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SUMMARY

In this paper, we present a numerical algorithm to the cross-coupled algebraic Riccati equations(CARE)
related to H,/H, control problems for singularly perturbed systems (SPS) by means of Newton’s method.
The resulting algorithm can be widely used to solve Nash game problems and robust control problems
because the CARE is solvable even if the quadratic term has an indefinite sign. We prove that the resulting
iterative algorithm has the property of the quadratic convergence. Using the solution of the CARE, we
construct the high-order approximate H,/H,, controller. Copyright © 2004 John Wiley & Sons, Ltd.

KEY WORDS: singularly perturbed systems (SPS); H,/H, control problem; cross-coupled algebraic
Riccati equation (CARE); Newton’s method

1. INTRODUCTION

H,/H,, control problems have been studied by using several approaches [1-3]. In particular, a
state feedback mixed H,/H,, control problem is formulated as a dynamic Nash game in
Reference [3]. This problem is solved by using the established theory of non-zero-sum games [4]
and the resulting feedback controller is characterized by the solution to a pair of cross-coupled
algebraic Riccati equations (CARE). Various reliable approaches for solving the CARE have
been studied which include the Riccati iterations [5-7] and the Lyapunov iterations [8,9].
However, there are some very serious drawbacks in these methods. The first is that the
convergence of the Riccati iterations was not proved exactly. The second is that there are no
results for the convergence rate of the Lyapunov iterations and the numerical simulation shows
that the convergence speed is very slow when the Lyapunov iterations are used to solve the
CARE [9].

In this paper, we study the mixed H,/H,, control problem for infinite horizon SPS from a
viewpoint of solving the parameterized CARE. After defining the generalized cross-coupled
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algebraic Riccati equations (GCARE), the asymptotic structure of the GCARE is established.
In order to solve the parameterized CARE, Newton’s method [10] is applied. Although the
resulting algorithm involves the generalized linear matrix equation (GLME), it is newly proved
that the proposed algorithm attains the quadratic convergence by using the Newton—
Kantorovich theorem [10]. Moreover, the sufficient conditions are provided such that the
proposed algorithm converges to a positive semidefinite solution. Using the new algorithm, we
will improve the convergence speed compared with the previous results [6,7,9]. As another
important feature, it is newly proved that the high-order approximate strategy has an
asymptotic Nash equilibrium property compared with [11]. Furthermore, we give the e-
independent strategy such that the proposed strategy has also the asymptotic Nash equilibrium
property. Finally, simulation results show that the proposed algorithm succeed in improving the
convergence rate dramatically.

In the past few decades, Newton’s method has been applied to the CARE without the
perturbation parameter (see e.g. Reference [12]). The use of Newton’s method for solving
algebraic Riccati equation (ARE) of SPS originated in References [13, 14]. Nevertheless, the
quadratic convergence property of the resulting algorithm for the SPS has not been studied so
far. It is the first time for us to prove the quadratic convergence property of the algorithm.

Notation: The notations used in this paper are fairly standard. The superscript 7" denotes
matrix transpose. I, denotes the n x n identity matrix. ||-|| denotes its Euclidean norm
for a matrix. det M denotes the determinant of the matrix M. block-diag denotes the block
diagonal matrix. Re A[M] denotes the real part of the eigenvalue of the matrix M. vec M
denotes the column vector of the matrix M [15]. ® denotes the Kronecker product. Uy,
denotes a permutation matrix in the Kronecker matrix sense [15] such that U, vec M = vec M T,
M e R _||G(s)||, denotes H,-norm of the transfer function G(s).

2. PROBLEM FORMULATION

Consider a linear time-invariant SPS

%1(t) = Apxi(6) + Apxa(t) + Diw() + Bu(r), x1(0) =0 (1a)
e32(1) = Ag1x1(f) + Anxa(1) + Daw(t) + Bou(t), x2(0) = 0 (1b)
and a quadratic cost function
J(u,w) = /O h 1 (Hz(r) dr (2a)
x1(1)

z(1) = Cx(¢) + Hu(t) = [C) (4] + Hu(?) (2b)

x2(%)

where CTH =0, H'H = I,,, ¢ is a small positive parameter, x € R" is the state vector with
x; € R" and x; € R™, N := n; + nm, u € R™ is the control input, w € R? is the disturbance and
z € R? is the controlled output. All matrices above are of appropriate dimensions. System (1) is
said to be in the standard form if the matrix Ay, is non-singular. Otherwise, it is called the non-
standard SPS.
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Let us introduce the partitioned matrices

B A11 A12 A — All A12
Ay Axp | e 14y e 'An
By By D D
B B ' ‘o 87132 ’ B D> ’ ‘ 871D2
. S e 'Sk . S Sk
So=BBI=| 7| S=BB=
& SIZ & °S» 512 S22
T Ui ¢ 'Up - Un Un
U,=p,DY=| " 7| U=DD'=
& U12 e “Un U12 U
al'fc 01 0
1 1 1 12
0=C'c= = >0
G &) 0 On

We now consider the mixed H,/H, control problem under the following basic conditions:

(H1) There exists a small perturbation parameter ¢ > 0 such that the triplets (A4, B,
C) and (4,, D,, C) are stabilizable and detectable for all ¢ € (0, g].
(H2) The triplets (42, B, C) and (Ay», D,, C») are stabilizable and detectable.

