
a

st
ale

an

certain
ns
LMI).
e LMI.

ms
e have
s,

ability.
s that

proach
has the

re-
ontrol
J. Math. Anal. Appl. 300 (2004) 17–29

www.elsevier.com/locate/jma

An LMI approach to decentralized guaranteed co
control for a class of uncertain nonlinear large-sc

delay systems

Hiroaki Mukaidani

Graduate School of Education, Hiroshima University, 1-1-1, Kagamiyama, Higashi–Hiroshima, 739-8524 Jap

Received 23 April 2003

Available online 2 October 2004

Submitted by G. Chen

Abstract

The guaranteed cost control problem via the decentralized robust control for nonlinear un
large-scale systems that have delay in both stateand control input is considered. Sufficient conditio
for the existence of guaranteed cost controllers are given in terms of linear matrix inequality (
It is shown that the decentralized local state feedback controllers can be obtained by solving th
 2004 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, the problem of the decentralized robust control of large-scale syste
with parameter uncertainties has been widely studied (see, e.g., [1]). Although ther
been numerous studies on the decentralized robustcontrol of large-scale uncertain system
much effort has been made toward finding a controller that guarantees robust st
However, when controlling such systems, it is also desirable to design control system
guarantee not only robust stability but also an adequate level of performance. One ap
to this problem is the so-called guaranteed cost control approach [2]. This approach
advantage of providing an upper bound on a given performance index.

Recent advances in the Linear Matrix Inequality (LMI) theory [11] have allowed a
visiting of the guaranteed cost control approach [3,6]. In [3], the guaranteed cost c
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technique for interconnected systems by means of the LMI approach has been dis
In [6], the guaranteed cost control for nonlinear uncertain large-scale systems und
perturbations has been considered. However, the time delays have not been consi
those reports. If the system does not have delays, the theoretical behavior would usu
more tractable. However, if delays are present, they may result in instability or serio
terioration in the performance of the resulting control systems. Therefore, the study
control, considering these time delays on the guaranteed cost stability, is very impo

In this paper, the guaranteed cost control problem of the decentralized robust control f
uncertain nonlinear large-scale systems that have delay in both state and control
considered. It should be noted that although the robust control design method for p
ter uncertain ordinary dynamic systems that have delay in both state and control inp
been considered (see for example [4,5]), theguaranteed cost control for nonlinear uncert
large-scale systems that have delay in both state and control input has never been di
A sufficient condition for the existence of the decentralized robust feedback contr
is derived in terms of the LMI. The main result of this paper shows that the guara
cost controllers can be constructed by solving the LMI. The crucial difference betwe
existing results [3] and that of the present study is that the controller that guarantees
bility and the adequate level of performance of the large-scale delay systems is given
the applicability of the resulting controllers can be extended to more practical large
systems. Moreover, since the construction of the guaranteed cost controller consis
LMI-based control design, the proposed method is computationally attractive and us

The notations used in this paper are fairly standard. The superscriptT denotes the matrix
transpose.In ∈ Rn×n denotes the identity matrices. block-diag denotes the block diagon
matrix.‖ · ‖ denotes the Euclidean norm.‖ · ‖2 denotes the largest singular value.

2. Analysis of robust performance

We consider continuous-time autonomous uncertain nonlinear large-scale int
nected delay systems, which consist ofN subsystems of the form:

ẋi(t) = [
Āi + ∆Āi(t)

]
xi(t) + [

Ad
i + ∆Ad

i (t)
]
xi(t − τi)

+ [
Hd

i + ∆Hd
i (t)

]
xi(t − hi) +

N∑
j=1,j �=i

[
Gij + ∆Gij (t)

