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SUMMARY

The guaranteed cost control problem of the decentral-
ized robust control for large-scale systems with the norm-
bounded time-varying parameter uncertainties and a given
quadratic cost function is considered. Sufficient conditions
for the existence of guaranteed cost controllers are given in
terms of linear matrix inequality (LMI). It is shown that
decentralized local state feedback controllers can be ob-
tained by solving the LMI. The problem of guaranteed cost
control for large-scale systems under the gain perturbations
is also considered. © 2004 Wiley Periodicals, Inc. Electr
Eng Jpn, 146(4): 43–57, 2004; Published online in Wiley
InterScience (www.interscience.wiley.com).  DOI
10.1002/eej.10265
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1. Introduction

In recent years, the decentralized robust control of
large-scale systems with parameter uncertainties and dis-
turbance has been widely studied [1–7]. In Refs. 1–3, for
multimachine power systems, a decentralized stabilizing
nonlinear state feedback controller using the algebraic Ric-
cati equation (ARE) approach and Lyapunov function ap-
proach has been proposed. Furthermore, in Ref. 4, the
results developed in Ref. 1 have been extended to the class
of large-scale interconnected nonlinear systems via the
robust decentralized linear control. On the other hand, in
Ref. 7, the decentralized exciter stabilizing control for
multimachine power systems by means of the H∞ control
has been considered.

In general, in the case of the control problem of
large-scale systems with parameter uncertainties, it is de-
sirable to design the control systems that guarantee not only
the robust stability, but also an adequate level of perform-

ance. One approach to this problem is the so-called quad-
ratic guaranteed cost control approach [8–13]. This ap-
proach has the advantage of providing an upper bound on
a given performance index. It is well-known that there exist
two different approaches for solving the quadratic guaran-
teed cost control approach. One is the ARE approach [8–
10] and the other one is the LMI (Linear Matrix Inequality)
[16–18] design method [11–13]. Recently, the quadratic
guaranteed cost control for the class of large-scale intercon-
nected nonlinear systems has been proposed via the state
feedback control [12, 13]. Very recently, in the case where
one applies the proposed controller to the practical system,
it is shown that the robustness of the closed-loop system is
not guaranteed without the margin of the controller gain
perturbations because controller gain perturbations such as
the modeling errors of the actuator/sensor or parameter
perturbations arise [14]. Moreover, the following result is
known. It is necessary that any controller that is part of a
closed-loop system be able to tolerate some uncertainty in
its coefficients [15]. There are at least two reasons for this.
First, controller implementation is subject to the impreci-
sion inherent in analog–digital and digital–analog conver-
sion, finite word length, and finite resolution measuring
instruments, and to roundoff errors in numerical computa-
tions. Thus, it is required that there exists a nonzero toler-
ance margin (although possibly small) around the controller
designed. Second, every existing result for past years re-
quires readjustment because no scalar index can capture all
of the performance requirements of a control system. This
means that any useful design procedure should generate a
controller which also has sufficient room for readjustment
of its coefficients. So far, the quadratic guaranteed cost
control under controller gain additive perturbation for
large-scale systems has never been studied except for our
report [13].

In this paper, the decentralized quadratic guaranteed
cost controller via state feedback is applied to a class of
large-scale systems with norm-bounded parameter uncer-
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tainties. First, in order to understand the basic properties of
the LMI, we will study the decentralized quadratic guaran-
teed cost control problem under the existing result [13].
Second, the decentralized quadratic guaranteed cost control
problem under gain perturbations is solved. The main con-
tribution of this paper is to construct the decentralized
quadratic guaranteed cost controller by solving the parame-
ter-dependent LMI. The crucial difference between the
large-scale systems in Refs. 12 and 13 and our considered
systems is that the controller gain perturbation is newly
added. Moreover, in Ref. 7, the parameter uncertainties of
the large-scale systems have not been studied, while we will
assume that the norm-bounded parameter uncertainties are
included in the large-scale systems. Therefore, we can
construct the robust controller for more practical large-scale
systems. Furthermore, it is possible to construct the robust
controller independently from other interconnected subsys-
tems by means of the proposed design method. Thus, the
proposed controller design method is useful in the sense
that the desired controller can be obtained as the similar
technique in the optimal control problem of the large-scale
systems [19, 20]. It should be noted that the problem of the
quadratic guaranteed cost control for large-scale systems
under gain perturbations is also considered in Ref. 13.
However, although there exists a result, there is no proof of
it. Moreover, the uncertainties of the interconnected sys-
tems are not considered and the conservative assumption
called matching condition is imposed. Taking these draw-
backs into account, the matching condition of the control
gain perturbations could be relaxed.