These conditions are quite natural since at least one control agent has to be able to control
and observe unstable modes. The mixed H,/H ., control problem is formulated as a two-player
Nash game [3] associated with a prescribed disturbance attenuation level y > 0,

Ji(u,w) = /OOC VT (Ow(t) dt — J(u, w) = /OOC [P2wT(Ow(r) — 2T (0)z(0)] dt (3a)

Jo(u,w) = J(u, w) = / h ZV(0)z(r) dt (3b)
0

The first is used to reflect an H,, criterion, while the second is used for H, optimality
requirement. The purpose of the mixed H,/H, control problem is to find a linear feedback
controller u*(¢) = K>x() such that

Ji®, w*) <y (W, w) (42)

JZ(M*9 W*)<J2(Ll, W*) (4b)

where w*(f) = K;x() represents the worst-case disturbance in the sense that it achieves the
maximum possible energy gain from the disturbance input to the output.
When J;(u*, w*) >0, we have the following H,, criterion:

sup VAW 5)

wel,[0,00) [[w]

where the notation || - || for a vector function of time is used to denote the 2-norm on the time
support [0,00].
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The second Nash inequality shows that u*(7) regulates the state to zero with minimum output
energy when the disturbance is at its worst value w*(z).

For the SPS (1), the purpose of the mixed H,/H, control problem is to find a feedback
control law u*(¢) subject to the following conditions:

[I] For a given attenuation level y > 0,
IRz lloo <7 (6)

where the operator R.,, maps the disturbance signal w(¢) to the controlled output
z(f) when the optimal control law u*(¢) is invoked.

[II] The optimal control u*(¢) regulates the state x(f) such that the output energy is
minimized when the worst-case disturbance w*(¢) is applied to the SPS (1).

The following lemma is already known [3].

Lemma 2.1
Under condition (H1), suppose that there exists ¢*( <) such that for each ¢ € (0, £¥], there exist
solutions X; >0 and Y, >0 that satisfy

(Ac + V72 UcXc - Sa Ya)TXc + XL‘(AE + V72 UEXE - Sa YL‘)

+0 =7 X UX, + V.S, Y, =0 (7a)
(As + V_zUsXs - Se YE)T Ys + YE(AB + V_z UsXs - Ss Ys) + Q + YsSs Ys =0 (7b)
where
X1 SX; Y SYle
X, = > & =
8X21 8X22 & Y21 & Y22

Then Re A[A4, — S.Y;]<0. Moreover, if (4, +y2U.X,, C) is detectable, then Re A[4, + y~2U,
X, — S.Y.]<0 and the following strategies (8) result in inequalities (4b) and (6).

u*(t) = =B Y, x(1) (8a)
w*(1) = 72D} X,x(1) (8b)

Conversely, suppose that there exist the feedback strategies u™(f) = K>x(f) and w*(¢) = K;x(¢)
such that inequalities (4b) and (6) hold, Re A[4,; + B.K>] <0 and (4, + D K;, C) is detectable.
Then there exist solutions X, >0 and Y, >0 that satisfy (7).

Define X and Y as

X11 SXgl

= . X=X, X, =Xn (%a)
X1 X»
Y]] SYgl

Y = . Y=Y, Yy =Yy (9b)
Yo Yo

Then, CARE (7) can be written as (10) and (11) [7].
(A+y2UX =S X+ XT(A+7y2UX —SY)+ Q0 — 7y 2XTUX + YTSY =0  (10a)
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X,=E'X=X"E (10b)
A+ 2UX =S Y + YT A4+ 2UX - SY)+ Q0+ YTSY =0 (11a)
Y,=E'Y=Y"E (11b)
where
I, 0
E =
0 el

Our main purpose is to establish a new algorithm to solve the GCARE (10) and (11) and
to prove its quadratic convergence. Moreover, the other purpose of this paper is to show that
the resulting H,/H., controller via the iterative solutions achieve H,., criterion and H,
near-optimality.

3. NEWTON’S METHOD

In this section, we propose a new algorithm which is based on Newton’s method [10]. First we
can rewrite Equations (10a) and (11a) as the following GCARE:

FP)=A"2+P" A+ 0 - 2"SP— yP ' SgP - P " gSP g+ PGPy =0 (12)

X 0 . [4 0 - |2 0

, A= ., 0=
0 Y 0 4 0 0
00 p 0 Iy
o s|” 7 | o
Using Newton’s method [10], we provide the following iterative algorithm. It should be noted

that the Newton’s method will be substituted by 21 = 2 1 A2 and will be derived by
neglecting the quadratic terms of AZ™:

where

P =

. [—7U 0
S = , N=n+m

O

(I)(")T,@(”'H) + g;(n-&-l)T(D(n) _ @(H)T?(n—k—l)j _ fg(nJrl)T@(n) + E(n) =0, n=0,1,2,... (13)
where
n (n) (T (n) (T
00 _ [X( )0 1 w X\ eXy)| o _ Yy eY3)
|’ %G w |’ | yw ()
0 e XZ; X22 Y21 Y22
(n) 0
oW =1 §P" — gSpm g = |
()
0 oY
@(”)
Q" = § g2 — GPW g = '
e o
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:(’7) 0
B0 — O 4 POTSPN 4 gpTS gp) | p0T g Sp) g gpTGpm 4 — | 7!
0o =
and the initial condition 2 is to take the solution of the following form:
Xll F/\;—zr] 0 0
Xy Xn O 0

