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SUMMARY

This paper considers the robust stability of singularly
perturbed systems with structured state space uncertainties.
By making use of the Lyapunov stability criterion and
combining it with the Lyapunov equations, a new approach
for deciding a robust stability for uncertain linear singularly
perturbed systems is presented. Based on the assumption
that the reduced nominal system is stable, we also derive
some sufficient conditions for robust stability. Some ana-
Iytical methods and the Bellman—Gronwall inequality are
used to investigate such sufficient conditions. In this paper,
it is worth pointing out that we do not need to investigate
both the slow system and the fast system by means of the
singular perturbation methods because the proposed
method is very direct. Furthermore, we only assume that
the uncertainties are norm-bounded. Therefore, the robust
stability condition derived here is less conservative than
those reported in the control literature. A numerical exam-
ple is given to demonstrate the validity of our new results.
© 2000 Scripta Technica, Electr Eng Jpn, 132(4): 62-72,
2000

Key words: Singularly perturbed systems; struc-
tured state space uncertainties; Bellman—Gronwall lemma;
robust stability.

1. Introduction

It is well known that the singular perturbation meth-
ods [1] on the basis of the two-time-scale approach are very
powerful analysis and design tools for singularly perturbed
systems. A feature of this theory is to decompose the full
design problem for the full-order dynamics into two design
problems for the slow and fast dynamics. A basic design
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procedure is as follows. First, we set the singular perturba-
tion parameter ¢ = 0. Then, by using both the standard
nonsingularity assumption on A,, and the new time variable
T = /€, we can get two subsystems, that is, a slow and a fast
subsystem. Second, analysis and design problems are
solved in two stages, first for the fast mode and then for the
slow mode independently. Finally, the two subsystem de-
signs are combined to give a design for the full system. It
is quite natural that the robust stability problem for a
singularly perturbed uncertain system is also discussed by
making use of the above method [1, 3-7].

Two main stability problems for a singularly per-
turbed system have been studied. The first one is the asymp-
totic stability of singularly perturbed linear time-variant
systems [1, 3—5]. In this case, it is assumed that the coeffi-
cient matrices Ay(?) (i, j= 1, 2) are bounded with the non-
linear function, and that the upper bounds of A(f) are
known. In Kokotovi¢ and colleagues [1] and Javid [3], the
largest positive € such that the singularly perturbed system
is asymptotically stable has been derived. O’Reilly [4]
proposed a composite controller that guarantees an asymp-
totic stability. The second one is the robust stability and the
stabilization problems for the singularly perturbed uncer-
tain systems [6, 7]. In this case, it is assumed that the
coefficient matrices Ay (#) (i, j= 1, 2) can be decomposed
into the time-invariant nominal part and the time-invariant
or time-variant uncertainty part, respectively. It is also
assumed that the upper and lower bound of uncertainty are
known, while the forms of uncertainty are unknown. For
the robust stability problem, in Ref. 6 the upper bound of
the parameter ¢ such that the singularly perturbed system is
stable has been presented by means of the H,, sense. In Ref.
7, the controller such that the singularly perturbed uncertain
system is quadratically stable is proposed by using
Lyapunov’s direct method.
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The following fact [subsequently termed the modi-
fied Klimushev—Krasovskii (MKK) condition] is used in
the proof of theorem in Ref. 15 and in Ref. 16:

Fact 1 (MKK condition) Consider the singularly
perturbed uncertain system

h = [Mi+0n(e)y + [Miz + O12(e)]ye, (1a)
er = [Mar+O2(e)lys + [Maz + Oas(e)]ye, (1b)
vilto) =97, valto) = 5. (1c)

Let My, be nonsingular. If the matrices

My =M, — M;M>}M,, and M, are stable, then there
exists a small perturbation parameter € > 0 such that for all
g € (0, €] the singularly perturbed uncertain system (1) is
asymptotically stable.

However, compared with Ref. 1, there is at present no
exact proof for the asymptotic stability of the singularly
perturbed system (1) such that the time-invariant uncer-
tainty O;(¢) (i, j = 1, 2) is included in the coefficient matri-
ces Mj; (i,j =1, 2). That is, there is no exact proof of the
MKK condition.

Kokotovi¢ and colleagues [1] and Shao and Sawan
[6] investigated the stability problem such that the singu-
larly perturbed autonomous system without the control
input is asymptotically stable. In recent years, in Ref. 20, a
new result on stability/performance of linear time-invariant
singularly perturbed systems with an uncertain parameter
has been derived using guardian map theory. However, in
Ref. 1, the coefficient matrices M i have not been taking the
uncertainty O(€) into consideration. Furthermore, for such
a problem given by both Example 1 in Ref. 6 and Saydy
[20], only the time-invariant uncertainty has been consid-
ered. Thus, it is very interesting to study the robust stability
problem such that the singularly perturbed system with
time-variant bounded uncertainty is asymptotically stable.

