ɽ»æ(FrontPage) | ÊÔ½¸(´ÉÍý¼ÔÍÑ) | º¹Ê¬ | ¿·µ¬ºîÀ® | °ìÍ÷ | RSS | ¸¡º÷ | ¹¹¿·ÍúÎò

¿¢Êª¤Î¥ß¥È¥³¥ó¥É¥ê¥¢´ØÏ¢ÊÑ°ÛÂΤˤĤ¤¤Æ -

Ìܼ¡

¿¢Êª¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤ÏºÙ˦¼Á¤Î²òÅü·Ï¤È¶¨Ä´¤·ºÙ˦ÆâÂå¼Õ¤Î´ðÈפò·ÁÀ®¤·¤Æ¤¤¤ë¡£¤µ¤é¤ËÍÕÎÐÂΤȶ¨Ä´¤·¤Æưʪ¤Ë¸«¤é¤ì¤Ê¤¤Æȼ«¤Î½ÅÍפÊÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë¡£Îã¤È¤·¤Æ¡¢ÍÕÎÐÂÎÆâ¤ÎúÁǸÇÄêÂå¼Õ·ÐÏ©¡Ü¸÷²½³Ø·Ï¤È¥ß¥È¥³¥ó¥É¥ê¥¢Âå¼Õ·Ï¤ÎÏ¢·È¤¬¤¢¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤¬ÊѲ½¤¹¤ëÆÍÁ³ÊѰۤˤè¤Ã¤Æ¡¢ÍÍ¡¹¤Ê·Á¼Á¤¬À¸¤¸´Ñ¬¤µ¤ì¤ë¡£Æä˥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Ç¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë´ØÏ¢¤¹¤ë³Ë°äÅÁ»Ò¤ÎÊÑ°ÛÂΤ¬¼¡¡¹¤È¸«¤¤¤À¤µ¤ì¤Æ¤¤¤ë¡£¤½¤ì¤é¤Ë¤Ä¤¤¤Æ¤Þ¤È¤á¤Æ¤ß¤¿¤¤¡£

¿¢Êª¼ï¤Î°ã¤¤¤Çº¹¤¬¸«¤é¤ì¤ë¡£¥¿¥Ð¥³¡¢¥¤¥Í¡¢¥Æ¥ó¥µ¥¤¤Ç¤ÏͺÀ­ÉÔÌ­¤Þ¤¿¤ÏÌ­À­²óÉü°äÅÁ»Ò¤Ë¤è¤Ã¤ÆÊÑ°ÛÂΤ¬¸«¤Ä¤±¤é¤ì¤Æ¤¤¤ë¡£¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Ë¤â¤½¤¦¤¤¤¦¤â¤Î¤¬¤¢¤ë¤¬¡¢¤½¤ì°Ê³°¤Î·Á¼Á¤«¤é¸«¤¤¤À¤µ¤ì¤¿ÊÑ°ÛÂΤÎÊý¤¬Â¿¤¤¡£

¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Ë¤Ï¿¿ô¤Î³Ë°äÅÁ»ÒÊѰۤˤè¤ë¡¢¥ß¥È¥³¥ó¥É¥ê¥¢´ØÏ¢ÊÑ°ÛÂΤ¬¸«¤Ä¤«¤Ã¤Æ¤­¤¿¡£³Ë°äÅÁ»ÒÊѰۤǤ¢¤ë¤È¤³¤í¤¬¶½Ì£¿¼¤¤¤È¤³¤í¤Ç¡¢ºÇ¶á¤Ïưʪ¤Ç¤â¥ß¥È¥³¥ó¥É¥ê¥¢¤òÀ©¸æ¤¹¤ë³Ë°äÅÁ»Ò¤ËÃíÌܤ¬½¸¤Þ¤Ã¤Æ¤¤¤ë¤é¤·¤¤¡£ ¡¡¡¡http://www.biol.tsukuba.ac.jp/~jih-kzt/¡¡¡¡¡¡ÃÞÇÈÂç³Ø¡¡ÃæÅĶµ¼ø¤Î¸¦µæ¼¼¡¡¡¡http://www.jba.or.jp/top/2011/0516_miraibio_cellinnova1.html¡¡¡¡¡¡¡Ö¿À·ÐºÙ˦µ¡Ç½¤ËÃåÌܤ·¤¿¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¸ÆµÛº¿°Û¾ï¤òµ¯¤³¤¹°äÅÁ»ÒÊѰۤηÏÅýŪ¤Êõº÷¡×¡¡¡¡ºë¶Ì°å²ÊÂç³Ø¡¡¥²¥Î¥à°å³Ø¸¦µæ¥»¥ó¥¿¡¼¡¡²¬ºê¡¡¹¯»Ê¡¡ÀèÀ¸¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡º£¸å¤Î¸¦µæ¤¬´üÂÔ¤µ¤ì¤ë¡£

¿¢Êª¤Ë¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤ÈÍÕÎÐÂΤǤΠRNA ÊÔ½¸¤Ë´Ø¤ï¤ë°ø»Ò¤Ç¤¢¤ë PPR ¥¿¥ó¥Ñ¥¯¼Á¤¬²¿É´¼ïÎà¤â¸ºß¤·¤Æ¤¤¤ë¡£PPR¥¿¥ó¥Ñ¥¯¼Á¤Ë´Ø¤¹¤ëÍ¥¤ì¤¿²òÀ⤬¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£

¡Ö¿å²¹Äã²¼¤ÇǾ¤ÎRNA¤òÊÔ½¸¤¹¤ë¥¿¥³¡¢¡Ö´¨¤µÂкö¡×¤«¡¢¶Ã¤­¤Îȯ¸«¡¡¡¡RNAÊÔ½¸Ç½ÎϤ¬°Û¾ï¤Ë¹â¤¤Æ¬Â­Îà¡¢Íýͳ¤ò¼¨º¶¤¹¤ë¿·¤¿¤Ê¾Úµò¡×¡¡¡¡https://natgeo.nikkeibp.co.jp/atcl/news/23/061200294/?ST=m_news¡¡¤È¤¤¤¦ National Geographic ¤Îµ­»ö¤¬¤¢¤Ã¤¿¡£

¿¢Êª¤Ç¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤¬ÊѲ½¤¹¤ë¤ÈÍÍ¡¹¤Ê¡Ê»ä¤Ë¤È¤Ã¤Æ¤Ï¡Ë¶½Ì£¿¼¤¤·Á¼Á¤¬À¸¤¸¤ë¡£¤·¤«¤·À¸°é¤ËÂФ·¤Æ¤Ï¤è¤¯¤Ê¤¤±Æ¶Á¤¬½Ð¤ä¤¹¤¤¤Î¤Ç¡Ö¤½¤ó¤Ê¤³¤È¤Ë²¿¤Î°ÕÌ£¤¬¤¢¤ë¤ó¤À¡ª¡×¤Èɾ²Á¤µ¤ì¤ë¤³¤È¤Ë¤Ê¤ë¡£ÌôºÞ¤òÍ¿¤¨¤ë¤³¤È¤Ç¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤òÀÚ¤êÂؤ¨¤ë¤³¤È¤¬¤Ç¤­¤ë¤ÈÊØÍø¤Ç¤¢¤ë¡£ ºÇ¶á¡¢¿Í´Ö¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤ò²þÁ±¤¹¤ëÌôºÞ¡¦ÊýË¡¤ò³«È¯¤·¤è¤¦¤È¤¤¤¦¸¦µæ¤¬À¹¤ó¤Ë¹Ô¤ï¤ì¤Æ¤¤¤ë¤è¤¦¤Ç¤¢¤ë¡£¡Ö¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½²þÁ±¡×¤Ç¸¡º÷¤¹¤ë¤È¸¦µæ·ë²Ì¤¬¤¿¤¯¤µ¤ó½Ð¤Æ¤¯¤ë¡£¿·Ê¹¤Îµ­»ö¤Ë¤â¤Ê¤Ã¤Æ¤¤¤ë¡£¡Ö¥ß¥È¥³¥ó¥É¥ê¥¢¡¢¼ã¤µ¤Î¸» ¡Ý µ¡Ç½Äã²¼¡¢Éµ¤¤Î°ú¤­¶â¤Ë¡× 2020/2/23 ÆüËܷкѿ·Ê¹ ¡¡¡¡¡¡https://www.teu.ac.jp/topics/2016.html?id=224¡¡¡¡¡¡¡Ö¥ß¥È¥³¥ó¥É¥ê¥¢¤ò³èÀ­²½¤¹¤ëÀ®Ê¬¤òõº÷¤·¡¢ Ĺ¼÷¤Î¥á¥«¥Ë¥º¥à¤ò²ò¤­ÌÀ¤«¤·¤¿¤¤¡×¡¡º´Æ£¶µ¼ø¤Î¸¦µæ¾Ò²ð¡¡¡¡https://www.mitomoonshot.med.tohoku.ac.jp/¡¡¡¡¡¡¥ß¥È¥³¥ó¥É¥ê¥¢³èÀ­²½¤òÄ̤¸¤Æ·ò¹¯¤Ë¹×¸¥¤¹¤ë¤³¤È¤òÌܻؤ¹¡¢°¤Éô ¹âÌÀÀèÀ¸¤òÂåɽ¼Ô¤È¤·¤¿Â絬ÌÏ¤Ê¥×¥í¥¸¥§¥¯¥È¤¬¿Ê¹Ô¤·¤Æ¤¤¤ë¡£¡¡¡¡¡¡https://www.amed.go.jp/content/000100951.pdf¡¡¡¡¡¡AMED ¤Ç¸ø³«¤µ¤ì¤Æ¤¤¤ë»ñÎÁ ¡¡

¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤ò²þÁ±¤¹¤ë²½¹çʪ¡¦ÊýË¡¤Ë¤Ä¤¤¤Æ

¿¢Êª¤Ç¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤¬Äã²¼¤¹¤ë¤ÈÀ¸°é¤ËÂФ·¤Æ¤è¤¤¤³¤È¤Ï²¿¤âµ¯¤­¤Ê¤¤¤¬¡¢Éµ¤¤Îưʪ¤Ç¤Ï¤Ê¤¼¤«¤½¤¦¤Ç¤â¤Ê¤¤¤é¤·¤¤¡£¤Þ¤¿ÀþÃî¡¢¥·¥ç¥¦¥¸¥ç¥¦¥Ð¥¨¤Ç¤â¤½¤¦¤Ç¤â¤Ê¤¤¤é¤·¤¤¡£ ¡Ö¥ß¥È¥³¥ó¥É¥ê¥¢ËÝÌõ¤ÎÁ˳²¤ÏAML¤Ë¤ª¤±¤ë¥Ù¥Í¥È¥¯¥é¥Ã¥¯¥¹Äñ¹³À­¤òÅý¹çŪ¥¹¥È¥ì¥¹±þÅú¤Î³èÀ­²½¤ò²ð¤·¤Æ¹îÉþ¤¹¤ë¡×¡¡¡¡¡¡David Sharon ¤é¡¡¡¡¡¡https://stm.sciencemag.org/content/11/516/eaax2863¡¡¡¡¡¡AML ¤Ï Acute myeloid leukemia ¤È¤¤¤¦Éµ¤¡¡Venetoclax ¤Ï¤½¤Î¼£ÎÅÌô¤À¤¬¡¢ÂÑÀ­¤¬¤Ç¤­¤Æ¤·¤Þ¤¦¤³¤È¤¬¤¢¤ë¤é¤·¤¤¡£

¡ÖÀ¸Íý³Ø ¥ß¥È¥³¥ó¥É¥ê¥¢Â»½ý¤Ë¤è¤ëĹ¼÷¡×¡¡¡¡¡¡https://www.cosmobio.co.jp/aaas_signal/archive/ec-20131105.asp¡¡¡¡¡¡¤³¤Î¤³¤È¤Ë¤Ä¤¤¤Æ²òÀ⤷¤Æ夤¤Æ¤¤¤ë¥Ú¡¼¥¸¡¡¡¡¡¡http://sudachi.hateblo.jp/entry/2018/08/29/120149¡¡¡¡¡¡Æ°Êª¤Ç¤Ï¡¢ÂÎÆâ¤Î°ìÉô¤ÎÁÈ¿¥¤Ë¤ª¤¤¤Æ¥ß¥È¥³¥ó¥É¥ê¥¢¤ËŬÅ٤ʻ½ý¤¬µ¯¤­¤ë¤³¤È¤Ç¡¢Â¾¤ÎÁÈ¿¥¤ÎºÙ˦¤ËÍÍ¡¹¤Ê±Æ¶Á¡ÊÎɤ¤¸ú²Ì¤ò´Þ¤à¡Ë¤¬½Ð¤ë¤È¤¤¤¦¸½¾Ý¤¬¸«¤¤¤À¤µ¤ì¤Æ¤¤¤ë¡£

¿¢Êª¤Ç¤â¥·¥¢¥ó¤Ê¤É¤Î¸ÆµÛÁ˳²ºÞ½èÍý¤Ç¡¢¤«¤¨¤Ã¤Æȯ²ê¤¬Â¥¿Ê¤µ¤ì¤ë¤È¤¤¤¦Îã¤â¤¢¤ë¡£¤·¤«¤·È¯²ê¤òÂ¥¿Ê¤¹¤ëÇ»Å٤ǤϸƵۤÏÁ˳²¤µ¤ì¤Æ¤¤¤Ê¤¤¤È¤¤¤¦À⤬¶¯¤¤¡£¡Öȯ²êÀ¸Êª³Ø¡×¡Ê¼ïÀ¸Êª³Ø²ñ¡¡ÊÔ½¸¡Ë¤È¤¤¤¦ËܤDzòÀ⤵¤ì¤Æ¤¤¤ë¡£¥·¥¢¥Ê¥ß¥É cyanamide ¤Ë¤Ä¤¤¤Æ¡¢112, 120 ¥Ú¡¼¥¸¤È 310 ¥Ú¡¼¥¸¤Ç¿¨¤ì¤é¤ì¤Æ¤¤¤ë¡£Nonogaki ÀèÀ¸¤Ë¤è¤ë¥ì¥Ó¥å¡¼¤â 2019 ǯ¤Ë½ñ¤«¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡The Long-Standing Paradox of Seed Dormancy Unfolded?¡¡¡¡¡¡Nonogaki H.¡¡¡¡¡¡Trends Plant Sci. 2019 Nov;24(11):989-998. doi: 10.1016/j.tplants.2019.06.011. Epub 2019 Jul 18. Review.¡¡PMID: 31327698 ¡¡¡¡¡¡¤½¤Î¸å¤â¸¦µæ¤¬¿Ê¤ó¤Ç¤¤¤ë¡£¡¡¡¡Old poisons, new signaling molecules: the case of HCN¡¡¡¡J Exp Bot. 2023 Aug 16;erad317. doi: 10.1093/jxb/erad317. Online ahead of print.¡¡¡¡Pablo Díaz-Rueda ¤Ê¤É¡¡¡¡PMID: 37586035

ȯ²ê¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Î´Ø·¸¤òʬÀϤ·¤¿ÏÀʸ¤Ï¾¤Ë¤â¤¢¤ë¡£¡¡¡¡¡¡ Conserved and Opposite Transcriptome Patterns during Germination in Hordeum vulgare and Arabidopsis thaliana.¡¡¡¡¡¡Zhu Y ¤Ê¤É¡¡¡¡¡¡Int J Mol Sci. 2020 Oct 7;21(19):E7404. doi: 10.3390/ijms21197404.¡¡¡¡¡¡PMID: 33036486 ¡¡¡¡¡¡Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination¡¡¡¡¡¡Genome Biol. 2017 Sep 15;18(1):172.¡¡¡¡¡¡doi: 10.1186/s13059-017-1302-3.¡¡¡¡¡¡Reena Narsai ¤é¡¡PMID: 28911330¡¡¡¡RNA-seq ¥Ç¡¼¥¿¤¬ GSE94459 ¤Ë¤¢¤ë¡£¡¡¡¡¡¡Intracellular reactive oxygen species trafficking participates in seed dormancy alleviation in Arabidopsis seeds.¡¡¡¡¡¡Jurdak R,¡¡¤Ê¤É¡¡¡¡¡¡New Phytol. 2022 Feb 17. doi: 10.1111/nph.18038. PMID: 35175638 Roles of Reactive Oxygen Species and Mitochondria in Seed Germination¡¡¡¡¡¡ Front. Plant Sci., 09 December 2021¡¡¡¡¡¡https://doi.org/10.3389/fpls.2021.781734¡¡¡¡¡¡¤È¤¤¤¦ÁíÀ⤬¤¢¤Ã¤¿¡£¡¡¡¡¡¡Why so Complex? The Intricacy of Genome Structure and Gene Expression, Associated with Angiosperm Mitochondria, May Relate to the Regulation of Embryo Quiescence or Dormancy-Intrinsic Blocks to Early Plant Life¡¡Corinne Best ¤é¡¡¡¡https://pubmed.ncbi.nlm.nih.gov/32397140/¡¡¤Ç¤â¡¢¿¢Êª¥ß¥È¥³¥ó¥É¥ê¥¢¤Èȯ²ê¤Î´Ø·¸¤Ë¤Ä¤¤¤ÆµÄÏÀ¤µ¤ì¤Æ¤¤¤ë¡£

Plant mitochondria - past, present and future.¡¡¡¡¡¡Møller IM, Rasmusson AG, Van Aken O. Plant J. 2021 Nov;108(4):912-959. doi: 10.1111/tpj.15495. Epub 2021 Oct 28. PMID: 34528296¡¡¡¡¡¡¤È¤¤¤¦¤¹¤Ð¤é¤·¤¤ÁíÀ⤬ȯɽ¤µ¤ì¤Æ¤¤¤ë¡£¤³¤ÎÁíÀâ¤Ç¤âȯ²ê¤Î¤³¤È¤Ë¿¨¤ì¤Æ¤¤¤ë¡£

¿¢Êª¤Ë¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤ÈÍÕÎÐÂΤǤΠRNA ÊÔ½¸¤Ë´Ø¤ï¤ë°ø»Ò¤Ç¤¢¤ë PPR ¥¿¥ó¥Ñ¥¯¼Á¤¬²¿É´¼ïÎà¤â¸ºß¤·¤Æ¤¤¤ë¡£Æü·Ð¥µ¥¤¥¨¥ó¥¹¡¡2014ǯ3·î¹æ ¤Ë¡¢¡Ö¶öÁ³¤¬»º¤àÀ¸Êª¤ÎÊ£»¨À­¡×¤È¤¤¤¦¤¹¤Ð¤é¤·¤¤µ­»ö¤¬·ÇºÜ¤µ¤ì¤Æ¤¤¤ë¡£ RNA ÊÔ½¸¤Ë´Ø¤ï¤ë°äÅÁ»Ò¤ÎÊ£»¨²½¤Ø¤Î¿Ê²½¤Ï¡¢¿Ê²½¤ò¸¦µæ¤¹¤ë³Ø¼Ô¤«¤é¤âÃíÌܤµ¤ì¤Æ¤¤¤ë¤³¤È¤¬¾Ò²ð¤µ¤ì¤Æ¤¤¤¿¡£Ê£»¨¤µ¤¬Áý¤¹Êý¸þ¤Ø¿Ê²½¤¹¤ë¤³¤È¤Ï¡¢É¬¤º¤·¤âŬ±þÅÙ¤ò¹â¤¯¤¹¤ë¤³¤È¤Ë¤Ä¤Ê¤¬¤é¤Ê¤¤¤³¤È¤¬¾Ò²ð¤µ¤ì¤Æ¤¤¤¿¡£Ê£»¨¤µ¤¬Áý¤¹¤è¤¦¤Ë¿Ê²½¤·¤Æ¤â¡¢¸ÄÂμ«¿È¤ÎÀ¸Â¸¡¢ÈË¿£¤Ë¤ÏÍ­Íø¤Ë¤Ê¤Ã¤Æ¤¤¤Ê¤¤¤³¤È¤¬¤¢¤ë¤é¤·¤¤¡£¤·¤«¤·½¸ÃĤò¹½À®¤¹¤ë¸ÄÂΤοÍÍÀ­¤¬Áý¤·¤ä¤¹¤¯¤Ê¤ê¡¢À¸°é¤Ï°­¤¯¤Æ¤â²¿¤é¤«¤Î¥¹¥È¥ì¥¹¤ËÂФ·¤Æ¶¯¤¯¤Ê¤Ã¤¿¸ÄÂΤ¬À¸¤¸¤Æ¡¢¤½¤Î¸ÄÂΤËÂФ¹¤ëÍø±×¤¬À¸¤¸¤ë¤³¤È¤â¤¢¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¤Þ¤¿¿¢Êª¤Ï¹â¤¤Â®ÅÙ¤ÇÀ¸°é¤¹¤ì¤Ð¤è¤¤¤È¤¤¤¦¤â¤Î¤Ç¤Ï¤Ê¤¤¡£ºîʪ¤Ç¤âÁáÀ¸¤ÎÉʼï¤ÈÈÕÀ¸¤ÎÉʼï¤ÎξÊý¤¬µá¤á¤é¤ì¤ë¡£À¸°é®Å٤˿ÍÍÀ­¤ò»ý¤¿¤»¤ë¤³¤È¤âɬÍפȤµ¤ì¤ë¤·¡¢¼ï»Ò¤Ç¤âȯ²ê»þ´ü¤¬Ê¬»¶¤¹¤ëÊý¤¬¤è¤¤¤³¤È¤¬¤¢¤ë¤È¡Öȯ²êÀ¸Êª³Ø¡×¡Ê¼ïÀ¸Êª³Ø²ñ¡¡ÊÔ½¸¡Ë¤È¤¤¤¦ËܤΠ163 ¥Ú¡¼¥¸¤Ë½ñ¤«¤ì¤Æ¤¤¤ë¡£¤½¤ÎÌò¤ËΩ¤Ã¤Æ¤¤¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡Ê¾Úµò¤Ï¤Ê¤¤¡Ë¡£È¯²ê»þ´ü¤¬Â¾¤Î¼ï»Ò¤È¤º¤ì¤ë¤³¤È¤Ç¡¢¤½¤Î¼ï»Ò¼«¿È¤ËÂФ·¤ÆÍø±×¤¬À¸¤¸¤ë¤³¤È¤¬¤¢¤êÆÀ¤ë¡£ PPR ¥¿¥ó¥Ñ¥¯¼Á¤Ï²¿É´¼ïÎà¤â¸ºß¤·¤Æ¤¤¤ë¤Î¤Ç¡¢¤½¤Î°ì¤Ä¤¬·ç¼º¤·¤¿ÊÑ°ÛÂΤϿôÉ´¼ïÎฺߤ·¤¦¤ë¡£Æó¼ïÎà¡¢»°¼ïÎà¤ÎÁȤ߹ç¤ï¤»¤À¤È¤â¤Ã¤È¿¤¯¤Ê¤ê¿ÍÍÀ­¤ò¹â¤¯¤¹¤ë¸µ¤Ë¤Ê¤ë¡£ÊÑ°Û¤·¤Ê¤¯¤Æ¤â¡¢Ä㤤³ÎΨ¤Ç RNA editing ¤¬¼ºÇÔ¤¹¤ì¤Ð¤½¤ì¤Ë¤è¤Ã¤Æ¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎƯ¤­¤¬Ä㤤¸ÄÂΡ¢ºÙ˦¤¬À¸¤¸¤ë²ÄǽÀ­¤¬½Ð¤Æ¤¯¤ë¡£¡Ö²½³Ø¤ÈÀ¸Êª¡×¡ÊÆüËÜÇÀ·Ý²½³Ø²ñµ¡´Ø»ï¡Ë2022ǯ Vol.60 No.5 ¤Ë±×ÅÄ»þ¸÷ÀèÀ¸¤¬¡ÖºÙ¶Ý¤ÎPersister¤ÎÆÃÀ­¤È¤½¤ÎÀ©¸æ¡× ¤È¤¤¤¦²òÀâ¤ò½ñ¤«¤ì¤Æ¤¤¤ë¡£ºÙ¶Ý¤Î½¸ÃĤˤÏÄ㤤ÉÑÅ٤ǡ¢À®Ä¹¤Ï¤Û¤È¤ó¤É¤·¤Ê¤¤¤¬¹³À¸Êª¼Á¤Ë¶¯¤¤ÂÑÀ­¤ò¼¨¤¹¾õÂ֤ˤʤ俸ÄÂΤ¬Â¸ºß¤·¤Æ persister ¤È¸Æ¤Ð¤ì¤ë¡£½¸ÃĤΤ¿¤á¤Ë¤½¤¦¤¤¤¦¸ÄÂΤ¬Â¸ºß¤¹¤ë¤Î¤Ç¤Ï¤Ê¤¯¡¢¸ÄÂμ«¿È¤ÎÍø±×¤Ë¤Ê¤ë¤Î¤Ç¤½¤¦¤¤¤¦¸½¾Ý¤¬À¸¤¸¤ë¡£ ²½³ØÎÅË¡¤òÀ¸¤­±ä¤Ó¤ë¥Ñ¡¼¥·¥¹¥¿¡¼ºÙ˦¤ÎÆÃÄê 2022ǯ8·î25Æü Nature 608, 7924 doi: 10.1038/d41586-022-01866-x¡¡¤È¤¤¤¦µ­»ö¤¬¤¢¤Ã¤¿¡£ÈùÀ¸Êª³Ø¡§¥¤¥ó¥È¥í¥ó¤ò²ð¤·¤¿É½¸½·¿ÉԶѰìÀ­¤ÎͶƳ¡¡2022ǯ5·î5Æü Nature 605, 7908 doi: 10.1038/s41586-022-04633-0¡¡¤È¤¤¤¦µ­»ö¤¬¤¢¤Ã¤¿¡£PPR ¥¿¥ó¥Ñ¥¯¼Á¤Ë¤è¤ë RNA editing ¤âÉԶѰìÀ­¤òͶƳ¤¹¤ë¡ÊÆÃ¤Ë RNA editing ¤¬¼ºÇÔ¤·¤ä¤¹¤¤È¯²ê»þ¡¢¥¹¥È¥ì¥¹´Ä¶­²¼¤Ç¡Ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¡¡https://yurimatsuzaki.com/mitikogo1¡¡ºî²È¡¦¾¾ºêÍ­Íý»á¤Î¸ø¼°¥Ú¡¼¥¸¤Ç¡¢¶¿ ÄÌ»ÒÀèÀ¸¤Î¥¤¥ó¥¿¥Ó¥å¡¼µ­»ö¤¬¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£¥¤¥ó¥È¥í¥ó¤¬Â¸ºß¤¹¤ë°ÕÌ£¤Ë¤Ä¤¤¤Æ¹Í»¡¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡Öɽ¸½·¿¤Î¤Ð¤é¤Ä¤­¤¬ºî¤ê½Ð¤¹¥¯¥í¡¼¥óºÙ˦½¸ÃĤοÍÍÀ­¤È¼Ò²ñÀ­°äÅÁ¾ðÊó¤Ë¤è¤é¤Ê¤¤ºÙ˦¸ÄÀ­¤ÎͳÍè¤È¸ºß°ÕµÁ¡×¹âÌî¡¢µÜºê ξÀèÀ¸¤Ë¤è¤ë²òÀ⤬¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£¡¡²½³Ø¤ÈÀ¸Êª¡¡56(7): 461-468 (2018)¡¡https://katosei.jsbba.or.jp/view_html.php?aid=1008

