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Three Basic Theorems in Numerical Analysis in Control Engineering
Course and Their Application
Hiroaki Mukaidani* and Tadashi Shima

Abstract: Control system design packages like MATLAB, SICLAB, OCTAVE, etc. have become essential com-
ponents of both undergraduate and graduate courses in the field of systems and controls. In particular, the most im-
portant subject related to control system design in the undergraduate course is the analysis of a nonlinear equation
that is based on iterative methods. In this paper, applications of three basic theorems, –implicit function theorem,
Newton-Kantorovich theorem, and fixed point theorem– are proposed to be taught in the numerical analysis in the
control engineering course. In order to demonstrate the usefulness of these theorems, several important features
are discussed. Furthermore, a practice exercise based on the practical control problem is discussed for proving the
useful subject of the numerical analysis in the control engineering course in the graduate level.

Keywords: Control engineering course, fixed point theorem, implicit function theorem, Newton-Kantorovich the-
orem.

1. INTRODUCTION

The core curriculum of the electrical and computer en-
gineering course generally includes numerical analysis.
After referring to many relevant books [1–3], the need for
including Newton’s method and related iterative methods
in the section on numerical solutions in an introductory
course appears to be appropriate. In general, simple and
scalar nonlinear equations are treated in this course. The
abovementioned need arises due to at least two reasons.
First, numerical solutions can be easily depicted by us-
ing computer graphics facilities. Second, a problem under
consideration can be solved analytically. Although Lya-
punov, Sylvester, and Riccati algebraic equations and their
associated software packages are well known in the field
of systems and controls [4], the methods used in solv-
ing these equations are generally not described in detail
in related courses. Furthermore, to the best of the au-
thor’s knowledge, although the numerical computation of
three basic theorems – implicit function theorem, Newton-
Kantorovich theorem, and fixed point theorem – are well-
known, their applications have not been discussed in the
engineering course thus far. In fact, these important the-
orems play a vital role in establishing the controller. For
instance, it has been shown that the justification of the ex-
istence of solutions to the equations and sensitivity analy-
sis were conducted based on the implicit function theorem
[5]. The Newton method for solving the non-symmetric
Riccati equations has been considered in [6]. A numerical
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algorithm, which is based on fixed-point iterations, to ob-
tain the solution of algebraic Lyapunov type equations has
been revisited [7]. However, these contributions may not
be presented in such course.

An educational framework of control system design is
very important for both the theoretical and practical as-
pects [8]. In particular, it is well-known that recursion
is an important problem; there is no doubt that it should
be covered in computer science courses. Most textbooks
use the Hanoi problem [9] or Fibonacci numbers [10] as
the first examples of recursion. These examples often ap-
pear as recommended programs in some textbooks. On the
other hand, Newton’s method was frequently used as an
example for solving a nonlinear equations in the electrical
and computer engineering course. Although the advan-
tages of using Newton’s method are well discussed in text-
books, it should be noted that another important feature
–the uniqueness of the convergence solution– has never
been entirely discussed in literature. Moreover, it is ob-
served that another famous method of the fixed point it-
eration for solving a linear equation was not sufficiently
documented.

This paper demonstrates that the applications of the nu-
merical computation of the three basic theorems are useful
to be taught in the numerical analysis in the control engi-
neering course. The core curriculum could be introduced
through mathematical theory and simulation. After estab-
lishing the structure of the ARE corresponding to the H∞
control problem by using the implicit function theorem,
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an algorithm for solving the ARE corresponding this
problem related to weakly coupled large-scale systems
is established for this course. In order to guarantee the
quadratic convergence and uniqueness of the solution, the
Newton-Kantorovich theorem is applied. Moreover, the
fixed point iterations are combined to attain reduced-order
calculations. As a result, it is shown that linear conver-
gence is attained by using the fixed point theorem. Finally,
to demonstrate the efficiency of the proposed algorithm, a
numerical example is presented. Furthermore, a practice
exercise based on the optimization problem related to the
practical control problem is provided.

Notation: The notations used in this paper are fairly
standard. block diag denotes the block diagonal matrix.
Superscript T denotes matrix transpose. Tr denotes the
trace of a matrix. λmax denotes maximum eigenvalue. ∥ ·∥
denotes norm of a matrix. det denotes the determinant of
a square matrix. Ip denotes the p× p identity matrix.

2. PRELIMINARY

2.1. Matrix tools for control systems design
This subsection develops some matrix tools that will

prove useful to us later. The vec operator creates a col-
umn vector from a matrix A = (ai j) by stacking the col-
umn vectors of A one below the other [11].

vecA :=


a1

a2
...

an

 , ak =


a1k

a2k
...

ank

 . (1)

A permutation matrix is a binary matrix that has only one
entry of 1 in each row and each column and 0’s else-
where. Permutation matrices are the matrix representa-
tions of permutations. The permutation matrix UUUnn with n
elements is defined as in equation (2).

UUUnn :=


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⊗


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


T

+ · · ·

+


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1

⊗


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1


T

. (2)

The permutation matrix has the following useful proper-
ties.

UUUnn ∈ Rn2×n2
, UUUnn =UUUT

nn,

UUUnnUUUT
nn =UUUnnUUUnn = In2 ,

(AT ⊗ In)UUUnn =UUUnn(In ⊗AT ),

UlmvecB = vecBT , B ∈ Rl×m.

A = (ai j) is an m×n matrix and B is a p×q matrix. The
mp×nq matrix defined by equation (3)

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

an1B an2B · · · annB

 (3)

is called the Kronecker product.
The Kronecker product can be used to obtain a conve-

nient representation for some matrix equations. Consider
for instance the equation AXB = C, where A, B, and C
are known matrices and matrix X is unknown. It can be
rewritten this equation as

vec(AXB) = (BT ⊗A)vecX = vecC.

It now follows from the properties of the Kronecker prod-
uct that the equation AXB =C has a unique solution if and
only if A and B are nonsingular.

On the other hand, the following derivative holds.

∂
∂X

Tr[BXC] = BTCT , (4)

where B, C, X ∈ Rn×n.
Let F(X) be a differentiable m× p real matrix function

of an n×q matrix of real variables X . The Jacobian matrix
of F at X is the mp×nq matrix

DDDF(X) :=
∂vecF(X)

∂ (vecX)T . (5)

Many examples are given below and they will be used for
deriving the proof of this statement.

∂vecAXB
∂ (vecX)T = BT ⊗A,

∂vecXT A
∂ (vec X)T = (AT ⊗ In)UUUnn.

