATLAB

10−2 5�44e − 001 2�80e − 002
10−3 1�32e − 001 2�70e − 002
10−4 8�00e − 002 2�60e − 002
10−5 8�00e − 002 2�70e − 002
10−6 4�10e − 002 2�60e − 002
10−7 4�30e − 002 2�70e − 002
10−8 2�50e − 002 2�70e − 002
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6. CONCLUSION

In this paper, we have investigated the MARE with an indefinite
quadratic term in general associated with the MSPS. We have shown that
there exists a unique and bounded solution for the MARE. Furthermore,
we have presented the iterative method for solving the sign-indefinite
GMARE. Finally, based on the fixed-point algorithm, we have presented
the new numerical methods for solving the GMALE appearing in the
Kleinman algorithm. It should be noted that so far an algorithm for solving
the GMALE with multiple parameters has not been established.
The algorithms for solving the GMARE and GMALE were applied to a

wide class of control law synthesis involving a solution of the MARE, such
as the robust stabilizing control problem and the guaranteed cost control
problem.
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