In this paper, we study the robust stability of singu-
larly perturbed systems with time-variant norm-bounded
state space uncertainties [8, 12] which is an extension of the
uncertain O;(e) dependent on the parameter €. By using the
transformation given in Ref. 1, we transform the state
matrix of the nominal system (i.e., the system in the absence
of uncertainty) into the block diagonal matrix. Then, since
it looks like a class of large-scale interconnected dynamical
systems, we derive a new robust stability condition such
that the uncertain linear singularly perturbed system is
asymptotically stable by making use of the Lyapunov sta-
bility criterion proposed by Zhang and colleagues [13].
Some analytical methods and the Bellman—Gronwall in-
equality are used to investigate such sufficient conditions.
It is shown that if such conditions are met, then the singu-
larly perturbed uncertain system is asymptotically stable for
very small €. Furthermore, by applying our new theorem, it
is also shown that system (1) with uncertainty O(g) is
asymptotically stable for small €. That is, we find that the
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corollary introduced in the proof of theorem both in Ref.
15 and in Ref. 16 is satisfied.

The notations used in this paper are fairly standard.
A superscript T denotes matrix transpose. I; denotes the
J xj identity matrix. For any matrix X let |IXllg denotes its
maximum singular value, that is, IIXllg= [Ama(X7X)]/2
lIG(s)ll,, denotes its H,, norm for a transfer matrix function
G(s), that is, IG(s)ll,, = sup,[Ama(G*(S)GEN]'? (5= joo,
o € R). |zl is the Euclidean norm of a vector x, that is,
Ixllz = [xTx]1/2. A(X) is the i-th eigenvalue for any matrix X.
Re)(X) is the real part of the i-th eigenvalue for any matrix
X. Z" is modulus matrix of the matrix Z = [z;1, that is,
replacing the entries of Z by their absolute values—Z" =
[lz;l]]—and for some matrixes Z = [z;] and Y = [y;], let Z
[<]Y denote z; <y;;, for all entries 7 and j.

2. Problem Formulation

Let us consider linear time-invariant singularly per-
turbed systems

[A11 + AAy]e + [A1z + Adgs)z,
[A21 + AAg]21(t) + [Ag2 + AAgs]es

&= (2a)

(2b)

6]:'2 =

where ¢ is a small positive parameter, x” = (x!, x3) is the
n-dimensional state vector, with x; of dimension n; and x,
of dimension n, :=n — n;. The initial condition for (1) is
given by x,(0) = xJ, x,(0) = 13, respectively. AA i =AA (D) is
a Lebesgue measurable matrix of uncertain parameters. All
matrices above are of appropriate dimensions.

We now consider the stability of such a singularly
perturbed system under the following basic assumption [8,
12].

Assumption 1 For system (2), the bounds are avail-
able on the absolute values of the maximum variations in
the element of AA(t). That is,

Adft)| <al, i=1,2=1,2 3)

where Aa};",ﬁt) denote the elements of AA(r) with entry
(k, 1) and @}, denote the upper bound of |Aa}i(t)|. Thus, the
uncertainty of AA(t) has the upper bound given by (3).
Namely, we can change the form of (3) as follows:

AA;;(OT AL, i=1,25=1,2 4

3. Robust Stabilization for Singularly Perturbed
Systems

Without loss of generality, we shall make the follow-
ing assumptions for system (2) [1, 20].

Assumption 2 The matrix Ay, is invertible. The ma-
trices Ag=A 1 — ApA33Ay, and Ay, are both stable.

The problem considered in this paper is to find a
sufficient condition under which the uncertain system (1)
is quadratically stable. The following is the main result of
this paper.