]
gij (xi, xj ), (1a)

xi(t) = φi(t), t ∈ [−di,0], di = max{τi, hi}, i = 1, . . . ,N, (1b)

wherexi(t) ∈ Rni are the states.τi > 0 andhi > 0 are the delay constants, andφi(t) are the
given continuous vector valued initial functions.Āi , Ad

i , andHd
i are the constant matrice

of appropriate dimensions.Gij ∈ Rni×lj are the interconnection matrices between theith
subsystems and other subsystems.gij (xi, xj ) ∈ Rlj are unknown nonlinear vector fun
tions that represent nonlinearity. The parameter uncertainties considered here are a
to be of the following form:[

∆Āi(t) ∆Ad
i (t) ∆Hd

i (t)
] = DiFi(t)

[
Ē1

i E1d
i Ē

dh

i

]
, (2a)

∆Gij (t) = DijFij (t)Eij , (2b)
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whereDi , Ē1
i , E1d

i , Ē
dh

i , Dij , and Eij are known constant real matrices of approp
ate dimensions.Fi(t) ∈ Rpi×qi andFij (t) ∈ Rrij×sij are unknown matrix functions wit
Lebesgue measurable elements and satisfy

FT
i (t)Fi (t) � Iqi , F T

ij (t)Fij (t) � Isij . (3)

We make the following assumptions concerning the unknown nonlinear vector funct

(A1) There exist known constant matricesVi andWij such that for alli, j , t � 0,xi ∈ Rni

andxj ∈ Rnj ,∥∥gij (xi, xj )
∥∥ � ‖Vixi‖ + ‖Wij xj‖.

(A2) For all i, j ,

Ui := 2
N∑

j=1, j �=i

(
V T

i Vi + WT
jiWji

)
> 0.

The cost function of the associated system (1) is given as

J =
N∑

i=1

∞∫
0

xT
i (t)Q̄ixi(t) dt, (4)

whereQ̄i is the given positive definite symmetric matrices.
The definition of the cost matrix for the uncertain nonlinear large-scale interconnec

delay systems is given [2].

Definition 2.1. The set of matricesPi > 0 is said to be the quadratic cost matrix for t
uncertain nonlinear large-scale interconnected delay systems (1) if the following ineq
holds

N∑
i=1

(
d

dt
xT
i (t)Pixi(t) + xT

i (t)Q̄ixi(t)

)
< 0, (5)

for all nonzeroxi ∈ Rni and all uncertainties (2).

Theorem 2.1. Under assumptions(A1) and (A2), suppose there exist the symmetric po
tive definite matricesPi > 0, Si > 0, Ti > 0 ∈ Rni×ni such that for all uncertain matrice
(2) the following matrix inequality holds:

Λi =




Ξi PiÃ
d
i PiH̃

d
i PiG̃i1 · · · PiG̃iN

ÃdT
i Pi −Si 0 0 · · · 0

H̃ dT
i Pi 0 −Ti 0 · · · 0

G̃T
i1Pi 0 0 −Il1 · · · 0
...

...
...

...
. . .

...

˜ T




< 0, (6)
GiNPi 0 0 0 · · · −IlN
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whereΛi ∈ RN̄×N̄ , N̄ = 3ni + ∑N
j=1, j �=i lj and

Ξi := ÃT
i Pi + PiÃi + Ui + Q̄i + Si + Ti, Ãi := Āi + ∆Āi(t),

Ãd
i := Ad

i + ∆Ad
i (t), H̃ d

i := Hd
i + ∆Hd

i (t), G̃ij := Gij + ∆Gij (t).

Then the autonomous uncertain nonlinear large-scale interconnected delay syste(1)
are quadratically stable, and the corresponding value of the cost function(4) satisfies the
following inequality:

J <

N∑
i=1

[
φT

i (0)Piφi(0) +
0∫

−τi

φT
i (s)Siφi(s) ds +

0∫
−hi

φT
i (s)Tiφi(s) ds

]
. (7)

Remark 2.1. Note that there exists no matrixPiG̃ii , i = 1, . . . ,N , in the matrixΛi .