Evolution of mitochondrial RNA editing in extant gymnosperms¡¡¡¡Chung-Shien Wu, Shu-Miaw Chaw¡¡¡¡¡¡Plant J. ¡¡Pages: 1676-1687 | First Published: 25 July 2022¡¡¡¡¡¡¤Î Fig. 3 ¤ò¸«¤ë¤È¡¢RNA editing ¤Ï 100% À®¸ù¤·¤Æ¤¤¤ë¤ï¤±¤Ç¤Ï¤Ê¤¤¤È¤¤¤¦·ë²Ì¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ÆäËËÝÌõ¤µ¤ì¤ë¥¢¥ß¥Î»À¤¬ÊѲ½¤·¤Ê¤¤¾ì¹ç¤ÏÀ®¸ù¤·¤Æ¤¤¤Ê¤¤¤³¤È¤ÎÊý¤¬¤º¤Ã¤È¿¤¤¡£¡¡¡¡https://pubmed.ncbi.nlm.nih.gov/37880207/¡¡¡¡¤Î Supplementary figure 6 ¤ò¸«¤ë¤È¡¢¥¤¥Í¤Ç¤â editing ¤µ¤ì¤ë³ä¹ç¤¬ 50% °Ê²¼¤·¤«¤Ê¤¤Éô°Ì¤¬Ê£¿ô¤¢¤ë¡£°ìÊý 80% °Ê¾å editing ¤µ¤ì¤Æ¤¤¤ëÉô°Ì¤â¤¢¤ë¡£ Deep Proteomics reveals incorporation of unedited proteins into mitochondrial protein complexes in Arabidopsis.¡¡¡¡Rugen N, Senkler M, Braun HP.¡¡¡¡Plant Physiol. 2023 Dec 7:kiad655. doi: 10.1093/plphys/kiad655. Online ahead of print. PMID: 38060994¡¡¡¡¤È¤¤¤¦ÏÀʸ¤âȯɽ¤µ¤ì¤¿¡£Àµ¤·¤¯ÊÔ½¸¤µ¤ì¤Æ¤¤¤Ê¤¤ mRNA ¤ÏËÝÌõ¤µ¤ì¤Ë¤¯¤¤¡ÊÊÔ½¸¤¬Àµ¤·¤¯¹Ô¤ï¤ì¤ë¤Þ¤ÇËÝÌõ¤Ç¤­¤Ê¤¤¤Î¤Ç¡¢editing ¤¬É¬Íפʤ¤¾ì¹ç¤è¤ê¤âËÝÌõ¤µ¤ì¤ë¤Î¤Ë;·×¤Ê»þ´Ö¤¬¤«¤«¤ë¡Ë¡¦¤Þ¤¿¤ÏËÝÌõ¤µ¤ì¤Æ¤âʬ²ò¤µ¤ì¤ë¤¬¡¢¤Û¤ó¤Î¾¯¤·¸¡½Ð¤µ¤ì¤ë¤â¤Î¤â¤¢¤ë¡£¡Öº¹¼¡Åª¤ÊÊÔ½¸¤Ë¤è¤Ã¤Æ°ú¤­µ¯¤³¤µ¤ì¤ë¥¿¥ó¥Ñ¥¯¼Á¤ÎÉԶѰìÀ­¤ÎÀ¸Êª³ØŪ°ÕÌ£¤Ï¡¢¤Þ¤À³ÎΩ¤µ¤ì¤Æ¤¤¤Þ¤»¤ó¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

¿¢Êª¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Ïưʪ¤Î¤â¤Î¤ÈÈæ³Ó¤·¤Æ¥µ¥¤¥º¤¬Â礭¤¤¡£Æü·Ð¥µ¥¤¥¨¥ó¥¹¡¡2022ǯ12·î¹æ¡¡¤Ë¡Ö¥µ¥ó¥·¥ç¥¦¥¦¥ª¤ÏµÞ¤¬¤Ê¤¤¡¡À®¸ù¤·¤¿µÕÄ¥¤êÀ¸Â¸Àïά¡×¤È¤¤¤¦¤¹¤Ð¤é¤·¤¤µ­»ö¤¬¤¢¤Ã¤¿¡£¥µ¥ó¥·¥ç¥¦¥¦¥ª¤Î¥²¥Î¥à¤ÏµðÂç²½¤·¤Æ¤ª¤ê¡¢¤½¤Î¤»¤¤¤Ç¥¤¥ó¥È¥í¥ó¤¬¥¹¥×¥é¥¤¥·¥ó¥°¤µ¤ì¤ë®ÅÙ¤¬ÃÙ¤¯¤Ê¤ë¡£¤½¤Î·ë²Ì¥¿¥ó¥Ñ¥¯¼Á¤Î¹çÀ®Â®ÅÙ¤âÃÙ¤¯¤Ê¤ë¡£¿¢Êª¤ÏÍÕÎÐÂΤ¬¤¢¤ë¤Î¤Ç¥ß¥È¥³¥ó¥É¥ê¥¢¤¬³èȯ¤ËƯ¤­²á¤®¤ë¤È¤è¤¯¤Ê¤¤¤³¤È¤¬¤¢¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¤·¤«¤·º¬¤Ç¤Ï¥×¥é¥¹¥Á¥É¤è¤ê¤â¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎÊý¤¬¥¨¥Í¥ë¥®¡¼¶¡µë¤Ë¤Ï½ÅÍפʤϤº¤Ç¡¢¤½¤ì¤Ê¤Î¤Ë;·×¤Ê¤³¤È¤ò¤¹¤ë¤Î¤Ï¤Ê¤¼¤«¤È¤¤¤¦¤³¤È¤Ë¤Ê¤ê¡¢¤Þ¤Ã¤¿¤¯¤ï¤«¤é¤Ê¤¤¡£¼«Á³³¦¤ËÀ¸¤­¤ë¿¢Êª¤Îº¬¤Î¤Þ¤ï¤ê¤Ë¤Ïɬ¤ºÂ¾¤ÎÀ¸Êª¤¬¤¤¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤¬Æ¯¤­²á¤®¤Ê¤¤Êý¤¬Â¾À¸Êª¤È¤Î´Ø·¸¤¬¤¦¤Þ¤¯¤¤¤¯¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

ºÇ¶á¡Ö¥²¥Î¥à¡¦À÷¿§ÂΤò´°Á´¤Ë¿Í¹©¹çÀ®¤·¤¿¤â¤Î¤ËÃÖ¤­´¹¤¨¤ë¡×¸¦µæ¤¬À®¸ù¤·¤Æ¤­¤Æ¤¤¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤â´°Á´¤Ë¿Í¹©¹çÀ®¤Þ¤¿¤Ï¥²¥Î¥àÊÔ½¸¤·¤Æ RNA editing ¤¬µ¯¤­¤Ê¤¤¤â¤Î¤ËÃÖ¤­´¹¤¨¤ë¤³¤È¤¬¤Ç¤­¤ì¤Ð RNA editing ¤¬¤É¤ó¤Ê±Æ¶Á¤òµÚ¤Ü¤·¤Æ¤¤¤ë¤Î¤«¤¬¤ï¤«¤ë¤«¤â¤·¤ì¤Ê¤¤¡£


¿¢Êª¤Ç¤Ï¡Ö¥×¥é¥¹¥Á¥É¥·¥°¥Ê¥ë¡×¤¬¤è¤¯¸¦µæ¤µ¤ì¤Æ¤¤¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤â³èÀ­»ÀÁǤʤɤ¬¥·¥°¥Ê¥ë¤Ë¤Ê¤ë¤È¹Í¤¨¤é¤ì¤Æ¤¤¤ë¡£¤è¤¯¤ï¤«¤é¤Ê¤¤¤³¤È¤Ï¡Ö³èÀ­»ÀÁǤΤ»¤¤¡×¤È¤¤¤¦¤³¤È¤Ë¤·¤Æ¤ª¤±¤Ð¤½¤¦¤¤¤¦¤³¤È¤Ë¤Ê¤Ã¤Æ¤·¤Þ¤¦¤è¤¦¤Êµ¤¤â¤¹¤ë¡£¤·¤«¤·¤½¤ì¤Ç¤¤¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¤½¤ì¤Çº¤¤ë¿Í¤Ï¤¤¤Ê¤¤¡£¤È»×¤Ã¤¿¤¬¡¢¤½¤ó¤Ê¤³¤È¤Ç¤Ï¤¤¤±¤Ê¤¤¡£³èÀ­»ÀÁǤκîÍѤò universal response, specific response ¤Ëʬ²ò¤·²òÌÀ¤Ë¤Ä¤Ê¤²¤è¤¦¤È¤¹¤ë¸¦µæ¤¬¿Ê¤ó¤Ç¤¤¤ë¡£

Ʊ¤¸³èÀ­»ÀÁǤǤâÀ¸À®¤¹¤ë¾ì½ê¤¬°Û¤Ê¤ë¤È¡¢°Û¤Ê¤ë±þÅú¤ò°ú¤­µ¯¤³¤¹¤é¤·¤¤¡£¤Þ¤¿³èÀ­»ÀÁǤÏŬÀڤʾì½ê¤ËÍ¢Á÷¤µ¤ì°Ü¹Ô¤·¤Ê¤¤¤È¥·¥°¥Ê¥ë¤È¤·¤ÆƯ¤«¤Ê¤¤¤é¤·¤¤¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇÀ¸À®¤¹¤ë²á»À²½¿åÁǤò specific ¤Ê¥·¥°¥Ê¥ë¤È¤·¤Æ¼õ¤±¼è¤ëž¼Ì°ø»Ò¤Î¸¦µæ¤¬¹Ô¤ï¤ì¤Æ¤¤¤ë¡£

The Membrane-Bound NAC Transcription Factor ANAC013 Functions in Mitochondrial Retrograde Regulation of the Oxidative Stress Response in Arabidopsis.¡¡¡¡¡¡De Clercq I, Vermeirssen V, Van Aken O, ¤Ê¤É¡¡¡¡¡¡Plant Cell. 2013 Sep 17. ¡¡¡¡¡¡PMID: 24045019

Mitochondria-derived reactive oxygen species are the likely primary trigger of mitochondrial retrograde signaling in Arabidopsis.¡¡¡¡Khan K, Tran HC, Mansuroglu B, Önsell P, Buratti S, Schwarzländer M, Costa A, Rasmusson AG, Van Aken O.¡¡¡¡Curr Biol. 2023 Dec 28:S0960-9822(23)01660-3. doi: 10.1016/j.cub.2023.12.005. Online ahead of print.¡¡¡¡PMID: 38176418

NAC13 ¤È¤¤¤¦Å¾¼Ì°ø»Ò¤Ï ANAC013, ANAC13 ¤È¸Æ¤Ð¤ì¤ë¤³¤È¤â¤¢¤ë¡£ANAC017 ¤âƱ¤¸¤è¤¦¤Ë̾Á°¤¬¤Ä¤¤¤Æ¤¤¤ë¡£De Clercq ¤é¡¢Ng ¤é¤Ï¡¢¤³¤ì¤é¤Îž¼Ì°ø»Ò¤¬¥ß¥È¥³¥ó¥É¥ê¥¢¥·¥°¥Ê¥ë¤ò¼õ¤±¼è¤ë¤³¤È¤ò¼¨¤·¤¿¡£ ¤³¤ì¤é¤Îž¼Ì°ø»Ò¤ÏËì´ÓḀ̈ɥᥤ¥ó¤ò¤â¤Ã¤Æ¤¤¤Æ¾®Ë¦ÂÎ Endoplasmic reticulum ¤Ë¶Éºß¤¹¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤¬¥¹¥È¥ì¥¹¤ò¼õ¤±¤ë¤È¥É¥á¥¤¥ó¤¬ÀÚ¤ì¤Æ³Ë¤Ë°Ü¹Ô¤·¤ÆƯ¤¯¡£¾®Ë¦ÂÎ¤Ë¤Ï BiP ¤È¤¤¤¦Ê¬»Ò¥·¥ã¥Ú¥í¥ó¤¬Â¸ºß¤¹¤ë¡£¤³¤Î¥¿¥ó¥Ñ¥¯¼Á¤¬¤¦¤Þ¤¯Æ¯¤¯¤Ë¤Ï ATP ¤¬·ë¹ç¤·¤Æ²Ã¿åʬ²ò¤µ¤ì¤ë¥µ¥¤¥¯¥ë¤¬É¬Íפˤʤ롣ATP ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤È´Ø·¸¤¬¤¢¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤À¤±¤Ë¤È¤é¤ï¤ì¤º¡¢ºÙ˦Á´ÂΤò¸«¤Ê¤¤¤È¤¤¤±¤Ê¤¤¤Î¤À¤í¤¦¡£

ưʪºÙ˦¤Ç mitochondria-associated ER membrane (MAM) ¡¡ER ¤Ë¥ß¥È¥³¥ó¥É¥ê¥¢¤¬·ë¹ç¤·¤Æ¤¤¤ë¤³¤È¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£ºÇ¶á¡¢ºÙ˦Æâ¾®´ï´±¤Ï¶µ²Ê½ñ¤Ë½ñ¤«¤ì¤Æ¤¤¤ëµ¡Ç½¤ò¤½¤ì¤¾¤ì¤¬Ã±ÆȤDz̤¿¤¹¤À¤±¤Ç¤Ê¤¯¡¢ºÙ˦Æâ¾®´ï´±Æ±»Î¤¬Áê¸ß¤ËÏ¢·È¤¹¤ë¤³¤È¤Ç¤µ¤é¤Ë¹âÅÙ¤ÊƯ¤­¤ò¹Ô¤¦¤³¤È¤¬ÃíÌܤµ¤ì¸¦µæ¤µ¤ì¤Æ¤¤¤ë¡£¤³¤Î¤³¤È¤ò¡ÖºÙ˦Æâ¤ÎÈëÌ©¤Î²ñÏáפȸƤֿͤ⤤¤ë¡£¡¡²òÀâµ­»ö¤Ø¤Î¥ê¥ó¥¯¡§¡¡¡¡¡¡¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇÀ¸¤¸¤¿³èÀ­»ÀÁǤ¬ MAM ¤òÅÁ¤ï¤Ã¤Æ¸úΨ¤è¤¯¾®Ë¦ÂΤذÜÆ°¤¹¤ë¤³¤È¤â¤¢¤ë¤é¤·¤¤¡£¡¡TraB family proteins are components of ER-mitochondrial contact sites and regulate ER-mitochondrial interactions and mitophagy.¡¡¡¡¡¡Li C¡¡¤Ê¤É¡¡¡¡¡¡Nat Commun. 2022 Sep 26;13(1):5658. doi: 10.1038/s41467-022-33402-w.¡¡¡¡PMID: 36163196¡¡¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£ µþÅÔÂç³Ø¤Î¾ÂÅÄÀèÀ¸¤Î¥°¥ë¡¼¥×¤¬¡¢¥·¥í¥¤¥Ì¥Ê¥º¥ÊÎÐÍÕ¤ÎÍÕÆùºÙ˦¤Ç¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤ÈÍÕÎÐÂΤÎÁê¸ßºîÍѤ˴ؤ¹¤ëÍ¥¤ì¤¿¸¦µæÀ®²Ì¤òȯɽ¤·¤Æ¤¤¤ë¡£ ¡ÖÍÕÎÐÂΤȤÎÁê¸ßºîÍѤˤª¤±¤ë¥ß¥È¥³¥ó¥É¥ê¥¢±¿Æ°¤òȯ¸«¡×¡¡https://www.riken.jp/press/2021/20210319_3/index.html¡¡¡¡Â¾¤ÎÀ¸Êª¤Ç¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¹çÀ®¤µ¤ì¤½¤Î¾ì¤Ç»È¤ï¤ì¤ë¤¬¡¢¿¢Êª¤Ç¤ÏÍÕÎÐÂΤǤ·¤«ºî¤é¤ì¤Ê¤¤Ê¬»Ò¤¬¤¢¤ë¡£¤½¤¦¤¤¤¦Ê¬»Ò¤ÏÍÕÎÐÂΤȥߥȥ³¥ó¥É¥ê¥¢¤¬·ë¹ç¤¹¤ë¤³¤È¤Ç¥ß¥È¥³¥ó¥É¥ê¥¢¤Ø¸úΨ¤è¤¯±¿¤Ð¤ì¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¡Ö¿¢ÊªÌý»é¤Î¹çÀ®¤Ë¤ÏÍÕÎÐÂΤȾ®Ë¦ÂΤιÚÁǤ¬¶¨Ä´¤·¤ÆƯ¤¯¡Ý¥Ð¥¤¥ª¥Ç¥£¡¼¥¼¥ëÀ¸»ºµ»½Ñ¤Ø¤Î±þÍѤ˴üÂԡݡפȤ¤¤¦À®²Ì¤¬Íý¸¦´Ä¶­»ñ¸»²Ê³Ø¸¦µæ¥»¥ó¥¿¡¼ ¿¢Êª»é¼Á¸¦µæ¥Á¡¼¥à¤ÎÃæ¼ ͧµ± ¥Á¡¼¥à¥ê¡¼¥À¡¼¤é¤Î¸¦µæ¥Á¡¼¥à¤«¤éȯɽ¤µ¤ì¤Æ¤¤¤¿¡£¡¡https://www.riken.jp/press/2023/20230201_1/index.html¡¡


ahg2

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
ABA hypersensitive germination
ÊÑ°Û°äÅÁ»Ò--ahg2
poly(A) specific ribonuclease (PARN)

References

http://www.rib.okayama-u.ac.jp/ers/index-j.html

A poly(A)-specific ribonuclease directly regulates the poly(A) status of mitochondrial mRNA in Arabidopsis.¡¡¡¡¡¡Hirayama T, Matsuura T, Ushiyama S, Narusaka M, Kurihara Y, Yasuda M, Ohtani M, Seki M, Demura T, Nakashita H, Narusaka Y, Hayashi S.¡¡¡¡¡¡Nat Commun. 2013;4:2247. doi: 10.1038/ncomms3247.¡¡¡¡¡¡PMID: 23912222

ABA hypersensitive germination2-1 causes the activation of both abscisic acid and salicylic acid responses in Arabidopsis.¡¡¡¡¡¡Nishimura N, Okamoto M, Narusaka M, Yasuda M, Nakashita H, Shinozaki K, Narusaka Y, Hirayama T.¡¡¡¡¡¡Plant Cell Physiol. 2009 Dec;50(12):2112-22. PMID: 19892832

Analysis of ABA hypersensitive germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis.¡¡¡¡¡¡Nishimura N, Kitahata N, Seki M, Narusaka Y, Narusaka M, Kuromori T, Asami T, Shinozaki K, Hirayama T.¡¡¡¡¡¡Plant J. 2005 Dec;44(6):972-84. PMID: 16359390


¤µ¤é¤Ë ahg2 ¤Î¸¦µæ¤Ï¡¢Å´·ç˳±þÅú¤Ë´ØÍ¿¤¹¤ë¿·µ¬¤Ê½ÅÍ×°ø»Ò¤Îȯ¸«¤È¤¤¤¦¤¹¤Ð¤é¤·¤¤¸¦µæÀ®²Ì¤Ë·ë¤Ó¤Ä¤¤¤¿¡£