= _ , (14)
0 0 ¥, Y]

xXO o

20 =
0 Y©

0 0 Yy Yn
where
(A+92UX —SY) X+ XT(A+y2UX = SY)+ Q0 -7y X"UX+Y'SY =0 (15a)

A+ 2UX =S Y+ YT U4+ 2UX - SY)+ Q0+ Y'SY =0 (15b)
_ Xy 0 Yu 0
X: - - 2 - - -
le Xzz Y21 Y22

Taking the forms of X and Y for solutions (9) into account, the forms of X™ and Y™ are
derived. The GCARE (15) are independent of the perturbation parameter ¢. Nevertheless, to
solve the GCARE (15) seem to be formidable due to the existence of the cross-coupled term.
However, it should be noted that Newton’s method can also be applied to the GCARE (15)
directly. This is, in fact, quite numerically tractable because the computation is well conditioned.
The different initial conditions are given later in Remark 3.3.

Newton’s method has the form

vec 2D = vec 21 — [VZ (27! vec 7 (2™) (16)

We now show that algorithm (13) is equivalent to Newton’s method (16). Taking the vec
transformations [15] on both sides of (12) and (13), we obtain

vec Z(2") = [(®T ® Ly)Usvan + Ly ® 7] vec 2
— [0 ® Usyon + 7 ® O vec 2 4 vec E (17a)

(@7 @ Ly)Uanay + Ly @ O vec 20+
— (O ® #)YUsnon + F ® O vec 2D 4 vec 2™ = 0 (17b)
Subtracting (17b) from (17a) and noting that
ovec F(2)
a(vec )" | ,_pm

=[(@"" ® Ly)Usnoy + Ly @ @1 — [(O@"T @ #)Usnay + F ® O]

VFP") =

we have (16).
Before investigating the convergence property of the proposed algorithm, we study the
asymptotic structure of the GCARE (12). Note that
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Vﬁf’(@ ::6vec 97({) _ 0%(e,vec X11,vec Xp1, vec Xoy, vec Yqy, vec Y, vec Ysz)
ovec?) |p_3  O(vec Xi1,vec X1, vec X, vec Yy, vec Yo, vec Yoo)' |,
=A-82-79829) @Iy +[Iy ® (A—SP — 752 9) 1Usnan
~SIP-G629) ® J ~1J @SSP~ G2 Usyay
where

_ X o
P = l _ ], vec F (2) .= %(e, vec X1y, vec Xy, vec Xop, vee Yqy, vec Yop, vec Yor)
0 Y

Without loss of generality the following conditions are assumed.

(H3) (i) There exist the positive semidefinite admissible solution EJ Z >0 and the positive
semidefinite stabilizing solution Z5, >0 such that

A"Z+7Z"A+0-ZY(S-7y2Z=0

AN 7o + ZnnAn + 0 — Z(Saa — 7 2 Un)Zan =0

where
I, 0 Zn 0
ElZ=Z7"E, Ey=| , 7= , I =75
0 Onz ZZI 222
(i1) There exists the matrix K; = [K]; K»»] such that (Ey, A + DK;, C) is impulse
observable.

(iii) There exists the matrix Kj, such that (42, + D2K>,, C») is observable.
(iv) (Eyp, A, B)is impulse and finite dynamics controllable.

(V) A — wa()

rank =N, VYoekR

It should be noted that the restriction of assumption (H3) is standard because these
conditions are also assumed in References [3, 16] when we consider H,, control problem for the
descriptor systems.

Remark 3.1
Using the result of the bounded real lemma [16], if condition (H3) is met, there exist the gain
matrix K, and the positive semidefinite admissible solution EJ W >0 such that

(A+y2UW + BKy))' W + WA +y2UW + BKy) + Q —y *WTUW + KT K, = 0

where EgW = WTE,.

Hence, we conclude that 0< EJ X < E] W compared with (15a) as K, = —BTY. On the other
hand, using condition (H3), there exists the solution Ej Y >0. Finally, since the GCARE (15)
has the solutions £} X >0 and E] ¥ >0, there exist the solutions X;; >0 and ¥, >0. Using the
similar technique, it can be shown quite easily that there exist the solutions X2 >0and Y, >0.
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The following theorem will establish the relation between £ and reduced-order solutions of the
GCARE (15).

Theorem 3.1
Assume that

det VF(2)#0 (18)

Under conditions (H1)—-(H3), the GCARE (10) and (11) admit the solutions X and Y that
possess a power series expansion at ¢ = 0, respectively. That is,

-A_/ll {ii;]-

X=1_ 406 (19a)
| X211 X2 |
-Y1] 81_’-21-1-

vy=|_ _l1o@ (19b)
L Y1 Yo |

Proof
We apply the implicit function theorem [17] to (12). To do so, it is enough to show that the
corresponding Jacobian is non-singular at ¢ = 0. Using the fact that the independent variable of
the function #(2) is only ¢, it can be shown, after some algebra, that the Jacobian of (12) in the
limit as ¢ —» 40 is given by
I (G
J; = lim ovec F (QT’)
e=>+0  J(vec P)