Proof. Using the definitionsÃi , Ãd
i , H̃ d

i , andG̃ij , we can change the form (1) similar t

ẋi(t) = Ãixi(t) + Ãd
i xi(t − τi) + H̃ d

i xi(t − hi) +
N∑

j=1, j �=i

G̃ij gij (xi, xj ). (8)

Let us assume that there exist the symmetric positive definite matricesPi , Si , andTi ,
i = 1, . . . ,N , such that the matrix inequality (6) holds for all admissible uncertainties
In order to prove the asymptotic stability of the interconnected delay systems (8), let
define the following Lyapunov function candidate

V
(
x(t)

) =
N∑

i=1

[
xT
i (t)Pixi(t) +

t∫
t−τi

xT
i (s)Sixi(s) ds +

t∫
t−hi

xT
i (s)Tixi(s) ds

]
, (9)

wherex(t) = [xT
1 (t) · · · xT

N(t)]T . Note thatV (x(t)) > 0 wheneverx(t) �= 0. The time
derivative ofV (x(t)) along any trajectory of the interconnected delay systems (8) is g
by

d

dt
V

(
x(t)

) =
N∑

i=1

zT
i (t)Λizi(t) −

N∑
i=1

xT
i (t)Q̄ixi(t)

−
N∑

i=1

N∑
j=1, j �=i

(
2xT

i V T
i Vixi + 2xT

j WT
ij Wij xj − gT

ij gij

)
,

where

zi = [
xT
i (t) xT

i (t − τi) xT
i (t − hi) gT

i1 · · ·gT
iN

]T ∈ RN̄

andΞi andΛi are given in (6).
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It is easy to verify whether the following inequality holds under assumption (A1):

2xT
i V T

i Vixi + 2xT
j WT

ij Wij xj � gT
ij gij . (10)

Given that the inequalities (6) and (10) hold, it immediately follows that

d

dt
V

(
x(t)

)
< −

N∑
i=1

xT
i (t)Q̄ixi(t) < 0. (11)

Hence,V (x(t)) is a Lyapunov function for the large-scale interconnected delay system
Therefore, the interconnected delay system (8)is asymptotically stable. Furthermore,
integrating both sides of the inequality (11) from 0 toT and using the initial conditions
we obtain

V
(
x(T )

) − V
(
x(0)

)
< −

N∑
i=1

T∫
0

xT
i (t)Q̄ixi(t) dt. (12)

Since the interconnected delay system (8) is asymptotically stable, that is,x(T ) → 0 when
T → ∞, we obtainV (x(T )) → 0. Thus we obtain

J =
N∑

i=1

T∫
0

xT
i (t)Q̄ixi(t) dt < V

(
x(0)

)

=
N∑

i=1

[
φT

i (0)Piφi(0) +
0∫

−τi

φT
i (s)Siφi(s) ds +

0∫
−hi

φT
i (s)Tiφi(s) ds

]
.

This completes the proof of Theorem 2.1.�

3. Problem formulation

In this section, we consider the problem of the optimal guaranteed cost contr
the state feedback for a class of nonlinear uncertain large-scale interconnected system
with delays. The uncertain delay systems under consideration are described by th
equations

ẋi(t) = [
Ai + ∆Ai(t)

]
xi(t) + [

Bi + ∆Bi(t)
]
ui(t)

+ [
Ad

i + ∆Ad
i (t)

]
xi(t − τi) + [

Bd
i + ∆Bd

i (t)
]
ui(t − hi)

+
N∑

j=1, j �=i

[Gij + ∆Gij ]gij (xi, xj ), (13a)

xi(t) = φi(t), t ∈ [−di,0], di = max{τi, hi}, i = 1, . . . ,N, (13b)
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whereui(t) ∈ Rmi are the control inputs of theith subsystems. The parameter uncertain
satisfy[

∆Ai(t) ∆Bi(t) ∆Bd
i (t)

] = DiFi(t)
[
E1

i E2
i E2d

i

]
. (14)