The notations used in this paper are fairly standard.
ST denotes the transpose of matrix S. block – diag denotes
the block diagonal matrix. Trace S denotes the trace of
matrix S. In ∈ Rn × n denote the identity matrices. E[⋅] de-
notes the expectation.

2. Case of No Existence of the Control Gain
Perturbations

We first establish the sufficient condition for the
existence of the quadratic guaranteed cost control for the
large-scale systems without the uncertainties. Let us con-
sider the following uncertain large-scale interconnected
systems. It should be noted that there exist the uncertainties
for the considered systems compared with the existing
result [7]. Furthermore, the interconnected systems with the
uncertainties are considered compared with Ref. 13:

where xi ∈ Rni and ui ∈ Rmi are the state and control of the
i-th subsystems, respectively. Ai and Bi are constant matri-
ces of appropriate dimensions and Aij are interconnection
constant matrices between the i-th subsystems and other
subsystems. The parameter uncertainties considered here
are assumed to be of the form

where Fi(t) ∈ Rpi×ri are unknown matrix functions with
Lebesgue measurable elements and satisfying

Associated with system (1a) is the cost function

We give the definition of the quadratic guaranteed cost control
for the large-scale systems (1) and the cost function (4).

Definition 1 Consider the large-scale systems (1). A
decentralized control law ui(t) = Kixi(t), i = 1, . . . , N, is
said to be a quadratic guaranteed cost control for the
uncertain large-scale interconnected systems (1) and the
cost function (4) if the closed-loop systems are quadrati-
cally stable and the closed-loop value of the cost function
(4) satisfies the bound J ≤ J  for all admissible uncertainties
and xi(t) ≠ 0.

The following theorem gives the sufficient condition
for  existence of the quadratic guaranteed cost control.

Theorem 1 Consider the large-scale interconnected
systems (1) with the uncertainties (2) and (3). If there exist
the symmetric positive definite matrices Pi ∈ Rni×ni, such
that for all uncertain matrices Fi(t), the matrix inequality
(5) is satisfied, the control laws ui(t) = Kixi(t), i = 1, . . . , N,
are said to be the guaranteed cost controller:

where there exists no matrix Mi in PiA
~

ii and

(1a)

(1b)

(2)

(3)

(4)

(5)< 0
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Proof: Combining the guaranteed cost controller
ui(t) = Kixi(t) with (1) gives a closed-loop system of the
form

Suppose now that there exist the symmetric positive defi-
nite matrices Pi > 0, i = 1, . . . , N, such that the matrix in-
equality (5) holds for all admissible uncertainties. In order
to prove the asymptotic stability of the closed-loop system
(6), let us define the Lyapunov function candidate

where x(t) := [x1
T(t) ⋅ ⋅ ⋅ xN

T(t)]T ∈ RN~.
Note that V(x(t)) > 0 whenever x(t) ≠ 0. Then the time

derivative of V(x(t)) along any trajectory of the closed-loop
system (6) is given by

where

Taking into account the fact that the inequalities (5) hold,
it follows immediately that

Hence, V(x(t)) is a Lyapunov function for the closed-loop
system (6). Therefore, the closed-loop system (6) is asymp-
totically stable and ui(t) = Kixi(t) is the guaranteed cost
controller. Furthermore, by integrating both sides of the
inequality (8) from 0 to T and using the initial conditions,
we have

Since the closed-loop system (6) is asymptotically stable,
that is, x(∞) → 0 or equivalently to xi(∞) = 0, i = 1, . . .  N,
we obtain V(x(T)) → 0. Thus, we get

Therefore, if there exist the positive definite matrices Pi

such that the matrix inequalities (5) hold, ui(t) = Kixi(t) are
said to be the quadratic guaranteed cost controllers with
cost matrices Pi. The proof of Theorem 1 is completed.  E

We now give the LMI design approach for the large-
scale systems for constructing the quadratic guaranteed cost
controller.

