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Abstract

The guaranteed cost control problem via the decentralized robust control for nonlinear uncertain
large-scale systems that have delay in both staticontrol input is considered. Sufficient conditions
for the existence of guaranteed cost controllers are given in terms of linear matrix inequality (LMI).
Itis shown that the decentralized local state feedback controllers can be obtained by solving the LMI.
0 2004 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, the problem of the decengedi robust control of large-scale systems
with parameter uncertainties has been widely studied (see, e.g., [1]). Although there have
been numerous studies on the decentralized ratmmtol of large-scale uncertain systems,
much effort has been made toward finding a controller that guarantees robust stability.
However, when controlling such systems, it is also desirable to design control systems that
guarantee not only robust stability but also an adequate level of performance. One approach
to this problem is the so-called guaranteed cost control approach [2]. This approach has the
advantage of providing an upper bound on a given performance index.

Recent advances in the Linear Matrix Inequality (LMI) theory [11] have allowed a re-
visiting of the guaranteed cost control approach [3,6]. In [3], the guaranteed cost control
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technique for interconnected systems by means of the LMI approach has been discussed.
In [6], the guaranteed cost control for nonlinear uncertain large-scale systems under gain
perturbations has been considered. However, the time delays have not been considered in
those reports. If the system does not have delays, the theoretical behavior would usually be
more tractable. However, if delays are present, they may result in instability or serious de-
terioration in the performance of the resulting control systems. Therefore, the study of the
control, considering these time delays on the guaranteed cost stability, is very important.

In this paper, the guaranteed cost controlgem of the decentralized robust control for
uncertain nonlinear large-scale systems that have delay in both state and control input is
considered. It should be noted that although the robust control design method for parame-
ter uncertain ordinary dynamic systems that have delay in both state and control input has
been considered (see for example [4,5]),dbaranteed cost control for nonlinear uncertain
large-scale systems that have delay in both state and control input has never been discussed.
A sufficient condition for the existence of the decentralized robust feedback controllers
is derived in terms of the LMI. The main result of this paper shows that the guaranteed
cost controllers can be constructed by solving the LMI. The crucial difference between the
existing results [3] and that of the present study is that the controller that guarantees the sta-
bility and the adequate level of performance of the large-scale delay systems is given. Thus,
the applicability of the resulting controllers can be extended to more practical large-scale
systems. Moreover, since the construction of the guaranteed cost controller consists of an
LMI-based control design, the proposed method is computationally attractive and useful.

The notations used in this paper are fairly standard. The supergatigrotes the matrix
transposel,, € R"*" denotes the identity matrices. bledikag denotes the block diagonal
matrix. || - | denotes the Euclidean nort:. |2 denotes the largest singular value.

2. Analysisof robust performance

We consider continuous-time autonomous uncertain nonlinear large-scale intercon-
nected delay systems, which consistoBubsystems of the form:

(1) = [A; + AAO]xi (1) + [A! + AA O]xi (¢ — )

N

—i—[Hid-l-AHid(t)]xi(f—hi)-i- Z [Gij + AGij(1)]gij(xi,xj),  (1a)
j=Lj#i

xi(t)y=¢i(), te[-d;,0], di=maxXzt,h;}, i=1...,N, (1b)

wherex; (1) € R" are the states; > 0 andh; > 0 are the delay constants, apdr) are the

given continuous vector valued initial functions., Af’, andHl.d are the constant matrices

of appropriate dimension&:;; € R™*lj are the interconnection matrices betweenithe
subsystems and other subsystemg(x;, x;) € R are unknown nonlinear vector func-

tions that represent nonlinearity. The parameter uncertainties considered here are assumed
to be of the following form:

[AA;(t) AAL () AHE (1)) = D Fi(D[EF EX EM), (2a)
AG;j(t) = D;j Fij (t)Ejj, (2b)
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where D;, EL, EM, E®, D;;, and E;; are known constant real matrices of appropri-
ate dimensionsF; (1) € RP*% and F;; (1) € R"/>*% are unknown matrix functions with
Lebesgue measurable elements and satisfy

Fr R0 <,  Fi0OF;@® <y, (3)

We make the following assumptions concerning the unknown nonlinear vector functions.

(A1) There exist known constant matricésandW;; such thatfor alf, j, ¢ > 0,x; € R™
andx; e R,
I gij Gxiv x ) | < NVixill + [ Wijx;l.
(A2) Foralli, j,
N
Ui=2 Y (VVi+ W/iw;)>0.
Jj=1. j#i

The cost function of the associated system (1) is given as

N o0
=Y [ 0dxw (4)

i=1 0

whereQ; is the given positive definite symmetric matrices.
The definition of the cost matrix for the unt¢ain nonlinear large-scale interconnected
delay systems is given [2].