Ai , Bi , Bd
i , E1

i , E2
i , andE2d

i are the constant matrices of appropriate dimensions.
remainder constant real matrices and parameter uncertainties are the same as these in
large-scale delay systems (1). Moreover, it is assumed that (A1) and (A2) hold f
unknown nonlinear vector functionsgij (xi, xj ) ∈ Rlj . Associated with system (13) is th
cost function

J =
N∑

i=1

∞∫
0

[
xT
i (t)Qixi(t) + uT

i (t)Riui(t)
]
dt, (15)

whereQi andRi are the given positive definite symmetric matrices.
Based on reference [2], the definition of the guaranteed cost control for uncertain n

linear large-scale interconnected delay systems is given below.

Definition 3.1. A decentralized control lawui(t) = Kixi(t) is said to be a quadratic gua
anteed cost control related to the set of matricesPi > 0 for the uncertain large-sca
interconnected system (13) and cost function (15) if the closed-loop system is qu
cally stable and the closed-loop value of the cost function (15) satisfies the boundJ � J ∗
for all admissible uncertainties, that is,

N∑
i=1

(
d

dt
xT
i (t)Pixi(t) + xT

i (t)
[
Qi + KT

i RiKi

]
xi(t)

)
< 0, (16)

for all nonzeroxi ∈ Rni .

The objective of this paper is to design a decentralized guaranteed cost controller

ui(t) = Kixi(t), i = 1, . . . ,N,

for the uncertain large-scale interconnected delay system (13).

4. Main results

We now present the LMI design approach to the construction of a guaranteed co
troller.

Theorem 4.1. Under assumptions(A1) and(A2), suppose there exist the constant posi
parametersµi > 0 andεi > 0 such that for alli = 1, . . . ,N the following LMI (17) have
the symmetric positive definite matricesXi > 0, S̄i > 0, Zi > 0 ∈ Rni×ni and a matrix
Yi ∈ Rmi×ni :
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


Φi Ad
i S̄i Bd

i Yi (E1
i Xi + E2

i Yi )
T Gi1 0 · · ·

S̄iA
dT
i −S̄i 0 S̄iE

1dT
i 0 0 · · ·

YT
i BdT

i 0 −Zi Y T
i E2dT

i 0 0 · · ·
E1

i Xi + E2
i Yi E1d

i S̄i E2d
i Yi −µiIqi 0 0 · · ·

GT
i1 0 0 0 −Il1 ET

i1 · · ·
0 0 0 0 Ei1 −εiIsi1 · · ·
...

...
...

...
...

...
. . .

GT
iN 0 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
Xi 0 0 0 0 0 · · ·
Yi 0 0 0 0 0 · · ·
Xi 0 0 0 0 0 · · ·
Xi 0 0 0 0 0 · · ·

GiN 0 Xi Y T
i Xi Xi

0 0 0 0 0 0

YT
i BdT

i 0 −Zi Y T
i E2dT

i 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
...

...
...

...
...

...

−IlN ET
iN 0 0 0 0

EiN −εiIsiN 0 0 0 0

0 0 −Q−1
i 0 0 0

0 0 0 −R−1
i 0 0

0 0 0 0 −S̄i 0

0 0 0 0 0 −U−1
i




< 0, (17)

whereΦi := AiXi + BiYi + (AiXi + BiYi)
T + Zi + µiDiD

T
i + Hi , Hi := ∑N

j=1, j �=i εi ·
DijD

T
ij . If such conditions are met, the decentralized linear state feedback control laws

ui(t) = Kixi(t) = YiX
−1
i xi(t), i = 1, . . . ,N, (18)

are the guaranteed cost controllers and

J <

N∑
i=1

[
φT

i (0)X−1
i φi(0) +

0∫
−τi

φT
i (s)S̄−1

i φi(s) ds

+
0∫

φT
i (s)X−1

i ZiX
−1
i φi(s) ds

]
(19)
−hi
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y sys-

the
is the guaranteed cost for the closed-loop uncertain large-scale interconnected dela
tems.