2.2. Newton’s method for solving nonliner equation
In order to demonstrate the efficiency of the matrix

tools, a simple example is provided. Let us consider the
following nonlinear matrix equation.

F(X) := X2 −A, (6)

where X , A ∈ Rn×n and A are known matrices whose ele-
ments are scalar.

It can be obtained the following result by using (5).

∂vecF(X)

∂ (vecX)T = XT ⊗ In + In ⊗X . (7)

Thus, considering Newton’s method, the following equa-
tion holds.

vecX (k+1) = vecX (k)
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−
[

∂vecF(X)

∂ (vecX)T

∣∣∣∣
X=X (k)

]−1

vecF(X (k))

= vecX (k)

− [X (k)T ⊗ In + In ⊗X (k)]−1vec[X (k)2 −A].

Finally, eliminating vecX (k), which is the first term on the
right hand side of the above equation, the following New-
ton iteration (8) is obtained.

vecX (k+1) = [X (k)T ⊗ In + In ⊗X (k)]−1vec[X (k)2 +A].
(8)

2.3. Basic theorems in numerical computation
In order to establish useful and reliable results in the

numerical analysis in the control engineering course, the
following basic theorems are provided.

Implicit Function Theorem [12]: Let F : Rm+n →Rn

be a continuously differentiable function defined in an
open subset of Rm+n that contains the point (a, b), where
a ∈ Rm and b ∈ Rn. Further, assume that the initial equa-
tion is F(a, b) = 0. Let us take the Jacobian of F evalu-
ated at (a, b), DF(a, b) = 0, and split it into [X | Y ] where
submatrices X and Y are given by

Xn×m =

(
∂ fi

∂x j

∣∣∣
(a, b)

)
1≤i≤n, 1≤ j≤m

,

Yn×n =

(
∂ fi

∂y j

∣∣∣
(a, b)

)
1≤i≤n, m+1≤ j≤m+n

,

so that DF(a, b) = [X |Y ]. If Y is invertible (i.e., the de-
terminant of Y is nonzero), then F(x, y) = 0 defines y as
a function of x near (a, b); more precisely, there are open
sets A and B such that a ∈ A ⊆ Rm and b ∈ B ⊆ Rn. The
sets have the following property: for each x ∈ A, there is a
unique y ∈ B, such that F(x, y) = 0. Since y is uniquely
determined by x with respect to A and B, it can be called
as G(x); so what there exists a function G : A → B such
that for each x ∈ A, F(x, G(x)) = 0, and G(x) is the only
element in B with that property. Because F(a, b) = 0,
in particular, G(a) = b holds; therefore, this function “lo-
cally generalizes” the initial equation F(a, b) = 0. Fur-
thermore, the theorem guarantees that function G is differ-
entiable; in particular, it turns out that DG(a) =−Y−1X .

The implicit function theorem plays an important role
in determining the existence of a solution and in the anal-
ysis of the asymptotic structure for the weakly coupled
large-scale linear quadratic Gaussian (LQG) control prob-
lem (see, e.g., [12–14], and the references therein).

Newton-Kantorovich Theorem [15, 16]: Assume
that F : Rn → Rn is differentiable on a convex set D and
that ∥F ′(x)−F ′(y)∥ ≤ γ∥x− y∥ for all x, y ∈ D. Sup-
pose that there is an x0 ∈ D such that ∥F ′(x0)−1∥ ≤ β ,
∥F ′(x0)−1F(x0)∥ ≤ η and θ := βγη < 1/2. Assume that

S := { x : ∥x−x0∥ ≤ t∗ } ⊂ D, t∗ = (1−
√

1−2θ)/(βγ).
Then Newton iterations xk+1 = xk −F ′(xk)−1F(xk), k =
0, 1, · · · , are well defined and converge to a solution x∗
of F(x) = 0 in S. Moreover, the solution x∗ is unique
in S̃ ∩ D, where S̃ := { x : ∥x − x0∥ ≤ t̃ } ⊂ D, t̃ =
(1+

√
1−2θ)/(βγ) and error estimate is given by

∥x∗−xk∥ ≤ (2θ)2k

2kβγ
= 21−k(2θ)2k−1η , k = 0, 1, ....

It is noteworthy that the Newton-Kantorovich theorem
gives useful results; for example, it provides not only the
error estimation and quadratic convergence but also the
local uniqueness of the solution for cross-coupled large-
scale nonlinear equations [17].

Fixed Point Theorem [18]: Let (X , d) be a complete
metric space. A function T : X → X is said to be a contrac-
tion mapping if there is a constant q with 0 ≤ q ≤ 1 such
that d(T x, T y) ≤ q · d(x, y) for all x, y ∈ X . Then, map
T admits one and only one fixed point x∗ in X (this means
T x∗ = x∗). Furthermore, this fixed point can be found as
follows. Start with an arbitrary element x0 in X and define
an iterative sequence by xn = T xn−1 for n = 1, 2, 3, ... .
This sequence converges, and its limit is x∗.

It should be noted that the fixed point theorem results in
reliable results and therefore a reduction in the dimension
of the workspace and linear convergence are both attained.

3. STATE FEEDBACK H∞ CONTROL PROBLEM
FOR WEAKLY COUPLED LARGE-SCALE

SYSTEMS

Consider linear time-invariant weakly coupled systems
[12–14, 17].

ẋ(t) = Aε x(t)+B1ε w(t)+B2ε u(t), (9a)

z(t) =C1x(t)+D1u(t), (9b)

where

x(t) :=
[

x1(t)
x2(t)

]
, u(t) :=

[
u1(t)
u2(t)

]
,

Aε :=
[

A11 εA12

εA21 A22

]
, B1ε :=

[
0 B111 εB112

0 εB121 B122

]
,

B2ε :=
[

B211 εB212

εB221 B222

]
,

C1 :=
[

block diag
(

C11 C12
)

0

]
, D1 :=

[
0

Im1+m2

]
.

xi(t) ∈ Rni are the state vectors, w(t) ∈ Rl is the distur-
bance, ui(t) ∈ Rmi are the control inputs, z(t) ∈ Rp is the
controlled output. ε denotes a small positive weak cou-
pling parameter that connects the linear system with other
subsystems.
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Without loss of generality, let us now consider the H∞
state feedback control problems under the following basic
assumption.

Assumption 1: 1) The pair (Aε , B1ε) is stabilizable
and (C1, Aε) is detectable for a given ε ∈ (0, ε∗],
ε∗ > 0.