The putative peptide gene FEP1 regulates iron deficiency response in Arabidopsis.¡¡¡¡¡¡Hirayama T, Lei GJ, Yamaji N, Nakagawa N, Ma JF.¡¡¡¡¡¡Plant Cell Physiol. 2018 Jul 19. doi: 10.1093/pcp/pcy145.¡¡¡¡¡¡PMID: 30032190

¤½¤Î¸å¤â FEP¡ÊÊÌ̾ IMA¡Ë ¤Ë¤Ä¤¤¤Æ¼¡¡¹¤ÈÏÀʸ¤¬½ÐÈǤµ¤ì¤Æ¤¤¤ë¡£¡¡

Shall we talk? New details in crosstalk between copper and iron homeostasis uncovered in Arabidopsis thaliana.¡¡¡¡¡¡Chia JC, Vatamaniuk OK.¡¡¡¡New Phytol. 2024 Feb 13. doi: 10.1111/nph.19583. Online ahead of print.¡¡¡¡PMID: 38348503

FE UPTAKE-INDUCING PEPTIDE1 maintains Fe translocation by controlling Fe deficiency response genes in the vascular tissue of Arabidopsis.¡¡¡¡¡¡Okada S, Lei GJ, Yamaji N, Huang S, Ma JF, Mochida K, Hirayama T. ¡¡¡¡Plant Cell Environ. 2022 Aug 22. doi: 10.1111/pce.14424. Online ahead of print. PMID: 35993196

The Iron Deficiency-Regulated Small Protein Effector FEP3/IRON MAN1 Modulates Interaction of BRUTUS-LIKE1 With bHLH Subgroup IVc and POPEYE Transcription Factors¡¡¡¡¡¡Front. Plant Sci., 10 June 2022 | https://doi.org/10.3389/fpls.2022.930049 Daniela M. Lichtblau¡¡¤Ê¤É¡¡¡¡¡¡FEP3 ¤ÏÅ´´ØϢž¼Ì°ø»Ò¤ÈÁê¸ßºîÍѤ·¤ÆºîÍѤòÁý¶¯¤¹¤ë¡£

Spatial IMA1 regulation restricts root iron acquisition on MAMP perception.¡¡¡¡¡¡Cao M¡¡¤Ê¤É¡¡¡¡¡¡Nature. 2024 Jan;625(7996):750-759. doi: 10.1038/s41586-023-06891-y. Epub 2024 Jan 10.¡¡¡¡¡¡PMID: 38200311¡¡¡¡¡¡¿¢Êª¤¬É¸¶¶Ý¤ËÂФ·¤Æ±þÅú¤¹¤ë¤È¡¢Å´¼è¤ê¹þ¤ß¥È¥é¥ó¥¹¥Ý¡¼¥¿¡¼¤Ê¤É¤¬Ê¬²ò¤µ¤ì¡¢É¸¶¶Ý¤¬Å´¤òÍøÍѤ·¤Ë¤¯¤¤¾õÂ֤ˤʤ괶À÷¤òËɤ°¤³¤È¤¬¤Ç¤­¤ë¡£FEP (ÊÌ̾ IMA) ¤âʬ²ò¤µ¤ì¤ë¡£

IMA peptides regulate root nodulation and nitrogen homeostasis by providing iron according to internal nitrogen status¡¡¡¡¡¡Nat Commun. 2024 Jan 29;15(1):733. doi: 10.1038/s41467-024-44865-4.¡¡¡¡¡¡Momoyo Ito ¤Ê¤É¡¡¡¡¡¡PMID: 38286991


Å´¤¬·ç˳¤¹¤ë¤ÈÆó¼¡Âå¼Õ»ºÊª¤ÎÃßÀÑÎ̤˱ƶÁ¤¬¤¢¤ë¡£¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Îº¬¤Ç¤ÏÅ´¤¬·ç˳¤¹¤ë¤È¥¯¥Þ¥ê¥ó¤¬ÃßÀѤ¹¤ë¡£¥¯¥Þ¥ê¥ó¤Ï¹³¶ÝÀ­¤À¤±¤Ç¤Ê¤¯ÈùÀ¸Êª¤È¤ÎÁê¸ßºîÍѤˤâ½ÅÍפʤ³¤È¤¬²òÌÀ¤µ¤ì¤Æ¤¤¤ë¡£

The Age of Coumarins in Plant–Microbe Interactions¡¡¡¡¡¡Ioannis A Stringlis, Ronnie de Jonge, Corné M J Pieterse¡¡¡¡¡¡ Plant and Cell Physiology, Volume 60, Issue 7, July 2019, Pages 1405–1419, ¡¡¡¡¡¡https://doi.org/10.1093/pcp/pcz076

A coumarin exudation pathway mitigates arbuscular mycorrhizal incompatibility in Arabidopsis thaliana¡¡¡¡¡¡Plant Mol Biol. 2021 Apr 6. ¡¡¡¡¡¡Marco Cosme , ¤Ê¤É¡¡¡¡¡¡PMID: 33825084 DOI: 10.1007/s11103-021-01143-x

FEP (IMA) ¤ò¶¯¤¯Æ¯¤«¤»¤ë¤È MYB72 (At1g56160) and SCOPOLETIN 8-HYDROXYLASE (At3g12900) ¤Îȯ¸½¤¬Â礭¤¯¹â¤Þ¤ê¡¢7,8-dihydroxy-6-methoxycoumarin (fraxetin) ¤¬Â¿Î̤ËʬÈ礵¤ì¤ë¤è¤¦¤Ë¤Ê¤ë¤È¤¤¤¦ÏÀʸ¤¬½ÐÈǤµ¤ì¤¿¡£Fraxetin ¤ò¿å»À²½¤¹¤ë CYP82C4 (At4g31940) ¤Îȯ¸½¤ÏµÕ¤ËÄã²¼¤¹¤ë¡£

IRONMAN tunes responses to iron deficiency in concert with environmental pH¡¡¡¡¡¡Plant Physiol. 2021 Nov 3;187(3):1728-1745. doi: 10.1093/plphys/kiab329.¡¡¡¡¡¡Chandan Kumar Gautam, Huei-Hsuan Tsai, Wolfgang Schmidt ¡¡¡¡¡¡PMID: 34618058 PMCID: PMC8566206

Å´·ç˳±þÅú¤Ïɸ¶¶Ý¤ËÂФ¹¤ëÄñ¹³À­¤ò¹â¤á¤ë¤³¤È¤¬Êó¹ð¤µ¤ì¤Æ¤¤¤ë¡£

Unearthing mechanisms underlying iron deficiency-induced resistance against pathogens with different lifestyles¡¡¡¡¡¡J Exp Bot. 2020 Nov 14;eraa535.doi: 10.1093/jxb/eraa535. ¡¡¡¡¡¡Pauline L Trapet, Eline H Verbon, Renda R Bosma, Kirsten Voordendag, Johan A Van Pelt, Corné M J Pieterse¡¡¡¡¡¡PMID: 33188427

Å´¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¤Ä¤¤¤Æ¤Ï¡¢Å´Í¢Á÷ÂΤθ¦µæ¤¬¿Ê¤ó¤Ç¤¤¤ë¡£¡¡¡¡¡¡The rice mitochondrial iron transporter is essential for plant growth.¡¡¡¡¡¡Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, Tsutsumi N, An G, Nakanishi H, Nishizawa NK.¡¡¡¡¡¡Nat Commun. 2011;2:322. doi: 10.1038/ncomms1326.¡¡¡¡¡¡PMID: 21610725¡¡¡¡¡¡Ferroportin 3 is a dual-targeted mitochondrial/chloroplast iron exporter necessary for iron homeostasis in Arabidopsis.¡¡¡¡¡¡Kim LJ, Tsuyuki KM, ¤Ê¤É¡¡¡¡Plant J. 2021 Apr 22. doi: 10.1111/tpj.15286. PMID: 33884692¡¡¡¡¡¡ Rice-specific mitochondrial iron-regulated gene (MIR) plays an important role in iron homeostasis¡¡¡¡¡¡Mol Plant. 2009 Sep;2(5):1059-66.¡¡doi: 10.1093/mp/ssp051. Epub 2009 Jul 22.¡¡¡¡¡¡Yasuhiro Ishimaru ¤Ê¤É¡¡¡¡¡¡PMID: 19825680

Å´¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë´Ø¤·¤Æ¡¢¤³¤¦¤¤¤¦ÏÀʸ¤âȯɽ¤µ¤ì¤¿¡£¡¡¡¡¡¡Altered levels of mitochondrial NFS1 affect cellular Fe and S contents in plants.¡¡¡¡¡¡Armas AM, Balparda M, Turowski VR, Busi MV, Pagani MA, Gomez-Casati DF.¡¡¡¡¡¡Plant Cell Rep. 2019 Aug;38(8):981-990. doi: 10.1007/s00299-019-02419-9. Epub 2019 May 7.¡¡¡¡¡¡PMID: 31065779 ¡¡¡¡¡¡ ¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Î FeS ¥¯¥é¥¹¥¿¡¼À¸¹çÀ®¤ËƯ¤¯ NFS1 °äÅÁ»Ò¡Ê¥·¥¹¥Æ¥¤¥ó¤«¤éⲫ¸¶»Ò¤ò¼è¤ê½Ð¤¹¡Ë¤Îȯ¸½¥ì¥Ù¥ë¤òÊѲ½¤µ¤»¤ë¤ÈÅ´¤Ë´Ø·¸¤¹¤ë°äÅÁ»Ò·²¤Îȯ¸½¥ì¥Ù¥ë¤âÊѲ½¤·¤¿¡£

Fe-S cluster ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¤ÎÁ°È¾¤ò¹½À®¤¹¤ëÊ£¹çÂÎ I, II, III ¤Ë´Þ¤Þ¤ì¤Æ¤¤¤ë¡£ÂоÈŪ¤Ë¡¢¤â¤¦°ì¤Ä¤ÎÅ´¤ò´Þ¤à½ÅÍפʲ½¹çʪ¤Ç¤¢¤ë¥Ø¥à¤ÏÅÅ»ÒÅÁã·Ï¤Î¸åȾ¤Ç¤¢¤ëÊ£¹çÂÎ III, Cytochrome C, Ê£¹çÂÎ IV ¡ÊCytochrome C oxidase¡Ë ¤Ë´Þ¤Þ¤ì¤Æ¤¤¤ë¡£ Ê£¹çÂÎ IV ¤ÏƼ¸¶»Ò¤â´Þ¤ó¤Ç¤¤¤ë¡£¸÷¹çÀ®ÅÅ»ÒÅÁã·Ï¤Ç¤Ï¥×¥é¥¹¥È¥·¥¢¥Ë¥ó¤¬Æ¼¤ò´Þ¤ó¤Ç¤¤¤ë¡£

¥¤¥Í¤Ë¤ª¤¤¤Æ¡¢¥¢¥³¥Ë¥¿¡¼¥¼ OsACO1¡ÊºÙ˦¼Á¶Éºß¡Ë¤Î°Û¾ï¤¬Å´¤Î¹±¾ïÀ­¤òÊø¤¹¤È¤¤¤¦À®²Ì¤¬È¯É½¤µ¤ì¤¿¡£OsACO1 ¤Ï 4Fe-4S cluster ¤ò´Þ¤ß¥¢¥³¥Ë¥¿¡¼¥¼³èÀ­¤ò¿¨ÇÞ¤¹¤ë¡£4Fe-4S cluster ¤¬ÉÔ­¤¹¤ë¤È RNA ·ë¹çÀ­¥¿¥ó¥Ñ¥¯¼Á¤È¤·¤Æ¤âƯ¤­¡¢Å´¤È´Ø·¸¤¹¤ë°äÅÁ»Ò¤Î mRNA ¤òÀ©¸æ¤¹¤ë¤é¤·¤¤¡£¡¡¡¡¡¡Defects in the rice aconitase-encoding OsACO1 gene alter iron homeostasis¡¡¡¡¡¡September 2020¡¡¡¡¡¡Plant Molecular Biology¡¡¡¡¡¡DOI: 10.1007/s11103-020-01065-0¡¡¡¡¡¡Takeshi Senoura Takanori Kobayashi Gynheung An Naoko K Nishizawa¡¡¡¡¡¡¤·¤«¤·¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Ç¤Ï¥¢¥³¥Ë¥¿¡¼¥¼¤ÏÅ´·ç˳±þÅú¤È´Ø·¸¤Ê¤¤¤È¤¤¤¦ÏÀʸ¤¬¤º¤Ã¤ÈÁ°¤Ë½Ð¤Æ¤¤¤ë¡£¡¡The iron-responsive element (IRE)/iron-regulatory protein 1 (IRP1)-cytosolic aconitase iron-regulatory switch does not operate in plants.¡¡¡¡¡¡Biochem J. 2007 Aug 1;405(3):523-31. PMID: 17437406

FeS ¤ÎÀ¸¹çÀ®¡¢ºÙ˦ÆâÍ¢Á÷¤ËƯ¤¯°äÅÁ»Ò¤Ï¿¿ô¸ºß¤¹¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤Çºî¤é¤ì¤ë FeS ¤È¡¢ÍÕÎÐÂΤǺî¤é¤ì¤ë FeS ¤¬¤¢¤ë¡£FeS ¤ò·ë¹ç¤·¤Æ¤¤¤ë¥¿¥ó¥Ñ¥¯¼Á¤Ï¤È¤Æ¤â¿¤¯¡¢ºÇ¶á¤Ç¤Ï FeS ¤È´Ø·¸¤¬¤Ê¤µ¤½¤¦¤Ê DNA ¥Ý¥ê¥á¥é¡¼¥¼¤Ê¤É¤Ë¤â FeS ¤¬·ë¹ç¤·¤Æ¤¤¤ë¤³¤È¤¬ÌÀ¤é¤«¤Ë¤µ¤ì¤Æ¤¤¤ë¡£PARN ¤Ë¤â´Ø·¸¤¹¤ë¤«¤â¤·¤ì¤Ê¤¤¡£¡¡¡¡¡¡Emerging critical roles of Fe-S clusters in DNA replication and repair.¡¡¡¡¡¡Fuss JO, Tsai CL, Ishida JP, Tainer JA.¡¡¡¡¡¡Biochim Biophys Acta. 2015 Jun;1853(6):1253-71. ¡¡¡¡¡¡doi: 10.1016/j.bbamcr.2015.01.018. Epub 2015 Feb 2. Review.¡¡¡¡¡¡PMID: 25655665

¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç½ÅÍפʡ¢Å´¤ò´Þ¤àʬ»Ò¤È¤·¤Æ¤Ï FeS ¤È¥Ø¥à¤¬µó¤²¤é¤ì¤ë¡£ DOG1 ¤È¤¤¤¦¥Ø¥à¥¿¥ó¥Ñ¥¯¼Á¤Î¾ì¹ç¡¢¤½¤Î¥¿¥ó¥Ñ¥¯¼Á¤òÂçIJ¶Ý¤Çºî¤é¤»¤ë¤È¡¢±ÉÍܸ»¤¬Ç»¤¤ÇÝÃϤǤϥإबÆþ¤Ã¤ÆÃ㿧¤Î¥¿¥ó¥Ñ¥¯¼Á¤Ë¤Ê¤êÉáÄ̤ΠLB ÇÝÃϤǤÏ̵¿§¤Î¥¿¥ó¥Ñ¥¯¼Á¤¬¤Ç¤­¤ë¤È¸À¤¦¤³¤È¤Ç¥Ø¥à¤È¤Î´Ø·¸¤¬¸«¤¤¤À¤µ¤ì¤¿¤ÈÏÀʸ¤Ë½ñ¤«¤ì¤Æ¤¤¤¿¡£¤ï¤«¤ê¤ä¤¹¤¤²òÀâµ­»ö¤â¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡¥¢¥Ö¥·¥·¥ó»À¤¬Æ¯¤¯¤¿¤á¤Î¿·¤¿¤Ê»ÅÁÈ¤ß ¡½ ¿¢Êª¤¬À¸°é´Ä¶­¤ÎÊѲ½¤ËŬ±þ¤¹¤ë¤¿¤á¤ÎÀ¸Â¸Àïά¡¡²½³Ø¤ÈÀ¸Êª¡¡Vol.57 No.12 Page. 736 - 742¡¡À¾Â¼ µ¹Ç·, ÅÚ²° ¾Ä, Ê¿»³ δ»Ö, »³ºê ½ÓÀµ¡¡¡¡¡¡ ưʪºÙ˦¤Î¸¦µæ¤Ç¤â¡¢¿§¤¬ÉÕ¤¤¤¿¥¿¥ó¥Ñ¥¯¼Á¤¬¤Ç¤­¤¿¤È¤¤¤¦¤³¤È¤Ç¥Ø¥à¤ÎƯ¤­¤¬¸«¤¤¤À¤µ¤ì¤¿¤È¤¤¤¦Î㤬¤¢¤Ã¤¿¡£¡¡¡¡¡¡https://www.cosmobio.co.jp/aaas_signal/archive/ec_20050809.asp¡¡¡¡¡¡³ËÆâ¼õÍÆÂΥꥬ¥ó¥É¤Ïµ¤ÂΤǤ¢¤ë¡¡¥Ø¥à¤¬Â¸ºß¤¹¤ë¤³¤È¤Ç¡¢¤½¤Î³ËÆâ¼õÍÆÂÎ E75 ¤Ï NO, CO ¤È·ë¹ç¤¹¤ëǽÎϤò³ÍÆÀ¤·¤¿¡£

DOG1 ¤È AHG2¡¢¥Ø¥à¤Î´ØÏ¢¤Ë¤Ä¤¤¤Æ¹Í»¡¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡The Long-Standing Paradox of Seed Dormancy Unfolded?¡¡¡¡¡¡Nonogaki H.¡¡¡¡¡¡Trends Plant Sci. 2019 Nov;24(11):989-998. doi: 10.1016/j.tplants.2019.06.011. Epub 2019 Jul 18. Review.¡¡¡¡¡¡PMID: 31327698


AHG2 °äÅÁ»Ò¤Ï¡¢Á´¤¯°Û¤Ê¤ë´ÑÅÀ¤«¤é¤Î¸¦µæ¤Ë¤è¤Ã¤Æ¤â¸«¤¤¤À¤µ¤ì¤¿¡£

A Poly(A) Ribonuclease Controls the Cellotriose-Based Interaction between Piriformospora indica and Its Host Arabidopsis.¡¡¡¡¡¡Johnson JM, Thürich J, Petutschnig EK, Altschmied L, Meichsner D, Sherameti I, Dindas J, Mrozinska A, Paetz C, Scholz SS, Furch ACU, Lipka V, Hedrich R, Schneider B, Svatoš A, Oelmüller R.¡¡¡¡¡¡Plant Physiol. 2018 Mar;176(3):2496-2514. doi: 10.1104/pp.17.01423. Epub 2018 Jan 25.¡¡¡¡¡¡PMID: 29371249

¤³¤Î 2018 ǯ¤ÎÏÀʸ¤ÎÁ°Ãʳ¬¤ÎÏÀʸ¡¡¡¡¡¡An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress.¡¡¡¡¡¡Michal Johnson J, Reichelt M, Vadassery J, Gershenzon J, Oelmüller R.¡¡¡¡¡¡BMC Plant Biol. 2014 Jun 11;14:162. doi: 10.1186/1471-2229-14-162.¡¡¡¡¡¡PMID: 24920452

¿¢Êª¤ÎÀ¸°é¤Ë¶¦À¸¶ÝÎब½ÅÍפÊÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë¤³¤È¤¬ÃíÌܤµ¤ì½ÅÍפʸ¦µæ¥Æ¡¼¥Þ¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£¤³¤Î¸¦µæ¤Ç¤Ï¡¢P. indica ¤È¤¤¤¦¶¦À¸¶ÝÎà¤ÎºÙ˦Êɤ«¤é¥»¥í¥ª¥ê¥´Åü¤¬Í·Î¥¤·¤Æ¡¢¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Îº¬¤Ë¥Þ¥¤¥ë¥É¤ÊËɸæ±þÅú¤ò°ú¤­µ¯¤³¤¹¤³¤È¤ò¼¨¤·¤¿¡£Æä˥»¥í¥È¥ê¥ª¡¼¥¹¤¬¤è¤¯¸ú¤¤¤¿¡£ºÙ˦¼Á¤Î¥«¥ë¥·¥¦¥àÇ»ÅÙ¤¬¾å¾º¤¹¤ë¤³¤È¤â´Ñ¬¤·¤¿¡£¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Îº¬¤ÏÍÍ¡¹¤Ê²½¹çʪ¤ä»É·ã¤ËÎɤ¯È¿±þ¤¹¤ë¡£

Cellooligomer/CELLOOLIGOMER RECEPTOR KINASE1 Signaling Exhibits Crosstalk with PAMP-Triggered Immune Responses and Sugar Metabolism in Arabidopsis Roots.¡¡¡¡¡¡Gandhi A, Reichelt M, Furch A, Mithöfer A, Oelmüller R.¡¡¡¡¡¡Int J Mol Sci. 2024 Mar 19;25(6):3472. doi: 10.3390/ijms25063472.¡¡¡¡¡¡PMID: 38542444¡¡¤È¤¤¤¦ÏÀʸ¤¬ 2024 ǯ¤Ë½ÐÈǤµ¤ì¤¿ ¡£

¥»¥í¥ª¥ê¥´Åü¤ËÈ¿±þ¤·¤Ê¤¤¤¬¡¢¥­¥È¥ª¥ê¥´Åü¡Ê¥­¥Á¥ó¤¬Ï¢·ë¤·¤¿¥ª¥ê¥´Åü¡¦¥¨¥ê¥·¥¿¡¼³èÀ­¤ò»ý¤Ä¡Ë¤Ë¤ÏÈ¿±þ¤¹¤ëÊÑ°ÛÂÎ cycam¡Ê¤Þ¤¿¤Ï cycam1¡Ë¤ò¸«¤¤¤À¤·¤ÆʬÀϤ·¤¿¡£¤½¤Î¸¶°ø°äÅÁ»Ò¤Ï AtPARN = AHG2 ¤À¤Ã¤¿¡£AtPARN ¤Î cDNA ¤ò 35S ¥×¥í¥â¡¼¥¿¡¼¤Çȯ¸½¤µ¤»¤ë¤È²óÉü¤·¤¿¡£Table 1 ¤Î·ë²Ì¤Ë¤è¤ë¤È¡¢cycam ÊÑ°ÛÂÎ¤Ç¤Ï P. indica ¤Ë¤è¤ë¥Ð¥¤¥ª¥Þ¥¹¤ÎÁýÂç¡¢´¥ÁçÂÑÀ­¤Î²þÁ±¸ú²Ì¤¬¤É¤Á¤é¤â¸«¤é¤ì¤Ê¤¯¤Ê¤ë¡£Ãø¼Ô¤¿¤Á¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤¬´Ø·¸¤·¤Æ¤¤¤ë¤È¤Ï¹Í¤¨¤Æ¤¤¤Ê¤¤¤é¤·¤¤¡£³Î¤«¤Ë¥ª¥ê¥´Åü¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë´Ø·¸¤¬¤¢¤ë¤È¹Í¤¨¤ë¿Í¤Ï¤Û¤È¤ó¤É¤¤¤Ê¤¤¤À¤í¤¦¡£