Theorem 1 Let Q; and Q, be any positive definite
symmetric matrices. Assume that the parameter € is very
small, and define as follows:

o < mln{]Re/\,(As)Lz: 1)2)} (Sa)
as < min{|ReX;(4f)[,i=1,2, -} (5b)

If it satisfies the following conditions:

o] > ﬂ]l.[(lz (6a)
oy > ,322[&’3 (6b)
(o — ,3111(12)(012 - ,3221(3) > ﬂlzﬂmKlngz (6¢)

then the uncertain system (1) is quadratically stable, where

An Ajz T= A, 0
e 1Ay €7 1Ap Tl 0 etay

I, eH

T= [ ~L I, —eLH ]

Ay = Ay — ApaL = Ag + Ofe)

Ay = Aga + LAz = Agp + O(e)

HAAy + AA L + HY{AAy + Ady Lt}
+e(HL)T{AAy; + AAp L }|s = A

HAAy; + HYAAgs + e{AAL HY
+AAR(LH)Y Y + e{(HL)TAAr
+HYAAn HY + HYAAp(LH)T}
+62(HL)+{AA11H+
+AA(LH) s = fi2

AAz + Adgs Lt 4+ eLT{AA;,
+AA LY |s = fa

|AAsz2
+e{L* Ay, + AAy HY + Adpp(LH)*}
+e? LY {AA HY + Ao (LH)Y Y5 = P

/\max(Pl) ’\maX(PZ)

Ky = | ———=, Ky = | ————=£

PE AP T R B)
(As + all)TP1 +P(A;+ i)+ Q1 =0
(Af + azI)TPZ + PQ(AI —|—a21) + Q=0

T—l

and

ApL — Ay —eL(Ay — A1pL) =0 (72)
H(Agy +eLA1p) — A1g —e(A11 — AekL)H=0  (7b)
(As + a1 L) TP+ Pi(Ay + a1 ) + Q1 = 0 (7o)
(Af + asln,) " Po+ Pa(As + anln,) + Q2 =0 (7d)

Then the matrices L = L(g) and H = H(g) satisfy (7a)
and (7b), respectively. Furthermore, the symmetric posi-
tive-definite matrices P; and P, are the solutions of the
Lyapunov equations (7c) and (7d), respectively.

Remark 1 It is well known that the unique condi-
tions of (7a) and (7b) exist under Assumption 2 [1].

Remark 2 Comparing this paper with Refs. 6 and 7,
we do not use the singular perturbation methods. The
reason is as follows. For such an uncertain system (2), by
making use of the singular perturbation methods, we con-
sider the following fast subsystem:

£@5(t) = [Aza + AAgs(1)]22(t) (8)

Then, it is easy to check the quadratic stability condition
using several approaches [e.g., 8—11, 17, 18]. On the other
hand, we consider the following slow subsystem:

() = [(Au+ AA()) — (A2 + AAp(t))
(Az2 + AAse(t)) (A2 4+ AA2 (1))]31(2) 9

Since it is hard to separate the uncertainty AA,y(t) from
[Asyy + AAy(1)]L, we cannot easily obtain the robust stability
conditions. In Ref. 1, for example, the robust stability condi-
tions of singularly perturbed systems are investigated by using
the assumption of uncertain matrix such that
I(A5y + AAsy(£)) U1 < 8,5y. However; there is no taking the
upper bound of matrix Ay, + AA,x(t) into account directly. In
Ref. 6, how to find the largest positive €, such that the
singularly perturbed system is robustly stable has been pre-
sented by using the condition of the H.,-norm such that
IAAL I, < All(sI — Ay)7UIIS, h < 1. However, in the above
paper, it is found that the upper bound of matrix
Ay + AAy (1) is not completely considered because of h.
Remark 3 For such construction parameters
ay > 0, a, > 0 given by (5), we need to choose these parame-
ters as large as possible, since if .y, o, are too small, then the
conditions (6) are not satisfied.
In the proofs we will use the following lemma.
Lemma 1 The Bellman—Gronwall inequality [2, 12]
Let p(t) and q(t) be positive real continuous functions
of t, and let N be a positive real constant. If a continuous
Sfunction p(t) has the property that

PO <a+N [ p(r)dr (10)

then we have the following two results:
13
p(t) < q(0) exp(Nt) + / q(r)exp{N(t — 7)}dr (11
0

p(t) < qt) + N / 4(o) exp{N(t — o)}do (12)

Lemma 2 [12] Given any vector w and any real
matrix X, then w™Xw < [Iwli2IXlls.
Lemma 3 [8] Given any real matrix X, lIXllg < IIX"ll.