2) The pair (Aε , B2ε) is stabilizable for a given ε ∈
(0, ε∗], ε∗ > 0.

It should be noted that the purpose of this paper is not
the study of a numerical computation approach for weakly
coupled large-scale systems, but the learning of the princi-
ples of various numerical algorithms. Thus, the complica-
tion and generalization of the problems should be avoided.

The H∞ optimal control problem for weakly coupled
large-scale systems is given below.

[H∞H∞H∞ Optimal Control Problem] Given a stabilizable
plant (9), find all admissible gain Kε such that ∥Gε(s)∥∞ <
γ , where Gε(s) equals the transfer function from w to z.

The following result is well known [19].

Lemma 1: Under Assumption 1, there exists an admis-
sible controller such that ∥Gε(s)∥∞ < γ if and only if the
following condition holds.

The ARE

AT
ε Pε+Pε Aε−Pε(B2ε BT

2ε−γ−2B1ε BT
1ε)Pε+CT

1 C1 = 0
(10)

has a unique positive semidefinite stabilizing solution.
Moreover, when this condition holds, the controller is

given by (11).

u(t) =−γ−2BT
2ε Pε x(t). (11)

In this section, the asymptotic structure of the solution
for the ARE (10) is established. First, for various values
of ε , such a structure is predicted by solving the ARE via
the OCTAVE code. Now, the matrices of the equation are
chosen as follows:

Aε =

[
0 ε

−2ε −2

]
, B1ε =

[
1 ε
ε 2

]
,

B2ε =

[
1 0
0 1

]
, CT

1 C1 =

[
1 0
0 1

]
, γ = 2.

For ε = 0.001, ε = 0.0001 and ε = 0.00001, each solution
Pε = P(ε) is given below.

P(0.001)

=

[
1.154700332801003 0.000303977305129
0.000303977305128 0.250000167067392

]
,

P(0.0001)

=

[
1.154700536323469 0.000030397737787
0.000030397737789 0.250000001670674

]
,

P(0.00001)

=

[
1.154700538358694 0.000003039773787
0.000003039773786 0.250000000016707

]
.

Hence, the following structure should be assumed.

Pε =

[
P1 εP12

εPT
12 P2

]
. (12)

It should be noted that the assumption of this structure is
also made in [12].

On the other hand, there exists a drawback that can-
not be ignored for a simple numerical example. In other
words, each of the solutions P(0.001), P(0.0001), and
P(0.00001) is not a symmetric matrix. It may be interest-
ing to note that these practical and informative results are
not shown in both undergraduate and graduate courses in
general. As a result, when the ARE under the weakly cou-
pled systems is considered, another numerical algorithm
is required. In the following discussion, the focus is on a
numerical algorithm that can obtain a symmetric solution
for any small value of ε .

Using the implicit function theorem, let us prove the
existence of the implicit functions Pi = Pi(ε) and P12 =
P12(ε) of ε such that

Pi = Pi(ε), i = 1, 2, P12 = P12(ε). (13)

In order to simplify the notation, the following matrix is
defined.

Sε := B2ε BT
2ε − γ−2B1ε BT

1ε

=

[
S1 + ε2S11 ε(S112 +S122)

ε(S112 +S122)
T S2 + ε2S22

]
,

Si = ST
i , Sii = ST

ii , i = 1, 2,

Q :=CT
1 C1 = block diag

(
Q1 Q2

)
.

Substituting the solution Pε of equation (12) into the ARE
(10), the set of algebraic matrix equations (14) is obtained.

G1 = AT
11P1 +P1A11 + ε2(AT

21PT
12 +P12A21)

−P1S1P1 − ε2(P1S11P1 +P12ST
112P1

+P12ST
122P1 +P1S112PT

12 +P1S122PT
12

+P12S2PT
12 + ε2P12S22PT

12)+Q1 = 0, (14a)

G12 = AT
11P12 +P1A12 +AT

21P2 +P12A22

−P1S1P12 −P1S112P2 −P1S122P2 −P12S2P2

+ ε2(P1S11P12 +P12ST
112P12

+P12ST
122P12 + ε2P12S22P2) = 0, (14b)

G2 = AT
22P2 +P2A22 + ε2(AT

12P12 +PT
12A12)

−P2S2P2 − ε2(P2S22P2 +PT
12S112P2

+PT
12S122P2 +P2ST

112P12 +P2ST
122P12

+PT
12S1P12 + ε2PT

12S11P12)+Q2 = 0, (14c)
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where

G(Pε) :=
[

G1 G12

GT
12 G2

]
= AT

ε Pε +Pε Aε −Pε Sε Pε +Q = 0.

The 0th order solutions P̄i, i = 1, 2, and P̄12 are defined
for ε → +0 for the algebraic matrix equations. Then, the
solutions P̄i satisfy the ARE (15)

AT
ii P̄i + P̄iAii − P̄iSiP̄i +Qi = 0, i = 1, 2, (15)

where Si := B1iiBT
1ii − γ−2B2iiBT

2ii.
The ARE (15) produces a unique positive semidefinite

stabilizing solution if γ is sufficiently large.
Let

γPi = inf{γ > 0| the ARE (15) has a positive semidefinite
stabilizing solution}.

Then, matrix Aii − SiP̄i is nonsingular if γ > γPi is cho-
sen. For the solution Pε of the ARE (10), the result is given
for ε →+0.

Theorem 1: It is assumed that the reduced-order ARE
(10), which is independent of the perturbation parameter
ε , has a positive semidefinite stabilizing solution. If a pa-
rameter γ > γ̄P = max{γP1 , γP2} is selected, then there ex-
ists a small σ̄ such that for all ε ∈ (0, σ̄), the ARE admits
a positive semidefinite stabilizing solution Pε that can be
written as equation (16).

Pε = P̄+O(ε) = block diag
(

P̄1 P̄2
)
+O(ε). (16)

Proof: The proof can be obtained by applying the im-
plicit function theorem [12]. To achieve this, it is sufficient
to show that the corresponding Jacobian is nonsingular at
ε = 0. It can be shown after some simplification that the
Jacobian of the ARE (3) with the limit ε →+0 is given by
(17).

JJJ =

 JJJ1 0 0
∗ JJJ12 ∗
0 0 JJJ2

 (17)

with

JJJi = (Aii −SiP̄i)
T ⊗ Ini + Ini ⊗ (Aii −SiP̄i)

T ,

JJJ12 = (A22 −S2P̄2)
T ⊗ In1 + In2 ⊗ (A11 −S1P̄1)

T .