=A-S2 - 4829 @Iy +[Iy ® (A —SP — 752 #) Usnon
—S8I?-G29) ® I - ®SIP— G2 )] Urnan
=VZ(P) (20)

Therefore, det J5 #0, i.e. J5 is non-singular at ¢ = 0. The conclusion of Theorem 3.1 is obtained
directly by using the implicit function theorem. See for detail e.g. References [7, 18]. O

We are concerned with good choices of the starting points which guarantee to find a required
solution of the given GCARE (12). Our new idea is to set the initial conditions to matrix (14).
The fundamental idea is based on the fact that |22 — 29| = O(¢). Although the GCARE (12)
has the general indefinite sign, we can get the required solution with the rate of quadratic
convergence by using Newton’s method. Moreover, using the Newton—Kantorovich theorem
[10], we can prove the existence of the unique solution of the GCARE (12) in the neighbourhood
of the initial guess (14). The main result of this section is as follows.

Theorem 3.2
Under conditions (H1)—(H3), the iterative algorithm (13) converges to the exact solution 22* of
the GCARE (12) with the rate of quadratic convergence. The unique bounded solution 2* of

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:697-717
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the GCARE (12) is in the neighbourhood of the matrix 2. That is, the following conditions
are satisfied:

2'1
||g(l1)_g)*||<20n(;;’ n=0,1,2,... (21a)
1
12O _g*“gﬁ?[l —V/1-20] (21b)

where

X* 0 - ~
P* = [ 0 Y*l’ £ =68+ 2lIGl <00, p=[VF@]|

n = IIVF@O N -ANF @O, 0= png

In order to prove Theorem 3.2, we need the following useful lemma which is called Newton—
Kantorovich theorem [10].

Lemma 3.1

Let X and Y be Banach spaces and F : D ¢ X — Y be Fréchet differentiable in an open convex
set Dy =D and, for some x¢ €Dy, F(xo)"' exist. Assume that F(x¢)#0 without loss of
generality and that

IF'(x) —FWI<LlIx—vyll, x, yeDy

B=IF(xo) ", 7= IIF(x0) "F(xo)ll, 0=piL<~, t¥=—"""

N —
=
=

S = {xeR"|[x — xol[<t*} = Dy

Then:
(1) The Newton iterates

X = xk _FNTFxY, k=0,1,2,...

are well defined, x* € S and converge to a solution x* € S of F(x) = 0. Moreover, we have the
error estimate

0)*

2kBL’

X = x¥|| < k=0,1,2,...
(ii) The solution x* is unique in S.

Using Lemma 3.1, let us prove Theorem 3.2.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:697-717
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Proof
Using the fact that
VF @) :6vec#({)
a(vec 2)
—(A-82- 4827 @Iy + Iy ® (A - 82— 752 7) |Usnox

~SIP-G29)' @ 717 ®SI?— G2 )] Urnon (22)

we have
IVF(21) — VF(P)< L2 — 2] (23)

It is obvious that V.Z(£) is continuous at all 2. Moreover, since
VF(P)=(d - S20 — gSPO NT @ Iy + Iy ® (A — S22 — 7820 7)1 Usnan
- Sg?0 - 679N ® 7 -7 ® SIPV - G2V 7)) Usyay + 0()  (24)

it follows that V.# (2?) is non-singular for sufficiently small parameter ¢ under condition (18).
Therefore, there exists ff such that f = [[[V.Z(2®)]7!||. On the other hand, since Z(2?) = O(¢)
from (19), there exists 5 such that 5 = [|[[V.Z (2] |- |7 (2?)|| = O(¢). Thus, there exists 0
such that 0 = ¥ <2~ because n = O(¢). Using Lemma 3.1, we can show that 2* is the
unique solution in the subset & = {2 : [|2© — 2||<1*}, where

l*zﬁi[l— 1 —26] (25)

Moreover, the error estimate is given by

20y
2B

|2" — 2% < =1,2,... (26)
which implies (21a) because 20 = O(¢). Furthermore, substituting 2* into 2 of the subset .7, we
can also get (21b). Therefore, (21) holds for the small e. O

Remark 3.2

According to Reference [19], it is well known that the solution of the GCARE (12) is not
unique and several non-negative solutions exist. The Lyapunov iterations [8] guarantee
that such algorithm converge to a positive semidefinite solution. Similarly, it should be
noted that if the initial conditions EX©® and EY© are the positive semidefinite solutions,
the new algorithm which is based on the GLME (13) converges to the positive semidefinite
solution.

Remark 3.3

In order to obtain the initial condition (14), we have to solve the CARE and GCARE (15) which
are independent of the perturbation parameter ¢. In this case, we can also apply Newton’s
method to (15). In fact, it is easily seen that Newton’s method can be used well to solve the
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CARE and GCARE (15). Then, as one of the initial condition we recommend the solutions of
the following generalized algebraic Riccati equations:

A"Y +Y"4+0-YTsYy =0, YO=7Y

A-S'X+XTA4-SY)+0+yXTuX=0, XO=X

Note that there is no guarantee of converging to the required solutions for the above initial
condition. However, since % (2) is differentiable and V. (2) is continuous at all 2, if the
condition as det V.Z(2¥)#0 is met, then the new algorithm has the quadratic convergence via
the local convergence property for Newton’s method [10].