¤³¤Î¤È¤­ P. indica ¤Ï ahg2 (cycam) ¤Ë´¶À÷¤Ç¤­¤Æ¤¤¤ë¤Î¤À¤í¤¦¤«¡£

P. indica ¤ÏÍ­ÍѤʶ¦À¸¶Ý¤Ç¡¢Â¿¤¯¤Î¸¦µæ¤¬¹Ô¤ï¤ì¤Æ¤¤¤ë¡£

Piriformospora indica recruits host-derived putrescine for growth promotion in plants.¡¡¡¡¡¡Kundu A, Mishra S, Kundu P, Jogawat A, Vadassery ¡¡¡¡J.Plant Physiol. 2022 Mar 28;188(4):2289-2307. doi: 10.1093/plphys/kiab536.PMID: 34791442

¥ê¥ó±ÉÍܸϳé¾ò·ï²¼¤Ç¤Îº¬·÷»å¾õ¶Ý¤Ë¤è¤ë¿¢ÊªÀ¸Ä¹Â¥¿Ê¡¡¡¡¡¡Æü¿¢ÉÂÊó 84¡§78–84¡Ê2018¡Ë¡¡Jpn. J. Phytopathol. 84: 78–84 (2018)¡¡Úì´Ö¡¢À¾ÛꡡξÀèÀ¸¤Ë¤è¤ë¤¹¤Ð¤é¤·¤¤²òÀ⤬¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£81 ¥Ú¡¼¥¸¤Ë P. indica ¤¬½Ð¤Æ¤¯¤ë¡£¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤ËÂФ·¤Æ P. indica ¤ò´¶À÷¤µ¤»¤ë¾ì¹ç¤Î¾É¾õ¤Ï¡¢¥È¥ê¥×¥È¥Õ¥¡¥óͳÍè¤ÎÆó¼¡Âå¼Õʪ¤Î¹çÀ®Ç½¤¬·ç»¤·¤¿cyp79B2 cyp79B3ÊÑ°ÛÂΤˤª¤¤¤Æ·ã²½¤¹¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

¡Ö¿¢Êª¤¿¤Á¤ÎÀïÁ衡ɸ¶ÂΤȤÎ5²¯Ç¯¥µ¥Ð¥¤¥Ð¥ë¥ì¡¼¥¹¡×¡Ê¹ÖÃ̼ҥ֥롼¥Ð¥Ã¥¯¥¹¡Ë¤È¤¤¤¦¤¹¤Ð¤é¤·¤¤Ëܤ¬ÆüËÜ¿¢ÊªÉÂÍý³Ø²ñ¤«¤é½ÐÈǤµ¤ì¤Æ¤¤¤ë¡£198 ¥Ú¡¼¥¸¤Ë P. indica ¤¬½Ð¤Æ¤¯¤ë¡£

AtPARN ¤È¤·¤Æ¤Î¸¦µæ¤Ï 2004 ǯ¤Ë¤¹¤Ç¤ËÏÀʸ¤¬¤¢¤ë¡£¡¡¡¡¡¡mRNA deadenylation by PARN is essential for embryogenesis in higher plants.¡¡¡¡¡¡Reverdatto SV, Dutko JA, Chekanova JA, Hamilton DA, Belostotsky DA.¡¡¡¡¡¡RNA. 2004 Aug;10(8):1200-14. Epub 2004 Jul 9.¡¡¡¡¡¡PMID: 15247430¡¡¡¡¡¡PMCID: PMC1370610¡¡¡¡¡¡¤³¤ÎÏÀʸ¤Ç¤Ï¡ÖAtPARN is a predominantly cytoplasmic deadenylase¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

¤·¤«¤·Ê¿»³¥°¥ë¡¼¥×¤Ë¤è¤ë¸¦µæ¤Ë¤è¤Ã¤Æ AtPARN = AHG2 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¤¤Æ¤¤¤ë¤³¤È¤¬¡¢¾ÜºÙ¤Ë³Îǧ¤µ¤ì¤Æ¤¤¤ë¡£º£¤Î¤È¤³¤í¥ß¥È¥³¥ó¥É¥ê¥¢°Ê³°¤Î¾ì½ê¤Ë¤ª¤¤¤Æ¤âƯ¤¤¤Æ¤¤¤ë²ÄǽÀ­¤ÏÈÝÄꤵ¤ì¤Æ¤¤¤Ê¤¤¡£

The Recovery from Sulfur Starvation Is Independent from the mRNA Degradation Initiation Enzyme PARN in Arabidopsis¡¡¡¡¡¡Laura Armbruster, Veli Vural Uslu, Markus Wirtz, Rüdiger Hell¡¡¡¡¡¡Plants (Basel) 2019 Oct; 8(10): 380. Published online 2019 Sep 27. doi: 10.3390/plants8100380¡¡¡¡¡¡PMCID: PMC6843384¡¡¡¡¡¡¤È¤¤¤¦ÏÀʸ¤Ç¤Ï¡¢AtPARN = AHG2 ¤Ï¥¹¥×¥é¥¤¥·¥ó¥°¤Ë¤è¤Ã¤ÆÊ£¿ô¼ïÎà¤Î mRNA ¤¬À¸¤¸¡¢¤½¤ì¤¾¤ì¤ËÂбþ¤¹¤ëËÝÌõ»ºÊª¤¬°Û¤Ê¤ë¾ì½ê¤Ë¶Éºß¤·¤ÆƯ¤¯¤Î¤Ç¤Ï¤Ê¤¤¤«¤È¹Í»¡¤µ¤ì¤Æ¤¤¤ë¡£ ¤·¤«¤·³Ë¤Ë¥³¡¼¥É¤µ¤ì¤¿°äÅÁ»Ò¤Î mRNA ¤Ç¡¢AtPARN = AHG2 ¤Çʬ²ò¤ËƳ¤«¤ì¤ë¤³¤È¤¬¼¨¤µ¤ì¤¿¤â¤Î¤Ïº£¤Î¤È¤³¤í¤Ê¤¤¤é¤·¤¤¡£

AHG2 ¥¿¥ó¥Ñ¥¯¼Á¤¬¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¯¤Ë¤Ï N Ëöü¤Î¥·¥°¥Ê¥ë¥Ú¥×¥Á¥É¤¬¥ß¥È¥³¥ó¥É¥ê¥¢¤Ø¤Î¶Éºß¤ò¼¨¤¹¤â¤Î¤Ç¤Ê¤¤¤È¤¤¤±¤Ê¤¤¡£ ÃÝÃæÀèÀ¸¤Î¸¦µæ¤¬¾Ò²ð¤µ¤ì¤Æ¤¤¤ë²Ê¸¦Èñ¥Û¡¼¥à¥Ú¡¼¥¸¤Ë¡¢¡ÖºÇ¶áÀÖ¿§¸÷¥·¥°¥Ê¥ë¤Ë¤è¤ëž¼Ì³«»ÏÅÀÊѲ½¤Ë¤è¤Ã¤ÆNËöü¦¤Î¥·¥°¥Ê¥ëÇÛÎó¤ò¼º¤¤¡¢ºÙ˦¼Á¤Ë¶Éºß¤¹¤ëûº¿PPR¥¿¥ó¥Ñ¥¯¼Á¤¬Â¿¿ô¸ºß¤¹¤ë²ÄǽÀ­¤¬¼¨º¶¤µ¤ì¤¿¡£¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡ https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-20K21427/¡¡¡¡¡¡PPR ¥¿¥ó¥Ñ¥¯¼Á¤ä AHG2 ¤Ë¤Ï¤³¤ì¤Þ¤Ç¸«Íî¤È¤µ¤ì¤Æ¤¤¤¿µ¡Ç½¤¬¤¢¤ë²ÄǽÀ­¤¬¤¢¤ë¡£

AHG2 ¤Ï¿Ê²½¤Î´ÑÅÀ¤«¤é¤âÃíÌܤµ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡Regulation of the poly(A) status of mitochondrial mRNA by poly(A) specific ribonuclease is conserved among land plants.¡¡¡¡¡¡Kanazawa M, Ikeda Y, Nishihama R, Yamaoka S, Lee NH, Yamato KT, Kohchi T, Hirayama T.¡¡¡¡¡¡Plant Cell Physiol. 2019 Nov 13. pii: pcz212. doi: 10.1093/pcp/pcz212. ¡¡¡¡¡¡PMID: 31722408

ưʪ¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤â PARN ¤ÎƯ¤­¤¬ÃíÌܤµ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark.¡¡¡¡¡¡Slomovic S, Laufer D, Geiger D, Schuster G.¡¡¡¡¡¡Mol Cell Biol. 2005 Aug;25(15):6427-35.¡¡¡¡¡¡PMID: 16024781

PARN ¤ÏÍÍ¡¹¤ÊƯ¤­¤ò¤·¤Æ¤¤¤ë¡£miRNA ¤Ë¤âºîÍѤ·¤Æ¤¤¤ë¤é¤·¤¤¡£¡¡¡¡¡¡Poly(A)-specific ribonuclease sculpts the 3¡Ç ends of microRNAs.¡¡¡¡¡¡Lee D, Park D, Park JH, Kim JH, Shin C.¡¡¡¡¡¡RNA. 2019 Mar;25(3):388-405. doi: 10.1261/rna.069633.118. Epub 2018 Dec 27.¡¡¡¡¡¡PMID: 30591540 ¡¡¡¡¡¡An integrated in silico approach to design specific inhibitors targeting human poly(a)-specific ribonuclease.¡¡¡¡¡¡Vlachakis D, Pavlopoulou A, Tsiliki G, Komiotis D, Stathopoulos C, Balatsos NA, Kossida S.¡¡¡¡¡¡PLoS One. 2012;7(12):e51113. doi: 10.1371/journal.pone.0051113. Epub 2012 Dec 6.¡¡¡¡¡¡PMID: 23236441 ¡¡¡¡¡¡miRNA ¤ÇÀ©¸æ¤µ¤ì¤Æ¤¤¤ëͭ̾¤Ê°äÅÁ»Ò¤Ë¤Ï CSD1, CSD2 (Cu, Zn ·¿ Superoxide dismutase)¡¡¤¬¤¢¤ë¡£

ahg2 ¤È´Ø·¸¤¹¤ëÏÀʸ¤¬½Ð¤Æ¤¤¤ë¡£¡¡¡¡Temperature-dependent fasciation mutants provide a link between mitochondrial RNA processing and lateral root morphogenesis. ¡¡¡¡¡¡Otsuka K, Mamiya A, Konishi M, Nozaki M, Kinoshita A, Tamaki H, Arita M, Saito M, Yamamoto K, Hachiya T, Noguchi K, Ueda T, Yagi Y, Kobayashi T, Nakamura T, Sato Y, Hirayama T, Sugiyama M.¡¡¡¡¡¡Elife. 2021 Jan 14;10:e61611. doi: 10.7554/eLife.61611. Online ahead of print.¡¡¡¡¡¡PMID: 33443014

¡¦ÍÕÎÐÂΤˤâ RNA ʬ²ò¹ÚÁǤ¬¤¢¤ë

https://www.uniprot.org/uniprot/Q8GZQ3¡¡¡¡¡¡PNP1 = RIF10 = At3g03710¡¡¤Ï¡ÖMay function as a poly(A) mRNA 3'-5' degrading phosphorylase. ¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£rif10 ÊÑ°ÛÂΤϡÖRESISTANT TO INHIBITION WITH FSM 10¡×¤È¤¤¤¦À­¼Á¤â¼¨¤¹¡£ÍÕÎÐÂΤÇƯ¤¯¥¤¥½¥×¥ì¥Î¥¤¥ÉÀ¸¹çÀ®·ÐÏ©¤Ç¤¢¤ë MEP pathway ¤ò¹½À®¤¹¤ë¹ÚÁǤÎÎ̤¬Áý²Ã¤·¤Æ¤¤¤ë¡£¤³¤ì¤Ïž¼Ì¸åÄ´Àá¤Ç¡¢ÍÕÎÐÂÎÆâÉô¤Ç¤Î¥¿¥ó¥Ñ¥¯¼Á¤Îʬ²ò¤¬´ÖÀÜŪ¤ËÍÞ¤¨¤é¤ì¤Æ¤¤¤ë¤é¤·¤¤¡£

¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤òÁ˳²¤¹¤ë¤³¤È¤Ë¤è¤ëɸ¶¶Ý±þÅú¤Î¶¯²½

Mitochondrial Stress Induces Plant Resistance Through Chromatin Changes¡¡¡¡¡¡ Front. Plant Sci., 22 September 2021 | https://doi.org/10.3389/fpls.2021.704964¡¡¡¡¡¡Ana López Sánchez ¤Ê¤É

¤³¤ÎÏÀʸ¤Ç¤ÏÅÅ»ÒÅÁãʣ¹çÂÎ III ¤ò¥¢¥ó¥Á¥Þ¥¤¥·¥ó¤ÇÁ˳²¤¹¤ë¤³¤È¤Çɸ¶ºÙ¶Ý¤ËÂФ¹¤ëÄñ¹³À­¤¬¹â¤¯¤Ê¤ë¤³¤È¤ò¼¨¤·¤Æ¤¤¤ë¡£¤½¤Î¤³¤È¤ò¡¡ mitochondrial stress-induced pathogen resistance (MS-IR)¡¡¤È̾ÉÕ¤±¤Æ¤¤¤ë¡£¤³¤Î¾ì¹ç¤Ï ahg2 ¤È¤Ï°Û¤Ê¤ê¡¢¥µ¥ê¥Á¥ë»À¤ÎÎ̤¬Áý²Ã¤·¤Ê¤¤¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£¤·¤«¤· SA ºîÍѤ˽ÅÍפʥ¿¥ó¥Ñ¥¯¼Á¤Ç¤¢¤ë npr1 ¤¬É¬ÍפǤ¢¤ë¤³¤È¤â¼¨¤µ¤ì¤Æ¤¤¤ë¡£¥Ò¥¹¥È¥ó¤Î½¤¾þ¤ÎÊѲ½¤Ë¤è¤ë¥¯¥í¥Þ¥Á¥ó¹½Â¤¤ÎÊѲ½¤¬µ¯¤­¤Æ¤¤¤ë¡£

¥¢¥ó¥Á¥Þ¥¤¥·¥ó½èÍý¤Ï AOX1a °äÅÁ»Ò¤ÎÍդǤÎȯ¸½¤ò¶¯¤¯Í¶Æ³¤¹¤ë¡£PR-1 °äÅÁ»Ò¤Îȯ¸½¤Ï¥¢¥ó¥Á¥Þ¥¤¥·¥ó½èÍý¤À¤±¤Ç¤ÏÁý²Ã¤·¤Ê¤¤¤¬¡¢¶Ý¤¬´¶À÷¤·¤¿¤³¤È¤Ë¤è¤ëȯ¸½Í¶Æ³¤¬¡¢¥¢¥ó¥Á¥Þ¥¤¥·¥ó½èÍý¤ò¤¹¤ë¤ÈÁᤤÃʳ¬¤Ç¶¯¤¯¾å¤¬¤ë¤è¤¦¤Ë¤Ê¤Ã¤¿¡£¤³¤Î¤³¤È¤ò¥¢¥ó¥Á¥Þ¥¤¥·¥ó¤Î¥×¥é¥¤¥ß¥ó¥°ºîÍѤȸƤó¤Ç¤¤¤ë¡£

Ìȱֳء§±ê¾ÉÀ­¼À´µ¤Î´ðÈפȤ·¤Æ¤Î¥ß¥È¥³¥ó¥É¥ê¥¢ÆâÉô¶¦À¸¤ÎÇËþ¡¡2024ǯ2·î8Æü Nature 626, 7998 doi: 10.1038/s41586-023-06866-z¡¡¤È¤¤¤¦µ­»ö¤¬¤¢¤Ã¤¿¡£¥ß¥È¥³¥ó¥É¥ê¥¢°ø»Ò¤ÎºÙ˦¼Á¥¾¥ë¤Ø¤ÎÄ´Àᤵ¤ì¤¿Êü½Ð¤Ï¡¢ºÙ˦»à¤ä¼«Á³Ìȱ֡¢±ê¾É¤ò°ú¤­µ¯¤³¤¹¤³¤È¤¬¤¢¤ë¡£ ¿¢Êª¤Ç¤â¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤Èɸ¶¶Ý±þÅú¤Ë´ØÏ¢¤¬¤¢¤ë¤³¤È¤ò¼¨¤¹ÏÀʸ¤ÏÁý²Ã¤·¤Æ¤¤¤ë¡£

A mitochondrial RNA processing protein mediates plant immunity to a broad spectrum of pathogens by modulating the mitochondrial oxidative burst. ¡¡¡¡¡¡ Yang Y, Zhao Y, Zhang Y, Niu L, Li W, Lu W, Li J, Schäfer P, Meng Y, Shan W.¡¡¡¡¡¡Plant Cell. 2022 Mar 9:koac082. doi: 10.1093/plcell/koac082. ¡¡¡¡¡¡ PMID: 35262740

RESISTANCE TO PHYTOPHTHORA PARASITICA 7 (AtRTP7¡¡At4g02820) ¤È¤¤¤¦°äÅÁ»Ò¤Ï P-type PPR ¥¿¥ó¥Ñ¥¯¼Á¤Î°ì¼ï¤À¤Ã¤¿¡£NAD7 ¤Î¥¹¥×¥é¥¤¥·¥ó¥°¤Ë´ØÍ¿¤·¤Æ¤¤¤ë¡£¤½¤ì¤Ë¤è¤Ã¤Æ¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤é¤Î³èÀ­»ÀÁÇ ROS À¸À®¤¬±Æ¶Á¤ò¼õ¤±Áý²Ã¤·¤¿¡£°ìÈÌŪ¤Ë¶Ý¤¬´¶À÷¤·¤¿ºÝ¤Î³èÀ­»ÀÁÇÀ¸À®¤Ë½ÅÍפÀ¤È¸À¤ï¤ì¤Æ¤¤¤ë NADPH oxidase ¤Ï´ØÍ¿¤·¤Æ¤¤¤Ê¤«¤Ã¤¿¡£

Ä̾ï¤Î¾õÂÖ¤Ç¤Ï PR1 ¤Ê¤É¤Îȯ¸½Î̤ËÊѲ½¤Ï¤Û¤È¤ó¤É¤Ê¤¤¤¬¡¢¶Ý¤¬´¶À÷¤·¤¿ºÝ¤Îȯ¸½Î̤¬¤º¤Ã¤È¹â¤¯¤Ê¤Ã¤Æ¤¤¤ë¡ÊFig. 6¡Ë¡£¤³¤ì¤â¥×¥é¥¤¥ß¥ó¥°ºîÍѤȸƤ֤³¤È¤â²Äǽ¤«¤â¤·¤ì¤Ê¤¤¡£

RTP7 ¼«ÂΤ⥵¥ê¥Á¥ë»À¤ä¶Ý¤Î´¶À÷¤Çȯ¸½Î̤¬À©¸æ¤µ¤ì mRNA Î̤¬Äã²¼¤¹¤ë¡£

¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤ËÊѲ½¤¬¤¢¤ë¤ÈÀ¸°é¤Ë°­¤¤±Æ¶Á¤¬µ¯¤­¤ë¤³¤È¤¬Â¿¤¤¤¬¡¢¡Öenhanced resistance to both biotrophic and necrotrophic pathogens without affecting overall plant development.¡×¡ÖImportantly, unlike the dwarf and late flowering phenotypes of some Complex I mutants, rtp7 plants did not show a significant changes in growth and development phenotype (Supplemental Figure S8)¡×¤È½ñ¤¤¤Æ¤¢¤ë¡£¤¢¤Þ¤ê¾ï¼±¤Ë¤È¤é¤ï¤ì¤Ê¤¤Êý¤¬¤è¤¤¤³¤È¤¬¤ï¤«¤ë¡£RTP7 ¤ÎÊÑ°Û¤Ç¤Ï NAD7 ¤Îµ¡Ç½¤¬´°Á´¤Ë¤ÏÍÞ¤¨¤­¤ì¤Ê¤¤¤¿¤á¤À¤È¿äÄê¤Ç¤­¤ë¡£

Ê£¹çÂÎ I ¤ÏĹ·¤¤Î¤è¤¦¤Ê¹â¼¡¹½Â¤¤ò¼è¤Ã¤Æ¤¤¤ë¡£NAD1, NAD2, NAD4, NAD5, NAD6 ¤ÏËì¤ËËä¤á¹þ¤Þ¤ì¤¿¥¿¥ó¥Ñ¥¯¼Á¤Ç¤³¤ì¤é¤¬¾ÃÌǤ¹¤ë¤È³èÀ­¤ËÂФ¹¤ë±Æ¶Á¤¬Â礭¤¤¡£NAD7 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¥Þ¥È¥ê¥Ã¥¯¥¹¤Ë¤Ä¤­¤À¤·¤¿Éôʬ¤ÇƯ¤¤¤Æ¤¤¤ë¡£ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359495/¡¡¤Î Figure 1 ¤Ë¤ï¤«¤ê¤ä¤¹¤¤¿ÞÌ̤¬¤¢¤ë¡£

https://www.uniprot.org/uniprotkb/P93306/entry ¡¡¡¡NAD7 ¤Ë¤Ï AtMg00510 ¤È¤¤¤¦Èֹ椬¤Ä¤¤¤Æ¤¤¤ë¡£Mt ¥²¥Î¥à°äÅÁ»Ò·²¤È¤½¤Ã¤¯¤ê¤Ê°äÅÁ»Ò·²¤¬³Ë¤Ë°Ü¹Ô¤·¤Æ¤¤¤Æ 2 ÈÖÀ÷¿§ÂΤÎ7000ÈÖÂæ¤Ë¤¢¤ê¡¡At2g07709¡¡¤Ê¤É¤ÎÈֹ椬¤Ä¤¤¤Æ¤¤¤ë¡£NUMT nuclear mitochondrial sequences ¤È¸Æ¤Ð¤ì¤Æ¤¤¤ë¡£ ¡¡¡¡ Complete Sequence of a 641-kb Insertion of Mitochondrial DNA in the Arabidopsis thaliana Nuclear Genome¡¡¡¡Genome Biol Evol. 2022 May 3;14(5):evac059. doi: 10.1093/gbe/evac059.¡¡Peter D Fields¤Ê¤É¡¡PMID: 35446419 PMCID: PMC9071559¡¡¡¡¡¡ ¤³¤ì¤é¤Ïž¼Ì¤µ¤ì¤Æ¤¤¤Ê¤¤¤¬ RNA-seq ¤ò¤¹¤ë¤È At2g07709 ¤Ê¤É¤ÎÈÖ¹æ¤Ç¥ê¥¹¥È¤Ë½Ð¤Æ¤¯¤ë¤³¤È¤¬¤¢¤ë¡£¡¡Î㡧¡¡Genome-Wide Identification of U-To-C RNA Editing Events for Nuclear Genes in Arabidopsis thaliana¡¡¡¡Cells. 2021 Mar; 10(3): 635.¡¡¡¡Published online 2021 Mar 12. doi: 10.3390/cells10030635¡¡¡¡PMCID: PMC8001311¡¡PMID: 33809209¡¡¡¡Ruchika Chisato Okudaira Matomo Sakari and Toshifumi Tsukahara

¿¢ÊªÉ¸¶¶Ý¤¬ºî¤ë¥¨¥Õ¥§¥¯¥¿¡¼ Hop£Ç1 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤ËºîÍѤ¹¤ë