Proof. Let us introduce the matricesXi := P−1
i , Yi := KiP

−1
i , S̄i := S−1

i and Zi :=
P−1

i TiP
−1
i . Pre- and post-multiplying both sides of the inequality (17) by

block-diag[Pi Si Pi Iqi Il1 Isi1 · · · IlN IsiN Ini Imi Ini Ini ]
yields (20):



Ψi PiA
d
i PiB

d
i Ki ĒT

i PiGi1 0

AdT
i Pi −Si 0 E1dT

i 0 0

KT
i BdT

i Pi 0 −Ti KT
i E2dT

i 0 0

Ēi E1d
i E2d

i Ki −µiIqi 0 0

GT
i1Pi 0 0 0 −Il1 ET

i1

0 0 0 0 Ei1 −εiIsi1

...
...

...
...

...
...

GT
iNPi 0 0 0 0 0

0 0 0 0 0 0

Ini 0 0 0 0 0

Ki 0 0 0 0 0

Ini 0 0 0 0 0

Ini 0 0 0 0 0

PiGiN 0 Ini KT
i Ini Ini

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
...

...
...

...
...

...

−IlN ET
iN 0 0 0 0

EiN −εiIsiN 0 0 0 0

0 0 −Q−1
i 0 0 0

0 0 0 −R−1
i 0 0

0 0 0 0 −S−1
i 0

0 0 0 0 0 −U−1
i




< 0, (20)

whereΨi := ĀT
i Pi + PiĀi + Ti + µiPiDiD

T
i Pi + PiHiPi , Āi := Ai + BiKi , Ēi := E1

i +
E2

i Ki .
Using the Schur complement [9], the matrix inequality (20) holds if, and only if,

following inequality (21) holds:
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Fi :=




Γi PiA
d
i + µ−1

i ĒT
i E1d

i

AdT
i Pi + µ−1

i E1dT
i Ēi µ−1

i E1dT
i E1d

i − Si

KT
i BdT

i Pi + µ−1
i KT

i E2dT
i Ēi µ−1

i KT
i E2dT

i E1d
i

GT
i1Pi 0
...

...

GT
iNPi 0

PiB
d
i Ki + µ−1

i ĒT
i E2d

i Ki PiGi1 · · · PiGiN

µ−1
i E1dT

i E2d
i Ki 0 · · · 0

µ−1
i KT

i E2dT
i E2d

i Ki − Ti 0 · · · 0

0 Θ1 · · · 0
...

...
. . .

...

0 0 · · · ΘN




< 0, (21)

whereΓi := ĀT
i Pi + PiĀi + Ui + R̄i + Si + Ti + µiPiDiD

T
i Pi + PiHiPi + µ−1

i ĒT
i Ēi ,

R̄i := Qi + KT
i RiKi , Θj := ε−1

i ET
ijEij − Ilj .

Using a standard matrix inequality [8] for all admissible uncertainties (2) and (14
matrix inequality (22) holds:

0 >Fi

�




ĀT
i Pi + PiĀi + Ui + R̄i + Si + Ti PiA

d
i PiB

d
i Ki PiGi1 · · · PiGiN

AdT
i Pi −Si 0 0 · · · 0

KT
i BdT

i Pi 0 −Ti 0 · · · 0

GT
i1Pi 0 0 −Il1 · · · 0
...

...
...

...
. . .

...

GT
iNPi 0 0 0 · · · −IlN




+




PiDi

0

0

0
...

0




Fi(t)




ĒT
i

E1dT
i

KT
i E2dT

i

0
...

0




T

+




ĒT
i

E1dT
i

KT
i E2dT

i

0
...

0




FT
i (t)




PiDi

0

0

0
...