Remark 3.4

It should be noted that the Lyapunov iterations are much simpler to implement from the
computational point of view and the fast convergence of the Newton’s method increases
numerical complexity compared with the Lyapunov iterations.

4. HIGH-ORDER APPROXIMATE CONTROLLER

In this section, the high-order approximate H,/H., controller is given. Such a controller is
obtained by using the iterative solution (13):

a"(1) = =BT Y x(1) (27a)

w(t) =y 2 DT X" x(t) (27b)

Theorem 4.1
Assume that Re A[E~'(4 + 7y 2UX® — SYP)]<0. Under conditions (H1) and (H2), the
following result holds:

J@™, W) = Jiw*, w¥) +0E"), i=1,2 (28)
where Ji(u® w¥*), i = 1,2 are the equilibrium values satisfying (4).
Proof

Note that the optimal strategies (8) result in J>(u™*, w*) = x(0)" Y,x(0). When @ is applied to
the SPS (1) under the disturbance w", the value of the performance index (3b) is

L@, w"y = x(0)" W x(0) (29)

where Wé’j) is the positive semidefinite solution of the following algebraic Lyapunov equation
(ALE):

(A, + 7 20XD — S, Y)W 4 w4, + 9 2UXD - S, YD)+ 0+ YOS, Y? =0 (30)

where X® = EX® and Y® = EY®™. Subtracting (7b) from (30) we find that V" = W — v,

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:697-717
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satisfies the following ALE:
(A, +72UXD — S, YTV 4 V(A + 972U XD — S, Y ™)
+ (Y = Y)S(Y? - Y,
+ 772 U(X" — X)) + 972X — X,)U, Y, =0 (31)
By (21a), we have X — X, = O(¢*') and Y — Y, = O(¢*"), so that
(Ao + 72 UXD =S¥V + VA, +97UXD = S, Y +0E) =0 (32)

It is easy to verify that Vi’ = O(¢2") because A, +y 2U X" — S, Y" = E-1[4 + y2Ux© —
SY® 4 0O(e)] is stable by using the standard Lyapunov theorem [20] for sufficiently small e.
Consequently, the following equality holds:

L@, w"y = Lw*,w¥) + 0@*)

The rest of the Proof of Theorem 4.1 is omitted, since the proof of ¥\ = W — x, = 0(¢¥") is
performed by a similar argument. O

Theorem 4.2
Under the conditions of Theorem 4.1, the following result holds:

@, wy = Ji(u*,w) + 0 (33a)
Jo(u, W) = Jo(u, w¥) + O(e*) (33b)
Proof

We first prove equality (33a). Applying the high-order approximate controller (27a) to the SPS
(1) yields

x(1) = Ax(t) + eF x(t) + Dow(1), x(0) = 0 (34a)
o0
S (@™, w) = / xT(1)Ox(r) dr (34b)
0
where
- _q - Ay Ai
A, =E'(A4—-SY)= ) )
8_1A21 8_1A22

Fo=—e/(SY" ~ 4, + 4), Q=0+ Y5, Y[
Under condition (H2), Ay and /‘I() = Ay —_/sziz‘z'.ﬁizl are stable. Hence, there exists the
transformation y(f) = T~ 'x(7) such that 7-'4,T = block-diag[4; ¢ '4,] [21].
Using the transformation 7', we obtain

71(1) = A1) + eF (1) + Dow(1),  y1(0) =0 (35a)
eya2() = Asya(t) + eFrp() + Dpw(),  y2(0) = 0 (35b)
where [F] F[]" = T"'F, and [D] D}]T = T-'D,. From (35), if ¢ is small enough, then we
have ||y||<ci||w|l,c; > 0. Similarly, substituting the optimal control u*(f) = —BTYx(f) and
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f(t) = T~'x(¢) into the SPS (1), we get
F1(t) = ASi(D) + eF, f(t) + Dow(D),  f1(0) =0 (36a)

6 2(0) = Asfo(t) + eF1f (1) + Dyw(), f(0) = 0 (36b)

where [FT F}]T =T 'F,=—¢'T"Y(SY, — A, + A,). Hence, from (36), one can derive || /]| <
¢|w|l, ¢2 > 0. Subtracting (35) from (36) we get the following SPS (37):

é1(1) = Ager (1) + eFse(t) + O )y(1) (37a)
eéx(1) = Aper(t) + eFre(t) + O )y(1) (37b)

where e(t) = f(t) — y(¢). From (37), we obtain
llell < cse™ Iyl < cae® Il ¢3.¢4>0
Then, noting that Y — ¥, = O(¢*"), we get T-'F,T — T~'F,T = O(®""") and ||Q — Q|| =
moe®',my >0, where O = Q + Y, S,Y,. Applying the Schwartz inequality, we obtain
o0
|2 = Jal< /0 [ le(D)|(D)] + male(DI]f(1)] + moe™ [(0)|| f(1)]] dt

<fllell Ayl + 171D + & 1yll - 111 (38)

where J, = Jo(u*, w), m = max{mg, m,m>}, m = ||TTOT|| and m> = ||TTOT]|. Since ||y||<ci]
n
wil, [[/lI<callwll and [le]] < cq™ [|w]l, we have

Wy — Jol <mmoe” ||wlf? (39)
where 1y = m[cs(c1 + ¢2) + ¢1¢2]. Finally, by using condition J, <y?||w|]*, we have
L <[ + 0EWIP <[y + OEPIwlP (40)

that is, an O(g?') accuracy controller u*(f) = —B'Yx(f) achieves the performance level
74+ O(e?"). Thus equality (33a) holds.