Definition 2.1. The set of matrice®; > 0 is said to be the quadratic cost matrix for the

uncertain nonlinear large-scale interconnected delay systems (1) if the following inequality
holds

N
d -
> (Ex,f (1) Pixi (1) + x] (1) Qixi (r)) <0, (5)
i=1
for all nonzerax; € R™ and all uncertainties (2).
Theorem 2.1. Under assumption@A1) and (A2), suppose there exist the symmetric posi-

tive definite matrice®; > 0, S; > 0, T; > 0 € R"*" such that for all uncertain matrices
(2) the following matrix inequality holds

[ &  PAY PH! PGa - PGiyT
AdTp —s5; 0 0 0
a2iTp; 0 —T; 0 0
A= =~ <0, 6
: Ghp 0 0 - 0 ©)
LGP, 0 0 0o - -0
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whereA; e RV*N N = 3n,+2] _1, i lj and

Ei=Al P+ PA+U+0i+S+T, Ai=Ai+A440),
A=A+ AAd (), HY:=H'+ AH! (1), Gij:=Gij+ AGi(1).

Then the autonomous uncertain nonlinear large-scale interconnected delay sy$ems
are quadratically stable, and the corresponding value of the cost funfipsatisfies the
following inequality

J<Z|:¢ (0)P¢z(0)+/¢ (S)S¢I(S)ds+/¢ (S)T¢I(S)ds:| (7)

i=1

%
Remark 2.1. Note that there exists no matri%G;;,i = 1,..., N, in the matrixA; .

Proof. Using the definitionst;, A¢, A¢, andG;;, we can change the form (1) similar to

N
%) = Apxi (1) + A?xi(t - 1)+ ﬁ,dxi(t —hi)+ Z Gijgij(xi, x}). (8)
J=L j#i
Let us assume that there exist the symmetric positive definite matfces, and 7;,
i=1,..., N, such that the matrix inequality (6) holds for all admissible uncertainties (2).

In order to prove the asymptotic stability ofetinterconnected delay systems (8), let us
define the following Lyapunov function candidate

N t t
V(x() =Z|:xiT(t)P,~x,~(t)+ / X! (5)Sixi(s)ds + / x,T(s)nx,(s)ds], )

i=1 =1 t—h;

wherex () =[x (¢) --- x1(H)]". Note thatV (x(t)) > 0 wheneverx(t) # 0. The time
derivative ofV (x(¢)) along any trajectory of the interconnected delay systems (8) is given

by

—V(x0) Zz (r)A,z,(o—Zx (1) Qixi (1)

i=1 i=1
N N
=0 > (VI Vixi + 2] W Wix; — gl i),
i=1j=1, j#i
where

.
=[x Oxl -y xl¢—h)gh--gly] eRY

andZz; andA; are givenin (6).
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It is easy to verify whether the followd inequality holds under assumption (Al):
ZXI»TVZ-TV,'X,' + ZXJTWJ Wijx; > g;g,'j. (20)
Given that the inequalities (6) and (10) hold, it immediately follows that
N
EV(x(t)) <— ;x,T(t)Q_,-xi(t) <0. (11)

Hence,V (x(¢)) is a Lyapunov function for the large-scale interconnected delay system (8).
Therefore, the interconnected delay systemig&symptotically stable. Furthermore, by
integrating both sides of the inequality (11) from OZcand using the initial conditions,

we obtain

N T
V(x(T) = V(x(©Q) <= / xI(0) Qixi () dt. (12)

t:lo

Since the interconnected delay system (8) is asymptotically stable, théT')s;> 0 when
T — oo, we obtainV (x(T)) — 0. Thus we obtain

T
/xT(t)Q,x, (t)dt < V(x(0))

T
™M=

1
N

i

0
|:¢ (0)P¢z(0)+/¢ (S)S:¢:(S)d8+/¢ (S)T¢:(S)d8}

T —h;

Il
&Mz

This completes the proof of Theorem 2.1

3. Problem formulation

In this section, we consider the problem of the optimal guaranteed cost control via
the state feedback for a clasémonlinear uncertain largecale interconnected systems
with delays. The uncertain delay systems under consideration are described by the state
equations

(1) = [Ai + AA; (O]xi (1) + [ Bi + AB;j () ]ui (1)
+[A] + A4] O)xi( — ) + [BY + AB{ 0)]ui (¢t — hi)