Proof: Since A,, is nonsingular from Assumption 1,
there exists a transformation’ x(f) = Ty(7), that is,

o(1) = zi(t) | _ ¥ (t)
(”‘[zzw]”[ym}

_ Inl eH Ut (t) _
- [ ~L In,—eLH ] [ wi | =T
For y, we get
i = Asyr + AAdyy + Adyays (13a)
€92 = Apya + AAgiys + Adgys (13b)
where
1| Adn AArp Afil} A/Lg
E_IAAgl E_IAAQQ E_IAAZL 5_1AA22
(13¢)
Then
le@®)e < IT)s - ly@®)|e (14)

Since [|Tllg < oo, it follows that lly()ll; — 0, (f — ) im-
plies llx(H)ll; — 0, (f — o). Thus, it is sufficient to consider
lly(@)ll. Set

V(y,t) = Vi(yi,t) +eVa(ya,t) = u7 () Pun(t)

+€y; (1) Paya(t) (15)

By Rayleigh’s principle [12], we have

Amin (P wilE < Vi(wi,t) < Amax(P)lwil%, (G =1, 2)
(16)

By making use of Lemma 2, we obtain the time derivative
of V(y, f) along the trajectory of the system (13) as follows:

dV(y,t)
— < 2Za.v,(y,,

+2 Z Z lsf PAElAA;ls - ly; e

i=1j=1

7

where the uncertain matrices A4, (i=1, 2, j =1, 2) satisfy
(18):
AAy = AAy — AApL —~ HAAy + HA AL
+eHL(AA1 + AAsoL) (18a)

"Here the considered ¢ satisfies the inequality, that is, 0 <& < ¢" for the
* . .

largest € such that there exists a transformation 7. Thus, we study the

robust stability problem under the previous inequality.
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AAy = AArp — HAAyy + e(AAy — AAp LY H
—EH(LAAlz + AAyn H - AAQQLH)

—e?HL(AAy — AARLYH (18b)
Ady = AAy
—~AAgpL + EL(AAU — AA12L) (18¢)

Adyy = Az + (LAA12 + Ad  H — AApLH)
+62(LAA11 - LAAlzL)H (18d)

Furthermore, from Lemma 3 and Assumption 1, taking
norms in (18), we have

laAn]s

IN

IAAL + AA LY + HY{AAy + Adyp Lt} +
e(HL)Y{AA1 + A4 L5
P (19a)
|AAL + HYAdg + e{AALHY + AAdyo(LH)T) +
{(HL)Y*AAy, +HYAAy HY + HYAAs(LH)YY +
EXHLYH{AALHY + AAyo(LH) Y |s
(19b)

1aAszls

IN

= B2

IA

||A/i2] "5 IIAAH + AAZQL+ + EL+{AA11 + AA]?L"‘}"S

= fa (19¢)

1AAss|s IAA2 + e{LYAA1s + Adai HY + Adgy(LH)} +

A

ELT{AALHY + Ad(LH)YY|s
s (19d)

Thus, from (17) and (19) we have the inequality on
dV(y, t)/dt as follows:

dV(y, t)
—an < 22&,V(y,,t)+

max(P)

2 Z;J:Zl V mm(P

Itis obvious from the definition of V(y, f) that, if an inequal-
ity of the form

V y1 ) 7] "y] IIE

(20)

dVl(ylat) ’\max(Pl)
— < 2aVi(y, )+ 2—V—=="-
dt V Amin(Pl)
2
VVily,0) ) Bl e (21a)
ji=1
dVZ(yZ’t) ’\maX(PZ)
e————= < =2a3Ve(y2,1) + 2———=== -
di - 2 2(y2 ) /\min(P2)
2
VVa(yz, 1) Y Billyslle (21b)
j=1



holds, inequality (20) is also satisfied. Therefore, it is
sufficient to consider inequalities (21) in the rest of this
proof. First, from (21a), we obtain the inequality on V()
as follows:

Vi) < Mmax(PORI% exp(~2aat) +

2/ exp{— 2a1(t—r)}\/r&((l%

VV(r) Z Bujlly; (7)edr (22)
j=1
Here, we define an auxiliary function S;() as follows:
510 = [Ma(POIRIE exp(-2000) +
‘ Amax(P1)
2/ exp{—2a:(t — 1)} ——L
0 vV Amin(l)l)
2 }
VIS sl ()l )
j=1
Differentiating (23) yields
dSi(t
—jt(—) = —a15'1 (t) +
2
max(Pl
Bujllyile (24)
V mm(Pl Z T
Integrating for dS,(¢)/dt, it follows from (24) that
Si(t) VAmax (P14 |5 exp(—ant) +
t
/ exp{—ay(t — 1)}
0
max(P1)
it SalnOlstr 09
mm(Pl
Moreover, we obtain
Vi(t) S1(2)
l@le < \/ <
Amin(-Pl) \//\min(Pl)
Amax(Pl) 0
< —_— —
<\ Wil exp(-aa) +
! /\max(Pl)
exp{—-a1(t — 1)} ——= -
A p{ al( T)} /\min(Pl)
2
> Bl (Dlsdr (26)

j=1

After multiplying both sides by exp(—a, ), using the Bell-
man—Gronwall lemma (11) (see Refs. 2 and 12), from (26)
we easily obtain the following inequality on lly;(¢)llz:
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lm®le < Kille exp{(b1 KT - an)t} +

t
Bkt [ In(r)le - exp{(Buk? )t -1)ldr @)
0
By means of a step similar to (27), we obtain from (21b)
Ka|yhlle exp{e™ (B2 K3 — o)t} +