Secondly, we prove equality (33b). Applying the high-order approximate disturbance (27b)
and the control u(f) = K>x(¢) to the SPS (1) yields

x(1) = (4, + 72U X" + B,Ky)x(1), x(0)=0 (41a)
Jo(u, W) = / h xT(0(Q + K3 Ky)x(1) dt (41b)
0

On the other hand, applying the worst disturbance (8b) and the same controller u(¢) = K>x(?) to
the SPS (1) yields

X(1) = (A, + 77U X + B.Ko)x(1), x(0) = 0 (42a)
Jo(u, w*) = /% x(0)(0 + KzTKz)x(l) dt (42b)
0

If A, + DK, + B.K; is stable, there exists the sufficient small parameter ¢ such that the closed-
loop systems (41a) and (42a) are stable [21]. Therefore, there exist the solutions which satisfy the
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following ALEs [20]:
(A: + 7 2UX" + BK) 1o+ 16(Ae + 7 2UX" + BK) + Q+KJK, =0 (43a)
(A + 7 2UX + BK)W 1o+ W14 + 7 2UX + B.K) + Q0+ K Ky =0 (43b)
Thus, we have
Jo(u, W) = xT(0)7"1,x(0) (44a)
Jo(u, w*) = xT(0)#1,x(0) (44b)
Using X = X 4+ O(¢*"), we can change the form of (43b) into
(A, +972UX" + BK) W 1o+ W 1o(A, + 92U X" + BKo) + Q + KT Ky + O(F) =0 (45)
Subtracting (45) from (43a), we get
(A, + 7 2UX" 4 B.K) (V1 — W'10)

+ (V1= W) (A + 9 2UX" + B.Ko) + O ) = 0 (46)

Then, (46) yields ¥"1, — %1, = O(¢¥"), which implies (33b) because
Jo(u, W) — o, w*) = xTO0)(V 1, — #1,)x(0) (47)
This is the desired result. ]

Finally we give the main result in this section.

Theorem 4.3
Under the conditions of Theorem 4.1, the following result holds:
Ji@", W) <T@, w) + 0(e™) (482)
L@, W) < Jo(u, ") + O (48b)
Proof

Using (4a), Theorems 4.1 and 4.2, we have
i@, Wy = 1@, w) + L@, 5 ) — Jy @, w®) + i@, w®) — @, w)
< L@, wy 4+ J1 @™, wy — Jyw®, w¥) + S, w) — J@™, w)
< L1@™, w) + O@E) (49)

which proves (48a). The other case is similar. O

Consequently, when ¢ is known, we can get the high-order O(¢*") approximate strategy which
achieves O(g?") approximation for the equilibrium values of the cost functionals.

In the rest of this section, we will present an important implication. If the perturbation
parameter ¢ is unknown, then the following corollary is easily seen in view of Theorem 4.3.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:697-717



NUMERICAL COMPUTATION 711

Corollary 4.1
Under the conditions of Theorem 4.1, the following result holds:

J1(@, w) < J1(@, w) + O(e) (50a)
Jo(ti, w) < Jo(u, w) + O(e) (50b)

where
(1) = =BT Yx(1) (51a)
Ww(t) = y 2D X x(1) (51b)

Proof
Since the proof can be carried out via a similar technique used in the proof of Theorems 4.1, 4.2
and 4.3 and setting ¢ = 0 and n = 0, it is omitted. O

5. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of our proposed algorithm, we have run two numerical
examples.

5.1. Example 1
Let us consider the following SPS:

X1 0 1 X1 1 0
= + w+ u (52)
eXo 1 0ffx 1 2
with the performance index
00
Ji(u,w) = / ywlwdt — Jo(u, w) (53a)
0
o0
b@w:/(ﬁ+g+ﬁm (53b)
0

The numerical results are obtained for small parameter ¢ = 10~2. Since det 42, = 0, the system is
non-standard SPS. Now, we choose as y = 5.0 to design the controller. We give the initial
condition (14) and the solution of the GCARE (12), respectively.

X0 0 ] [X® 0
p0 — P —
0 Yo |’ 0 Y®

1.1548¢ + 00 8.4467¢ — 03 ] [1.1880e + 00 8.7860e — 03

xO — , YO —
8.4467¢ — 01 5.0253¢ — 01 | | 8.7860¢ — 01  5.0505¢ — 01
1.1645¢ + 00 8.4503¢ — 03 | [1.1984¢ + 00 8.7929¢ — 03

x©® — , y® —
8.4503¢ — 01 5.0684e — 01 | | 8.7929¢ — 01  5.0965¢ — 01
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Table I. Errors per iteration.

i 17 (2|

0 1.8379¢ — 02
I 8.4512¢ — 05
2 1.7208¢ — 09
3 13323¢ - 15

Table II. Number of iterations such that ||7(2")||<e — 12.