Theorem 2 Suppose there exist the constant parame-
ters µi > 0 such that for all i = 1, . . . , N, the LMI (10) have
the symmetric positive definite matrices Xi > 0 ∈ Rni×ni and
a matrix Yi ∈ Rmi×ni:

(6)

(7)

(10)

(8)

(9)
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where Φi := AiXi + BiYi + (AiXi + BiYi)T + µiNDiDi
T.

If such conditions are met, the control laws (11) are
said to be the decentralized quadratic guaranteed cost for
the closed-loop uncertain large-scale interconnected sys-
tems:

and the bound of the guaranteed cost is

In order to prove Theorem 2, we introduce the fol-
lowing useful lemma [8, 11].

Lemma 1 Consider the appropriate matrix F which
satisfies FFT ≤ In and for any matrices G  and H there exists
the positive parameter ε > 0 such that the following inequal-
ity holds:

Proof: Let us introduce the matrix

Pre- and post-multiplying both sides of the LMI (10) by
Ti, Ti

T , respectively, we have LMI

where ϒi := A
__

i
TPi + PiA

__
i + µiNPiDiDi

TPi.  Applying the
Schur complement [17, 18] to the LMI (13) gives

where Ξi := A
__

i
TPi + PiA

__
i + R

__
i + (N − 1)Ini

. Using Lemma 1,
for all admissible uncertainties (2) and (3), the following
matrix inequality holds:

Thus, Mi < 0 holds because of Li < 0. That is, feedback
control (11) is the quadratic guaranteed cost controller.  E

(11)

(12)

(13)

(14)

[See Eq. below] (13)

[See Eq. below] (14)
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Remark 1 If the elements of interconnected matrices
 Aij and Eij are sufficiently small, it is easy to verify that the
LMI (10) hold. However, in order to satisfy the LMI (10),
the interconnections of the subsystems must be weak. There-
fore, the decentralized controllers can be constructed for
each subsystem because in the case where the interconnec-
tions of the subsystems are weak the properties of the
subsystems are kept in the same way as the ordinary large-
scale systems. As a result, it will be easy to design the
decentralized controller. Finally, the obtained LMI (10) is
suitable.

Since the LMI (10) consists of a convex solution set
of (µi, Xi, Yi), various efficient convex optimization algo-
rithms such as LMI Control Toolbox for MATLAB [16] can
be applied. Consequently, let us consider the optimization
problem that allows us to determine the optimal bound.

[Problem A] For all i, i = 1, . . . , N, consider the LMI
(10) and the following constrained conditions:

Moreover, also consider the convex set Xi ∈ (µi, Xi, Yi) such
that µi > 0 holds.

Find Ki = YiXi
−1, i = 1, . . . , N, such that the cost

minΣi=1
N

 Xi
 Σi=1

N  αi becomes as small as possible. That is, the
problem addressed in this paper is

s.t. LMI (10), (15), µi > 0. 
It is possible to replace the full-problem A with each

optimization problem for all i by using the following result
because the full-problem A can be decomposed.

Theorem 3 If the above optimization problem A has
the solution µi, Xi, Yi, and αi, then the control laws of the
form (11) are the decentralized linear state feedback con-
trol laws which ensure the minimization of the guaranteed
cost (12) for the uncertain large-scale interconnected sys-
tems. Moreover, the optimization problem (16) can be
changed to the following problem:

Proof: Applying the Schur complement [17, 18] to
the LMI (15), we have

Hence, the bound of the cost J of (12) satisfies J < Σi=1
N  αi.