The Jacobian (17) can be expressed as

detJJJ = detJJJ1detJJJ12detJJJ2. (18)

Apparently, JJJi and JJJ12 are nonsingular because the AREs
(15) have positive semidefinite stabilizing solutions. Thus,
detJJJ ̸= 0, i.e., JJJ is nonsingular at ε = 0. Therefore, the
existence of σ̄ such that the ARE (10) has an asymptotic
structure (16) is directly obtained by applying the implicit
function theorem.

The remainder of the proof shows that Pε is a positive
semidefinite stabilizing solution. Using the asymptotic
structure (16) for ε , equation (19) holds.

Aε −Sε Pε

= block diag
(

A11 −S1P̄1 A22 −S2P̄2
)
+O(ε).

(19)

The matrices Aii − SiP̄i are stable because the ARE (15)
has a positive semidefinite stabilizing solution. Therefore,
if ε is small, Aε −Sε Pε is also stable. Finally, the positive
semidefiniteness can be proved by using the Schur com-
plement [20] for a sufficiently small ε . □

3.1. Newton’s method for solving the ARE
In this section, a new algorithm for solving the ARE

(10), which can be calculated with a small dimension and
attains quadratic convergence, is proposed.

The Schur vector method [21] is being widely used for
solving the ARE (3) because the method has good preci-
sion and ensures the algorithm’s stability. However, it is
well known that in this method, the dimensions of the re-
quired workspace for the calculations are twice that of the
original full system [21]. Furthermore, when epsilon is
included in systems such as weakly coupled systems, it is
easy to verify that the obtained solutions become asym-
metric solutions. In fact, the simulation results for the
Schur vector method have shown such a disadvantage. On
the other hand, in [22], the following comments have been
documented.

“Newton’s method is potentially fast and more accurate
than the widely used Schur vector method. The break-
even point is between six and eight iterations assuming
that a Bartels-Stewart-like algorithm is used to solve the
algebraic Lyapunov equation (ALE).”

Thus, an algorithm that is based on Newton’s method
and uses the structure of the solution in equation (16) is
considered.

Let us consider Newton’s method (20).

P(k+1)
ε (Aε −Sε P(k)

ε )+(Aε −Sε P(k)
ε )T P(k+1)

ε

+P(k)
ε Sε P(k)

ε +Qε = 0, k = 0, 1, ... , (20a)

P(k)
ε =

[
P(k)

1 εP(k)
12

εP(k)T
12 P(k)

2

]
, (20b)

where the initial conditions are chosen as follows.

P(0)
ε = P̄ = block diag

(
P̄1 P̄2

)
. (21)

This method can be established as follows. Using the def-
inition of Newton’s method, the following equation holds.

vecP(k+1)
ε

= vecP(k)
ε −

[
∂vecG(Pε)

∂ (vecPε)T

∣∣∣∣
Pε=P(k)

ε

]−1

vecG(P(k)
ε )
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= vecP(k)
ε −

[
(Aε −Sε P(k)

ε )T ⊗ In

+ In ⊗ (Aε −Sε P(k)
ε )T

]−1

vecG(P(k)
ε ),

where n := n1 +n2.
Thus, the operation (Aε − Sε P(k)

ε )T ⊗ In + In ⊗ (Aε −
Sε P(k)

ε )T yields[
(Aε −Sε P(k)

ε )T ⊗ In + In ⊗ (Aε −Sε P(k)
ε )T

]
× (vecP(k+1)

ε −vecP(k)
ε )+vecG(P(k)

ε ) = 0.

Moreover, using the formulation vec(XA) = [AT ⊗
In]vecX , vec(AT X) = [In ⊗AT ]vecX results in

vec
[
(P(k+1)

ε −P(k)
ε )(Aε −Sε P(k)

ε )

+(Aε −Sε P(k)
ε )T (P(k+1)

ε −P(k)
ε )

]
+vecG(P(k)

ε )

= vec
[

P(k+1)
ε (Aε −Sε P(k)

ε )+(Aε −Sε P(k)
ε )T P(k+1)

ε

+P(k)
ε Sε P(k)

ε +Qε

]
= 0,

which is the desired result.
It should be noted that Newton’s method is equivalent

to the existing Kleinman algorithm [23].
The algorithm represented by equation (21) has the fea-

ture given in the following theorem.

Theorem 2: If the parameter-independent reduced-
order ARE (15) has a positive semidefinite stabilizing so-
lution, there exists a small σ̃ such that for all ε ∈ (0, σ̃),
0 < σ̃ ≤ σ̄ , the iterative algorithm represented by equa-
tion (20a) converges to the exact solution of Pε with a rate
equal to that of quadratic convergence; here, P(k)

ε is pos-
itive semidefinite. Moreover, the convergence solutions
equal those of Pε in the ARE (10) in the neighborhood of
the initial condition P(0)

ε = P̄. Subsequently, equation (22)
holds.

∥P(k)
ε −Pε∥=

O(ε2k
)

βλ2k , k = 0, 1, ... , (22)

where

λ = 2∥Sε∥< ∞, β = ∥[∇G(P(0)
ε )]−1∥,

η = β · ∥G(P(0)
ε )∥, θ = βηλ ,

∇G(Pε) =
∂vecG(Pε)

∂ (vecPε)T ,

G(Pε) = Pε Aε +AT
ε Pε −Pε Sε Pε +Q.

Proof: The proof follows directly by applying the
Newton-Kantorovich theorem [15, 16]. Taking the partial
derivative of the ARE (3) with respect to Pε yields

∇G(Pε) :=
∂vecG(Pε)

∂ (vecPε)T

= (Aε−Sε Pε)
T ⊗ In + In ⊗ (Aε−Sε Pε)

T . (23)

Thus, for any Paε and Pbε ∈Rn×n, the following inequality
holds.

∥∇G(Paε)−∇G(Pbε)∥ ≤ λ∥Paε −Pbε∥, (24)

where λ = 2∥Sε∥.
Moreover, using the stability that is established by

equation (19), it is shown that there exists a small σ̃
such that for ε ∈ (0, σ̃), σ̃ ≤ σ̄ , ∇G(Pε) is nonsingu-
lar. Therefore, there exists β such that ∥[∇G(Pε)]

−1∥ ≡ β .
On the other hand, using Theorem 1, it is easy to show
that ∥G(Pε)∥ = O(ε). Hence, there exists η such that
∥[∇G(Pε)]

−1∥ · ∥G(Pε)∥ ≡ η = O(ε). Thus, for a suffi-
ciently small ε , there exists θ such that θ ≡ βλη < 2−1

because η = O(ε). Thus, using the Newton-Kantorovich
theorem, there exists a small σ̃ such that for all ε ∈
(0, σ̃), σ̃ ≤ σ̄ , the iterative algorithm (20a) has quadratic
convergence.

