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Abstract: In this paper, the linear quadratic optimal control for multiparameter
singularly perturbed systems (MSPS) is studied in a different approach from the
existing methods. The attention is focused on the design of a near–optimal controller
which does not depend on the values of the small unknown parameters. The resulting
controller achieves O(||µ||2) near–optimal cost compared with previously proposed
result in the literature. To obtain such a controller, the existence of a unique and
bounded solution of a multiparameter algebraic Riccati equation (MARE) is newly
proven.
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1. INTRODUCTION

The deterministic and stochastic multimodeling stability,
control, filtering and dynamic games have been investi-
gated extensively by several researchers (see e.g., Khalil
and Kokotović, 1978, 1979; Coumarbatch and Gajić,
2000; Gajić, 1988; Wang et al., 1994). The multimod-
eling problems arise in large scale dynamic systems.
For example, these multimodel situations in practice are
illustrated by the multiarea power system (Khalil and
Kokotović, 1978) and the passenger car model (Coumar-
batch and Gajić, 2000). In order to obtain the optimal
solution to the multimodeling problems, we must solve
the multiparameter algebraic Riccati equation (MARE),
which are parameterized by the small positive same order
parameters εj , j = 1, 2, · · ·. Various reliable approaches
to the theory of the algebraic Riccati equation (ARE)
have been well documented in many literatures (see e.g.,
Laub, 1979). One of the approaches is the invariant
subspace approach based on the Hamiltonian matrix
(Laub, 1979). However, when the ARE is known to be
ill–conditioned (Laub, 1979) such an approach is not ad-

equate to the multiparameter singularly perturbed sys-
tems (MSPS) since there is no guarantee of symmetry for
the solution of the ARE. Note that it is very hard to solve
directly the MARE due to high dimension and numerical
stiffness (Coumarbatch and Gajić, 2000). More recently,
the exact slow–fast decomposition method for solving the
MARE has been proposed in Coumarbatch and Gajić
(2000). However, a limitation of these approaches is
that the small parameters are assumed to be known. In
practice, the small perturbation parameters εj are often
not known. Thus, it is not applicable to a large class of
problems where the parameters represent small unknown
perturbations whose values are not known exactly.

A popular approach to deal with the MSPS is the two–
time–scale design method (see e.g., Khalil and Koko-
tović, 1978, 1979; Gajić, 1988; Wang et al., 1994). For ex-
ample, optimal control of a class of MSPS, being only on
the slow variable, has been studied by Khalil and Koko-
tović (1979), where the design of the εj–independent
reduced–order controller has been suggested. However, in
order to obtain the slow subsystem, the nonsingularity of



the fast state matrices are needed. In Wang et el. (1994),
by making use of the descriptor variable approach, the
main results of Khalil and Kokotović (1979) have been
extended to the nonstandard MSPS such that at least
one of the fast state matrices is singular. However, the
proposed controller only achieves O(||µ||) (where ||µ|| de-
notes the norm of the vector ||[ε1 · · · εN ]||) approxima-
tion of the optimal cost.

In this paper, we study the linear quadratic optimal
control problems for MSPS. We first investigate the
unique and bounded solution of the MARE and establish
its asymptotic structure. Thus, this paper presents an
improvement on some of the results of Gajić (1988)
in the sense that some assumptions are relaxed. Using
the asymptotic structure, a new near–optimal controller
which does not depend on the values of the small pa-
rameters is obtained. This is done by eliminating the
parameters εj for the full–order controller. We empha-
size that structure of the resulting controller achieves
O(||µ||2) near–optimal cost compared with the previously
proposed in the literature. Even if the parameters are
unknown, when the parameters are sufficiently small,
the near–optimal controller can be used reliably for the
MSPS.

2. MSPS

We consider a specific structure of N–lower level multi–
fast subsystems interconnected through the dynamics of
a higher level slow subsystem.