The Pseudomonas syringae type III effector Hop£Ç1 targets mitochondria, alters plant development and suppresses plant innate immunity.¡¡¡¡¡¡Block A, Guo M, Li G, Elowsky C, Clemente TE, Alfano JR.¡¡¡¡¡¡Cell Microbiol. 2010 Mar;12(3):318-30. doi: 10.1111/j.1462-5822.2009.01396.x. Epub 2009 Oct 27.¡¡¡¡¡¡PMID: 19863557

¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Î°äÅÁ»ÒÊÔ½¸

Mitochondrial gene defects in Arabidopsis can broadly affect mitochondrial gene expression through copy number.¡¡¡¡¡¡Ayabe H, Toyoda A, Iwamoto A, Tsutsumi N, Arimura SI.¡¡¡¡¡¡Plant Physiol. 2023 Jan 27:kiad024. doi: 10.1093/plphys/kiad024. Online ahead of print.¡¡¡¡¡¡PMID: 36703221

TALEN Ë¡¤ò¥ß¥È¥³¥ó¥É¥ê¥¢¤ËŬÍѤ¹¤ë¤³¤È¤Ç¿¢Êª¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤òÊÔ½¸¤¹¤ë¤³¤È¤¬²Äǽ¤Ë¤Ê¤Ã¤¿¡£¤³¤ÎÏÀʸ¤Ç¤Ï NAD7 ¤ò¥Î¥Ã¥¯¥¢¥¦¥È¤·¤Æ¤¤¤ë¡£NAD7 ¤Îµ¡Ç½¤¬´°Á´¤Ë¾Ã¼º¤¹¤ë¤³¤È¤Ë¤è¤Ã¤ÆÀ¸°é¤¬¤­¤ï¤á¤Æ°­¤¯¤Ê¤ë¡£¤Þ¤¿¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Î¥³¥Ô¡¼¿ô¤¬Áý²Ã¤¹¤ë¡Ê2¡Á3ÇÜ¡¢Fig. 2A¡Ë¤È¤¤¤¦¸½¾Ý¤¬´Ñ»¡¤µ¤ì¤¿¡£¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¥³¡¼¥É°äÅÁ»Ò¤Îȯ¸½Î̤¬Á´ÈÌŪ¤ËÁý²Ã¤·¤Æ¤¤¤¿¡£ ³Ë¤Ë¥³¡¼¥É¤µ¤ì¤ë¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¯ËÝÌõ°ø»Ò¡¢¥¿¥ó¥Ñ¥¯¼ÁÍ¢Á÷°ø»Ò¤Îȯ¸½Î̤âÁý²Ã¤·¤Æ¤¤¤¿¡£ ¤³¤ì¤é¤Î¸½¾Ý¤Ï¾¤Î¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½´ØÏ¢ÊÑ°ÛÂΤǤâ´Ñ»¡¤µ¤ì¤¿¤Î¤Ç¡¢TALEN Ë¡¼«ÂΤˤè¤ë±Æ¶Á¤Ç¤Ï¤Ê¤¯¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤ÎÄã²¼¤¬´ÖÀÜŪ¤ËºîÍѤ·¤Æ¤¤¤ë¡£

¥³¥Ô¡¼¿ô¤ÎÁý²Ã¤ÏÉôʬŪ¤Ë ANAC017, RCD1 ¤ÇÀ©¸æ¤µ¤ì¤Æ¤¤¤ë¡£RCD1 ¤Ï UniProt ¤Ç¡¡Inactive poly [ADP-ribose] polymerase RCD1, Protein RADICAL-INDUCED CELL DEATH 1¡¡At1g32230¡¡¡¡¤ÈÃí¼á¤µ¤ì¤Æ¤¤¤ë¡£Poly [ADP-ribose] polymerase (PARP) ¤Ï DNA »½ý¤Î½¤Éü¤Ê¤É¤Ë´Ø¤ï¤ë¹ÚÁÇ¤Ç NAD ¤ò´ð¼Á¤È¤¹¤ë¡£NAD ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤È¿¼¤¤´Ø·¸¤¬¤¢¤ë¡£¤·¤«¤· RCD1 ¤Ï PARP ³èÀ­¤ò»ý¤¿¤º NAD ¤È·ë¹ç¤·¤Ê¤¤¤é¤·¤¤¡£

[Differential Expression of a Foreign Gene in Arabidopsis Mitochondria In Organelle]¡¡¡¡Mol Biol (Mosk). 2023 May-Jun;57(3):460-470.¡¡¡¡[Article in Russian]¡¡¡¡V I Tarasenko , T A Tarasenko, I V Gorbenko, Yu M Konstantinov, M V Koulintchenko ¡¡¡¡PMID: 37326049¡¡¡¡¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£

¥«¥É¥ß¥¦¥à Cd ¥¹¥È¥ì¥¹¤È¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï

Cadmium-Induced Cytotoxicity: Effects on Mitochondrial Electron Transport Chain¡¡¡¡¡¡Front Cell Dev Biol. 2020 Nov 30;8:604377. doi: 10.3389/fcell.2020.604377. eCollection 2020.¡¡¡¡¡¡Jacopo Junio Valerio Branca ¤Ê¤É¡¡¡¡¡¡PMID: 33330504 PMCID: PMC7734342 DOI: 10.3389/fcell.2020.604377

Cadmium interference with iron sensing reveals transcriptional programs sensitive and insensitive to reactive oxygen species September 2021¡¡¡¡¡¡Journal of Experimental Botany Follow journal DOI: 10.1093/jxb/erab393¡¡¡¡¡¡Samuel A McInturf¡¡¤Ê¤É

AOX1a ¤¬ ¥«¥É¥ß¥¦¥à¥¹¥È¥ì¥¹¤ÇͶƳ¤µ¤ì¤ë°äÅÁ»Ò¤Î¡¢Group RII ¡Êº¬¤ÇͶƳ¤µ¤ì¤ë¡Ë¤ËʬÎव¤ì¤ë°äÅÁ»Ò¤Î°ì¤Ä¤È¤·¤Æµó¤²¤é¤ì¤Æ¤¤¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎƯ¤­¤Ïº¬¤ÈÃϾåÉô¡¢ÌÀ¾ò·ï¤È°Å¾ò·ï¤ÇÂ礭¤¯°Û¤Ê¤ë¤é¤·¤¯¡¢¤³¤Î¤³¤È¤Ë¤ÏÃí°Õ¤·¤Ê¤¤¤È¤¤¤±¤Ê¤¤¡ÊÅö¤¿¤êÁ°¤À¤¬¡Ë¡£

¥¤¥Í¤Î¥«¥É¥ß¥¦¥àÂÑÀ­¤Ë¥°¥ë¥¿¥Á¥ª¥ó¤¬½ÅÍפÊÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë¡£¡¡¡¡https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/242680/2/dnogk02316.pdf¡¡¡¡¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤È¥°¥ë¥¿¥Á¥ª¥ó¤Ë¤â´ØÏ¢¤¬¤¢¤Ã¤Æ¤â¤ª¤«¤·¤¯¤Ê¤¤¡Ê¤½¤ì¤¬Ìò¤ËΩ¤Ä¤«¤ÏÊ̤Ȥ·¤Æ¡Ë¡£

Mistletoe¡Ê¥ä¥É¥ê¥®¡Ë¤È complex I

Absence of Complex I Implicates Rearrangement of the Respiratory Chain in European Mistletoe.¡¡¡¡¡¡Senkler J, Rugen N, Eubel H, Hegermann J, Braun HP.¡¡¡¡¡¡Curr Biol. 2018 Apr 27. pii: S0960-9822(18)30379-8. doi: 10.1016/j.cub.2018.03.050. [Epub ahead of print]¡¡¡¡¡¡PMID: 29731306

Absence of Complex I Is Associated with Diminished Respiratory Chain Function in European Mistletoe.¡¡¡¡¡¡Maclean AE, Hertle AP, Ligas J, Bock R, Balk J, Meyer EH.¡¡¡¡¡¡Curr Biol. 2018 Apr 26. pii: S0960-9822(18)30365-8. doi: 10.1016/j.cub.2018.03.036. [Epub ahead of print]¡¡¡¡¡¡PMID: 29731304

The gene space of European mistletoe (Viscum album).¡¡¡¡¡¡Schröder L, Hohnjec N, Senkler M, Senkler J, Küster H, Braun HP.¡¡¡¡¡¡Plant J. 2021 Oct 29. doi: 10.1111/tpj.15558. ¡¡¡¡¡¡PMID: 34713513

https://gizmodo.com/mistletoe-somehow-survives-without-protein-needed-by-al-1825741143¡¡¡¡¡¡¥®¥º¥â¡¼¥É¤È¤¤¤¦°ìÈ̸þ¤±¤Î¥Ë¥å¡¼¥¹¥µ¥¤¥È¤Ç¤â²Ê³Ø¥Ë¥å¡¼¥¹¤È¤·¤Æ¼è¤ê¾å¤²¤é¤ì¤Æ¤¤¤ë¡£

https://www.jic.ac.uk/blog/a-christmas-mystery-somethings-missing-from-the-kissing-plant/¡¡¡¡¡¡Ãø¼Ô¥¤¥ó¥¿¥Ó¥å¡¼¡Ê°ìÈ̸þ¤±¡Ë

2023 ǯ¤Ë¤âÊ̤μïÎà¤Î¥ä¥É¥ê¥® Showy mistletoes ¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Ë¤âÂ礭¤ÊÊÑÆ°¤¬¤¢¤ë¤³¤È¤¬È¯É½¤µ¤ì¤¿¡£¡¡¡¡¡¡Understanding parasitism in Loranthaceae: insights from plastome and mitogenome of Helicanthes elastica¡¡¡¡Gene. 2023 Jan 31;147238. doi: 10.1016/j.gene.2023.147238. ¡¡¡¡Ashwini M Darshetkar¡¡¤Ê¤É¡¡¡¡PMID: 36736502¡¡¡¡¡¡Getorganelle¡¡¡¡https://pubmed.ncbi.nlm.nih.gov/32912315¡¡¡¡¤È¤¤¤¦¥½¥Õ¥È¥¦¥§¥¢¤òÍѤ¤¤Æ¤¤¤ë¡£

ʬÎࡢʬ»Ò¿Ê²½¤Ç¤Ï¤è¤¯¥ß¥È¥³¥ó¥É¥ê¥¢°äÅÁ»Ò¤ÎÇÛÎó¤òÄ´¤Ù¤ë¡£ÂåɽŪ¤Ê´óÀ¸¿¢Êª¤Ç¤¢¤ë¥ä¥É¥ê¥®¤Ë¤Ä¤¤¤Æ¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤òÇÛÎó·èÄꤷ¤¿¤é¡¢Â礭¤ÊÊÑÆ°¤¬¸«¤é¤ì¤¿¤È¤¤¤¦Àè¹Ô¸¦µæ¤¬¤¢¤Ã¤¿¡£

Comparative mitogenomics indicates respiratory competence in parasitic Viscum despite loss of complex I and extreme sequence divergence, and reveals horizontal gene transfer and remarkable variation in genome size.¡¡¡¡¡¡Skippington E, Barkman TJ, Rice DW, Palmer JD.¡¡¡¡¡¡BMC Plant Biol. 2017 Feb 21;17(1):49. doi: 10.1186/s12870-017-0992-8.¡¡¡¡¡¡PMID: 28222679

¤³¤Î¤³¤È¤Ï¤É¤¦²ò¼á¤Ç¤­¤ë¤«¡£´óÀ¸¤·¤¿¤Î¤Ç¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤¬ÉÔÍפˤʤ俤ȹͤ¨¤ì¤Ð¤½¤ì¤ÇÌäÂê¤Ê¤¤¡£¡Ö¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤¬Äã²¼¤·¤¿¤Î¤Ç¡¢´óÀ¸¤¬À®Î©¤·¤ä¤¹¤¯¤Ê¤Ã¤¿¡×¤È¤¤¤¦¤³¤È¤â¤¢¤ê¤¨¤Ê¤¯¤Ï¤Ê¤¤¡£

ÆÃÊ̤ʴĶ­¤ËŬ±þ¤·¤¿¿¢Êª¤Ç¤Ï¡¢ÉáÄ̤ο¢Êª¤Ë¸«¤é¤ì¤ë°äÅÁ»Ò¤¬·ç»¤·¤Æ¤¤¤ë¤³¤È¤¬´Ñ»¡¤µ¤ì¤ë¡£¡¡¡¡¡¡Expansin gene loss is a common occurrence during adaptation to an aquatic environment.¡¡¡¡¡¡Hepler NK, Bowman A, Carey RE, Cosgrove DJ.¡¡¡¡¡¡Plant J. 2019 Oct 18. doi: 10.1111/tpj.14572.¡¡¡¡¡¡PMID: 31627246

ÉáÄ̤ο¢Êª¤ÏÅÚ¾í¤Çȯ²ê¤·¤Æº¬¤ò¿­¤Ð¤·À¸°é¤¹¤ë¡£¤·¤«¤·¥ä¥É¥ê¥®¤Î¼ï»Ò¤Ï¡¢½É¼ç¤Î»Þ¤Î¾å¤È¤¤¤¦Æüì¤Ê´Ä¶­¤Çȯ²ê¤·¤ÆÀ¸°é¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ ½É¼ç¤«¤é¿åʬ¤òµÛ¤¤¼è¤ì¤ë¤è¤¦¤Ë¤Ê¤ë¤Þ¤Ç¡¢¿å¤ä±ÉÍܤò¤É¤¦¤Ë¤«¤·¤Æ³ÎÊݤ·¤Ê¤¤¤È¤¤¤±¤Ê¤¤¡£ ¥ä¥É¥ê¥®¤Î¼ï»Ò¤Ï¡¢µÛ¿å¤¹¤ë¤È¼þ¤ê¤Ë¹âµÛ¿åÀ­¤Î¥²¥ë¤¬·ÁÀ®¤µ¤ì¤Æ´¥Á礷¤¿»Þ¤Î¾å¤Ç¤â¿åʬ¤òÆÀ¤Æȯ²êÀ®Ä¹¤¬¤Ç¤­¤ë¤è¤¦¤Ë¤Ê¤ë¡£¡Ö¿¢Êª¤Î¼ï»Ò¤Ë¸ºß¤¹¤ë¥²¥ë¾õ¥»¥ë¥í¡¼¥¹¡×Azuma, Sakamoto ξÀèÀ¸¤Ë¤è¤ë²òÀâ¡¡https://www.jstage.jst.go.jp/article/tigg1989/15/81/15_81_1/_article/-char/ja/¡¡¡¡¡¡¥ä¥É¥ê¥®¤Î¼ï»Ò¤Ï¤Þ¤ºÄ»¤Ë¿©¤Ù¤é¤ì¤ë¡£¾Ã²½´É¤Ï¿åʬ¤¬½½Ê¬¤Ë¤¢¤ê²¹ÅÙ¤â¹â¤¤¡£¤·¤«¤·¤½¤³¤Çȯ²ê¤·¤Æ¤·¤Þ¤Ã¤Æ¤Ï¤¤¤±¤Ê¤¤¡£¤Þ¤¿¾Ã²½¤µ¤ì¤Æ¤Ï¤¤¤±¤Ê¤¤¡£¥²¥ë¤¬¤¢¤ë¤³¤È¤Çȯ²ê¤ä¾Ã²½¤òËɤ°¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

»Þ¤Ë¼ï»Ò¤¬¤¯¤Ã¤Ä¤¤¤Æȯ²ê¤¹¤ë¤È¡¢¤½¤³¤Ï½É¼ç¤ÎÍդα¢¤Ë¤Ê¤ê¤ä¤¹¤¤¤«¤éÆüÅö¤¿¤ê¤Ï°­¤¤¤À¤í¤¦¡£¼å¤¤¸÷¤Ç¤â¸÷¹çÀ®¤¹¤ë¡¦¸÷¼õÍÆÂΤò¼å¤¤¸÷¤Ç¤â³èÀ­²½¤¹¤ëɬÍפ¬¤¢¤ë¡£ÆüÅö¤¿¤ê¤¬°­¤¤¾ò·ï¤ÇÀ¸¤­¤Æ¤¤¤¯¤Ë¤Ï¡¢Ê£¹çÂÎ I ¤Ï¤à¤·¤íƯ¤«¤Ê¤¤Êý¤¬¤è¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£ÆüÅö¤¿¤ê¤¬°­¤¤´Ä¶­¤ËŬ±þ¤·¤¿¿¢Êª¤Ë¥¯¥ï¥º¥¤¥â¤¬¤¢¤ê¡¢¸¦µæ¤¬¿Ê¤ó¤Ç¤¤¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎÀ­¼Á¤¬ÊѤï¤Ã¤Æ¤¤¤ë¡£ ¿¢Êª¤ÏÆüÅö¤¿¤ê¤¬°­¤¤¤È·Ô¤òºÙŤ¯¿­¤Ð¤·¤ÆÅÌŤ¹¤ë¡£Shade Avoidance Syndrome ¤È¸Æ¤Ð¤ì¤ë¡£¡¡¡¡¡¡https://books.google.co.jp/books/about/XBAT34_is_Required_for_Shade_induced_Pet.html?id=jRUhyAEACAAJ&redir_esc=y¡¡¡¡¡¡

±ÉÍÜʬ¤ÎÊý¤Ï¤É¤¦¤À¤í¤¦¤«¡£¡¡Plant mitochondria - past, present and future.¡¡¡¡¡¡Møller IM, Rasmusson AG, Van Aken O. Plant J. 2021 Nov;108(4):912-959. doi: 10.1111/tpj.15495. Epub 2021 Oct 28. PMID: 34528296¡¡¡¡¡¡¤È¤¤¤¦¤¹¤Ð¤é¤·¤¤ÁíÀ⤬ȯɽ¤µ¤ì¤¿¡£Ê£¹çÂÎ I ¤Ï 8 ¸Ä¤Î FeS ¥¯¥é¥¹¥¿¡¼¤ò´Þ¤à¤È Table 4 ¤Ë½ñ¤«¤ì¤Æ¤¤¤ë¡£Ê£¹çÂÎ I ¤òºî¤é¤Ê¤¤¤³¤È¤ÇÅ´¡¢¥¤¥ª¥¦¤òÀáÌó¤Ç¤­¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£Å´¤Ï¿¢Êª¤Ë¤È¤Ã¤Æɬ¿Ü¤Ç·ç˳¤·¤ä¤¹¤¤¡£´óÀ¸¿¢Êª¤ÏÅ´·ç˳¤Ë¤Ê¤ê¤ä¤¹¤¤¤À¤í¤¦¡£¸÷¹çÀ®¤ò»ß¤á¤ë¤³¤È¤Ë¤è¤Ã¤Æ¤âÅ´¤òÀáÌó¤Ç¤­¤ë¤À¤í¤¦¤¬¡¢¸÷¹çÀ®¤ò»ß¤á¤¿¤¯¤Ê¤±¤ì¤Ð¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤ò²¼¤²¤ë¤³¤È¤Ë¤Ê¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

Ê£¹çÂÎ I ¤ÎÁ˳²ºÞ¤È¤·¤Æ¥í¥Æ¥Î¥ó¤¬¤è¤¯ÃΤé¤ì¤Æ¤¤¤ë¡£¥í¥Æ¥Î¥ó¤Ï¤¤¤¯¤Ä¤«¤ÎÇ®ÂÓÀ­¤ª¤è¤Ó°¡Ç®ÂÓÀ­¿¢Êª¤¬ºî¤ëÅ·Á³¤Î²½¹çʪ¤Ç¤¢¤ë¡£Ê£¹çÂÎ I ¤¬¤è¤¯Æ¯¤«¤Ê¤¤¤³¤È¤Ë¤è¤ë¥Ç¥á¥ê¥Ã¥È¤ò¡¢¥í¥Æ¥Î¥ó¤ÎÆÇÀ­¤Ç¿©³²¤Ê¤É¤òËɤ°¤³¤È¤Ë¤è¤ë¥á¥ê¥Ã¥È¤¬¾å²ó¤Ã¤Æ¤¤¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

¥ä¥É¥ê¥®¤¬À¸°é¤¹¤ë¤Ë¤ÏÄ»¤Î¥Õ¥ó¤¬±ÉÍܸ»¤Ë¤Ê¤ë¤À¤í¤¦¡£¥ä¥É¥ê¥®¤Ë¤Ä¤¤¤Æ½ñ¤«¤ì¤Æ¤¤¤ë Web ¥Ú¡¼¥¸¤ò¸«¤Æ¤¤¤¿¤é¡¢¿Í°ÙŪ¤Ë´óÀ¸¤µ¤»¤ë¤¿¤á¤Ë·Üʵ¤ò¼ï»Ò¤Ë¤Þ¤Ö¤¹¤È½ñ¤¤¤Æ¤¢¤Ã¤¿¡£ÅÚ¾í¤È°Û¤Ê¤ëÉôʬ¤¬Â¿¤¤¤À¤í¤¦¡£ ·Üʵ¤Ë´Þ¤Þ¤ì¤ëÃâÁǤÎÌóȾʬ¤ÏÇ¢»À¤Ç¤¢¤ë¡£¡¡¡¡https://patents.google.com/patent/WO2011096266A1/ja¡¡¡¡Ç¢»À¤Ï¥¦¥ê¥«¡¼¥¼¤È¤â¤¦°ì¤Ä¤Î¹ÚÁǤǥ¢¥é¥ó¥È¥¤¥ó¤Ë¤Ê¤ê¡¢ºÇ¸å¤Ï¥¢¥ó¥â¥Ë¥¢¤¬À¸À®¤¹¤ë¡£¥¢¥ó¥â¥Ë¥¢¤Ë¶¯¤¯¤Ê¤¤¤È¤¤¤±¤Ê¤¤¡£ ¤Þ¤¿ÌڤλޤËÉÕ¤¤¤¿¼ï»Ò¤ÏÅÚ¤ËËä¤Þ¤Ã¤Æ¤¤¤ë¤ï¤±¤Ç¤Ï¤Ê¤¤¡£¤½¤Î¾õÂ֤ˤ¦¤Þ¤¯Å¬±þ¤¹¤ë¤è¤¦¤ËÂå¼Õ¤¬¤Ç¤­¤Æ¤¤¤Ê¤¤¤È¤¤¤±¤Ê¤¤¡£ ¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½Äã²¼¤Ë¤è¤Ã¤Æ¤½¤¦¤¤¤¦¤³¤È¤¬²Äǽ¤Ë¤Ê¤Ã¤Æ¤¤¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£ °ì±þ¤½¤ì¤é¤·¤¤ÏÀʸ¤â¤¢¤ë¡£¡¡¡¡¡¡Nitrogen Source Dependent Changes in Central Sugar Metabolism Maintain Cell Wall Assembly in Mitochondrial Complex I-Defective frostbite1 and Secondarily Affect Programmed Cell Death¡¡¡¡¡¡http://www.mdpi.com/1422-0067/19/8/2206¡¡¡¡¡¡Programmed Cell Death¡¡¤Î¤³¤È¤â½ñ¤¤¤Æ¤¢¤ë¡£Kiss-of-death (KOD)¡¡¤È¤¤¤¦°äÅÁ»Ò¤Î mRNA Î̤¬¸º¤Ã¤Æ¤¤¤ë¡£¤½¤ì¤ÏÃâÁǸ»¤Î¼ïÎà ¾Ë»À¤È¥¢¥ó¥â¥Ë¥¢¤ÇÊѤï¤ë¡£¥·¥È¥¯¥í¥à C ¤Î¥¿¥ó¥Ñ¥¯¼Á¤ÎÃßÀÑÎ̤âÊѲ½¤·¤Æ¤¤¤ë¡£ ¥¢¥ó¥â¥Ë¥¢¤òÃâÁǸ»¤È¤¹¤ë¤³¤È¤Ç¿¢Êª¤ÎÀ®Ä¹¤¬ÍÞ¤¨¤é¤ì¤ë¤³¤È¤Ï¤È¤Æ¤â½ÅÍפÊÌäÂê¤Ç¤¢¤ê¸¦µæ¤¬¿Ê¤ó¤Ç¤¤¤ë¡£¡¡¡¡¡¡Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition.¡¡¡¡¡¡Podgórska A, Burian M, Gieczewska K, Ostaszewska-Bugajska M, Zebrowski J, Solecka D, Szal B.¡¡¡¡¡¡Front Plant Sci. 2017 Aug 10;8:1344. doi: 10.3389/fpls.2017.01344. eCollection 2017.¡¡¡¡¡¡PMID: 28848567 ¡¡¡¡¡¡¥¢¥ó¥â¥Ë¥¢ÇÝÃϤǰéÀ®¤¹¤ë¤ÈºÙ˦Êɤ¬·ø¤¯¤Ê¤êÀ¸°é¤¬ÍÞ¤¨¤é¤ì¤ë¡£