Lyapunov Newton’s
€ iterations method
107! 11 4
102 11 3
1073 11 2
10-4 11 2
1073 11 2
106 11 1

Table I shows the results of the errors |7 (2")|| per iterations. We find that the solutions of the
GCARE (12) converge to the exact solution with accuracy of ||Z(2")||<e — 12 after three
iterations. Moreover, it is interesting to see that the result of Table I shows that algorithm (13)
has quadratic convergence. Table II shows the results of the iterations in order to converge to
the required solution with the same accuracy of ||.% (#™)||<e — 12 for the Lyapunov iterations
algorithm [8] versus the proposed algorithm. It can be seen that the convergence rate of the
resulting algorithm is stable for all ¢ since the initial conditions 2 is quite good. On the other
hand, the Lyapunov iterations converge very slowly.

5.2. Example 2

The system matrices are given as follows:

0 0 45 0 1 0 0 0 O
0 0 0 4.5 -1 0O 0 0 O
Ap=10 0 -0.05 0 —-0.1], Ap=1]101 0 0 O
0 0 0 —-0.05 0.1 0 0 01 O
00 327 -327 0 | 0 0 0 o0
0 0 0 0 0 —0.05 0.05 0 0
0 0 —-04 0 0 0 —0.1 0 0
Ay = , Ap=
0 0 0 0 0 0 0 —0.05 0.05
0 0 0 -04 0 0 0 0 —0.1
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0 0
0 0
0 0
005 0
0 O N D2 - B
0 0
00
0 0.05
._0 0_
1 000 0 O0O0 0 O]
01 00O0O0OO0O0OTO
001 0O0O0O0TO00O
0001 O0O0O0TO00O
00001 0O0O0OTO
00000200 0f,
000 0O0O0OZ2TO00
000 0O0O0OO0TZ20
000 0O0OO0OO0O2
000 0 O0OO0OOO O
0000 O0O0OO0OO0 0f

S O O O o o o o o

[a—

S O O O o o o o o o

—_—
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Although H, control problem has been considered in Reference [22], H,/H, control has not
been investigated. Taking the optimality for the cost function into account, H,/H+, control is
applied to the SPS (1). The numerical results are obtained for small parameter ¢ = 1073, It is
found that there exists the solution of H., control problem for all y € {7|0.501673 <y} via
MATLAB. Now, we choose as y = 1.0 to solve the GCARE (12). We give the initial condition
(14) and solutions of the GCARE (12) as the convergence solution 2, respectively.

YO _ Xio Xy ] YO — [ gl
Xy Xp Yo
[ 3.7133¢ + 00 3.6038e — 01 3.2010e + 01
3.6038¢ — 01 3.7133e + 00 2.0421e — 13
X1 = 3.2010e + 01 1.3319¢ — 13 6.5090e + 02
—2.8560e — 13 3.2010e + 01  —2.0457¢ + 02
| 2.4552e — 01  —2.4552e — 01  4.8400¢ + 00

Copyright © 2004 John Wiley & Sons, Ltd.

T
eY,,

}_]22

6.4624¢ — 14
3.2010e + 01

—2.0457e 4- 02

6.5090¢ + 02

—4.8400¢ + 00

2.4552¢ — 01 ]
—2.4552¢ — 01
4.8400¢ + 00
—4.8400¢ + 00
1.7478¢ + 00 |
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52916e 4+ 01  —9.0222¢ — 14  1.0465¢ +03  —3.3809¢ + 02  7.9970e + 00

- 1.4558e + 01 8.3316e — 14  2.5005¢+ 02 —9.2913e+ 01  2.1958e + 00
A= 9.1116e — 14  5.2916e+01  —3.3809¢ 402  1.0465¢ +03  —7.9970e + 00
—1.236le — 13 1.4558¢+01 —9.2913¢e +01 2.5005¢+ 02 —2.1958¢ + 00

3.6935¢+ 01 7.9373¢+00 —5.8814e — 14 8.9092¢ — 15
_ 79373¢+00 16947 +01 —5479%c— 14 2.5610¢ — 14
2T S cd0de 14 27806 - 14 3.6935 101 7.9373¢ 400
_2.6960c — 14 —8243le— 14 7.9373¢4+00 1.6947¢ + 01

[ 3.8150e +00  3.8110e — 01 3.2877e + 01 2.1161e — 13 2.4431e — 01 ]|
3.8110e — 01 3.8150e + 00 1.6920e — 13 32877¢+01 —2.4431e — 01
Yii=| 3.2877e+ 01 1.8630e — 13 6.6051e +02 —2.0697¢ 402  4.8362¢ + 00
—1.7764¢ — 15 3.2877e¢4+01 —2.0697e+02 6.605le +02 —4.8362¢+ 00
| 2443le —01 —2.4431e —01 4.8362¢+00 —4.8362¢+00 1.7547¢+ 00 |

5.5739¢ 4+ 01 1.4397e —13 1.0832¢ +03 —3.5113¢+402 8.2091e + 00

- 1.7378e + 01  8.6035¢ — 14 2.9194e 402 —1.0976e+ 02 2.5717e¢ + 00
2.2926e — 13 5.5739¢+01 —3.5113e+02 1.0832¢ +03 —8.2091e + 00
—3.6731e — 14 1.7378e + 01 —1.0976e +02 29194e+02 —2.5717¢+ 00