ẋ0 = A00x0 +
N∑

j=1

A0jxj +
N∑

j=1

B0juj , (1a)

εjẋj = Aj0x0 + Ajjxj + Bjjuj, (1b)

y0 = C00x0, (1c)

yj = Cj0x0 + Cjjxj, j = 1, 2, · · · , N, (1d)

xj(0) = x0
j , j = 0, 1, 2, · · · , N, (1e)

where xj ∈ Rnj , j = 0, 1, · · · , N are the state
vectors, uj ∈ Rmj , j = 1, 2, · · · , N are the control
inputs, yj ∈ Rlj , j = 0, 1, · · · , N are the outputs. We
assume that the ratios of the small positive parameter
εj > 0, j = 1, 2, · · · , N are bounded by some positive
constants kij , k̄ij (see e.g., Khalil and Kokotović, 1978,
1979),

0 < kij ≤ αij ≡ εj

εi
≤ k̄ij < ∞. (2)

Note that at least one of the fast state matrices Ajj , j =
1, 2, · · · , N may be singular. The performance criterion
is given by

J =
1
2

∞∫
0


yT y +

N∑
j=1

uT
j Rjuj


 dt, (3)

where yT =
[
yT
0 · · · yT

m

]T ∈ Rl̄, l̄ =
N∑

j=0

lj .

In order to find a near–optimal control without the
knowledge of the small perturbation parameters εj, let
the optimal control for the regulator problem (1) and (3)
be

uopt = −R−1BT
e Pex, (4)

where Pe satisfies the MARE

AT
e Pe + PeAe − PeSePe + Q = 0, (5)

with

Ae :=
[

A00 A0f

Π−1
e Af0 Π−1

e Af

]
,

Πe := block − diag
(
ε1In1 · · · εN InN

)
,

A0f :=
[
A01 · · · A0N

]
, Af0 :=

[
AT

10 · · · AT
N0

]T
,

Af := block − diag
(
A11 · · · ANN

)
,

Se := BeR
−1BT

e =
[

S00 Π−1
e S0f

ST
0fΠ−1

e Π−1
e SfΠ−1

e

]
,

S00 :=
N∑

j=1

B0jR
−1
j BT

0j , S0f =
[
S01 · · · S0N

]
=

[
B01R

−1
1 BT

11 · · · B0NR−1BT
NN

]
,

Sf := block − diag
(
S11 · · · SNN

)
,

= block − diag(
B11R

−1
1 BT

11 · · · BNNR−1BT
NN

)
,

Be :=
[

B0

Π−1
e Bf

]
, B0 :=

[
B01 · · · B0N

]
,

Bf := block − diag
(
B11 · · · BNN

)
,

R := block − diag
(
R1 · · · RN

)
,

Q :=
[

Q00 Q0f

QT
0f Qf

]
, Q00 :=

N∑
j=0

CT
j0Cj0,

Q0f :=
[
Q01 · · · Q0N

]
=

[
CT

10C11 · · · CT
N0CNN

]
,

Qf := block − diag
(
Q11 · · · QNN

)
= block − diag

(
CT

11C11 · · · CT
NNCNN

)
.

In the following analysis, we need some assumptions.

Assumption 1: The triples (Ajj , Bjj , Cjj), j =
1, 2, · · · , N are stabilizable and detectable.

Assumption 2:

rank
[

sIn0 − A00 −A0f B0

−Af0 −Af Bf

]
= n̄, (6a)

rank
[

sIn0 − AT
00 −AT

f0 CT
0

−AT
0f −AT

f CT
f

]
= n̄, (6b)



where n̄ :=
N∑

j=0

nj,

C0 :=




C00

C10

...
CN0


 , Cf :=




0 0 0 · · · 0
C11 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · CNN


 ,

with Re[s] ≥ 0, s ∈ C.

Assumption 3: The Hamiltonian matrices Tjj , j =
1, 2, · · · , N are nonsingular, where

Tjj :=
[

Ajj −Sjj

−Qjj −AT
jj

]
.

Before investigating the optimal control problem, we
investigate the asymptotic structure of the MARE (5).
Let us introduce the scaling matrices

Φe := block − diag
(

In0 ε1In1 · · · εN InN

)
=

[
In0 0
0 Πe

]
.

In order to avoid the ill–conditioned caused by the large
parameter ε−1

j which is included in the MARE (5), we
introduce the following useful lemma.

Lemma 1: The MARE (5) is equivalent to the following
generalized multiparameter algebraic Riccati equation
(GMARE) (7)

G(P ) = AT P + P T A − P T SP + Q = 0, (7)

where

A :=
[

A00 A0f

Af0 Af

]
, S :=

[
S00 S0f

ST
0f Sf

]
,

P :=
[

P00 P0f

Pf0 Pf

]
, Pf0 :=




P10

...
PN0


 ,

P0f = P T
f0Πe :=

[
ε1P

T
10 · · · εNP T

N0

]
,

Pf :=




P11 α12P
T
21 · · · α1NP T

N1

P21 P T
22 · · · α2NP T

N2
...