Since the minimization of Σi=1
N  αi implies the solution of the

optimization problem (16), the minimum value of the cost
bound of (12) is given. Furthermore, the optimization prob-

lem for each subsystem can be done independently without
other information of the interconnected systems. Therefore,
it is commutable for the sequence of the optimization
problem, that is,

This is the desired result.                         E

Remark 2 It can be noted that the bound obtained in
Theorem 3 depends on the initial condition xi(0). To remove
this dependence on xi(0), we assume that xi(0) is a zero
mean random variable satisfying E[xi(0)xi(0)T] = Ini

 [8, 12].
In this case, it is interesting to point out that the guaranteed
cost becomes

where

Moreover, for each subsystem the above LMIs can be solved
for all i because µi, Xi, Yi, and Vi are independent of the
other subsystems.

Thus, it is very reliable because one does not need to solve
the large-scale optimization problem @0.

3. Case of the Existence of Control Gain
Perturbations

In this section, the existing result which has been
studied [13] will be extended.That is, the uncertain inter-
connections are considered and the matching conditions for
the gain perturbations will be relaxed. Consider the large-
scale systems (18) with the gain perturbations:

(15)

(16)

(17)

(18a)
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where xi ∈ Rni and ui ∈ Rmi are the state and control of the
i-th subsystems, respectively. Ai and Bi are constant matri-
ces of appropriate dimensions and Gij are interconnection
matrices between the i-th subsystems and other subsystems.
The unknown vector functions gij(t, xj) ∈ Rli represent in-
terconnections among the subsystems. It is assumed that the
unknown vector functions gij(t, xj) are continuous and suf-
ficiently smooth in xj and piecewise continuous in t. The
parameter uncertainties which are included in the controller
gains are assumed to have the following form:

where Fi
k(t) ∈ Rqi

k× si
k

, Fij(t) ∈ Rqij×sij such that

are the unknown matrix functions with Lebesgue measur-
able elements. Suppose also that ∆Ai(t) satisfies the inequal-
ity (2). Moreover, we make the assumption of the following
conditions (21) concerning the unknown vector functions:

where Wij are the known constant matrices with appropriate
dimensions. Compared with the existing result [13], it
should be noted that the matching conditions are relaxed
because ∆Gij(t) are considered and Fi

k(t) ≠ Fi(t). On the
other hand, the reason why the uncertainty of the matrices
Bi is not considered is that the resulting closed-loop inte-
grated systems represent the uncertainties of the input ma-
trices [14].

The cost function associated with the systems (18) is
given below. It should be noted that the cost function is
different from the previous one (4) because of the gain
perturbations:

We give the sufficient condition for existence of the quad-
ratic guaranteed cost control for the uncertain nonlinear
systems (18) and the cost function (4).

Theorem 4 Consider the large-scale interconnected
nonlinear systems (18) with the uncertainties (19). If there
exist symmetric positive definite matrices Pi ∈ Rni×ni such
that for all uncertain matrices ∆Ai(t), ∆Gij(t), ∆Ki(t), the
matrix inequality (22) is satisfied, the control laws
ui(t) = Kixi(t), i = 1, . . . , N, are said to be the quadratic
guaranteed cost control:

where there exists no matrix Ni in PiĜii and

Proof: Combining the guaranteed cost controller
ui(t) = K̂ixi(t) with (18) gives a closed-loop system of the
form

Suppose now there exist the symmetric positive definite
matrices Pi > 0, i = 1, . . . , N, such that the matrix inequali-
ties (22) hold for all admissible uncertainties. In order to
prove the asymptotic stability of the closed-loop system
(23), let us define the following Lyapunov function candi-
date:

Taking into account the inequality

(19)

(20)

(21)

(22)

(23)

(18b)

(18c)
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we can change the form of 
d
dt V(x(t)):

where

Taking into account the fact that the inequalities (21) and
(22) hold, it follows immediately that

Hence, V(x(t)) is a Lyapunov function for the closed-loop
system (23). Therefore, the closed-loop system (23) is
asymptotically stable. Since the proof of the cost bound can
be done by using a similar technique, it is omitted.     E

We give also the quadratic guaranteed cost controller
for the nonlinear large-scale systems under the gain pertur-
bations via the LMI.