Second, the uniqueness of the solution is discussed.
Now, let us define t̄∗ ≡ [1 −

√
1−2θ ]/(βλ ). Clearly,

S ≡ { Pε : ∥Pε −P(0)
ε ∥ ≤ t̄∗ } is in the convex set D. In the

sequel, since ∥Pε −P(0)
ε ∥ = O(ε) holds for a small ε , the

uniqueness of Pε is guaranteed for subset S by applying
the Newton-Kantorovich theorem. □

3.2. Fixed point algorithm for solving ALE
It is possible to solve the algorithm in equation (20a) by

using a linear equation because such an algorithm is based
on the ALE. However, this method results in an increase
in the workspace dimensions for the numerical computa-
tion when the dimensions of the matrices P1, P12, and P2

increase. That is, let us consider the following linear equa-
tion (25).

(20) ⇔ A(k)

 vecP(k+1)
1

vecP(k+1)
12

vecP(k+1)
2

=−

 vecQ̄1

vecQ̄12

vecQ̄2

 , (25)

where A(k) is given in the top of the next page.
In this case, if the dimension n is large, the dimension of

A(k) would be quite large because the Kronecker products
are used. Hence, in order to reduce the dimension of the
workspace, a new algorithm for solving the ALE (20a)
that is based on the fixed point algorithm is formulated.
Let us consider ALE (26) in the following general form:
P(k+1)

ε → Xε , Aε −Sε P(k)
ε → Eε and P(k)

ε Sε P(k)
ε +Qε → Hε .

ET
ε Xε +Xε Eε +Hε = 0, (26)

where Ei ∈Rni×ni is stable and Xi = XT
i ≥ 0 ∈Rni×ni , Hi =

HT
i ∈ Rni×ni , i = 1, 2.

Eε :=
[

E1 εE12

εE21 E2

]
, Hε :=

[
H1 εH12

εHT
12 H2

]
,
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A(k) :=

 ĀT
1 ⊗ In1 + In1 ⊗ ĀT

1 ε2(ĀT
21 ⊗ In1 + In1 ⊗ ĀT

21) 0
ĀT

12 ⊗ In2 ĀT
2 ⊗ In1 + In2 ⊗ ĀT

1 In1 ⊗ ĀT
21

0 ε2(ĀT
21 ⊗ In1 +(In1 ⊗ ĀT

21)UUUn1n2) (Ā12 ⊗ In2)UUUn1n2 + In2 ⊗ Ā12

 ,

Aε −Sε P(k)
ε :=

[
Ā1 εĀ12

εĀ21 Ā2

]
, P(k)

ε Sε P(k)
ε +Qε :=

[
Q̄1 εQ̄12

εQ̄T
12 Q̄2

]
.

Xε =

[
X1 εX12

εXT
12 X2

]
.

Substituting Xε into the ALE (26), the following set of
three linear equations (27) hold.

ET
1 X1 +X1E1 + ε2(ET

21XT
12 +X12E21)+H1 = 0, (27a)

ET
1 X12 +X1E12 +ET

21X2 +X12E2 +H12 = 0, (27b)

ET
2 X2 +X2E2 + ε2(ET

12X12 +XT
12E12)+H2 = 0. (27c)

By considering the form of (27), the following algorithm
in (28) to solve the ALE (26) is proposed.

ET
1 X (k+1)

1 +X (k+1)
1 E1

+ ε2(ET
21X (k)T

12 +X (k)
12 E21)+H1 = 0, (28a)

ET
2 X (k+1)

2 +X (k+1)
2 E2

+ ε2(ET
12X (k)

12 +X (k)T
12 E12)+H2 = 0, (28b)

ET
1 X (k+1)

12 +X (k+1)
12 E2

+X (k+1)
1 E12 +ET

21X (k+1)
2 +H12 = 0, (28c)

X (0)
i = 0, i = 1, 2,X12 = 0, k = 0, 1, ....

The following theorem indicates the convergence of the
algorithm in (28).

Theorem 3: If Ei, i= 1, 2 is stable, there exists a small
σ̂ such that for all ε ∈ (0, σ̂), 0 < σ̂ , the iterative algo-
rithm in (28) converges to the exact solutions of Xi and
X21 with a rate equal to that of linear convergence. Subse-
quently, equation (29) can be obtained.

∥X (k)
i −Xi∥= O(ε2k), i = 1, 2, (29a)

∥X (k)
12 −X12∥= O(ε2k), k = 1, 2, .... (29b)

Proof: The proof follows directly by applying the fixed
point theorem [18]. First, it is easy to verify that the algo-
rithms in (28) and (30) are identical.

X (k+1)
1

:= Z1(X
(k)
12 )

= ε2
∫ ∞

0
exp(ET

1 s)(ET
21X (k)T

12 +X (k)
12 E21)

× exp(E1s)ds+
∫ ∞

0
exp(ET

1 s)H1 exp(E1s)ds,

(30a)

X (k+1)
2

:= Z2(X
(k)
12 )

= ε2
∫ ∞

0
exp(ET

2 s)(ET
12X (k)

12 +X (k)T
12 E12)exp(E2s)ds

+
∫ ∞

0
exp(ET

2 s)H2 exp(E2s)ds, (30b)

X (k+1)
12 := Z3(X

(k+1)
1 , X (k+1)

2 ) = Z3(X
(k)
12 ). (30c)

Thus, taking into account the stability of E1 with re-
gard to (30a), there exist m1 > 0 and ϕ1 > 0 such that
∥exp(ET

1 s)∥ ≤ m1 exp(−ϕ1s) [24]. As a result, for any
Xa

12 and Xb
12

∥Z1(Xa
12)−Z1(Xb

12)∥

= ε2∥E21∥ · ∥Xa
12 −Xb

12∥
∫ ∞

0
m2

1 exp(−2ϕ1s)ds

= ε2M1∥Xa
12 −Xb

12∥,

there exist M1 and the parameter ε = ε1 such that
ε2M1 < 1. Using a technique similar to that given above,
there exist Mi and the parameter ε = εi, i = 2, 3 such that
ε2Mi < 1.

∥Z2(Xa
12)−Z2(Xb

12)∥= ε2M2∥Xa
12 −Xb

12∥,
∥Z3(Xa

12)−Z3(Xb
12)∥= ε2M3∥Xa

12 −Xb
12∥.