...
. . .

...
PN−11 PN−12 · · · αN−1NP T

NN−1

PN1 PN2 · · · PNN


 .

Proof: Firstly, by direct calculation we verify that Pe =
ΦeP . Secondly, it is easy to verify that A = ΦeAe,
S = ΦeSeΦe. Hence,

AT P = AT
e ΦeΦ−1

e Pe = AT
e Pe.

By using the similar calculation, we can immediately
rewrite (5) as (7). □

The GMARE (7) can be partitioned into

f1 = P T
00A00 + AT

00P00 + P T
f0Af0 + AT

f0Pf0

−P T
00S00P00 − P T

f0SfPf0 − P T
00S0f Pf0

−P T
f0S

T
0fP00 + Q00 = 0, (8a)

f2 = AT
00P

T
f0Πe + AT

f0Pf + P T
00A0f + P T

f0Af

−P T
00S00P

T
f0Πe − P T

f0S
T
0fP T

f0Πe

−P T
00S0f Pf − P T

f0SfPf + Q0f = 0, (8b)

f3 = P T
f Af + AT

f Pf + ΠePf0A0f + AT
0f P T

f0Πe

−P T
f SfPf − P T

f ST
0f P T

f0Πe − ΠePf0S0fPf

−ΠePf0S00P
T
f0Πe + Qf = 0. (8c)

It is assumed that the limit of αij exists as εi and εj

tend to zero (see e.g., Khalil and Kokotović, 1978, 1979),
that is

ᾱij = lim
εj→+0
εi→+0

αij . (9)

Let P̄00, P̄f0 and P̄f be the limiting solutions of the above
equation (8) as εj → +0, j = 1, · · · , N , then we obtain
the following equations

P̄ T
00A00 + AT

00P̄00 + P̄ T
f0Af0 + AT

f0P̄f0

−P̄ T
00S00P̄00 − P̄ T

f0Sf P̄f0 − P̄ T
00S0f P̄f0

−P̄ T
f0S

T
0f P̄00 + Q00 = 0, (10a)

AT
f0P̄f + P̄ T

00A0f + P̄ T
f0Af − P̄ T

00S0f P̄f

−P̄ T
f0Sf P̄f + Q0f = 0, (10b)

P̄ T
f Af + AT

f P̄f − P̄ T
f Sf P̄f + Qf = 0, (10c)

where

P̄f :=




P̄11 ᾱ12P̄
T
21 · · · ᾱ1N P̄ T

N1

P̄21 P̄22 · · · ᾱ2N P̄ T
N2

P̄31 P̄32 · · · ᾱ3N P̄ T
N3

...
...

...
...

P̄N−11 P̄N−12 · · · ᾱN−1N P̄ T
NN−1

P̄N1 P̄N2 · · · P̄NN




,

P̄jj := P̄ T
jj, j = 0, 1, 2, · · · , N.

The ARE (10c) obtained is nonsymmetric. However, it
is easy to verify that the ARE (10c) is an ARE which
admits at least a unique symmetric positive semidefinite
stabilizing solution.

Theorem 1: Under the assumption 1, the ARE (10c)
admits a unique symmetric positive semidefinite stabi-
lizing solution P̄f which can be written as

P̄ ∗
f := block − diag

(
P̄ ∗

11 · · · P̄ ∗
NN

)
, (11)

where P̄ ∗
jj is a unique symmetric positive semidefinite

stabilizing solution for the following AREs, respectively



AT
jj P̄

∗
jj + P̄ ∗

jjAjj − P̄ ∗
jjSjjP̄

∗
jj + Qjj = 0,

j = 1, 2, · · · , N.

Proof: Substituting (11) into the ARE (10c) as P̄ ∗
f → P̄f ,

it is easy to verify that P̄ ∗
f Af +AT

f P̄ ∗
f −P̄ ∗

f Sf P̄ ∗
f +Qf = 0.

Furthermore, it can be seen that P̄ ∗
f = P̄ ∗T

f ≥ 0 and
Af − Sf P̄ ∗

f is stable from (12) under the assumption 1.