3.7496¢ + 01 9.0012¢ +00 —5.1047¢ — 14 —1.7491e — 14
9.0012¢ + 00 1.9007¢ + 01  —2.4476e — 14 —1.3656e — 14
—6.764le — 14 —3.0107e — 14 3.7496e + 01 9.0012e + 00
—2.8620e — 14 —8.7900e¢ — 15  9.0012¢ + 00 1.9007e + 01

T
X(4) _ X1 8X21 , Y(4):
X1 X»

Yp=

Y] 1 € Ygl
Yo Y»

[ 3.7318¢+ 00  3.5834¢ — 01 3.2414¢+01  —1.3395¢—01 2.4760¢ — 01 ]|
3.5834e¢ — 01 3.7318¢ +00 —1.3395¢ — 01 3.2414e+01 —2.4760e — 01
X1 =| 32414e+01 —1.3395¢ —-01 6.6025¢ +02 —2.1004e + 02 4.9057¢ + 00
—1.3395¢ — 01 3.2414e +01 —2.1004e +02 6.6025¢ + 02 —4.9057¢ + 00
| 2.4760e — 01  —2.4760e — 01  4.9057¢ +00 —4.9057¢+400 1.7472¢+ 00 |
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5.3086¢ + 01  —5.6524¢ — 02 1.0556¢+03 —34322¢+02  6.6619% + 00
1.4558¢ 4+ 01 —3.5609 — 14  2.5196¢ +02 —9.3934¢ +01 1.7101e + 00
YT 6524002 530860101 34322402 1.0556¢ 403 —6.6619% 1 00
10252 — 14 1.4558¢+01 —9.3934e+01 25196 +02 —1.7101¢ + 00
3868le+01  84009¢ +00 —5.6223¢ — 01 —1.5430¢ — 01
8.4009¢ +00  1.7076e+01 —1.5430¢ — 01 —4.2769 — 02
Y27 56023001 15430001 38681¢+01 84009 + 00
15430 — 01 —4276% — 02 84009 +00  1.7076¢ + 01
C3.8344e 100 3.784de — 01 33299¢+01 —1.4166c — 01  2.4625¢ — 01 T
3.7844e — 01 3.8344e+00 —1.4166e—01 3.3299 +01 —2.4625¢ — 01
Yo = | 33299 +01 —1.4166¢ — 01 6.7015¢+02 —2.1260e + 02  4.8999 + 00
_1.4166¢—01 33299 +01 —2.1260c+02 6.7015¢ +02 —4.8999¢ + 00
| 24625~ 01 —2.4625¢ — 01 48999 +00 —4.8999 + 00 1.7536¢ + 00 |
[ 5.5945¢+ 01  —6.8681e—02 1.0931e+03 —3.5668¢+02 6.8048¢ + 00 ]
1.7378¢+ 01 —2.8948¢ — 14 2.9421e +02 —1.1096e +02  1.9823¢ + 00
TIT 68l 02 559450101 _3.5668 402 1.0931e+03 68048+ 00
| 1366le— 14 1.7378¢+01  —1.1096e+02 2.9421e+02 —1.9823¢ + 00
3.9351e+ 01 9.5556¢ +00 —59900¢ — 01 —1.8561¢ — 01
9.5556¢+00 19175 +01 —1.856lc—01 —5.6336¢ — 02
P27 50000001 1856101 3.9351e 401 9.5556¢ + 00
—1856le— 01 —5.63360—02  9.5556¢+00  1.9175¢ + 01

We find that the solution of the GCARE (12) converges to the exact solution with accuracy of
|7 (#?")||<e — 10 after four iterations. In order to verify the accuracy of the numerical
solution, we calculate the remainder per iteration by substituting 2 into the GCARE (12). In
Table I1I, we present results for the error || % (2™)||. It can be seen that the initial guess (14) for

Table II1. Errors per iteration.

i 17 (2]

0 9.1844¢ — 01
1 5.3443¢ — 02
2 4.5728¢ — 04
3 1.7249¢ — 10
4 5.6420¢ — 12
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Table IV. Number of iterations such that ||#(2")||<e — 10.

Lyapunov Newton’s
e iterations method
102 21 5
103 18 4
10~4 16 3
103 15 2
10-6 14 2
1077 12 2
108 10 1

algorithm (13) is quite good and the proposed algorithm has the quadratic convergence
property. Table IV shows the results of iterations for both the Lyapunov iterations and the
proposed algorithm. This table shows that the convergence speed of the Lyapunov iterations is
very slow. Therefore, the simulation results have shown that the proposed algorithm succeeded
in improving the convergence rate dramatically.

6. CONCLUSION

We have proposed a new algorithm to solve the GCARE associated with the mixed H,/H,
control problem for infinite horizon SPS. It is very important to note that the resulting
algorithm is quite different from the existing methods [5-9], since the proposed algorithm is
based on Newton’s method. Consequently, it has been newly proved that the resulting algorithm
has the quadratic convergence via the Newton—Kantorovich theorem. Although the proposed
Newton’s method increases numerical complexity and is not easy to implement from the
computational point of view compared with Lyapunov iterations [8, 9], we have succeeded in
improving the convergence rate dramatically. Furthermore, it has also been shown that the
resulting H,/H,, controller via the iterative solutions achieved the properties of H,, criterion
and H, near-optimality.
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