Thus, it is easy to verify that the algorithm in (28) attains
linear convergence for the fixed point theorem. □

4. NUMERICAL EXAMPLE

In order to verify the efficiency of the proposed algo-
rithms in (20) and (28), a numerical example is provided.
The system matrices of the weakly coupled systems (9)
are given as follows [25]:

A11 =


0 1 −0.266 −0.009

−2.75 −2.78 −1.36 −0.037
0 0 0 1

−4.95 0 −55.5 −0.039

 ,

εA12 =


0.0024 0 −0.087 0.002
−0.185 0 1.11 −0.011

0 0 0 0
0.222 0 8.17 0.004

 ,
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εA21 =


0.021 0 0.121 0.003
−1.1 0 −1.62 −0.015

0 0 0 0
−2.43 0 1.37 −0.034

 ,

A22 =


−0.21 1 −1.6 −0.005
−1.9 −1.8 9.3 −0.12

0 0 0 1
−3.1 0 −56 0.032

 ,

B111 =


0

36.1
0
0

 , B122 =


0

78.9
0
0

 ,

B112 = B121 = 0,

B211 =


0

3.5
0
0

 , B222 =


0

4.2
0
0

 , B212=B221=0,

C1 =

[ √
0.5I8

02×8

]
, D1 =

[
08×2

I2

]
.

The two basic quantities are γP1 = 9.7396 × 10−2 and
γP2 = 5.3678 × 10−2. Thus, for every boundary value
γ > γ̄P = max{γP1 , γP2} = 9.7396× 10−2, the ARE (10)
has a positive semidefinite stabilizing solution for a suf-
ficiently small ε . On the other hand, using MATLAB,
the minimum value of γ∗ such that there exists a dynamic
feedback controller is γ∗ = 9.7396×10−2 for ε = 10−3.

In order to verify the exactitude of the solution, the
error per iteration in Table 1 can be calculated, where
ε = 0.1, γ = 10, and the convergence condition is given
by ∥G(P(k)

ε )∥< 10−10.
In Table 1, it is easy to verify that the proposed algo-

rithm corresponds to quadratic convergence. Moreover,
Table 2 shows the errors ∥G(P(k)

ε )∥ per iteration for vari-
ous values of ε with γ = 10. Hence, it can be observed
from Table 2 that the algorithm in (20a) attains quadratic
convergence.

Table 1. Error per iterations.

k ∥G(P(k)
ε )∥

0 6.3881×10−1

1 4.6193×10−2

2 3.1037×10−4

3 8.6281×10−10

4 4.3453×10−11

Table 2. Error per iterations.

k ∥L(X (k)
ε )∥

0 6.3881×10−1

1 7.3149×10−1

2 3.1375×10−3

3 5.5756×10−5

4 5.7489×10−7

5 6.9411×10−9

6 7.4439×10−11

The convergence of the algorithm in (28) is demon-
strated. For ε = 0.1, Table 3 shows the errors per it-
eration for the algorithm for the first iteration of New-
ton’s method, where the convergence condition is given
by ∥L(X (k)

ε )∥ = ∥ET
ε X (k)

ε +X (k)
ε E +Hε∥ < 10−10. From

Table 3, it can be verified that the proposed algorithm sat-
isfies (29). For various values of ε , it can also be found
from Table 4 that the proposed algorithm satisfies the lin-
ear convergence based on (29). Hence, the combined al-
gorithms in (20) and (28) of this paper are very attrac-
tive in the sense that the initial condition (21) of Newton’s
method guarantees the quadratic convergence for a small
epsilon. Furthermore, even if the large-scale systems (1)
are composed of two four-dimensional subsystems, the re-
quired workspace is four. This feature is very useful from
the practical viewpoint. Finally, since OCTAVE program-
ming is easy, these algorithms appear to be useful in the

Table 3. ∥G(P(k)
ε )∥.

k \ ε ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

0 6.3881×10−2 6.3881×10−3 6.3881×10−4 6.3881×10−5 6.3883×10−6

1 3.5601×10−4 3.5458×10−6 3.5444×10−8 3.4186×10−10 2.7829×10−11

2 3.5601×10−4 2.2232×10−11 2.0435×10−11 2.1110×10−11

3 2.5761×10−11

Table 4. ∥L(X (k)
ε )∥.

k \ ε ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

0 6.3881×10−2 6.3881×10−3 6.3881×10−4 6.3881×10−5 6.3881×10−6

1 7.3149×10−3 7.3149×10−5 7.3149×10−7 7.3150×10−9 7.3258×10−11

2 3.1375×10−7 3.1215×10−11 1.4713×10−13 1.0316×10−13

3 5.5843×10−11
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numerical analysis in the control engineering course.

5. PRACTICE EXERCISE

Finally, the following optimization problem is dis-
cussed for the practice exercise in numerical analysis in
the control engineering course. Let us consider the fol-
lowing example exercise.

Exercise: Solve the following optimization problem
with inequality constraint.

min
P,K,ε

Tr[P] (31a)

subject to

FFF1(P,K,ε)
:= P(A+BKC)+(A+BKC)T P+ εPDDT P

+ ε−1(E1 +E2KC)T (E1 +E2KC)

+CT KT RKC+Q = 0, (31b)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rℓ×n, D ∈ Rn×p, E1 ∈
Rp×n, E2 ∈ Rp×m, Q = QT > 0, Q ∈ Rn×n and R = RT >
0, R ∈ Rm×m are given. On the other hand, P ∈ Rn×n,
K ∈ Rm×ℓ and ε ∈ R are the optimization variables.

It should be noted that this problem originated in [26].
As an extension of the Lagrange theory for a classical op-
timization problem, it can be extended to the so-called
Karush-Kuhn-Tucker (KKT) conditions by the following
theorem.

Karush-Kuhn-Tucker (KKT) conditions [20]: As-
sume that f (xxx), hi(xxx) ∈ R, i = 1, ... ,m are all differen-
tiable. Let us consider the following basic mathematical
optimization problem subject to m inequality constraints.

min
xxx

f (xxx) (32a)

subject to hi(xxx)≤ 0, i = 1, ... ,m. (32b)

If the function f (xxx) attains at point xxx∗ a local minimum
subject to the set K = {xxx | fi(xxx) ≤ 0(i = 1, ... ,m)}, then
there exists a vector of Lagrange multipliers SSS0, SSS0 =[

S1 · · · Sm
]

such that the following conditions are
satisfied:

∂ f (xxx∗)
∂xxx

+
m

∑
i=1

Si
∂hi(xxx∗)

∂xxx
= 0, (33a)

hi(xxx∗)≤ 0, (33b)

Sihi(xxx∗) = 0, (33c)

Si ≥ 0, i = 1, ... ,m. (33d)

In other words, the conditions (33) are necessary condi-
tions for a local minimum.