Theorem 5 Suppose there exist the constant parame-
ters µi > 0, εi > 0, ni > 0 such that for all i = 1, . . . , N the
LMI (25) have the symmetric positive definite matrices
Xi > 0 ∈ Rni×ni and a matrix Yi ∈ Rmi×ni:

where

If  such condit ions are met ,  the control gains
Ki = YiXi

−1, i = 1, . . . , N, are said to be the decentralized
quadratic guaranteed cost control gain. Moreover, the
bound of the cost is given by (12).

Proof: Let us introduce the following block matrix:

Pre- and post-multiplying both sides of the LMI (25) by
S i, S i

T , respectively, we have LMI

where Ωi := A
__

i
TPi + PiA

__
i + µiPiDiDi

TPi + εiPiBiHiHi
TBi

TPi +
niPi(Σj=1,j≠i

N DijDij
T)Pi.

Applying the Schur complement [17, 18] to the LMI
(26) gives

where Πi := Ωi + µi
−1Ei

1TEi
1 + εi

−1Ei
kTEi

k.
Applying Lemma 1 to the matrix inequality (27), we

have

Applying the Schur complement [17, 18] to the matrix
inequality Li < 0 as the matrix inequality (28), we get

(24)

(25)

[See Eq. on next page] (26)

[See Eq. on next page] (27)

[See Eq. on next page] (28)
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(26)

(27)

(28)
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On the other hand, applying the Schur complement to the
matrix inequality (22), we have also the matrix inequality
(29). Therefore, the matrix inequality (22) holds. Thus,
Ki = YiXi

−1 is the decentralized quadratic guaranteed cost
control gain matrices. Since the proof of the bound of the
cost function is the same as the proof of Theorem 2, it is
omitted briefly.                                 E

Remark 3 Taking into account the fact that the LMI
(25) consist of the set (µi, εi, ni, Xi, Yi) of the convex solu-
tion, it is possible to optimize via the various efficient
convex optimization algorithms such as LMI Control Tool-
box of MATLAB [16].

Remark 4 In fact, it should be noted that the control
inputs are not ui(t) = [Ki + ∆Ki(t)]xi(t) of Eq. (18b) but
ui(t) = Kixi(t). That is, due to the consideration of controller
gain perturbations, it means that the uncertainties ∆Ki(t)
are not included in the gain matrices. If there exist the
actuators with time-variant uncertainties, it is possible to
implement the quadratic guaranteed cost control because
the gain perturbations ∆Ki(t) are considered. Therefore,
our attention is focused on the practical systems compared
with the existing result [12, 13].

4. Numerical Example

In order to demonstrate the efficiency of our proposed
quadratic guaranteed cost control, we have run two simple
numerical examples.

4.1 Case of no existence of the control gain
perturbations

Consider the interconnected uncertain large-scale
systems composed of three four-dimensional subsystems.
We assume that the system structures are based on the
uncertain power systems in Ref. 7. The system matrices and
the uncertainties of Eqs. (1) are given as follows:

(29)
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By applying Theorem 3 and solving the correspond-
ing optimization problem, we obtain the decentralized lin-
ear state feedback control gains Ki, i = 1, 2, 3, of Eq. (11):

In this case, the bound of the quadratic guaranteed cost is
J† = 3.9653 × 102, where

The results of the time histories of the closed-loop systems
via the decentralized quadratic guaranteed cost control are
depicted in Figs. 1 to 3. The related uncertainties Fi(t) are

Moreover, the initial conditions are chosen randomly:

It is shown from Figs. 1 to 3 that the closed-loop systems
are asymptotically stable. On the other hand, the time
histories of the closed-loop systems via the Linear Quad-
ratic Regulator (LQR) control are depicted in Figs. 4 to 6

Fig. 1. Response of the closed-loop system 1 with the
proposed control method.
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compared with our proposed controllers. The matrix gains
which are based on the LQR controllers are given below:

where

Fig. 3. Response of the closed-loop system 3 with the
proposed control method.