0




T

+




0 0 0 PiDi1 · · · PiDiN

0 0 0 0 · · · 0
0 0 0 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0







0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 Fi1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · F



iN



26 H. Mukaidani / J. Math. Anal. Appl. 300 (2004) 17–29

tot-
nd (19)
.

set of
ign
for the
ving the
·




0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 Ei1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · EiN




+




0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 Ei1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · EiN




T 


0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 Fi1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · FiN




T

·




0 0 0 PiDi1 · · · PiDiN

0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0




T

= Li . (22)

Noting Ad
i + DiFi(t)E

1d
i = Ād

i and Gij + Dij Fij (t)Eij = G̃ij and setting Āi +
DiFi(t)Ēi → Ãi = Āi + ∆Āi(t), [Bd

i + ∆Bd
i (t)]Ki → Hd

i + ∆Hd
i (t) and Qi +

KT
i RiKi = R̄i → Q̄i , we haveLi = Λi . Hence, the closed-loop systems are asymp

ically stable under Theorem 2.1. On the other hand, since the results of the cost bou
can be proved by using similar arguments for the proof of Theorem 2.1, it is omitted�

Since the LMI (17) consists of a solution set of(µi, εiXi, Yi, S̄i ,Zi), various efficient
convex optimization algorithms can be applied. Moreover, its solutions represent the
guaranteed cost controllers. This parameterized representation can be exploited to des
the guaranteed cost controllers, which minimizes the value of the guaranteed cost
closed-loop uncertain large-scale interconnected delay systems. Consequently, sol
following optimization problem allows us to determine the optimal bound:

D0: min
Xi

N∑
i=1

J̄i = J ∗,

J̄i := αi + Trace[Mi] + c2
i

∥∥NiN
T
i

∥∥
2 · Trace[Zi],

Xi ∈ (
µi, εiXi, Yi, S̄i ,Zi, αi ,Mi

)
, (23)

such that (17) and[ −αi φT
i (0)

]
< 0, (24a)
φi(0) −Xi
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ck

s
rge-
I (24)
[−Mi MT
i

Mi −S̄i

]
< 0, (24b)[−ciIni Ini

Ini −Xi

]
< 0, (24c)

whereci are the given positive constants,

MiM
T
i :=

0∫
−τi

φi(s)φ
T
i (s) ds, NiN

T
i :=

0∫
−hi

φi(s)φ
T
i (s) ds.

That is, the problem addressed in this paper is as follows: “FindKi = YiX
−1
i , i =

1, . . . ,N , such that LMI (17) and (24) are satisfied, and the cost
∑N

i=1 J̄i becomes as
small as possible”.

Finally, we are in a position to establish the main result of this section.

Theorem 4.2. If the above optimization problem has the solutionµi , εi , Xi , Yi , S̄i , Zi , αi ,
andMi , then the control laws of the form(18)are the decentralized linear state feedba
control laws, which ensure the minimization of the guaranteed cost(19) for the uncertain
large-scale interconnected delay systems.

Proof. By Theorem 4.1, the control laws (18) constructed from the feasible solutionµi ,
εi , Xi , Yi , S̄i , Zi , αi , andMi are the guaranteed cost controllers of the uncertain la
scale interconnected delay systems (13). Applying the Schur complement to the LM
and using the following inequality [10]:

Trace[XY] � ‖X‖2Trace[Y], Y = YT � 0, X =X T ,

we have

(24a) ⇔ φT
i (0)X−1

i φi(0) < αi,

(24b) ⇒
0∫

−τi

φT
i (s)S̄−1

i φi(s) ds =
0∫

−τi

Trace
[
φT

i (s)S̄−1
i φi(s)

]
ds

= Trace
[
MT

i S̄−1
i Mi

]
< Trace[Mi],

(24c) ⇒
0∫

−hi

φT
i (s)X−1

i ZiX
−1
i φi(s) ds

=
0∫

−hi

Trace
[
φT

i (s)X−1
i ZiX

−1
i φi(s)

]
ds

= Trace
[
NT

i X−1
i ZiX

−1
i Ni

]
�

∥∥NiN
T
i

∥∥
2 · ∥∥X−1

i

∥∥2
2 · Trace[Zi]

< c2
i

∥∥NiN
T
i

∥∥
2 · Trace[Zi].