Af − Sf P̄ ∗
f = block − diag(

A11 − S11P̄
∗
11 · · · ANN − SNN P̄ ∗

NN

)
(12)

Consequently, there exists a unique solution of the ARE
(10c) and its solution is (11) itself. □

The assumption 1 ensures that Ajj − SjjP̄
∗
jj , j =

1, 2, · · · , N are nonsingular. Substituting the solution
of (10c) into (10b) and substituting P̄ ∗

f0 into (10a) and
making some lengthy calculations (the detail is omitted
for brevity), we obtain the following 0–order equations
(13)

P̄ ∗
00A + AT P̄ ∗

00 − P̄ ∗
00SP̄ ∗

00 + Q = 0, (13a)

P̄ ∗
f0 = −NT

2 + NT
1 P̄ ∗

00, (13b)

⇔ P T
j0 = −[P ∗

00D0j + (AT
j0P

∗
jj + Q0j)]D−1

jj

P̄ ∗
f Af + AT

f P̄ ∗
f − P̄ ∗

f Sf P̄ ∗
f + Qf = 0, (13c)

⇔ P̄ ∗
jjAjj + AT

jjP̄
∗
jj − P̄ ∗

jjSjjP̄
∗
jj + Qjj = 0,

where

A := A00 + N1Af0 + S0fNT
2 + N1SfNT

2 ,

S := S00 + N1S
T
0f + S0fNT

1 + N1SfNT
1 ,

Q := Q11 − N2Af0 − AT
f0N

T
2 − N2SfNT

2 ,

NT
2 := Ā−T

f Q̄T
0f , NT

1 := −Ā−T
f ĀT

0f ,

Ā0f := A0f − S0f P̄ ∗
f , Āf := Af − Sf P̄ ∗

f ,

Q̄0f := Q0f + AT
f0P̄

∗
f , D0j := A0j − S0jP

∗
jj,

Djj := Ajj − S0jP
∗
jj , j = 1, 2, · · · , N.

In the following we established the relation between the
GMARE (7) and the 0–order equations (13). Before
doing that, we give the results for the AREs (13).

Lemma 2: Under the assumptions 1–3, the following
results hold.

(i) The matrices A, S and Q do not depend on P̄ ∗
jj, j =

1, 2, · · · , N .

(ii) There exist a matrix B ∈ Rn̄×m̄, m̄ :=
N∑

j=0

mj and a

matrix C with the same dimension as C0 such that S =
BR−1BT , Q = CTC. Moreover, the triple (A, B, C) is
stabilizable and detectable.

Proof: Firstly, we introduce the following coordinate
matrix

Ω =




In1 0 0 0 · · · 0 0
0 0 In2 0 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · InN 0
0 In1 0 0 · · · 0 0
0 0 0 In2 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 InN




. (14)

Furthermore, let us define four partitioned matrices
(Wang et al., 1994)

H1 = T00 :=
[

A00 −S00

−Q00 −AT
00

]
,

H2 :=
[

A0f −S0f

−Q0f −AT
f0

]
,

H3 :=
[

Af0 −ST
0f

−QT
0f −AT

0f

]
, H4 :=

[
Af −Sf

−Qf −AT
f

]
.

It is well known from Xu et al. (1997) and Wang et al.
(1994) that

H0 =
[ A −S

−Q −AT

]
= H1 − H2H

−1
4 H3.

Using the above relation under the assumption 3, we get

H0 = H1 − H2Ω(ΩT H4Ω)−1ΩT H3

= T00 −
N∑

j=1

T0jT
−1
jj Tj0, (15)

where

T0j =
[

A0j −S0j

−Q0j −AT
j0

]
, Tj0 =

[
Aj0 −ST

0j

−QT
0j −AT

0j

]
,

j = 1, 2, · · · , N.

Therefore, it suffices the proof of (i) to show that
the Hamilton matrix H0 can be computed by using
Tpq , pq = 00, · · · , 0N, 11, · · · , NN, 10, · · · , N0 which are
independent of P̄ ∗

jj.

The rest of the proof of Lemma 2 is omitted since it is
similar to the proof of Xu et al. (1997). □

Since the triple (A, B, C) is stabilizable and detectable,
the ARE (13a) admits a unique positive semidefinite
symmetric stabilizing solution, denoted by P̄ ∗

00, and A−
SP̄ ∗

00 is stable.

The limiting behavior of Pe as the parameter ||µ|| :=
N
√

ε1ε2 · · ·εN → +0 is described by the following theo-
rem.