¥¢¥ó¥â¥Ë¥¢¤òÃâÁǸ»¤È¤¹¤ë¤³¤È¤Ç¿¢Êª¤ÎÀ®Ä¹¤¬ÍÞ¤¨¤é¤ì¤ë¤³¤È¤Ë´Ø¤¹¤ë¡¢¤¹¤Ð¤é¤·¤¤À®²Ì¤¬ÆüËܤθ¦µæ¥°¥ë¡¼¥×¤«¤éȯɽ¤µ¤ì¤¿¡£

Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana.¡¡¡¡¡¡Hachiya T, Inaba J, Wakazaki M, Sato M, Toyooka K, Miyagi A, Kawai-Yamada M, Sugiura D, Nakagawa T, Kiba T, Gojon A, Sakakibara H. ¡¡¡¡¡¡Nat Commun. 2021 Aug 16;12(1):4944. doi: 10.1038/s41467-021-25238-7. ¡¡¡¡¡¡PMID: 34400629 ¡¡¡¡¡¡Ì¾¸Å²°Âç³Ø¤Î¥×¥ì¥¹¥ê¥ê¡¼¥¹¡¡¡Ö¿¢Êª¤Î¥¢¥ó¥â¥Ë¥¦¥àÆÇÀ­¤Î¸¶°ø¤ò²òÌÀ ¡Á¾­Íè¤Î¹âCO2´Ä¶­¤ËŬ¤·¤¿ºîʪ¤Î³«È¯¤Ë´üÂÔ¡Á¡×¡¡¡¡¥¢¥ó¥â¥Ë¥¢¤òÃâÁǸ»¤Ë¤¹¤ë¤ÈºÙ˦Æâ³°¤Î¿åÁÇ¥¤¥ª¥óÇ»ÅÙ¤¬¹â¤¯¤Ê¤ê pH ¤¬Äã²¼¤¹¤ë¡£¤½¤Î¤¿¤á ALMT1, GABA-T, GAD1, GDH2, PGIP1, PGIP2 ¤Ê¤É¤Î»À¤ÇͶƳ¤µ¤ì¤ë°äÅÁ»Ò·²¤Îȯ¸½Î̤¬Áý²Ã¤¹¤ë¡£¤³¤ì¤é¤Î°äÅÁ»Ò¤Î»ºÊª¡¢¤Þ¤¿¾Ë»À´Ô¸µ¹ÚÁǤϿåÁÇ¥¤¥ª¥ó¤ò¾ÃÈñ¤¹¤ë¤³¤È¤¬¤Ç¤­¤ë¤Î¤Ç¥¢¥ó¥â¥Ë¥¢ÆÇÀ­¤ËÂй³¤¹¤ëƯ¤­¤¬¤¢¤ë¡£ÇÝÃϤ˥¢¥ó¥â¥Ë¥¢¿å¤ò²Ã¤¨¤Æ pH ¤ò¾å¤²¤ë¤³¤È¤Ç¥¢¥ó¥â¥Ë¥¢ÆÇÀ­¤òÂǤÁ¾Ã¤¹¤³¤È¤¬¤Ç¤­¤Æ¤¤¤ë¡£¥¢¥ó¥â¥Ë¥¦¥à¥¤¥ª¥ó¤¬Ä¾ÀÜ¥À¥á¡¼¥¸¤ò¶¯¤¯Í¿¤¨¤ë¤Î¤Ç¤Ï¤Ê¤¯¡¢¥¢¥ó¥â¥Ë¥¢¤òƱ²½¤¹¤ëºÝ¤Ë¿åÁÇ¥¤¥ª¥óÇ»ÅÙ¤¬¹â¤¯¤Ê¤Ã¤Æ¤·¤Þ¤¦¤Î¤¬¿¢Êª¤ÎÀ¸°é¤Ë¤è¤¯¤Ê¤«¤Ã¤¿¤È¸À¤¦¤³¤È¤Ë¤Ê¤ë¡£ PGIP ¤È¤¤¤¦¥¿¥ó¥Ñ¥¯¼Á¤ÏºÙ˦ÊɤΥڥ¯¥Á¥ó¤¬»À¤Çʬ²ò¤¹¤ë¤Î¤òÍÞ¤¨¤ë¤³¤È¤ÇºÙ˦Êɤò°ÂÄê²½¤¹¤ë¤Î¤Ç¥¢¥ó¥â¥Ë¥¢ÆÇÀ­¤ò´ËϤǤ­¤ë¡£¥Þ¥¤¥¯¥í¥¢¥ì¥¤¤Î¥Ç¡¼¥¿ (.cel ¥Õ¥¡¥¤¥ë)¡¡ E-MTAB-10796¡¡https://www.omicsdi.org/dataset/arrayexpress-repository/E-MTAB-10796¡¡¡¡¤¬¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£

Does energy cost constitute the primary cause of ammonium toxicity in plants?¡¡¡¡Kong L, Zhang Y, Zhang B, Li H, Wang Z, Si J, Fan S, Feng B.¡¡¡¡Planta. 2022 Aug 22;256(3):62. doi: 10.1007/s00425-022-03971-7.¡¡¡¡PMID: 35994155 Review.

¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£¥¢¥ó¥â¥Ë¥¢¤Ï¾Ë»À¥¤¥ª¥ó¤È¤Ï°Û¤Ê¤ê´Ô¸µ¤ËɬÍפʥ¨¥Í¥ë¥®¡¼¤¬Íפé¤Ê¤¤¤Î¤Ç¥¨¥Í¥ë¥®¡¼Åª¤ËÍ­Íø¤À¤¬¡¢²á¾ê¤Ë¤Ê¤ë¤È¤µ¤Þ¤¶¤Þ¤ÊÌäÂ꤬À¸¤¸¡¢¤½¤ì¤é¤ò²ò·è¤¹¤ë¤¿¤á¤Ë¤«¤¨¤Ã¤Æ¥¨¥Í¥ë¥®¡¼ÉÔ­¤Ë¤Ê¤Ã¤¿¤ê¤¹¤ë¡£¥¢¥ó¥â¥Ë¥¢¤ÎÃâÁǸ¶»Ò¤Ï¥¢¥ß¥Î»ÀÀ¸¹çÀ®¤Ë»È¤ï¤ì¤ë¤¬¡¢¤½¤ì¤Ë¤ÏúÁǹü³Ê¤Ë¤Ê¤ë 2-¥ª¥­¥½¥°¥ë¥¿¥ë»À¤Ê¤É¤ÎÍ­µ¡»À¤¬É¬Íפˤʤ롣 2-¥ª¥­¥½¥°¥ë¥¿¥ë»À¤Ï TCA ¥µ¥¤¥¯¥ë¤Î½ÅÍפÊÃæ´ÖÂΤǤ¢¤ë¡£²á¾ê¤Î¥¢¥ó¥â¥Ë¥¢¤ò½èÍý¤¹¤ë¤¿¤á¤Ë 2-¥ª¥­¥½¥°¥ë¥¿¥ë»À¤¬¾ÃÈñ¤µ¤ì¤ë¤³¤È¤Ë¤è¤Ã¤Æ TCA ¥µ¥¤¥¯¥ë¤¬¤¦¤Þ¤¯²óž¤·¤Ê¤¯¤Ê¤ë¤³¤È¤¬¤¢¤ë¤È½ñ¤«¤ì¤Æ¤¤¤¿¡£

ÆüËÜ¿¢Êª³Ø²ñ¤Îǯ²ñ (2018ǯ9·î) ¤Ë¤ª¤¤¤Æ¡¢¡Ö°ì·Ý¤Ë½¨¤Ç¤¿¿¢Êª¤¿¤Á¡×¤È¤¤¤¦¥·¥ó¥Ý¥¸¥¦¥à¤òʹ¤«¤»¤Æ¤¤¤¿¤À¤¤¤¿¡£Çò¿ÜÀèÀ¸¤Î¡Ö´óÀ¸¿¢Êª¤Ï¤É¤¦¤ä¤Ã¤Æ½É¼ç¤òǧ¼±¤¹¤ë¤Î¤«¡×¤È¤¤¤¦¹Ö±é¤¬¤¢¤Ã¤¿¡£¿¢Êª¤â¼«¸Ê¤È¾¼Ô¡¢Â¾¼ï¤òǧ¼±¤·¤Æ¶èÊ̤¹¤ë¤³¤È¤¬¤Ç¤­¤ë¡£ ÌîÅĸýÀèÀ¸¤Î¡ÖÀܤ®ÌÚǽÎϤι⤤¥¿¥Ð¥³Â°¿¢Êª¡×¡¢»³ÈøÀèÀ¸¤Î¡Ö¼«Â¾¤ò¼±Ê̤¹¤ë¿¢Êª¤¿¤Á¡×¤È¤¤¤¦¹Ö±é¤â¤¢¤Ã¤¿¡£ ´óÀ¸¿¢Êª¤¬´óÀ¸¤¹¤ëÍͻҤˤÏÀܤ®ÌڤȻ÷¤¿¤È¤³¤í¤¬¤¢¤ë¤È¤¤¤¦¤³¤È¤òÃΤ뤳¤È¤¬¤Ç¤­¤¿¡£ Àܤ®ÌÚ¤¬À®Î©¤·¤Ê¤¤¾ì¹ç¡¢¶­³¦¤ÎºÙ˦¤¬²õ»à¤·¤ÆÃ㿧¤¯¤Ê¤ë¡£¶­³¦¤ÏÆÃÊ̤ʾì½ê¤Ë¤Ê¤ë¤é¤·¤¤¡£Science 2019ǯ1·î4Æü¹æ¤Ë¤Ï¡¢¡Ö¿¢Êª¤ÏƱÎà¤ÎÌ£Êý¤ò¤¹¤ë¡×¤È¤¤¤¦µ­»ö¤¬·ÇºÜ¤µ¤ì¤Æ¤¤¤¿¡£http://science.sciencemag.org/content/363/6422/15¡¡¡¡ÆüËܷкѿ·Ê¹ 2020ǯ8·î8Æü(ÅÚ)¡¡Âè34Ì̤ˡ֥¿¥Ð¥³¤Î·Ô¡ÖÀÜÃåºÞ¡×¤Ë¥­¥¯¤Î¾å¤Ç¥È¥Þ¥ÈºÏÇݡפȤ¤¤¦¥¿¥¤¥È¥ë¤Ç¡¢ÌîÅĸýÀèÀ¸¤é¤Î¸¦µæ¤¬¾Ò²ð¤µ¤ì¤Æ¤¤¤¿¡£ ¥¿¥Ð¥³¤ÏÍÕ¤òÍÕ´¬¤ä¥·¥¬¥ì¥Ã¥È¤Ë¤·¤ÆµÛ¤Ã¤¿ºÝ¤ÎÌ£¤¬¤è¤¯¤Ê¤¯¤Æ¤Ï¤¤¤±¤Ê¤¤¡£¤¤¤¯¤é¤è¤¯À®Ä¹¤·¤Æ¤âÌ£¤¬°­¤¤¤Î¤Ç¤Ï¾¦ÉʲÁÃͤϤʤ¤¡£¤½¤ÎÅÀ¤Ç¾¤Î¿¢Êª¤È°Û¤Ê¤ë¡£Ì£¤¬¤è¤¯¤Ê¤ë¤Î¤ËɬÍפʲ¿¤«¤ÎÊѲ½¤¬¤¢¤ê¡¢¤½¤ì¤¬Àܤ®ÌڤȤâ´Ø·¸¤¹¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎÊѲ½¤ÏÂå¼ÕÁ´ÂΤËÂ礭¤Ê±Æ¶Á¤òÍ¿¤¨¤ë¤Î¤Ç¡¢Ì£¤Ë¤â´Ø·¸¤¹¤ë¤«¤â¤·¤ì¤Ê¤¤¤¬¸¦µæÎã¤Ï¸«¤¿¤³¤È¤¬¤Ê¤¤¡£

´óÀ¸¿¢Êª¤Ë¤Ïºîʪ¤Ë³²¤òÍ¿¤¨¤ë¤â¤Î¤¬¤¢¤ê¸¦µæ¤¬¿Ê¤ó¤Ç¤¤¤ë¡£¡¡¡¡¡¡http://www.riken.jp/pr/press/2010/20100906/¡¡¡¡¡¡http://www.riken.jp/pr/press/2016/20160707_1/¡¡¡¡¡¡https://www.brh.co.jp/publication/journal/096/research/2.html¡¡¡¡¡¡Çò¿ÜÀèÀ¸¤Î¥°¥ë¡¼¥×¤Î¸¦µæ¾Ò²ð¡¡¡¡¡¡ ´óÀ¸¿¢Êª¤Ë¤ÏÍÍ¡¹¤Ê¤â¤Î¤¬¤¢¤ë¡£½É¼ç¤¬¤¤¤Ê¤¤¤È¼ï»Ò¤¬È¯²ê¤·¤Ê¤¤¥¿¥¤¥×¤Î¤â¤Î¤À¤È¡¢½É¼ç¤òǧ¼±¤¹¤ë¤Þ¤Ç¤Ï¤¸¤Ã¤ÈÂѤ¨¤Æȯ²ê¤òÂÔ¤ÄɬÍפ¬¤¢¤ë¡£¤½¤Î¾ì¹ç¤¹¤°¤Ëȯ²êÎϤ¬Íî¤Á¤Æ¤·¤Þ¤¦¤Î¤Ç¤Ï´óÀ¸¿¢Êª¤È¤·¤ÆÀ¸¤­¤ë¤³¤È¤Ï¤Ç¤­¤Ê¤¤¡£ ¡Öȯ²êÀ¸Êª³Ø¡×¤ÎÊÆ»³ÀèÀ¸¤Ë¤è¤ë²òÀâ¤Î106¥Ú¡¼¥¸¤Ë¡¢º¬´óÀ¸¿¢Êª¤Î¼ï»Ò¤Ë¤Ä¤¤¤Æ²òÀ⤵¤ì¤Æ¤¤¤ë¡£¥µ¥¤¥º¤¬¤È¤Æ¤â¾®¤µ¤¤¤¬¡¢ÅÚ¾íÃæ¤Ç10ǯ°Ê¾åÀ¸Â¸¤Ç¤­¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£Ë³¤·¤¤±ÉÍܤǺÇÄã¸Â¤ÎÂå¼Õ¤À¤±¤ò¹Ô¤¦»ÅÁȤߤ¬¤¢¤ë¤ÈÁÛÁü¤Ç¤­¤ë¡£ÍÕÎÐÂΤä¥ß¥È¥³¥ó¥É¥ê¥¢¤¬Æ¯¤«¤Ê¤¤¤è¤¦¤Ë¤·¤Æ¤¤¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¤½¤Î¤»¤¤¤«¡¢¤¹¤°¤Ëȯ²ê¤¹¤ë¤³¤È¤Ï¤Ç¤­¤Ê¤¤¡£¤Þ¤º¼¾½á°Å¹õ²¼¡¢Å¬Åö¤Ê²¹ÅÙ¤ÇÁ°ÇÝÍܤµ¤ì¤ë¤³¤È¤Çȯ²ê¤Î½àÈ÷¤ò¤·¤Æ¡Ê¥³¥ó¥Ç¥£¥·¥ç¥Ë¥ó¥°¡Ë¡¢¤½¤Î¾õÂ֤ˤʤäƤ«¤éȯ²ê»É·ãʪ¼Á¤ò´¶ÃΤ¹¤ë¤Èȯ²ê¤¬³«»Ï¤¹¤ë¡£

¤½¤ì¤È¤ÏÈ¿ÂФËȯ²êΨ¤¬Íî¤Á¤ä¤¹¤¤¼ï»Ò¤òºî¤ëºîʪ¤¬¤¢¤ë¡£¥¿¥Þ¥Í¥®¤Î¼ï»Ò¤Ï¤½¤Î°ì¤Ä¤À¤½¤¦¤Ç¤¢¤ë¡£¤Ê¤¼¤½¤¦¤Ê¤Î¤«¤ò¸¦µæ¤·¤¿ÏÀʸ¤¬È¯É½¤µ¤ì¤¿¡£¡¡¡¡¡¡ The effects of high oxygen partial pressure on vegetable Allium seeds with a short shelf-life¡¡¡¡¡¡James E. Hourston, Marta Perez, Frances Gawthrop, Michael Richards, Tina Steinbrecher & Gerhard Leubner-Metzger ¡¡¡¡¡¡Planta volume 251, Article number: 105 (2020) ¡¡¡¡¡¡²¹ÅÙ¤ò¹â¤¯¤¹¤ë¤Èȯ²êΨ¤¬Íî¤Á¤ä¤¹¤¤¤³¤È¤Ï¤è¤¯ÃΤé¤ì¤Æ¤¤¤ë¡£»ÀÁÇÇ»ÅÙ¤ò¹â¤á¤ë¤³¤È¤Ç¤âȯ²êΨ¤¬Íî¤Á¤ä¤¹¤¤¡£ÏÀʸ¤Ë¤Ï¸ÆµÛ®ÅÙ¤¬´Ø·¸¤·¤Æ¤¤¤ë¤È¤Ï½ñ¤¤¤Æ¤Ê¤¤¡Ê»ÀÁǤˤè¤Ã¤Æ»é¼Á¤¬²á»À²½¤¹¤ë¤³¤È¤ËÃíÌܤ·¤Æ¤¤¤ë¡Ë¤¬¡¢´Ø·¸¤¢¤ë¤«¤â¤·¤ì¤Ê¤¤¡£¥¿¥Þ¥Í¥®¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤¬¾ï¤Ë³èÀ­²½¤·¤Æ¤¤¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¼ï»Ò¤Ë¤ª¤¤¤Æ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤¬³èÀ­²½¤·¤¹¤®¤ë¤È¤è¤¯¤Ê¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£´óÀ¸¿¢Êª¤Ï¥¿¥Þ¥Í¥®¤ÎµÕ¤Ç¥¨¥Á¥ì¥ó¤Ê¤É¤¬¤Ê¤¤¤È¸ÆµÛ¤¬¤È¤Æ¤âÃÙ¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¤â¤ä¤·¡Ê¥Þ¥ó¥°¥Ó¡¼¥ó¡Ë¤Ï¼ï»Ò¤Ë¿å¤òÍ¿¤¨¤ë¤ÈÀª¤¤¤è¤¯È¯²êÀ®Ä¹¤¹¤ë¡£¤½¤Î¤«¤ï¤ê¡¢¤â¤ä¤·¤ÏĹ»ý¤Á¤·¤Ê¤¤¡£¥Þ¥ó¥°¥Ó¡¼¥ó¤â¤ä¤·¤«¤é¤Ï³èÀ­¤Î¹â¤¤¥ß¥È¥³¥ó¥É¥ê¥¢¤ò¼è¤ë¤³¤È¤¬¤Ç¤­¤Æ¸¦µæ¤Ë»È¤ï¤ì¤Æ¤¤¤ë¡£ Nature 2019ǯ1·î31Æü¹æ¤Ë½Ð²ê¹ÚÊì¤Îµ²²î¾õÂ֤ˤª¤±¤ëÀ¸Â¸Àïά¤Ë´Ø¤¹¤ëµ­»ö¤¬·ÇºÜ¤µ¤ì¤Æ¤¤¤¿¡£¡ÖËÝÌõ¤ä¸ÆµÛ¤Ë´ØÏ¢¤¹¤ë°ìÈÌŪ¤Ê°ìÏ¢¤Î°äÅÁ»Ò¤òÁ˳²¤¹¤ë¤³¤È¤Ç¡¢±ÉÍܤθϳé¤ËÂФ¹¤ëÂÑÀ­¤òÂ¥¿Ê¤·¤¿¡×¤È½ñ¤¤¤Æ¤¢¤Ã¤¿¡£

Mitochondria Are Important Determinants of the Aging of Seeds.¡¡¡¡Ratajczak E, Małecka A, Ciereszko I, Staszak AM. Int J Mol Sci. 2019 Mar 28;20(7):1568. doi: 10.3390/ijms20071568. PMID: 30925807 ¡¡¡¡¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£

¼ï»Ò¤òȯ²ê¤·¤ä¤¹¤¤¾õÂ֤ˤ¹¤ë¤³¤È¤Ï¥×¥é¥¤¥ß¥ó¥°¤È¸Æ¤Ð¤ì¤ë¡£¡¡Hydro-Electro Hybrid Priming Promotes Carrot (Daucus carota L.) Seed Germination by Activating Lipid Utilization and Respiratory Metabolism.¡¡¡¡¡¡Zhao S, Garcia D, Zhao Y, Huang D.¡¡¡¡¡¡Int J Mol Sci. 2021 Oct 14;22(20):11090. doi: 10.3390/ijms222011090.¡¡¡¡¡¡PMID: 34681749

¼ï»Ò¤Î¼÷Ì¿¤È¥×¥é¥¤¥ß¥ó¥°¤Ë´Ø¤·¤Æ¤¹¤Ð¤é¤·¤¤¸¦µæÀ®²Ì¤¬È¯É½¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡https://www.riken.jp/press/2017/20170818_1/¡¡¡¡¡¡¡Ö¼ï»Ò¤Î¼÷Ì¿¤ò¥³¥ó¥È¥í¡¼¥ë¤¹¤ë ¡ÝĹ¼÷Ì¿¤«¤Äȯ²êÎϤι⤤¼ï»Ò¤Î³«È¯¤Ë¹×¸¥¡Ý¡×¡¡Íý²½³Ø¸¦µæ½ê¡¡À¥ÈøÀèÀ¸¤é¤Ë¤è¤ëÀ®²Ì¡¡¡¡¡¡¥Ö¥é¥·¥Î¥é¥¤¥É¤¬´ØÍ¿¤·¤Æ¤¤¤ë¡£Ä¹Ì¿·ÏÅýEst-1 ¤Ï¥×¥é¥¤¥ß¥ó¥°¸å¤Ë¥Æ¥È¥é¥¾¥ê¥¦¥à½èÍý¤ò¤·¤¿ºÝ¤ÎÀ÷¿§¤ÎÅٹ礤¤¬Ä㤤¡£¡¡¡¡¡¡RNA-Seq using bulked recombinant inbred line populations uncovers the importance of brassinosteroid for seed longevity after priming treatments.¡¡¡¡¡¡Sano N, Kim JS, Onda Y, Nomura T, Mochida K, Okamoto M, Seo M.¡¡¡¡¡¡Sci Rep. 2017 Aug 14;7(1):8095. doi: 10.1038/s41598-017-08116-5.¡¡¡¡¡¡PMID: 28808238