Fig. 5. Response of the closed-loop system 2 with the
LQR.

Fig. 2. Response of the closed-loop system 2 with the
proposed control method.

Fig. 4. Response of the closed-loop system 1 with the
LQR.
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The minimum cost bound is J† = Trace P = 1.2084 × 102.
From Figs. 1 to 3 and 4 to 6, the trajectories of the time
histories are similar. However, in the case of the quadratic
guaranteed cost control, the convergence speed becomes a
little fast due to the increase in the cost. Although we have
also run the simulation via the decentralized LQR control
[19, 20], since its time histories are the same as the optimal
control (LQR), it is omitted. The decentralized LQR gains
are given as follows:

Although the quadratic guaranteed cost control has the
drawback such as increase in the cost bound compared with
the LQR control, the robust stability is guaranteed for the
uncertain systems. Moreover, even if the simulation is not
carried out, we will realize the desired transient response
by adjusting the weight matrices of the cost function in the
same way as the LQR control. As a result, the quadratic
guaranteed cost control is very reliable.

4.2 Case of existence of the control gain
perturbations

Consider the interconnected uncertain large-scale
systems composed of three two-dimensional subsystems.
We assume that the gain perturbations for the considered
systems are included.The system matrices and the uncer-
tainties of Eqs. (18) are given as follows:

Since the unknown functions gij(t, xj) sat isfy
|gij(t, xj)| ≤ ||xj||, we choose W12 = W13 = W23 = W21 = W31 =
W32 = I2. By applying Theorem 5 and solving the corre-
sponding optimization problem, we obtain the following
decentralized linear state feedback controls Ki, i = 1, 2, 3:

Fig. 6. Response of the closed-loop system 3 with the
LQR.
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In this case, the bound of the quadratic guaranteed cost is
J† = 2.426062, where

Thus, we can obtain the decentralized controller which
minimizes the cost bound by solving the LMI (25). The time
histories of the closed-loop systems via the decentralized
quadratic guaranteed cost control which is based on Theo-
rem 5 are shown in Figs. 7 to 9. The functions which
represent the uncertainties (19) are given below:

Moreover, the initial conditions are chosen randomly:

It is easy to verify that the resulting closed-loop uncertain
large-scale systems are asymptotically stable.

5. Conclusion

In this paper, a solution of the quadratic guaranteed
cost control problem for uncertain large-scale system has
been presented. The main contribution is that the decentral-
ized guaranteed cost controller can be constructed by solv-
ing the parameter-dependent LMIs for each subsystem.
Using the proposed design method, the decentralized con-
trollers can be calculated by catching each subsystem infor-
mation only. Therefore, it is very useful in the same way as
the existing decentralized control for large-scale systems
[19, 20]. Furthermore, although the controller gain pertur-
bations are included, our proposed method enables us to
also construct the quadratic guaranteed cost controllers.
Thus, it is possible to design the quadratic guaranteed cost

Fig. 7. Response of the closed-loop system 1 with the
proposed control method.

Fig. 8. Response of the closed-loop system 2 with the
proposed control method.

Fig. 9. Response of the closed-loop system 3 with the
proposed control method.
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controller for a wider class of large-scale systems compared
with the existing results [12, 13]. As another important
feature, the necessary optimization problem to get the de-
centralized controllers can be easily solved by using soft-
ware such as MATLAB’s LMI Control Toolbox [17].

Finally, it is expected that the LMI approach is also
applied to the output feedback case. That problem is more
realistic than the state feedback case because it is possible
to implement for practical systems. In Ref. 9, it has been
shown that the quadratic guaranteed cost control which is
based on the output feedback can be obtained by solving
three matrix coupled algebraic equations. However, to the
best of our knowledge, the quadratic guaranteed cost con-
trol of the output feedback control via the LMI has not been
studied. This problem will be addressed in future investiga-
tions.
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