Theorem 2: Under the assumptions 1–3, there exists
a small σ∗ such that for all ||µ|| ∈ (0, σ∗) the MARE
(5) admits a symmetric positive semidefinite stabilizing
solution Pe which can be written as



Pe = Φe

[
P̄ ∗

00 + O(||µ||) [P̄ ∗
f0 + O(||µ||)]TΠe

P̄ ∗
f0 + O(||µ||) P̄ ∗

f + O(||µ||)
]

=
[

P̄ ∗
00 + O(||µ||) [P̄ ∗

f0 + O(||µ||)]TΠe

Πe[P̄ ∗
f0 + O(||µ||)] Πe[P̄ ∗

f + O(||µ||)]
]

. (16)

Proof: We apply the implicit function theorem (Gajic,
1988) to (8). To do so, it is enough to show that the
corresponding Jacobian is nonsingular at ||µ|| = 0. It can
be shown, after some algebra, that the Jacobian of (8)
in the limit as ||µ|| → 0 is given by

J = ∇F =
∂vec(f1 , f2, f3)

∂vec(P00, Pf0, Pf)T

∣∣∣
||µ||=0

=


 J00 J01 0

J10 J11 J12

0 0 J22


 , (17)

where vec denotes an ordered stack of the columns of its
matrix and

J00 = (In0 ⊗ ĀT
00)Un0n0 + ĀT

00 ⊗ In0 ,

J01 = (In0 ⊗ ĀT
f0)Un0n̂ + ĀT

f0 ⊗ In0 ,

J10 = ĀT
0f ⊗ In0 , J11 = ĀT

f ⊗ In0 ,

J22 = (In̂ ⊗ ĀT
f )Un̂n̂ + ĀT

f ⊗ In̂,

Ā00 = A00 − S00P̄
∗
00 − S0f P̄ ∗

f0,

Āf0 = Af0 − ST
0f P̄ ∗

00 − Sf P̄ ∗
f0,

Ā0 = Ā00 − Ā0f Ā−1
f Āf0, n̂ =

N∑
j=1

nj,

where ⊗ denotes Kronecker products and Un0n0 is the
permutation matrix in the Kronecker matrix sense.

The Jacobian (17) can be expressed as

detJ = detJ22 · detJ11

·det[In0 ⊗ ĀT
0 Un0n0 + ĀT

0 ⊗ In0 ], (18)

where Ā0 ≡ Ā00 − Ā0f Ā−1
f Āf0 . Obviously, Jjj, j =

1, 2 are nonsingular because the matrices Āf = Af −
Sf P̄ ∗

f is stable under the assumption 1. After some
straightforward but tedious algebra, we see that A −
SP̄ ∗

00 = Ā00 − Ā0f Ā−1
f Āf0 = Ā0. Therefore, the matrix

Ā0 is also stable if the assumption 2 holds. Thus, detJ �=
0, i.e., J is nonsingular at ||µ|| = 0. The conclusion of
Theorem 2 is obtained directly by using the implicit
function theorem.

The remainder of the proof is to show that Pe is the
positive semidefinite stabilizing solution. Firstly, from
(16), we get

Pe =
[

P̄ ∗
00 0
0 0

]
+ O(||µ||),

Taking into consideration the fact that the solution P̄ ∗
00

is positive semidefinite, we have Pe ≥ 0. Secondly, using
(16), we obtain

Ae − SePe = Φ−1
e

([
Ā00 Ā0f

Āf0 Āf

]
+ O(||µ||)

)
.

The matrix Āf and Ā0 are stable since the assumptions
1 and 2 holds. Therefore, if parameter ||µ|| is very small,
Ae −SePe is stable by applying the Theorem 1 in Khalil
and Kokotović (1979). □

3. NEAR–OPTIMAL CONTROL FOR THE MSPS

The required solution of the MARE (5) exists under the
assumptions 1–3. Our attention is focused on the specific
linear state feedback controller which does not depend on
the values of the small parameters. Such the linear state
feedback controller is obtained by eliminating O(||µ||)
item of the linear state feedback controller (4). If ||µ||
is very small, it is obvious that the linear state feedback
controller (4) can be approximated as

uapp =
[
uT

1app · · · uT
Napp

]T

= −R−1BT Pappx = −R−1BT

[
P̄ ∗

00 0
P̄ ∗

f0 P̄ ∗
f

]
x

= −R−1BT




P̄ ∗
00 0 · · · 0

P̄ ∗
10 P̄ ∗

11 · · · 0
P̄ ∗

20 0 · · · 0
...

...
. . .

...
P̄ ∗

N0 0 · · · P̄ ∗
NN


x, (19)

where B = ΦeBe.