¡Ö³°Íè¼ï¤Î¿¯½±À­¤ò¼ï»Ò¤ÎÂѵ×À­¤Çͽ¬¤¹¤ë¡¡Persistent seeds predict invasiveness ¡×¡¡Andrew M. Sugden¡¡¡¡¡¡ https://science.sciencemag.org/content/372/6548/1301.1¡¡¡¡¡¡ ¼ï»Ò¤ÎÂѵ×À­¤ò·è¤á¤ë»ÅÁȤߤòÍý²ò¤¹¤ë¤³¤È¤ÏÍÍ¡¹¤Ê±þÍÑ¡¢¼Ò²ñŪ¤Ê°ÕÌ£¤Î¤¢¤ëÀ®²Ì¤Ë¤Ä¤Ê¤¬¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

http://seedtechno.co.jp/index.html¡¡¡¡¡¡ÆüËÜ¥·¡¼¥É¥Æ¥¯¥Î¤È¤¤¤¦²ñ¼Ò¤¬¤¢¤Ã¤¿¡£

´óÀ¸À¸Êª¤Î¥ß¥È¥³¥ó¥É¥ê¥¢

´óÀ¸À¸Êª¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤ÏÆüì¤ÊƯ¤­¤ò¤·¤Æ¤¤¤ë¤³¤È¤¬Â¿¤¤¤é¤·¤¤¡£ÌôºÞ¤Î¤è¤¤É¸Åª¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£¡ÖÇ®ÂÓÇ®¥Þ¥é¥ê¥¢¸¶Ãî¤Ï QOR¡¢MDH¡¢PRODH¡¢ETFDH ¤ÈÊ£¹çÂÎ I ¤Î°äÅÁ»Ò ¤ò·ç»¤·¤Æ¤¤¤ë¡£¡×¤È½ñ¤«¤ì¤Æ¤¤¤¿¡£¡¡¡ÖÇ®ÂÓÇ®¥Þ¥é¥ê¥¢¸¶Ãî¤Î¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¤òɸŪ¤È¤·¤¿¿·µ¬ÌôºÞ¤Î³«È¯¡×¡¡¾®¾¾Ã«Çî»Î¤ÎÇî»ÎÏÀʸ¡¡¡¡¡¡¡¡ ¥È¥ê¥Ñ¥Î¥¾¡¼¥Þ¤È¤¤¤¦É¸¶À­¸¶Ãî¤ÏÆüì¤Ê¥ß¥È¥³¥ó¥É¥ê¥¢¥¨¥Í¥ë¥®¡¼Âå¼Õ¤ò¹Ô¤Ã¤Æ¤¤¤ë¡£²òÅü·Ï¤ÇÀ¸À®¤·¤¿ NADH ¤«¤é¤ÎÅŻҤ¬¥°¥ê¥³¥½¡¼¥à¡ÊÆüì¤Ê¥ª¥ë¥¬¥Í¥é¡Ë¤È¥ß¥È¥³¥ó¥É¥ê¥¢ÆâËì¤Ë¤½¤ì¤¾¤ì¸ºß¤¹¤ëÆó¼ïÎà¤Î Glycerol-3-phosphate dehydrogenase ¤Ë¤è¤Ã¤Æ¥æ¥Ó¥­¥Î¥ó¤Ëή¤ì¤³¤à¡£¤µ¤é¤Ë¿¢Êª¤Î AOX ¤ËÁêÅö¤¹¤ë TAO ¤Ë¤è¤Ã¤ÆÅŻҤ¬»ÀÁǤ˼õ¤±ÅϤµ¤ì¿å¤¬À¸¤¸¤ë¡£¡¡https://www.jstage.jst.go.jp/article/fpj/149/5/149_214/_article/-char/ja/¡¡¡ÖËâË¡¤ÎÃÆ´Ý¡§ÆüËܤ«¤é¤Î¹³´óÀ¸ÃîÌô¡×ËÌ ·éÀèÀ¸¡¡¡¡¡¡Mitochondrial RNA quality control in trypanosomes¡¡¡¡¡¡Inna Aphasizheva, Ruslan Aphasizhev¡¡¡¡¡¡doi: 10.1002/wrna.1638.¡¡¡¡¡¡PMID: 33331073 DOI: 10.1002/wrna.1638 ¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£¥È¥ê¥Ñ¥Î¥¾¡¼¥Þ¤Ë¤â PPR ¥¿¥ó¥Ñ¥¯¼Á¤¬Â¸ºß¤·¤ÆƯ¤¤¤Æ¤¤¤ë¡£

Striga °¤Ê¤É¤Î´óÀ¸¿¢Êª¤Î¥²¥Î¥àÇÛÎ󤬷èÄꤵ¤ì¥Ç¡¼¥¿¥Ù¡¼¥¹¤ËÆþ¤Ã¤Æ¤¤¤ë¡£NCBI ¤Î BLAST ¥µ¡¼¥Á¤Ç¤ÏÂоݤˤ¹¤ëÀ¸Êª¼ï¤òÁª¤Ö¤³¤È¤¬¤Ç¤­¡¢¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Î¥ß¥È¥³¥ó¥É¥ê¥¢°äÅÁ»Ò¤ÈÁêƱ¤Ê´óÀ¸¿¢Êª¤Î°äÅÁ»Ò¤ò¸¡º÷¤¹¤ë¤³¤È¤¬¤Ç¤­¤ë¡£¡¡¡¡¡¡https://www.ncbi.nlm.nih.gov/assembly/GCA_008636005.1/¡¡¡¡¡¡¤Ë¡¢Striga asiatica ¤Î¥²¥Î¥à¾ðÊó¤ò¤Þ¤È¤á¤¿¥Ú¡¼¥¸¤¬¤¢¤ë¡£ Mitochondria in parasitic plants¡¡¡¡¡¡Mitochondrion¡¡Volume 52, May 2020, Pages 173-182¡¡¡¡ PMID: 32224234 ¡¡¤È¤¤¤¦¥ì¥Ó¥å¡¼¤¬¤¢¤Ã¤¿¡£´óÀ¸¿¢Êª¤Ç¤¢¤ë¥ä¥É¥ê¥®¤ÏÄ̾ï¤ÎÅÅ»ÒÅÁã·Ï¤è¤ê¤â AOX ¤ò¼ç¤Ë»È¤Ã¤Æ¤¤¤ë¤È½ñ¤¤¤Æ¤¢¤ë¡£¥È¥ê¥Ñ¥Î¥¾¡¼¥Þ¤Ç¤Ï½É¼ç¤Ë¸ºß¤·¤Ê¤¤ TAO ¤òÁ˳²¤¹¤ëÌôºÞ¤¬³«È¯¤µ¤ì¤Æ¤¤¤ë¡£¿¢Êª¤Ç¤ÏÉáÄ̤ο¢Êª¤Ç¤â AOX ¤ÏɬÍפʰø»Ò¤Ê¤Î¤ÇÆñ¤·¤¤¤«¤â¤·¤ì¤Ê¤¤¡£

¿¢Êª¤ÈÈùÀ¸Êª¤Î¶¦À¸¤ÏÀ¸°é¤ËÍ­ÍѤʤ³¤È¤¬Â¿¤¯¤³¤ì¤â¸¦µæ¤¬¿Ê¤ó¤Ç¤¤¤ë¡£https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634080/¡¡¡¡¡¡¶Ýº¬¶Ý¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤ò³èÀ­²½¤¹¤ë¥¹¥È¥ê¥´¥é¥¯¥È¥ó¡¡¡¡¡¡ Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea.¡¡¡¡¡¡Tamasloukht M, Séjalon-Delmas N, Kluever A, Jauneau A, Roux C, Bécard G, Franken P. Plant Physiol. 2003 Mar;131(3):1468-78. doi: 10.1104/pp.012898. PMID: 12644696¡¡¡¡¡¡ ¶Ýº¬¶Ý¤Ï¡¢¤¤¤Ä¤â¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤ò¤ï¤¶¤ÈƯ¤«¤Ê¤¤¤è¤¦¤Ë¤·¤Æ¤ª¤¤¤Æ¡¢½É¼ç¤¬¶á¤¯¤Ë½Ð¸½¤·¤¿ÅÔ¹ç¤Î¤è¤¤¾õÂ֤ˤʤ俤é³èÀ­²½¤¹¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¿¢Êª¤Ç¤â¥ß¥È¥³¥ó¥É¥ê¥¢¤Î³èÀ­¤Ï´¥Áç¼ï»Ò¤Ç¤ÏÄ㤯ȯ²ê»þ¤Ë¹â¤Þ¤ë¡£¤³¤ì¤ÏÉáÄ̤˹ͤ¨¤ë¤Èñ¤Ë¿åʬ¤Î¤¢¤ê¤Ê¤·¤À¤±¤Î¤³¤È¤À¤È²ò¼á¤Ç¤­¤ë¡£¥¹¥È¥ê¥´¥é¥¯¥È¥ó¤Ï´óÀ¸¿¢Êª¤Îȯ²ê¤ò»É·ã¤¹¤ë¤³¤È¤Ç¸«¤¤¤À¤µ¤ì¤¿¡£¤³¤ì¤Ï¥¨¥Á¥ì¥óÀ¸À®¤ÎÂ¥¿Ê¤Ë¤è¤Ã¤Æȯ²ê¤¬µ¯¤­¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤ÈÍÕÎÐÂΤâ³èÀ­²½¤·¤Æ¤¤¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

ȯ²ê¤È³èÀ­»ÀÁÇ¡¢¥¨¥Á¥ì¥ó¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Î´Ø·¸¤òʬÀϤ·¤¿ÏÀʸ¤¬È¯É½¤µ¤ì¤¿¡£¡¡¡¡ Retrograde signaling from the mitochondria to the nucleus translates the positive effect of ethylene on dormancy breaking of Arabidopsis thaliana seeds.¡¡¡¡¡¡Jurdak R, Launay-Avon A, Paysant-Le Roux C, Bailly C.¡¡¡¡¡¡New Phytol. 2020 Oct 5. doi: 10.1111/nph.16985.¡¡¡¡¡¡PMID: 33020928¡¡¡¡¡¡¥·¥í¥¤¥Ì¥Ê¥º¥Ê Col ¤Î¼ï»Ò¤ò¿å¤Ë¿»¤·¤¿ßÉ»æ¤ËÇż路¤Æ°Å½ê¤Çȯ²ê¤µ¤»¤Æ¤¤¤ë¡£¤³¤Î¾ò·ï¤Ç¤Ï 25 ¡î¤Çȯ²êΨ¤¬ 10 ¡ó¤¯¤é¤¤¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£°Å½ê¤Ê¤Î¤Ç¥Õ¥£¥È¥¯¥í¡¼¥à¤¬Æ¯¤«¤ºÈ¯²ê¤·¤Ë¤¯¤¤¤é¤·¤¤¡£º¬¤Ë´óÀ¸¤¹¤ë´óÀ¸¿¢Êª¤â°Å¤¤ÃÏÃæ¤Çȯ²ê¤·¤Ê¤¤¤È¤¤¤±¤Ê¤¤¡£¥¨¥Á¥ì¥ó¤òÍ¿¤¨¤ë¤È²óÉü¤·¤Æȯ²ê¤·¤Æ¤¤¤ë¡£¥¨¥Á¥ì¥ó¤Çȯ²ê¤¬²óÉü¤¹¤ë¤È¤­¤ËÅÅ»ÒÅÁã¤òÁ˳²¤¹¤ë¥í¥Æ¥Î¥ó¡¢¥¢¥ó¥Á¥Þ¥¤¥·¥ó¡¢SHAM ¤òÍ¿¤¨¤ë¤Èȯ²ê¤¬²óÉü¤·¤Ê¤¯¤Ê¤ë¡£¤½¤Î»þ³èÀ­»ÀÁÇ¡ÊH2O2¡Ë¤ÎÀ¸À®Î̤¬¸º¾¯¤·¤Æ¤¤¤ë¡£¡Ö¤½¤ó¤ÊÆǤòÍ¿¤¨¤¿¤éȯ²ê¤·¤Ê¤¤¤Î¤¬Åö¤¿¤êÁ°¤¸¤ã¤Ê¤¤¤«¡×¤È¸À¤ï¤ì¤½¤¦¤À¤¬¡¢¤É¤¦È¿ÏÀ¤·¤¿¤Î¤À¤í¤¦¤«¡£Retrograde signaling from the mitochondria ¤Ë´Ø·¸¤¹¤ë°äÅÁ»Ò AOX1a, NAC013, NAC017 ¤ÎÊÑ°ÛÂΤǤ⡢¥¨¥Á¥ì¥ó¤Ë¤è¤ëȯ²êÂ¥¿Ê¤¬µ¯¤­¤Ë¤¯¤¯¤Ê¤ë¡£¥¨¥Á¥ì¥ó¤òÍ¿¤¨¤¿ºÝ¤Ë NCED6, 9 ¤Î mRNA ¤Ï¸º¾¯¤·¡¢GA ¤È´Ø·¸¤¹¤ë RGL1 ¤Ê¤É¤ÏÁý²Ã¤·¤Æ¤¤¤ë¡£RNA-seq ¥Ç¡¼¥¿ GSE151223 ¤¬¤¢¤ë¤¬¤Þ¤À¸ø³«¤µ¤ì¤Æ¤¤¤Ê¤¤¡£ ¤³¤ÎÏÀʸ¤Î³¤­¤È¤Ê¤ëÏÀʸ¤¬½Ð¤Æ¤¤¤ë¡£¡¡¡¡¡¡

Intracellular reactive oxygen species trafficking participates in seed dormancy alleviation in Arabidopsis seeds¡¡¡¡¡¡New Phytol. 2022 Feb 17.¡¡doi: 10.1111/nph.18038. ¡¡¡¡¡¡Rana Jurdak ¤Ê¤É¡¡¡¡¡¡¡¡PMID: 35175638 ¡¡¡¡¥¨¥Á¥ì¥ó¤Ç¤Ï¤Ê¤¯¥¸¥Ù¥ì¥ê¥ó¡¢Äã²¹½èÍý¤Çȯ²ê¤¬Â¥¿Ê¤µ¤ì¤ë¾ì¹ç¡¢AOX1a ¤ä NAC013 ¤ÏƯ¤¤¤Æ¤¤¤Ê¤¤¡£½é´ü¤Î³èÀ­»ÀÁÇÀ¸À®¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤éµ¯¤­¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£¤½¤Î¸å¤Ï¥Ú¥ë¥ª¥­¥·¥½¡¼¥à¤¬´ØÍ¿¤·¤Æ¤¤¤ë¤é¤·¤¤¡£À¸À®¤·¤¿³èÀ­»ÀÁÇ ROS ¤Ï³Ë¤Ë°Ü¹Ô¤·¤Æ¥¯¥í¥Þ¥Á¥ó¤ò´Ë¤ó¤À¾õÂ֤ˤ·¤ÆÍÍ¡¹¤Ê°äÅÁ»Ò¤¬³èÀ­²½¤µ¤ì¤ë¡£³èÀ­»ÀÁǤ¬À¸À®¤·¤Æ¤â¤½¤ì¤¬³Ë¤Ê¤É¤ÎŬÀڤʾì½ê¤Ë°Ü¹Ô¤·¤Ê¤¤¤È°äÅÁ»Òȯ¸½¤ÎÄ´Àá¤Ë¤Ä¤Ê¤¬¤é¤Ê¤¤¤é¤·¤¤¡£¡Ö³èÀ­»ÀÁÇÀ¸À®¤Ë¤Ï NADPH oxidases ¤¬´ØÍ¿¤·¤Æ¤¤¤ë¡×¤È¿¤¯¤Î¶µ²Ê½ñ¡¢ÏÀʸ¤Ë¤Ï½ñ¤¤¤Æ¤¢¤ë¤¬¡¢¤³¤ÎÏÀʸ¤Ç¤Ï¡Ösuggesting that NADPH oxidases are not likely to be involved in ROS production during seed dormancy alleviation.¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

ETFQO (Electron-transfer flavoprotein:ubiquinone oxidoreductase) ¤Èȯ²ê

¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¤Ë¤Ï¡¢À¸Êª³ØÆþÌç¤Î¶µ²Ê½ñ¤Ë·ÇºÜ¤µ¤ì¤Æ¤¤¤ëÊ£¹çÂÎ I, II, III, IV, ATP ¹çÀ®¹ÚÁÇ¡¢¥Á¥È¥¯¥í¡¼¥à C¡¢¥æ¥Ó¥­¥Î¥ó¤À¤±¤Ç¤Ê¤¯Â¿¿ô¤ÎÍÍ¡¹¤Ê°ø»Ò¤¬ÅŻҤò¶¡µë¤·¤¿¤ê¼õ¤±¼è¤Ã¤¿¤ê¤·¤Æ¤¤¤ë¡£AOX ¤Ï¤½¤ì¤é¤ÎÆâ¤Ç°ìÈÖͭ̾¤Ç¸¦µæÎ㤬¿¤¤¡£Electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF, ETFQO) ¤Ï¤½¤ì¤è¤ê¤âͭ̾¤Ç¤Ï¤Ê¤¤¤¬¡¢°Å¹õ½èÍý¤·¤¿ºÝ¤Ëµ¯¤­¤ë¥¢¥ß¥Î»Àʬ²òÂå¼Õ¤ËƯ¤¯¹ÚÁÇ (isovaleryl-CoA dehydrogenase ¤Ê¤É) ¤«¤é¤ÎÅŻҤò¼õÍƤ·¤Æ¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¤Ëή¤·¹þ¤à¤Ê¤É¤Î½ÅÍפÊÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë¡£¡¡¡¡¡¡The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness.¡¡¡¡¡¡Ishizaki K, Schauer N, Larson TR, Graham IA, Fernie AR, Leaver CJ. Plant J. 2006 Sep;47(5):751-60. doi: 10.1111/j.1365-313X.2006.02826.x. PMID: 16923016

Electron transfer flavoprotein alpha (ETFALPHA)AT1G50940°Å¹õ½èÍý¤Çȯ¸½Î̾徺
Electron transfer flavoprotein betaAT5G43430°Å¹õ½èÍý¤Çȯ¸½Î̤¬Â礭¤¯¾å¾º
Electron-transfer flavoprotein:ubiquinone oxidoreductase (ETFQO)AT2G43400°Å¹õ½èÍý¤Çȯ¸½Î̤¬Â礭¤¯¾å¾º

ETFQO ¤¬¼ï»Ò¤Î·ÁÀ®¡¢È¯²ê¤Ë½ÅÍפÊÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë¤³¤È¤¬¸«¤¤¤À¤µ¤ì¤¿¡£

The Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase is required during normal seed development and germination¡¡¡¡¡¡Paula da Fonseca-Pereira, Phuong Anh Pham, João Henrique F. Cavalcanti, Rebeca P. Omena-Garcia, Jessica A. S. Barros, Laise Rosado-Souza, José G. Vallarino, Marek Mutwil ¡Ä See all authors¡¡¡¡¡¡First published: 05 November 2021¡¡¡¡¡¡https://doi.org/10.1111/tpj.15566

ȯ²ê»þ¤Ë¤ÏÍÍ¡¹¤ÊÃù¢±ÉÍܤ¬¥¨¥Í¥ë¥®¡¼¤Ë¤Ê¤ë¡£Ãù¢¥¿¥ó¥Ñ¥¯¼Á¡¢¤½¤ì¤ËͳÍ褹¤ë¥¢¥ß¥Î»À¤Îʬ²ò¤â¡¢¸÷¹çÀ®¤ò¹Ô¤ï¤Ê¤¤¾õÂ֤ǤΥ¨¥Í¥ë¥®¡¼¤Î¶¡µë¤Ë½ÅÍפÊÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë¡£


Reactive Oxygen Species (ROS) Generation Is Indispensable for Haustorium Formation of the Root Parasitic Plant Striga hermonthica¡¡¡¡¡¡Front. Plant Sci., 22 March 2019 | https://doi.org/10.3389/fpls.2019.00328¡¡¡¡¡¡ÍÍ¡¹¤Ê HIF µÛ´ïͶƳ°ø»Ò¤Ç½èÍý¤·¤¿ºÝ¤Ë¡¢µÛ´ïÃæ¤Ë²á»À²½¿åÁǤ¬ÃßÀѤ¹¤ë¡£¡¡¡¡¡¡Redox-mediated quorum sensing in plants¡¡¡¡¡¡ https://doi.org/10.1371/journal.pone.0182655¡¡¡¡¡¡2,6-dimethoxy-p-benzoquinone (DMBQ)¡¡¤È¤¤¤¦Ê¬»Ò¤ÏµÛ´ï·ÁÀ®¤Î¥·¥°¥Ê¥ë (HIF) ¤Ë¤Ê¤ë¡£Figure 7 ¤Ë¤Ï¡¢NADPH-oxidase ¤Ë¤è¤Ã¤Æ DMBQ ¤¬´Ô¸µ¤µ¤ì¡¢¤½¤ì¤¬ºÆ»À²½¤µ¤ì¤ë¤È ROS ¤Î°ì¼ï¤Ç¤¢¤ë²á»À²½¿åÁǤ¬À¸À®¤¹¤ë¤È½ñ¤¤¤Æ¤¢¤ë¡£

¿¢Êª¤¬ DMBQ ¤ò´¶ÃΤ¹¤ëµ¡¹½¤¬²òÌÀ¤µ¤ì¤¿¡£¡¡²½³Ø¤ÈÀ¸Êª 59(5): 219-221 (2021)¡¡¡¡¡Ö¿¢Êª¤Ë¤ª¤±¤ë¥­¥Î¥ó²½¹çʪ¤Îǧ¼±µ¡¹½ ¡Ý ´óÀ¸¿¢Êª¤«¤é³Ø¤Ö¿¢Êª¤ÎÌȱֵ¡¹½¡×¡¡ÀÐßÀ ¿­ÌÀ¡¢Anuphon Laohavisit¡¢Çò¿Ü ¸­¡¡³ÆÀèÀ¸¤Ë¤è¤ë²òÀâ

DMBQ ¤Ï¥­¥Î¥ó¤Çưʪ¤Ç¤Ï´Î¡¤ÇÂå¼Õ¤µ¤ì¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¤âºîÍѤ¹¤ë¡£¹âÇ»Å٤ǤÏÆǤˤʤ롣¡¡¡¡¡¡Quinone toxicity in hepatocytes: studies on mitochondrial Ca2+ release induced by benzoquinone derivatives.¡¡¡¡¡¡Moore GA, Rossi L, Nicotera P, Orrenius S, O'Brien PJ.¡¡¡¡¡¡Arch Biochem Biophys. 1987 Dec;259(2):283-95.¡¡¡¡¡¡PMID: 3426229