In [26], it should be noted that the theory of Lagrange
multipliers was used to derive the necessary conditions ex-
cept for ε . Specifically, for the variable ε , linear search

was considered. In contrast with [26], a complete opti-
mization problem is solved using the KKT conditions in
this paper.

First, let us define the following Hamiltonian (34)

L(P,G,K,ε) := Tr[P]+Tr[GFFF1(P,K,ε)], (34)

where G ∈ Rn×n is a symmetric matrix of Lagrange mul-
tipliers.

Then, the higher order nonlinear matrix equations can
be derived using the KKT conditions.

∂L
∂G

=FFF1(P,K,ε) = 0, (35a)

∂L
∂P

=FFF2(P,G,K,ε) = GAT
K +AKG+ In = 0, (35b)

∂L
∂K

= [BT P+ ε−1ET
2 E1

+(ε−1ET
2 E2 +R)KC]G = 0, (35c)

∂L
∂ε

=FFF4(P,G,K,ε)

= Tr[GPDDT P]− ε−2Tr[GET
K EK ] = 0, (35d)

where AK = A+BKC+ εDDT P and EK = E1 +E2KC.

5.1. Computational algorithms
In order to obtain the solutions, P, G, K and ε , Newton’s

method can be used.

xxx(k+1) = xxx(k)− [JJJ(k)]−1 fff (xxx(k)),

xxx(0) = xxx0, k = 0, 1, 2, 3, ... , (36)

where

xxx(k) :=
[
(vecP(k))T (vecG(k))T (vecK(k))T ε (k)

]T
,

fff (xxx(k)) :=
[
(vecFFF (k)

1 )T · · · (vecFFF (k)
4 )T

]T
,

FFF (k)
1 :=FFF1(P(k), K(k), ε (k)),

FFF (k)
i :=FFF i(P(k), G(k), K(k), ε (k)), i = 2, 3, 4,

FFF3 =FFF3(P,G,K,ε) = [BT P+ ε−1ET
2 E1

+(ε−1ET
2 E2 +R)KC]GCT = 0,

JJJ(k) := JJJ(P(k), G(k), K(k), ε (k))

∇ fff (xxx) = JJJ(P, G, K, ε) =
∂ fff (xxx)

∂xxx

=


J11 0 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44

 ,

xxx :=
[
(vecP)T (vecG)T (vecK)T ε

]T
,

Ji1 =
∂vecFFF i

∂ (vecP)T , Ji2 =
∂vecFFF i

∂ (vecG)T ,

Ji3 =
∂vecFFF i

∂ (vecK)T , Ji4 =
∂vecFFF i

∂ε
,
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J11 := In ⊗AT
K +AT

K ⊗ In,

J13 :=CT

⊗ (PB+ ε−1(ET
1 E2 +CT KT ET

2 E2)+CT KT R)

+(PB+ ε−1(ET
1 E2 +CT KT ET

2 E2)+CT KT R)

⊗CT ,

J14 := vec(PDDT P− ε−2ET
K EK),

J21 := G⊗ (εDDT )+(εDDT )⊗G,

J22 := In ⊗AK +AK ⊗ In,

J23 := (GCT )⊗B+B⊗ (GCT ),

J24 := vec(GPDDT +DDT PG), J31 := (CG)⊗BT ,

J32 :=C⊗ [BT P+ ε−1ET
2 E1 +(ε−1ET

2 E2 +R)KC],

J33 := (CGCT )⊗ (ε−1ET
2 E2 +R),

J34 :=−ε−2vec[(ET
2 E1 +ET

2 E2KC)GCT )]

J41 := [vec(DDT PG+GPDDT )]T ,

J42 := [vec(PDDT P− ε−2ET
K EK)]

T ,

J43 :=−ε−2(ET
2 E1GCT +CGET

1 E2Umℓ

+ET
2 E2KCGCT +CGCT KT E2E2Umℓ),

J44 := 2ε−3Tr[GET
K EK ].

The initial conditions xxx0 can be chosen such that the closed
loop system is asymptotically stable.

It is well known that Newton’s method attains local
quadratic convergence. However, the computation of the
Jacobi matrix JJJ is complicated. Moreover, for all k, the
Jacobi matrix JJJ should be nonsingular. In order to avoid
such disadvantages, the steepest descent method can be
used.

Consider the following difference equation based on the
steepest descent method.

xxx(k+1) = xxx(k)−µ{xxx(k)−ggg(xxx(k))},
xxx(0) = xxx0, k = 0, 1, 2, 3, ..., (37)

where

ggg(xxx(k))

:=
[
(vecP̃(k))T (vecG̃(k))T (vecK̃(k))T ε̃ (k)

]T
,

vecP̃(k) :=GGG1(K(k), ε (k)),

vecG̃(k) :=GGG2(P(k), K(k), ε (k)),

K̃(k) :=GGG3(P(k), G(k), ε (k)),

ε̃ (k) :=GGG4(P(k), G(k), K(k)),

GGG1(K, ε) = [AT
K ⊗ In + In ⊗AT

K ]
−1vec(εPDDT P

− ε−1ET
K EK −CT KT RKC−Q),

GGG2(P, K, ε) =−[AK ⊗ In + In ⊗AK ]
−1vecIn,

GGG3(P, G, ε) =−(ε−1ET
2 E2 +R)−1(BT P+ ε−1ET

2 E1)

×GCT (CGCT )−1,

GGG4(P, G, K) =

√
Tr[GET

K EK ]

Tr[GPDDT P]
.

Furthermore, µ is a small positive parameter.
Next, the convergence proof is considered. The Taylor

expansion expresses ggg(xxx) as follows:

ggg(xxx) = ggg(ααα)+∇ggg(ααα)(xxx−ααα)+O
(
(xxx−ααα)2) , (38)

where xxx = ααα is a solution for equations fff (xxx) = 0 or the
equivalently to ggg(xxx) = xxx. Hence, we have

∥xxx(k+1)−ααα∥
= ∥xxx(k)−ααα −µ{xxx(k)−ααα −ggg(xxx(k))+ggg(ααα)}

≤
∥∥∥(1−µ)In̄ +µ∇ggg(ααα)

∥∥∥ · ∥xxx(k)−ααα∥

+µO
(
∥xxx(k)−ααα∥2

)
, (39)

where n̄ := 2n2 +mℓ+1.
In this case, by letting βββ =ααα +O(µ), we have

∥xxx(k+1)−ααα∥ ≤
∥∥∥(1−µ)In̄ +µ∇ggg(βββ )+O(µ2)

∥∥∥
×∥xxx(k)−ααα∥+µO

(
∥xxx(k)−ααα∥2

)
.