Ba K3 [
252 [ ol
0

1(,322[{22 - Otz)(t - T)}d’r

le2®Ole <

-exp{e” (28)

Substituting (28) into (27) and integrating for the right-
hand side of the inequality, we obtain
ln®le < Kilgile exp(—o1t) +

B2 K Kq| |
01— 02

Pr2fa K2EKS !
+—ﬁ/ flv
1 0

lexp(—o2t) — exp(—o1t)]

(s)le - exp{—0a(t — 5)}ds (29

where

o1 = oy ~ Pu Ky, o3 = e Haz — o K3)

Multiplying both sides of (29) by exp(c,f) and applying the
Bellman—Gronwall lemma (12) and integration, yields
lvs(®le <

KK -
[ototte + L2ttt 227

2K labte | exvl-out)

o— 0y g—0
B2 K2 K |1W3lE oo )
+[ =01 T &~0131||y1l|15 exp(—at)  (30)
where
_ K2I(2
=09 — &fm—ll
g0

Substituting (27) into (28) and using a step similar to (30),
we obtain

le2le <

. KiK2|y® o —
[1s2||y8||5+ Bar &1_2"1'/1"12 _0

a9 o —

(o .
Kol ME] exp(—oat)
(]

B KiK3 e | 6— o2 0 .
|- LB KE e | 7ty o)
3D
where
A Pr2Pa1 KEK?2
=0y — 2102
E09

Thus, for (13) to be uniformly asymptotically stable, we
need inequalities 6; >0, 6, >0, 6 >0, and 6 > 0 to be sat-



isfied. Finally, solving these inequalities, we can get the
conditions (6). Therefore, (13) is uniformly asymptotically
stable which implies that (2) is uniformly asymptotically
stable. |

The next corollary follows immediately from Theo-
rem 1.

Corollary 1 Suppose that the system uncertainties
satisfy the norm conditions IAAllg = 10;(e)llg < mye (i, j =
1,2,k=1,...,4). If Assumption 1 holds, then there exists
a small perturbation parameter & >0 such that for all
g € (0, g] system (1) is asymptotically stable.

Proof: For the bounded uncertain Oy(€) (i,j =1, 2)
dependent on the parameter ¢ in the singularly perturbed
systems (1), there exists a positive constant m; (i,j=1,2)
such that 110,(¢)l § < m;e. Furthermore, by substituting
10;1(e)llg < mye into (19), there exists a positive constant
kifi, j =1, 2) such that B; = k;e. Thus, substituting k;€ into
f3;; of (6), we obtain

a1 > kpek? (32a)

ag > kzzE]{zz (32b)
(a1 — k’1161<12)(0'2 - k22€K22) >

kioko e KEK2 (32¢)

It is obvious that there exists a small parameter & such
that inequality (32) is satisfied. That is, the uncertain system
(1) is asymptotically stable for all & € (0, ] from Theorem
L. O

Remark 4 From Corollary 1, it is guaranteed that for
bounded uncertainty such that |O(e)lls < mye depend on
the parameter € the uncertain system is asymptotically
stable. Furthermore, by applying Theorem 1, it is also
guaranteed that if the uncertainty AA(t) satisfies condition
(6), then system (1) is asymptotically stable for small €.
Thus, although AA(t) is independent of ¢, if the upper
bound of AA(1) is too small, for such an uncertainty the
system (1) is robust.