N
+ Z [Gij + AGjlgij(xi, xj), (13a)
J=L j#i
xi(t)y=¢i(®), te[-d;,0], di=maxXzt,h;}, i=1...,N, (13b)
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whereu; (1) € R™ are the control inputs of th¢h subsystems. The parameter uncertainties
satisfy

[AA;(t) ABi(t) ABY (] = Di Fi (1) E} E? EX]. (14)

Ai, Bi, B!, E}, E2, and E¥ are the constant matrices of appropriate dimensions. The
remainder constant real matrices and parametcertainties are the same as these in the
large-scale delay systems (1). Moreover, it is assumed that (A1) and (A2) hold for the
unknown nonlinear vector functiong; (x;, x;) € R'i. Associated with system (13) is the
cost function

N o0
7=3 / [x7 (1) Qixi (1) + ul (1) Rius (1)) d1. (15)

i=1j

whereQ; andR; are the given positive definite symmetric matrices.
Based on reference [2], the definition bktguaranteed cost control for uncertain non-
linear large-scale interconnected delay systems is given below.

Definition 3.1. A decentralized control law; (1) = K;x; (¢) is said to be a quadratic guar-
anteed cost control related to the set of matriges- 0 for the uncertain large-scale
interconnected system (13) and cost function (15) if the closed-loop system is quadrati-
cally stable and the closed-loop value of the cost function (15) satisfies the posnd™*
for all admissible uncertainties, that is,

N ord
Z(—xf O Pixi() +x] ([ Qi + K[ Ri K,-]x,-(r)> <0, (16)

i=1 di

for all nonzerax; € R™ .
The objective of this paper is to design ecgntralized guaranteed cost controller
ui(t)=K;x;(t), i=1...,N,

for the uncertain large-scale interconnected delay system (13).

4, Main results

We now present the LMI design approach to the construction of a guaranteed cost con-
troller.

Theorem 4.1. Under assumption@\1) and (A2), suppose there exist the constant positive
parameters; > O ande; > O such that for alli =1, ..., N the following LMI(17) have
the symmetric positive definite matric&s > 0, S; > 0, Z; > 0 € R">*" and a matrix

Y; e R™Mixni;
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i @; A4S BYY; (EXX;+E?Y)T Gi1 O
AT -5 0 SEMT 0o o0
v BT 0 -z yI 2T 0o o
E}X; + E?Y; EMS, EXY, —uily, 0 0
Gl 0 0 0 -I, E} -
0 0 o0 0 Ein —eily, -
G, 0 0 0 0o o0
0 0 o0 0 0 o0
X 0 0 0 0o o0
Yi 0 0 0 0o o0
Xi 0 0 0 0o o0
L X 0 0 0 0o o0
Gin 0 Xi IZEED D
0 0 0 0 0 0
y'BiT 0 -z YI'E¥T 0 0
0 0 0 o 0 O
0 0 0 o 0 o
0 0 0 o 0 O
: : © 1 <0 (17)
-, EL 0 0 0 o0
Ein —eilyy O 0 0 0
0 o -ot o 0 o0
0 0 0 -R* 0 O
0 0 0 o -5 o0
0 0 0 0o 0 -Ut

whered; := A; X; + B;Y; + (AiX; + BiY)T + Zi + w; DiDI + H;, Hy:=YY_y ;&

D;; Dg. If such conditions are met, the decettizad linear state feedback control laws
ui () = Kixi (1) =Y; X; 'xi(t), i=1,...,N, (18)
are the guaranteed cost controllers and

N 0
J < Z[qbf O X $:(0) + / ¢! ()5 i(s) ds

i=1 e

0
+ / ¢F DX ZiX T i(s) ds] (19)
—h;
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is the guaranteed cost for the closed-loop uncertain large-scale interconnected delay sys-
tems.

Proof. Let us introduce the matrice¥; := P, %, ¥; := K; P, %, §; == S7t and Z; :=

P7T; P, Pre- and post-multiplying both sides of the inequality (17) by
block-diad P; §; Pi I, Iy Iy -+ Iy Iy Iny Iy Iny In;]

yields (20):

B v, P,'Al‘-l P,'BidK,' ElT P;Gi1 0
AdTp - 0 EMT 0 0
kI'eiTp, 0 -1, KTE¥T 0 0
E;  EM E¥K; -, O 0
Ghp 0 0 0 -, E}
0 0 0 0 Ei1 —sily,
Gh,p 0 0 0 0 0
0 0 0 0 0 0
I, 0 0 0 0 0
Ki 0 0 0 0 0
I, 0 0 0 0 0
LI, 0 0 0 0 0
PiGiy O L,  KI' L, I, ]
0 0 o 0 0 0
0 0 o 0 0 0
0 0 o 0 0 0
0 0 o 0 0 0
0 0 o 0 0 0