Remark 1: Even though our control design is quite
different from the composite controller design (Khalil
and Kokotović, 1979; Wang et al., 1994; Xu et al., 1997),
we can be shown that the resulting controller (19) is
similar to the existing one.

When ||µ|| is sufficiently small, we know from Theorem
2 that the resulting controller (19) will be close to the
optimal controller (4). In an optimization problem it is of
interest to check whether the resulting value of the cost
function will be near its optimal value. The optimal value
Jopt is obtained with the controller (4) which optimizes
the cost for the actual system (1).

Theorem 3: Under the assumptions 1–3, the use of the
reduced–order controller (19) results in Japp satisfying

Japp = Jopt + O(||µ||2), (20)

where

Jopt =
1
2
x(0)T Pex(0).

Before proving this theorem, we introduce the following
useful lemma (Mukaidani et al., 2001).



Lemma 3: Consider the iterative algorithm which is
based on the Kleinman algorithm

(A − SP (i))T P (i+1) + P (i+1)T (A − SP (i))

+P (i)T SP (i) + Q = 0, i = 0, 1, · · · , (21a)

P (i) =

[
P

(i)
00 P

(i)T
f0 Πe

P
(i)
f0 P

(i)
f

]
, (21b)

with the initial condition obtained from

P (0) = Papp =
[

P̄ ∗
00 0

P̄ ∗
f0 P̄ ∗

f

]
. (22)

Under the assumptions 1–3, there exists a small σ̄ such
that for all ||µ|| ∈ (0, σ̄), σ̄ ≤ σ∗ the iterative algorithm
(21) converges to the exact solution of Pe = ΦeP =
P TΦe with the rate of quadratic convergence, where
P

(i)
e = ΦeP

(i) = P (i)TΦe is positive semidefinite.

||P (i) − P || = O(||µ||2i

), i = 0, 1, 2, · · · , (23)

where

γ = 2||S|| < ∞, β = ||[∇G(P (0))]−1||,
η = β · ||G(P (0))||, θ = βηγ, ∇G(P ) =

∂vecG(P )
∂(vecP )T

.

Proof: When uapp is used, the value of the performance
index is

Japp =
1
2
x(0)TWex(0), (24)

where We is a positive semidefinite solution of the
multiparameter algebraic Lyapunov equation (MALE)

(Ae − SePappe)T We + We(Ae − SePappe)

+PappeSePappe + Q = 0, (25)

where Pappe = ΦePapp. Subtracting (5) from (25) we find
that Ve = We − Pe satisfies the following MALE

(Ae − SePappe)T Ve + Ve(Ae − SePappe)

+(Pe − Pappe)Se(Pe − Pappe) = 0. (26)

Similarly, subtracting (5) from (21a) we also get the
MALE

(Ae − SeP
(i)
e )T (P (i+1)

e − Pe)

+(P (i+1)
e − Pe)(Ae − SeP

(i)
e )

+(Pe − P (i)
e )Se(Pe − P (i)

e ) = 0, (27)

where P
(i)
e = ΦeP

(i). When i = 0, we have

(Ae − SeP
(0)
e )T (P (1)

e − Pe)

+(P (1)
e − Pe)(Ae − SeP

(0)
e )

+(Pe − P (0)
e )Se(Pe − P (0)

e )

= (Ae − SePappe)T (P (1)
e − Pe)

+(P (1)
e − Pe)(Ae − SePappe)

+(Pe − Pappe)Se(Pe − Pappe) = 0.

Therefore, it is easy to verify that Ve = P
(1)
e −Pe because

Ae − SePappe is stable from Theorem 1 in Khalil and
Kokotović (1979). Using Lemma 3 we obtain that

||Ve|| = ||We − Pe|| = ||P (1)
e − Pe||

≤ ||Φe|| · ||P (1) − P || ≤ ||P (1) − P || = O(||µ||2). (28)

Hence, we have Ve = We − Pe = O(||µ||2), which implies
(20). □

4. CONCLUSION

In this paper, we have studied the optimal control prob-
lem associated with the MSPS. The main contribution
of this paper is to propose the new design method of the
εj–independent reduced–order controller. Note that our
design method is quite different from the existing method
such as the two–time–scale design method and the de-
scriptor approach. Furthermore, we have shown that the
resulting controller achieves O(||µ||2) approximation of
the optimal cost compared with the previously proposed
controller.
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