Now, we compare the results in this paper with those
in Refs. 6 and 7. In Ref. 6, it is assumed that the matrices
A}, and A,; of system (2) are not zero matrices. However,
since these constrained conditions are unrealistic, for the
obtained results, we cannot handle the wider class of sin-
gularly perturbed systems. The difference from the results
of Ref. 6 is that there is no zero matrices assumption on A,
and A,;. Thus, our new results are less conservative than
those in the literature. Furthermore, since we only assume
that AA;(?) are structured state space uncertainties being
time-variant and norm-bounded, our new results come from
the relaxed assumption in comparison with Shao and Sawan
[6]. However, we note that how to find the largest positive
¢ such that the singularly perturbed system is robustly stable
has been presented in Ref. 6. That is, we need the assump-
tion that € is very small. Also, we cannot obtain the upper
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bound of the parameter such that the singularly perturbed
uncertain system is robustly stable. On the other hand, in
Ref. 6, although the constraint conditions for coefficient
matrices are needed, such an upper bound of the parameter
is given. In Ref. 7, the stability conditions such that the
singularly perturbed uncertain system is quadratically sta-
ble are derived by using the singular perturbation methods.
That is, it is shown that for singularly perturbed uncertain
systems, if the slow and fast systems are stable, then the
full-order system (2) is quadratically stable. However, we
note that how to check the robust stability has not been
presented for both slow and fast subsystems in Ref. 7. Thus,
for example, in order to check for the robustness of both
slow and fast subsystems, let us apply to the system the two
main methods which are based on H,, control theory and on
the Linear Fractional Transformation (LFT) framework by
using the Structured Singular Value (SSV). Then it is easy
to check the robustness of the fast subsystem by applying
both methods. On the other hand, it is difficult to check the
robustness of the slow subsystem by using similar methods.
That is, when we use H,, control theory, we cannot hardly
separate AA,,(f) from Asls = [Ay + AAy(n)]™!. Further-
more, when we use the LFT on the basis of the SSV, we
must calculate the SSV at any risk. Consequently, if we take
the upper and lower bound of SSV into account in Ref. 18,
the robust stability condition becomes more conservative.
Thus, it is hard to use the LFT on the basis of the SSV. The
notable feature of the result obtained in this paper is that it
is possible to check directly the asymptotic stability even
though we do not use the singular perturbation methods.
Furthermore, it is clear that the quadratic stability condition
is considered positively because we take the upper bound
of matrix Ay, = Ayy + AA,y(f) into account. Therefore, it is
easy to check the robust stability directly in comparison
with both H,, control theory and the LFT framework. An-
other important practical feature is that the bounds are
available on the values of the maximum absolute variations
in element of the uncertainty matrix by using the modulus
matrix and that the differentiability and the continuity are
not needed in comparison with Ref. 7. Therefore, it is worth
pointing out that we extend the results given by Shao and
Sawan [6] and Suzuki and colleagues [7] under the weak
assumptions. It is also shown that we have proposed a new
method for checking the quadratic stability without the
singular perturbation methods. Note that the upper bound
of norm for uncertainty becomes large because of transfor-
mation T given by Theorem 1. Moreover, since 3; given by
(19) is defined by the modulus matrix, the upper bound of
norm for uncertainty also becomes large. Thus, if the un-
certainty exists for all block matrices Ay(i, j= 1, 2), note
that our new sufficient condition given by Theorem 1 yields
conservative results because of those methods. Finally, if
we can observe that the slow and fast subsystems have
quadratic stability by means of any methods (see Ref. 9 or



18), we find that the method given in Ref. 7 is very useful
practically.

4. Illustrative Example

In order to demonstrate the efficiency of the proposed
algorithm, we have run some numerical examples.

4.1 Example 1

On the basis of Ref. 6, consider the singularly per-
turbed uncertain systems described by the following differ-
ential equations:

.’i‘l —-0.5 0 -1 0 1
.’EQ - 0 -0.5 0 -1 T2 (33)
€4 1 0 -2 af(t) 2
622 0 1 b(t) -2 29

The uncertainties a(f) are b(f) are characterized by
la(l <@ and |b(?)I<b, (a>0,b>0). The problem ad-
dressed in this example is to find the sufficient condition
such that system (33) is asymptotically stable. The singu-
larly perturbed parameter is € = 0.1. First we note that if the
upper bound of uncertainties is known, then it is easy to
check the robust stability for the fast subsystem. However,
for the slow subsystem obtained by setting ¢ = 0, that is,

-05 0

([ 2]
-1
-2 a(t) i]
o ] )1E]
because we cannot separate the AA,(f) from
[A5, + AAyy(£)] 7!, that is, the second term on the right-hand

side of (34), difficulties arise when we check the robust
stability. That is, since
] -1

the uncertainties are not one block type structural uncer-
tainty. Thus, it is difficult to find the matrices D and E such
that [Ay, + AA,y(1)]™! = DA(f)E. Consequently, we cannot
easily obtain the conditions of robust stability on the basis
of Theorem 1 [7] because we cannot observe the robust
stability of the slow subsystem. On the other hand, robust
stability problems of uncertain dynamical systems have
been formulated in the LFT framework and the SSV. How-
ever, in this example, since the purpose is to find the largest
upper bounds of uncertainties, these methods may not apply
for this example with unknown upper bounds of uncertain-
ties. Actually, in case the upper bounds of both @ and b are

(34)

~2
b(t)

a(t)

[A2z + AAgp(t)] ™! = [ g
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unknown, it is hard to use the inequalities on the basis of
the sufficient conditions resulting from the LFT and SSV.