: : : <0, (20)
-, EI, 0 0
Ein —silgy, O 0
0 0o -0t o
0 0 0 —-R* 0
0 0 0o 0 -st
0 0 0 o o -ut

1

© oo
© 0o oo -

wherey; .= AiTP,' + P,'Ai + T; —i—/LiPl'D,'DiTP,' + P H; P;, Al‘ = A; + B K;, Ei = Ell—i-
E’K;.
1
Using the Schur complement [9], the matrix inequality (20) holds if, and only if, the
following inequality (21) holds:
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I PA{ 4 i B EM
-1 ” -1
AP+ u 'EMTE;, i tEMTEM —
T pdT =1pT p2dT 7 =1pT 24T 1 1d
KIBITP, + pu 'K EXTE; ;'K EXTE]

.7:' = T
i GL P, 0
L G,'TNPi 0
PiBK; + u; 'ET E¥K; PiGi -+ PiGin]
ptEMT g2 K, 0o -~ 0
—1 T 52dT r2d
w K'EXTEXK; —T; 0 -+ 0 0 21)
0 @1 - 0 )
0 0 - Oy |

wherer; ;= AiTP,' +PA+U + R + S+ Ti + /L,'P,'D,-DiTP,' + P;H; P; + [/Li_lEl-TE,',
Ri:=Qi+KI'RiK;, ©;:= eflE,.’{;E,»j — ;.

Using a standard matrix inequality [8] for all admissible uncertainties (2) and (14), the
matrix inequality (22) holds:

0> F
_A,’TPi'i‘PiAi'i‘Ui'i‘Ri‘i‘Si‘i‘Ti PiA?, Pl'Bl.dK,' PiGil"’PiGiN_
AdT p, -5 0 0o ... 0
KI'BIT P, 0 -T 0 .-~ 0
>
GLPi 0 0 -I, -~ O
| GlyPi 0 0 0 - —Iy |
™ P;D; 7 [ ElT 1T EzT T mP;D; T T
1d 1d
0 EMT EMT 0
0 o o 0
+| o |F® 0 + 0 Froyl o
L 0 o | | o | L 0
FO0O0PD;y - PDiny ]| r000 O -- 0 7
ooo o --- O 000 0 --- O
ooo o --- O 000 0 --- O
+{000 0 --- O 000F7y--- O
000 O -+ 0 ]L000O O --- Fjy
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rooo o ---
000 O ---
000 O ---
O0O0Eig ---

LOO0O O ---
r0ooo0 O ---
000 O ---

000 O ---
+ O00E; -~

L0000 O ---
rO00PD;1 --

o O O o

Ein 000 0 ---

- PiDin 7]

rooo O ---
000 O ---
000 O ---
0O00F; ---

O O O o

Fin

000 0 --- O
000 0 --- O
000 O 0 =L;. (22)

Looo o --- O
Noting AY + D;F;()EM = A? and G;; + D;jFij(H)Eij = G;; and settingA; +
DiF;(0DE; — A; = A; + AA;(1), [BY + ABY()1K; — HY + AH(r) and Q; +
KTRiK; = Ri — Q;, we havel; = A;. Hence, the closed-loop systems are asymptot-
ically stable under Theorem 2.1. On the other hand, since the results of the cost bound (19)
can be proved by using similar arguments for the proof of Theorem 2.1, it is omitted.

Since the LMI (17) consists of a solution set(@f;, ¢; X;, Y:, Si, Z;), various efficient
convex optimization algorithms can be applied. Moreover, its solutions represent the set of
guaranteed cost controllers. This parametatirepresentation can be exploited to design
the guaranteed cost controllers, which minimizes the value of the guaranteed cost for the
closed-loop uncertain large-scale interconnected delay systems. Consequently, solving the
following optimization problem allows us to determine the optimal bound:

N
Do: min Z Ji=J%,
i=1
Ji == a; + TracdM;] + | N:N] |, - Tracd Z;1,
X; € (wiv & Xi, Y1, Si, Zi, i, M;), (23)
such that (17) and

—Q; ¢,-T (V)
|:¢i 0  —X; i| <0, (24a)
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—M; M7
[ M i } <0, (24b)
M; —S;
|:—Ci1ni Ini i| < 0’ (24C)
I, —X;

wherec; are the given positive constants,

0 0
MM/ = / $i()¢] (s)ds, NN/ := / i ()¢ (s)ds.

—T —h;
That is, the problem addressed in this paper is as follows: “Hne= Y,-X[l, i =

1,..., N, such that LMI (17) and (24) are satisfied, and the cﬁéilji becomes as
small as possible”.
Finally, we are in a position to establish the main result of this section.