(40)

Finally, the considered difference equation is locally and
asymptotically stable, if∥∥∥(1−µ)In̄ +µ∇ggg(βββ )+O(µ2)

∥∥∥< 1. (41)

This means that if condition (41) holds, the steepest de-
scent method converges because of the fixed point theo-
rem. In other words, if βββ is very close to a solution ααα , the
steepest descent method converges to the solution under
the condition xxx0 = βββ .

It should be noted that, in comparison to [27], the
proposed algorithm that is based on the steepest descent
method has been improved. When we consider equation
of fff (xxx) = 0, the previous algorithm in [27] is xxx(k+1) =
xxx(k) + µ fff (xxx(k)). The proposed algorithm is (37), where
ααα − ggg(ααα) = 0 is satisfied when xxx = ααα is a solution of
fff (xxx) = 0. Here, the nonlinear equation part fff (xxx) has been
changed into xxx−ggg(xxx). As a result, the region of conver-
gence improves. In fact, although the direct application of
the existing algorithm resulted in a failure, it was observed
that the proposed technique has converged to the solution
set in the numerical example.

Remark 1: The considered problem is usually came
to optimization problem with bilinear matrix inequalities
(BMI) constraints or rank-constrained linear matrix in-
equality (LMI) conditions. It is well known that these
problems are NP-hard as non-convex optimization prob-
lem and it is hard to solve.
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5.2. Numerical result
In order to demonstrate the efficiency of the algorithms,

the following practical example based on the lateral axis
dynamics of the L-1011 aircraft [26] is discussed. The
system matrices are given as follows.

A =


−2.98 0.93 0 −0.034
−0.99 −0.21 0.035 −0.0011

0 0 0 1
0.39 −5.555 0 −1.89

 ,

B =


−0.032

0
0

−1.6

 , C =

[
0 0 1 0
0 0 0 1

]
, D =


1.5

0
0
0

 ,

E1 =
[

0 1 0 0
]
, E2 = 0, Q = I4, R = 1.

The initial conditions are given below.

ε (0) = 0.01, K(0) =
[

1 1
]
,

P(0)(A+BK(0)C)+(A+BK(0)C)T P(0)

+ ε (0)P(0)DDT P(0)+{ε (0)}−1E(0)T
K E(0)

K

+Q+CT K(0)T RK(0)C = 0,

G(0)(A+BK(0)C+ ε (0)DDT P(0))T

+(A+BK(0)C+ ε (0)DDT P(0))G(0)+ I4 = 0,

E(0)
K = E1 +E2K(0)C.

By using the Newton’s method (36) or the steepest descent
method (37), the static output feedback gain K and other
variables P, G, ε are solved as

K =
[

1.5004 1.6336
]
,

P =


7.9952 −2.1392×10

−2.1392×10 6.5126×10
−4.4583×10−1 4.7683×10−1

−1.0360×10−1 −1.7530×10−1

−4.4583×10−1 −1.0360×10−1

4.7683×10−1 −1.7530×10−1

1.9967 6.9586×10−1

6.9586×10−1 5.6390×10−1

 ,

G =


3.1262×10−1 −7.0744×10−1

−7.0744×10−1 4.3857
1.2169 −8.0194

2.3559×10−1 −1.1964

1.2169 2.3559×10−1

−8.0194 −1.1964
2.0472×10 −5.0000×10−1

−5.0000×10−1 1.8737

 ,

ε = 3.0425×10−2,

min
P,K,ε

Tr[P] = 7.5682×10.

It should be noted that Newton’s method (36) converges
to the exact solution with an accuracy of 10−11 after nine
iterations. The error per iterations are given in Table 5.

Table 5. Error per iterations.

k Errors
0 1.1705×104

1 6.0932×103

2 2.6824×103

3 1.0178×103

4 4.7000×102

5 4.8751×102

6 1.7830×10
7 8.7176×10−1

8 1.8507×10−5

9 1.8945×10−12

On the other hand, under the same convergence accu-
racy, the steepest descent method (37) converge after 98
iterations for µ = 0.9. It should be noted that although the
required number of iterations is different, two numerical
algorithms yield the same solutions.

It can be observed that Newton’s method involves the
least number of iterations. However, taking into account
the difficulty in the derivation of Newton’s method, the
steepest descent method is more suitable for implementa-
tion, even though the convergence is slow.

On the other hand, the existing algorithm in [26] yields
the following results:

K = K̄ =
[

1.5004 1.63431
]
, ε = ε̄ = 0.0305,

min
P,K,ε

Tr[P̄] = 75.68.

Therefore, it can be easily observed that the exact cost
bound obtained by means of Newton’s or steepest descent
method is very close to the cost bound in [26]. However,
since these results are very close and the technique does
not require complex calculations unlike Newton’s method,
it is suitable to use the steepest descent method owing to
easy derivation.

6. CONCLUSION

In this paper, the applications of basic theorems have
been proposed to be taught in the numerical analysis in the
control engineering course. After establishing the struc-
ture of the ARE that is related to the H∞ control prob-
lem via the implicit function theorem, an algorithm for
solving the ARE for weakly coupled large-scale systems
has been proposed. Since the proposed iterative algo-
rithm is derived by Newton’s method, it is noteworthy that
the quadratic convergence and uniqueness of the obtained
solution are guaranteed. Moreover, in order to simplify
the algebraic manipulation, the fixed point iterations have
been combined. As a result, it has been shown that linear
convergence is attained. A numerical example has shown
excellent results. Furthermore, the practice exercise based
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on the optimization problem is discussed. After establish-
ing the optimality conditions via the KKT conditions, sev-
eral numerical algorithms are applied. Finally, the poten-
tial and usefulness of these informative proposals for the
numerical analysis in the control engineering course are
demonstrated.

The three theorems constitute an important long-
standing educational area. However, these methods have
not yet been discussed with regard to the coupled large
systems that have been studied in [28, 29]. It is expected
that these applications can be addressed in future studies.
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