Let us use the result of Theorem 1 to find the upper
bounds of uncertainties. From transformation (13c), we get
the following matrix:

1 0 0.0542 0
7= 0 1 0 0.0542
“los271 0 1028 0 (35)
0 0.5271 0 1.0286
Thus, we have
o = [ -roem o
* T 0 —1.0271 (362)
—1.9472 0
Ay = 36b
! [ 0 —1.9472 } (36b)
From (5), we choose
ml_in{IRe/\i(As)l,i =1,2}>a; =10 (37a)
min{|Re);(4f),i=1,2} > a3 =19 (37b)

Further, from (19), we obtain

IAAL]s < |HYAARLY|s, |Adm|s <
IH* AAso{I +e(LH)*}|s
JAAs s < [AAzLY|s, [Adgls <
IAAys {1 +e(LH)*}s

Therefore, taking norms of both sides of the above inequali-
ties yields

IHYAAn LT |s < [H |s|L[s|AAz]s =

0.28564/max{a?, b2} = 8y,

Y AAs{T +e(LH)* Hs < [HY |s|AAz|s| + e(LH)|s =

0.5575¢/max{a?, b2} = B2
A4z Lt s < |AAgs|s|LT s = 0.52711/max{a?, 52} = Ba

1AAn{T +e(LH) s < [AAzn|s|I +e(LH) s =
1.02861/max{a?, b2} = By

Comparing A, Ay with (7¢), (7d), respectively, we choose
K, =K, =1.0. By some trivial manipulations and solving
inequality (6), we can get the sufficient conclusions

max{a®, b’} < 1.4620 (38)
Conversely, if inequality (38) is satisfied, then the robust
stability condition (6) is also satisfied. Therefore, we con-



clude that the singularly perturbed uncertain system is
asymptotically stable.

The results of simulation are depicted in Fig. 1 where
a(t), b(t) represent the uncertainties characterized by
a(t) = 1.2 sin¥(nt), b(t) = 2.4 sin(mt)cos(nt).

For simulation, we give an initial condition as fol-
lows:

B ] = [ 00 05 1.0 15 (39)
Since a=1.2, b= 1.2, it is obvious that the constraint in-
equality (38) is satisfied. It is shown from Fig. 1 that the
uncertain singularly perturbed system (33) is indeed as-
ymptotically stable.

4.2 Example 2

We consider the R—L—C network in Fig. 2. In this
network, Ly and R are the inductance and the resistance,
respectively. These capacitances are denoted by C;, C,.
Suppose that L is a very small positive parameter, that is,
let Ly = €; the dynamics of this system is described by the
singularly perturbed from

il ~1/R01 l/RC1 1/01 T 0

Ty = l/RCz -—1/RCZ 0 xo + 0 u

6i‘3 -1 0 0 3 1
(40)

where x;(i =1, 2) denote the voltage across capacitances
Ci(i =1, 2), respectively. x3 denotes the electric current in
the inductance. Moreover, u denotes the applied voltage
that is, control input. The following electrical elements are
defined: Ly = 1 mH (¢ =0.001), C; =0.1 F, C, = 1000 pF,

x1—

Z1aa.
22 .

4
®
L

stateovectors
o

2 3
time (sec)

Fig. 1. Response of the state variables.
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Fig. 2. Electric network of Example 2.

and R = 1 kQ. It is well known that the resistance R is
increased due to the environmental temperature. Thus, we
suppose that the actual resistance R is within 10% of a
nominal resistance taking the saturation into account. The
objective is to design a robust state feedback controller such
that system (40) is asymptotically stable when R is changed
under the structured state space uncertainties.

Since R is within 10% of a nominal resistance, we
assume that the uncertainties are bounded and satisfy

1 1
a(t) = m = m = (0.0101 + 0.001 x A(t)
b)) = — ! = 1.01+0.1 x A(t)

RCy ~ T+0.1x 8(F)
0 < 8(t) < 1.0, |A()| < 1.0

Therefore, we can change system (40) into the following
form:

l"1 —a(t) a(t) 10.0 1 0
£ = b(t) -=b(t) O zy |+ 0 ju
6\@3 -1 0 0 x3

(41)
The nominal closed loop eigenvalues are given by —1.01,
—0.005 + 100.00i. Hence, with zero control the nominal
system is oscillative and close to instability. Furthermore,
since system (41) includes the uncertainty, robust stability
is not guaranteed. Thus, we need to construct the stabilizing
controller. However, it is obvious that the existing method
of finding the composite stabilizing controller in Ref. 7 is
not valid for this example since system (41) is a nonstandard
singularly perturbed system.