Theorem 4.2. If the above optimization problem has the solutione;, X;, Y;, Si, Zi, «i,
and M;, then the control laws of the for(d8) are the decentralized linear state feedback
control laws, which ensure the minimization of the guaranteed @®tfor the uncertain
large-scale interconnected delay systems.

Proof. By Theorem 4.1, the control laws (18) constructed from the feasible solytigns

&, Xi, Yi, Si, Zi, a;, and M, are the guaranteed cost controllers of the uncertain large-
scale interconnected delay systems (13). Applying the Schur complement to the LMI (24)
and using the following inequality [10]:

Tracd XY < || X||2TracdY], Y=YT >0, ¥ =aT7,
we have

(24a) & ¢ (O0X; ¢:(0) <,
0 0
(24b) = / ol () i (s)ds = / Tracd¢! (5)S; ¢i(s)] ds

= Tracd M S;*M;] < Tracd M;]1,

0
(24c) = / oL ()X Zi X i (5) ds
s
0
= / Tracdo! ()X; 1 Z; X ¢i(s)] ds
Ch
= Tracd N7 X, 12,0 N < [NV [ |3 - Trac )
<Z|NiNT ||, - Tracd Z;].
It follows that
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N

0
J < Z[ab? 0 X; i (0) + / ¢! ()57 ¢i(s) ds

i=1 e

0
+ ¢,-T(s)X,-‘1ZiX,-‘1¢,»(s)ds]
—h:

N
< Z(m + TracdM;] + | Ni N[ |, - Tracd Z;])
i=1

N
gn}_n;ji:j . (25)

i .

Thus, the minimization o ; 7; implies the minimum value/* of the guaranteed cost

for the interconnected uncertain delay systems (13). The optimality of the solution of the
optimization problem follows from the convexity of the objective function under the LMI
constraints. This is the required resulta

Remark 4.1. It can be noted that the original optimization problem for the guaranteed cost
(23) can be decomposed to the followingueed optimization problems (26) because each
optimization problem (26) is independent of other LMI. Hence, we only have to solve the
optimization problems (26) feeach independent subsystem:

N N
min)_Ji= 2 minJ
1= 1=

X; € (wieiXi, Yi, Si, Zi, i, M;),  Di n:lvlnj: i=1...,N,

J; 1= a; + TracdM;] + 2| N;N] |, - Tracd Z;]. (26)

Remark 4.2. The constant parametey, which is included in the inequality (24c), needs
to be optimized as the LMI constraints. In this case, it is hard to obtain the optimum guar-
anteed cost, because the féag problem is nonconvex optitmation problem. Hence, we
propose the above suboptimal guaranteed cost control instead of solving the nonconvex
optimization problem. As a result, the detmtized robust suboptimal guaranteed cost
controller, which minimizes the value of the guaranteed cost for the closed-loop uncertain
delay systems, can be easily solved by using the LMI.

The chosen constant parametgemneeds to be as small as possible. However, if there
is no solution to the considered optimization problem, we need to consider the large para-
meterc;. On the other hand, it should be noted that the paramegt&nnot become large,
because the matriX; is constrained by the inequality (24a).
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5. Conclusions

In this paper, a solution to the guaranteed cost control problem for the nonlinear large-
scale uncertain systems that have delay in both state and control input has been presented.
The decentralized robust optimal guaranteest controller, which minimizes the value of
the guaranteed cost for the closed-loop uncertain delay systems, can be solved by using
software such as MATLAB's LMI control toblox. Thus, the resulting decentralized linear
feedback controller can guarantee thedyadic stability and the optimal cost bound for
these uncertain large-scale delay syste@rs.the other hand, there exist drawbacks that
cannot be ignored. In view of the practical systems, since the considered problem has to
be solvable, some of the bounds for the uncertainties will turn out to be quite conservative.
That is, in order to guarantee the existence of the LMI solution, the bounds for the uncer-
tainties have to be small. Consequently, we need to relax these conservative conditions.
Furthermore, in order to obtain the control gain matrix, all information for the subsystems
is needed. These conditions have to beaeed because there is no guarantee that we can
always obtain the subsystems information. However, it is worth pointing out that although
similar problems have recently been solvdt guaranteed cost coolt problem for the
nonlinear large-scale uncertain delay systems that have delay in both state and control in-
put via the LMI technique has not been investigated so far.

In future research, it is expected that thdllapproach will also be applied to the output
feedback case [7]. This problem is moreligtic than that of the state feedback case and
will be addressed in future investigations.
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