微分積分学 II 中間試験: 担当 向谷 博明

2019年11月8日

- `	010 1173 0						
	座席番号	学部	学籍番号	氏名	得点		

以下のマクローリン展開を x^4 次の項まで求めよ. ただし、剰余項は不要である.

- (1) e^x .
- (2) $\sin x$.
- (3) $\cos x$.

微分積分学 II【「可」専用】 中間試験: 担当 向谷 博明

※途中の計算式がないものは無効 2019年11月8日

	WE I THISTORY OF O THE MANY THE PER TH					
	座席番号	学部	学籍番号	氏名	得点	
Ì						

【1】数列
$$\{a_n\}_{n=1}^\infty$$
 は、漸化式 $a_{n+1}=\frac{1}{2}(a_n^2+1),\,a_1=0$ によって定義される. $\lim_{n\to\infty}a_n$ を求めよ.

【
$$2$$
 】級数 $\sum_{n=0}^{\infty} \frac{-1}{n} x^n$ の収束半径を求めよ.

[3]

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 - y^2} & (x,y) \neq (0,0) \\ a & (x,y) = (0,0) \end{cases}$$

とおく.

- **(1)** 原点 (0,0) で連続となるように a を定めよ.
- (2) $f_x(0,0), f_y(0,0)$ を求めよ.

【 4 】 $z=y^2e^{-x}$ であるとき, $z_x,\,z_y,\,z_{xy},\,z_{xx},\,z_{yy}$ を計算せよ.

【 5 】 $z=f(x,y), \ x=s+t, \ y=s-t$ に対し、 $\frac{\partial z}{\partial s}=z_s, \ \frac{\partial z}{\partial t}=z_t$ を計算せよ.

【 6 】 $f(x,y)=e^x\sin y$ とおく. マクローリン展開の 3 次の項まで求めよ. ただし、 剰余項を求める必要はない.

【7】 $f(x,y) = x^2 + 2y^2 - 2xy + 2x - 6y$ の極値を求めよ.

微分積分学 II 中間試験: 担当 向谷 博明 ※途中の計算式がないものは無効 2019 年 11 月 8 日

学部	学籍番号	氏名

- 【1】数列 $\{a_n\}_{n=1}^\infty$ は、漸化式 $a_{n+1}=\frac{1}{2}\sqrt{a_n^3+3},\ a_1=0$ によって定義される. $\lim_{n\to\infty}a_n$ を求めよ.
- 【 2 】 級数 $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (2x)^n$ の収束半径を求めよ.

[3]

$$f(x,y) = \begin{cases} \frac{x^3y}{x^2 + y^2} & (x,y) \neq (0,0) \\ a & (x,y) = (0,0) \end{cases}$$

とおく.

- (1) 原点 (0,0) で連続となるように a を定めよ.
- (2) $f_x(0,0), f_y(0,0)$ を求めよ.
- (3) 原点で全微分可能であるか?理由と共に結果を述べよ.

【 4 】
$$z=x\sin^{-1}\left(\frac{y}{x}\right)$$
 であるとき、 z_x 、 z_y 、 z_{xx} 、 z_{yy} を計算せよ。 ただし、 $z_{xy}=\frac{f_1(x,y)}{(x^2-y^2)\sqrt{x^2-y^2}}$ 、 $z_{xx}=\frac{f_2(x,y)}{(x^2-y^2)\sqrt{x^2-y^2}}$ 、 $z_{yy}=\frac{f_3(x,y)}{(x^2-y^2)\sqrt{x^2-y^2}}$ として、 $f_i(x,y)$ 、 $i=1,\ 2,\ 3$ を答よ。この指定に従わない場合は、採点を行わない。

- [5] $f(x,y) = \sin x \tan^{-1} y$ とおく.
- (1) マクローリン展開の4次の項まで求めよ. ただし, 剰余項を求める必要はない.
- (2) $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-xy}{xy(x^2+2y^2)}$ を求めよ.

【6】
$$x = \frac{s^2 - t^2}{2}, y = st$$
 に対し、次の問いに答えよ.

- (1) z = f(x,y) と置くとき, $\frac{\partial z}{\partial s} = z_s$, $\frac{\partial z}{\partial t} = z_t$ を計算せよ.
- (2) $z_s^2 + z_t^2$ を計算せよ.

(3)
$$\frac{\partial^2 z}{\partial s^2} + \frac{\partial^2 z}{\partial t^2} = z_{ss} + z_{tt}$$
 を計算せよ.

【7】
$$f(x,y) = x^4 + y^4 + 2x^2y^2 - \frac{8}{3}y^3 - 2x^2 + 2y^2$$
 の極値を求めよ.

微分積分学 II 2019年11月8日 中間試験: 担当 向谷 博明

座席番号	学部	学籍番号	氏名	得点

[1]

[2]

[3]