It follows that
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t
of the
LMI

cost
ach
e the

ds
guar-
e
convex
ost
ertain

ere
para-
,

J <

N∑
i=1

[
φT

i (0)X−1
i φi(0) +

0∫
−τi

φT
i (s)S̄−1

i φi(s) ds

+
0∫

−hi

φT
i (s)X−1

i ZiX
−1
i φi(s) ds

]

<

N∑
i=1

(
αi + Trace[Mi] + c2

i

∥∥NiN
T
i

∥∥
2 · Trace[Zi]

)

� min
Xi

N∑
i=1

J̄i = J ∗. (25)

Thus, the minimization of
∑N

i=1 J̄i implies the minimum valueJ ∗ of the guaranteed cos
for the interconnected uncertain delay systems (13). The optimality of the solution
optimization problem follows from the convexity of the objective function under the
constraints. This is the required result.�
Remark 4.1. It can be noted that the original optimization problem for the guaranteed
(23) can be decomposed to the following reduced optimization problems (26) because e
optimization problem (26) is independent of other LMI. Hence, we only have to solv
optimization problems (26) for each independent subsystem:

min
Xi

N∑
i=1

J̄i =
N∑

i=1

min
Xi

J̄i ,

Xi ∈ (
µi, εiXi, Yi, S̄i ,Zi, αi ,Mi

)
, Di : min

Xi

J̄i , i = 1, . . . ,N,

J̄i := αi + Trace[Mi] + c2
i

∥∥NiN
T
i

∥∥
2 · Trace[Zi]. (26)

Remark 4.2. The constant parameterci , which is included in the inequality (24c), nee
to be optimized as the LMI constraints. In this case, it is hard to obtain the optimum
anteed cost, because the resulting problem is nonconvex optimization problem. Hence, w
propose the above suboptimal guaranteed cost control instead of solving the non
optimization problem. As a result, the decentralized robust suboptimal guaranteed c
controller, which minimizes the value of the guaranteed cost for the closed-loop unc
delay systems, can be easily solved by using the LMI.

The chosen constant parameterci needs to be as small as possible. However, if th
is no solution to the considered optimization problem, we need to consider the large
meterci . On the other hand, it should be noted that the parameterci cannot become large
because the matrixXi is constrained by the inequality (24a).
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5. Conclusions

In this paper, a solution to the guaranteed cost control problem for the nonlinear
scale uncertain systems that have delay in both state and control input has been pr
The decentralized robust optimal guaranteed cost controller, which minimizes the value
the guaranteed cost for the closed-loop uncertain delay systems, can be solved b
software such as MATLAB’s LMI control toolbox. Thus, the resulting decentralized line
feedback controller can guarantee the quadratic stability and the optimal cost bound f
these uncertain large-scale delay systems.On the other hand, there exist drawbacks t
cannot be ignored. In view of the practical systems, since the considered problem
be solvable, some of the bounds for the uncertainties will turn out to be quite conser
That is, in order to guarantee the existence of the LMI solution, the bounds for the u
tainties have to be small. Consequently, we need to relax these conservative con
Furthermore, in order to obtain the control gain matrix, all information for the subsys
is needed. These conditions have to be removed because there is no guarantee that we
always obtain the subsystems information. However, it is worth pointing out that alth
similar problems have recently been solved, the guaranteed cost control problem for the
nonlinear large-scale uncertain delay systems that have delay in both state and con
put via the LMI technique has not been investigated so far.

In future research, it is expected that the LMI approach will also be applied to the outp
feedback case [7]. This problem is more realistic than that of the state feedback case a
will be addressed in future investigations.
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