In this example, by making use of a standard Linear
Quadratic Regulator (LQR) approach [17] which has ro-
bustness properties, that is, at least 60° phase margin and 6
dB gain margin, we present a linear state feedback control-
ler for uncertain linear singularly perturbed systems. In
order to construct the controller, the method in Ref. 14 and
MATLAB are used. On the basis of the nominal system, the
full state feedback controller is given by the following gain
matrix F (see Ref. 17):



u=—Fr =
P = [ 0.4419 0.2902 1.4173 ] (42)

where the cost function for the LQR problem is written as
min {/ (z? + 22 + 22 + 1t2)dt}
0

The nominal closed-loop eigenvalues of the resulting
closed-loop system (43) described by (41) and (42) are
given by —1.2, -10.0, —1407.1.

&1 —a(t) a(t) 10.0 r

z2 | = b(t) —b(t) 0 zo

€x3 -1.4419 -0.2902 —1.4173 3
(43)

Finally, by making use of Theorem 1, we verify that closed-
loop system (43) is asymptotically stable. Now, we can get
the matrices L and H by solving algebraic equations (7a)
and (7b), respectively.

—7.1592
L= 1026 02064 |, H = 7159
0.0051
By using the transformation 7, we obtain
—10.2563 —2.0538
s = , Ap = —1.4071
1.01 —1.01
Since the eigenvalues of matrix A; are

M(A) =—10.0263, A,(A,) =—-1.2401, we selecto; =0.5, o,
= 1.4. Then, taking account of matrix Af, we obtain K, =
1.0. On the other hand, we select Q; = diag{5.0, 0.1} for
(7¢). From (7c), we have

0.2532

P =
—0.0294

—0.0294
0.2163

By computing eigenvalues of matrix Py, we find that
A(P1) =0.2001, Ay(P;) =0.2694. Thus, we obtain K; =
1.1603. Furthermore, by computing B(i, j = 1, 2), we ob-
tain By, = 0.1414, B, = 7.1465 x 107, B,; = 3.0637 x 10%,
B, =1.552x 107" Substituting By(i,j=1,2)into (6), itis
clear that the robust stability conditions given in Theorem
| are satisfied. Then the uncertain system (43) with control-
ler (42) is asymptotically stable. For simulation, we give an
initial condition as follows:

T wy oz ] - [ 50 2.0 0.0 (44)

In fact, we have employed for simulation that the
resistance R is given by R =1000.0+ 100.0 x [1.0 — exp
-nl.
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Fig. 3. Response of the state variables.

The results of the simulation of this example are
depicted in Fig. 3, where it is seen that closed-loop system
(43) is asymptotically stable.

5. Conclusions

The problem of robust stability of singularly per-
turbed systems with structured state space uncertainties has
been studied. If the robust stability conditions (6) given in
Theorem 1 are satisfied, it has been shown that the uncertain
linear singularly perturbed system (2) is asymptotically
stable. By applying our new results, we have proven the
important corollary which is introduced in Refs. 15 and 16,
that is, there exists a small perturbation parameter & >0
such that for all € € (0, €], system (1) with uncertainty
O(¢) is asymptotically stable. In addition, it should be
remarked that the main difference between the results in
Refs. 6 and 7 and the present paper is fold: (i) In Ref. 6 the
assumptions that Aj,, A, are not equivalent to zero are
made, but in this paper, these assumptions are not needed.
Furthermore, in Ref. 6 the uncertainty is assumed to be
time- invariant, while the assumption here is the time-vari-
ant structured uncertainty. Thus, comparing Ref. 6 with our
new results, the assumption is less conservative. (ii) In Ref.
7 the standard reduced-order technique [1] is used to derive
the quadratic stability conditions. However, there is no
taking the upper bound of matrix Ay, = Ay, + AA,,(2) into
account, while since we do not use the standard reduced-
order technique, it is clear that the quadratic stability con-
dition positively includes the upper bound of matrix
Agon = Ayy + AAyy(t). Therefore, it is easy to check the ro-
bust stability directly.



Numerical examples are given to demonstrate the
validity of our new results in this paper. In these numerical
examples, our robust stability condition is more useful than
the result in the control literature [7]. We have considered
the problem of robust stability for the standard singularly
perturbed systems such that the matrix A,, is nonsingular.
But in practice, the robust stabilization problem for the
nonstandard singularly perturbed systems with control in-
put such that the matrix A,, is singular is more realistic. This
problem will also be investigated in the near future.
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