ÀþÃî¤Ç¥­¥Î¥ó¤¬ËÝÌõ¤òÁ˳²¤¹¤ë¤é¤·¤¤¤È¤¤¤¦ÏÀʸ¤â¤¢¤Ã¤¿¡£¤³¤ì¤â¹âÇ»ÅÙ¤ÇÆǤˤʤë¤Î¤À¤í¤¦¡£¡¡¡¡Transcriptome analysis reveals the high ribosomal inhibitory action of 1,4-naphthoquinone on Meloidogyne luci infective second-stage juveniles¡¡¡¡Front. Plant Sci., 05 June 2023¡¡Volume 14 - 2023 | https://doi.org/10.3389/fpls.2023.1191923¡¡Joana M. S. Cardoso¡¡¤Ê¤É

RNA-Seq analysis identifies key genes associated with haustorial development in the root hemiparasite Santalum album¡¡¡¡¡¡Front. Plant Sci., 01 September 2015 | https://doi.org/10.3389/fpls.2015.00661¡¡¡¡¡¡¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¤Ë´Ø¤ï¤ë°äÅÁ»Ò¤Îȯ¸½¤¬ÊѲ½¤·¤Æ¤¤¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

¥è¡¼¥í¥Ã¥Ñ¥ä¥É¥ê¥®¤ÏÌôÍÑÀ®Ê¬¤òÀ¸»º¤¹¤ë¤³¤È¤Ç¤âÃíÌܤµ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡Phytochemical profile and therapeutic potential of Viscum album L.¡¡¡¡¡¡Nazaruk J, Orlikowski P¡¡¡¡¡¡ Nat Prod Res. 2016;30(4):373-85. doi: 10.1080/14786419.2015.1022776. Epub 2015 Mar 27. Review.¡¡¡¡¡¡PMID: 25813519¡¡¡¡¡¡http://www.ejim.ncgg.go.jp/pro/overseas/c04/18.html¡¡¡¡¡¡¥»¥¤¥è¥¦¥ä¥É¥ê¥®¤Ë´Ø¤¹¤ë´ðËÜŪ¾ðÊó¡Ê¸üÀ¸Ï«Æ¯¾Ê¡Ë¡¡¡¡¡¡http://kanaya.naist.jp/knapsack_jsp/result.jsp?sname=organism&word=Viscum%20album¡¡¡¡¡¡ÌôÍÑÀ®Ê¬¤òÀ¸»º¤¹¤ë¿¢Êª¤Ïɬ¤º¤·¤âÀ¸°é¤¬Áᤤ¤ï¤±¤Ç¤Ï¤Ê¤¤¡£¤½¤¦¤¤¤¦¿¢Êª¤Ë¡ÖÀܤ®ÌÚǽÎϡפò»ý¤¿¤»¤ÆÎɤ¤ÂæÌÚ¤ÈÁȤ߹ç¤ï¤»¤ë¤³¤È¤¬²Äǽ¤Ë¤Ê¤ì¤ÐÀ¸°é¤ÎÁᤵ¤ÈÌôÍÑÀ®Ê¬¤ÎÀ¸»º¤òξΩ¤Ç¤­¤ë¤è¤¦¤Ë¤Ê¤ë¤«¤â¤·¤ì¤Ê¤¤¡£¡¡¡¡ÆüËܷкѿ·Ê¹ 2020ǯ8·î8Æü(ÅÚ)¡¡Âè34Ì̤ˡ֥¿¥Ð¥³¤Î·Ô¡ÖÀÜÃåºÞ¡×¤Ë¥­¥¯¤Î¾å¤Ç¥È¥Þ¥ÈºÏÇݡפȤ¤¤¦¥¿¥¤¥È¥ë¤Ç¡¢ÌîÅĸýÀèÀ¸¤é¤Î¸¦µæ¤¬¾Ò²ð¤µ¤ì¤Æ¤¤¤¿¡£±ó¤¤Ãç´Ö¤ÎºîʪƱ»Î¤Ç¤âÁȤ߹ç¤ï¤¹¤³¤È¤¬¤Ç¤­¤ë¤È½ñ¤¤¤Æ¤¢¤ë¡£

¿¢Êª¤¬Ã±ÆȤÇÀ¸¤­¤Æ¤¤¤¯¡Ê¾¤ÎÀ¸Êª¤ÈÁ´¤¯Áê¸ßºîÍѤ·¤Ê¤¤¡Ë¤Î¤Ç¤¢¤ì¤Ð¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤¬Äã²¼¤¹¤ë¤³¤È¤ÏÎɤ¤¤³¤È¤òÁ´¤¯°ú¤­µ¯¤³¤µ¤Ê¤¤¡£¤·¤«¤·¡¢Â¾¤ÎÀ¸Êª¤«¤é¿È¤ò¼é¤ë¡¦Â¾¤ÎÀ¸Êª¤È¶¦À¸¡¢´óÀ¸¤¹¤ë¾ì¹ç¤Ë¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤¬Äã²¼¤¹¤ë¤³¤È¤Ë¥á¥ê¥Ã¥È¤¬È¯À¸¤¹¤ë¤³¤È¤â¤¢¤ë¤Î¤Ç¤Ï¤Ê¤¤¤«¡£¤Þ¤¿¼ï»Ò¤Î¤è¤¦¤ËÀ®Ä¹¤»¤º¤Ë¸·¤·¤¤´Ä¶­¤ËÂѤ¨¤ëÀ­¼Á¤ò³ÍÆÀ¤¹¤ë¤Ë¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤¬Äã²¼¤¹¤ë¤³¤È¤¬Íø±×¤Ë¤Ê¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

´óÀ¸¿¢Êª¤ÎÍÕÎÐÂÎ

¿¢Êª¤Ë¤ÏÍÕÎÐÂΤ¬¤¢¤ê¡¢Â¾¤ÎÀ¸Êª¤Ç¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¹Ô¤ï¤ì¤Æ¤¤¤ë²áÄø¤Î¿¤¯¤¬ÍÕÎÐÂΤǹԤï¤ì¤Æ¤¤¤ë¡£¤Þ¤¿¸÷¹çÀ®¤ä¿¢Êª¥Û¥ë¥â¥ó¤Î¹çÀ®¤Ê¤É¿¢ÊªÆȼ«¤Îµ¡Ç½¤ò»Ê¤Ã¤Æ¤¤¤ë¡£¤É¤ó¤ÊÀ¸Êª¤Ç¤â¥ª¥ë¥¬¥Í¥é¤ÏñÆȤÇƯ¤¯¤À¤±¤Ç¤Ê¤¯¡¢Â¾¤Î¥ª¥ë¥¬¥Í¥é¤È¶¨ÎϤ·¾ðÊó¸ò´¹¤·¤Ê¤¬¤é¹âÅÙ¤ÇÊ£»¨¤ÊÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë¡£

Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants¡¡¡¡¡¡Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):9045-50.¡¡¡¡¡¡doi: 10.1073/pnas.1607576113. Epub 2016 Jul 22.¡¡¡¡¡¡PMID: 27450087 ¡¡¡¡¡¡PMCID: PMC4987836 ¡¡¡¡¡¡Striga ¤Ê¤É¤Î´óÀ¸¿¢Êª¤ÎÍÕÎÐÂΤˤÏ¿¤¯¤ÎÊѲ½¤¬À¸¤¸¤Æ¤¤¤ë¡£NDH °äÅÁ»Ò¤Ï¼º¤ï¤ì¤ä¤¹¤¤¡£ÍÕÎÐÂΤΠNDH ¤Îµ¡Ç½¤Ë¤Ä¤¤¤Æ¤Ï¡¢ÆüËܤθ¦µæ¥°¥ë¡¼¥×¤Ë¤è¤Ã¤Æ¤¹¤Ð¤é¤·¤¤À®²Ì¤¬µó¤²¤é¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡https://sites.google.com/site/pmgkyotou/top/home¡¡¡¡¡¡¼¯ÆâÀèÀ¸¤Î¸¦µæ¾Ò²ð¡¡¡¡¡¡https://www.jst.go.jp/pr/announce/20160202/index.html¡¡¡¡¡¡¡ÖÊÑÆ°¤¹¤ë¸÷´Ä¶­¤«¤é¿È¤ò¼é¤ë¿¢Êª¤Î¥á¥«¥Ë¥º¥à¤ò²òÌÀ¡Á¿¢Êª¤ÎÀ¸»ºÀ­¤ò¸þ¾å¤µ¤»¤ëµ»½Ñ³«È¯¤Ë¹×¸¥¡Á¡×¡¡Ìð¼é ¹Ò Çî»Î¤é¤Ë¤è¤ë¸¦µæÀ®²Ì¡¡¡¡¡¡ÍÕÎÐÂΤΠNDH ¤Ï¸÷¹çÀ®¤Ç¤Î¤ßƯ¤¯¤é¤·¤¤¤Î¤Ç¡¢´óÀ¸¤¬À®Î©¤¹¤ë¤«¤É¤¦¤«¤Ë¤Ï´Ø·¸¤¬¤Ê¤¤¤é¤·¤¤¡£¤·¤«¤· NDH ¤¬¤Ê¤¯¤Ê¤ë¤³¤È¤¬²¿¤«¤Î±Æ¶Á¤ò´óÀ¸¤ËÍ¿¤¨¤ë²ÄǽÀ­¤â¤¢¤ë¤«¤â¤·¤ì¤Ê¤¤¡£¡¡¡¡¡¡https://photosyn.jp/pwiki/index.php?NDH%E8%A4%87%E5%90%88%E4%BD%93¡¡¡¡¡¡¸÷¹çÀ®¼­Åµ¡ÖNDHÊ£¹çÂΡס¡¡¡¡¡ÍÕÎÐÂÎ NDH ¤Î´ð¼Á¤Ï NAD(P)H ¤Ç¤Ï¤Ê¤¯¡¢¥Õ¥§¥ì¥É¥­¥·¥ó¤«¤éÅŻҤò¼õ¤±¼è¤ë¡£¸÷²½³Ø·Ï I ¤ÈĶʣ¹çÂΤò·ÁÀ®¤·¤Æ¤¤¤ë¡£´óÀ¸¿¢Êª¤Ï¤¿¤¤¤Æ¤¤¤ÏÆü¤¬Åö¤¿¤ê¤Ë¤¯¤¤°Å¤¤¤È¤³¤í¤Ë¤¤¤ë¤Î¤ÇÊÑÆ°¤¹¤ë¸÷´Ä¶­¤«¤é¿È¤ò¼é¤ëɬÍפ¬¤Ê¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

Limited mitogenomic degradation in response to a parasitic lifestyle in Orobanchaceae.¡¡¡¡¡¡Fan W, Zhu A, Kozaczek M, Shah N, Pabón-Mora N, González F, Mower JP. ¡¡¡¡¡¡Sci Rep. 2016 Nov 3;6:36285. ¡¡¡¡¡¡doi: 10.1038/srep36285. ¡¡¡¡¡¡PMID: 27808159 ¡¡¡¡¡¡Free PMC article.¡¡¡¡¡¡´óÀ¸¿¢Êª¤Ç¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤ËÊѲ½¤¬À¸¤¸¤ë¤³¤È¤â¤¢¤ë¤¬¡¢¤Û¤È¤ó¤É°Û¾ï¤¬¸«¤é¤ì¤Ê¤¤¿¢Êª¼ï¤¬Â¿¤¤¡£

The economics of organellar gene loss and endosymbiotic gene transfer.¡¡¡¡¡¡Kelly S.¡¡¡¡¡¡Genome Biol. 2021 Dec 20;22(1):345. doi: 10.1186/s13059-021-02567-w.¡¡¡¡¡¡PMID: 34930424 ¡¡¡¡¡¡¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£¥ª¥ë¥¬¥Í¥é¥²¥Î¥à¤Ë¥³¡¼¥É¤µ¤ì¤¿°äÅÁ»Ò¤¬·ç¼º¤¹¤ë¤³¤È¤¬¥¨¥Í¥ë¥®¡¼¤ÎÀáÌó¤Ë¤Ä¤Ê¤¬¤ê¡¢¤½¤ÎÍø±×¤¬·ç¼º¤Ë¤è¤ë»¤ò¾å²ó¤ë¾ì¹ç¤Ë¡¢¤½¤Î°äÅÁ»Ò¤Ï³Ë¤Ë°Ü¹Ô¤·¤¿¤ê¾Ã¼º¤¹¤ë¤é¤·¤¤¡£NDHÊ£¹çÂÎ ¤¬·ç¼º¤¹¤ë¤ÈÅ´¤äⲫ¤òÀáÌó¤Ç¤­¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

¥ä¥É¥ê¥®¤Î¸÷¹çÀ®¤Ë´Ø¤¹¤ëÏÀʸ¤¬È¯É½¤µ¤ì¤¿¡£¡¡¡¡The photosynthesis apparatus of European mistletoe (Viscum album)¡¡¡¡Plant Physiol. 2022 Aug 17;kiac377. doi: 10.1093/plphys/kiac377. Online ahead of print.¡¡Lucie Schröder ¤Ê¤É¡¡¡¡PMID: 35976139 DOI: 10.1093/plphys/kiac377

¥ä¥É¥ê¥®¤ÎÍÕÎÐÂΤǤâ NDH ¤¬¾Ã¼º¤·¤Æ¤¤¤ë¡£¸÷²½³Ø·Ï I ¤¬¤¢¤Þ¤êƯ¤¤¤Æ¤¤¤Ê¤¤¡£¸÷¹çÀ®¤Ë¤è¤ë ATP À¸»º¤Î¸úΨ¤âÄã²¼¤·¤Æ¤¤¤ë¡£½É¼ç¤«¤é¶¡µë¤µ¤ì¤ëÅü¤ò¥¨¥Í¥ë¥®¡¼¸»¤Ë¤·¤Æ¤¤¤ë¤Î¤Ç¤Ï¤Ê¤¤¤«¤È¹Í»¡¤µ¤ì¤Æ¤¤¤ë¡£¡Ö¥ä¥É¥ê¥®¤Î¼ï»Ò¤ÏµÙ̲¤·¤Ê¤¤¡×¡Öµ¤¹¦¤ÎÆ°¤­¤¬°­¤¤¡×¤È Discussion ¤ÎÉôʬ¤Ë½ñ¤«¤ì¤Æ¤¤¤ë¡£

ȯ²ê»þ¤ËÍÕÎÐÂΤϤɤΤ褦¤ËƯ¤¤¤Æ¤¤¤ë¤Î¤«¡©

ȯ²ê»þ¤Ë¤Ï ABA, GA Åù¤Î¥Û¥ë¥â¥ó¤¬½ÅÍפÊÌò³ä¤ò²Ì¤¿¤¹¡£¤³¤ì¤é¤Î¥Û¥ë¥â¥ó¤ÎÀ¸¹çÀ®¤ÎÁ°È¾¤ÏÍÕÎÐÂÎÆâ¤Ç¿Ê¹Ô¤¹¤ë¡£¤½¤ì°Ê³°¤Ë¤âȯ²ê¤ËɬÍפʥ¨¥Í¥ë¥®¡¼¤ò½½Ê¬¤Ë¶¡µë¤¹¤ë¤Ë¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤À¤±¤Ç¤Ê¤¯ÍÕÎÐÂΤâƯ¤«¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¤Î¤Ç¤Ï¤Ê¤¤¤«¡£¤É¤Î¤è¤¦¤ËƯ¤¤¤Æ¤¤¤ë¤Î¤À¤í¤¦¤«¡£

´óÀ¸À¸Êª¤ËÆÃÍ­¤ÎÂå¼Õ

https://www.id3catalyst.jp/j/column13.html¡¡¡¡¡¡¥È¥ê¥Ñ¥Î¥½¡¼¥Þ¸¶Ãî¤Ï¥×¥ê¥ó±ö´ð¤Î de novo À¸¹çÀ®¤¬¤Ç¤­¤º¡¢¥µ¥ë¥Ù¡¼¥¸¹çÀ®·ÐÏ©¤À¤±¤ò»ý¤Ä¡£´óÀ¸À­¤Î¸¶À¸À¸Êª¤Ï¤É¤ì¤â¤½¤¦¤é¤·¤¤¡£¡¡¡¡¡¡https://pubmed.ncbi.nlm.nih.gov/15140885/¡¡¤Ë½ñ¤«¤ì¤Æ¤¤¤¿¡£

¿¢Êª¤Î¥×¥ê¥ó±ö´ð¤Ë´Ø¤¹¤ë¸¦µæ¤ÎÂç²È¤Ç¤¢¤ë°²¸¶ÀèÀ¸¤é¤Ë¤è¤ëÁíÀâ¡¡¡¡¡¡Purine salvage in plants¡¡Phytochemistry. 2018 Mar;147:89-124.¡¡Hiroshi Ashihara, Claudio Stasolla, Tatsuhito Fujimura, Alan Crozier¡¡¡¡¡¡PMID: 29306799 DOI: 10.1016/j.phytochem.2017.12.008 ¡¡¡¡¡¡¤Ë¤Ï¡¢´óÀ¸¿¢Êª¤Î¤³¤È¤Ï½Ð¤Æ¤³¤Ê¤¤¡£´óÀ¸¿¢Êª¤Ç¤Ï°ã¤¤¤Ï¤Ê¤¤¤Î¤À¤í¤¦¡£¤·¤«¤·´óÀ¸¿¢Êª¤Ï¼ï»Ò¤¬¾®¤µ¤¯Ãù¢±ÉÍܤ¬¾¯¤Ê¤¤¤â¤Î¤¬Â¿¤¤¡£¥×¥ê¥ó±ö´ð¤ò de novo ¹çÀ®¤¹¤ë¤Ë¤Ï¿¤¯¤Î¥¨¥Í¥ë¥®¡¼ (ATP¡¢ÍÕ»À) ¤¬É¬ÍפǤ¢¤ë¡£´óÀ¸¿¢Êª¤Ï¥¨¥Í¥ë¥®¡¼¤ò¤Ê¤ë¤Ù¤¯¾ÃÈñ¤·¤Ê¤¤·ÐÏ©¤ò¼ç¤Ë»È¤Ã¤Æ¤¤¤ë¤È¸À¤¦¤³¤È¤â¤¢¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

Ê£¿ô¤ÎÀ¸¹çÀ®·ÐÏ©¤Î»È¤¤Ê¬¤±

¥×¥ê¥ó±ö´ð¤Ë¤Ï de novo À¸¹çÀ®·ÐÏ©¤È¥µ¥ë¥Ù¡¼¥¸·ÐÏ©¤¬¤¢¤ë¡£Ê£¿ô¤Î·ÐÏ©¤¬¤¢¤ë¤È¡¢¿¢Êª¤Ë¤è¤Ã¤Æ¡¢¤Þ¤¿À¸°é¾ò·ï¡¢´ï´±¤Î°ã¤¤¤Ë¤è¤Ã¤Æ¤É¤Á¤é¤Î·ÐÏ©¤ò¼ç¤Ë»È¤¦¤«¤¬°ã¤Ã¤Æ¤¯¤ë²ÄǽÀ­¤¬¤¢¤ë¡£¼ÂºÝ¤Ë¥×¥ê¥ó±ö´ð¤Ç¤Ï¤½¤¦¤¤¤¦¤³¤È¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡ Characterization of Arabidopsis glutamine phosphoribosyl pyrophosphate amidotransferase-deficient mutants.¡¡¡¡¡¡Hung WF, Chen LJ, Boldt R, Sun CW, Li HM. Plant Physiol. 2004 Jul;135(3):1314-23. doi: 10.1104/pp.104.040956. PMID: 15266056

´óÀ¸À¸Êª¤òÁªÂòŪ¤ËÀ©°µ¤¹¤ë¤¿¤á¤Ë¤Ï¡¢¤½¤¦¤¤¤¦¤³¤È¤ò¸«¤Ä¤±¤ë¤³¤È¤¬°ì¤Ä¤Î¼ê¤¬¤«¤ê¤Ë¤Ê¤ë¡£¿¢Êª¤Ç¤Ï¥¤¥½¥×¥ì¥Î¥¤¥É¤ÎÀ¸¹çÀ®·ÐÏ©¤Ë MVA ·ÐÏ©¤È MEP ·ÐÏ©¤¬¤¢¤ë¡£Â¾¤Ë¤É¤ó¤Ê¤â¤Î¤¬¤¢¤ë¤À¤í¤¦¤«¡£¡Ö¥µ¥ë¥Ù¡¼¥¸·ÐÏ©¡×¤ò¤â¤Ä²½¹çʪ¤ÎÀ¸¹çÀ®¤Ï¸õÊä¤Ë¤Ê¤ë¡£

¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Îµ¤¹¦¤Ç¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¤è¤ë ATP À¸»º¤¬½ÅÍס¡´óÀ¸¿¢Êª¤Îµ¤¹¦¤ÏÆü졩

µ¤¹¦¤Ë¸ºß¤¹¤ëÍÕÎÐÂΤε¡Ç½¤Ë¤Ä¤¤¤Æ¤Ï¡¢¶å½£Âç³ØÂç³Ø±¡Íý³Ø¸¦µæ±¡¤ÎǪùÅ ½ßÂÀϺ ½Ú¶µ¼ø¤È¼Í¾ì ¸ü ¶µ¼ø¡¢µÚ¤Ó¥«¥ê¥Õ¥©¥ë¥Ë¥¢Âç³Ø¥µ¥ó¥Ç¥£¥¨¥´¹»¤ÎJulian Schroeder¶µ¼ø¡¢ºë¶ÌÂç³Ø¤ÎÀ¾ÅÄ À¸Ïº ¶µ¼ø¤é¤Î¸¦µæ¥°¥ë¡¼¥×¤Ë¤è¤ë¤¹¤Ð¤é¤·¤¤¸¦µæÀ®²Ì¤¬Êó¹ð¤µ¤ì¤Æ¤¤¤ë¡£

https://www.kyushu-u.ac.jp/ja/researches/view/273/¡¡¡¡¡Ö¤Ê¤¼µ¤¹¦¤Ë¤ÏÍÕÎÐÂΤ¬¤¢¤ë¤Î¤«¡© ¿¢Êª²Ê³Ø¤ÎĹǯ¤ÎÆæ¤ËÇ÷¤ë¡×¡¡µ¤¹¦¤Ë¸ºß¤¹¤ëÍÕÎÐÂΤǤϿ¿³ËºÙ˦·¿¤Î»é¼ÁÂå¼Õ·ÐÏ©¤¬È¯Ã£¤·¤Æ¤¤¤ë¡£

Åçºê¸¦°ìϺÀèÀ¸¤Ë¤è¤ë¡Ö¿·¡¦À¸Ì¿²Ê³Ø¥·¥ê¡¼¥º¡¡µ¤¹¦¡ÝΦ¾å¿¢Êª¤ÎÈ˱ɤò»Ù¤¨¤ë¤â¤Î¡Ý¡×¡Ê¾Ø²Ú˼¡Ë¤Ï¡¢µ¤¹¦¤Ë´Ø¤¹¤ëºÇ¿·¤Î¸¦µæÀ®²Ì¤¬²òÀ⤵¤ì¤¿¤¹¤Ð¤é¤·¤¤ËܤǤ¢¤ë¡£

µ¤¹¦¤Ë¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤â¸ºß¤¹¤ë¡£¤½¤Îµ¡Ç½¤Ë´Ø¤¹¤ëÏÀʸ¤âȯɽ¤µ¤ì¤¿¡£

Arabidopsis guard cell chloroplasts import cytosolic ATP for starch turnover and stomatal opening.¡¡¡¡¡¡Lim SL, Flütsch S, Liu J, Distefano L, Santelia D, Lim BL.¡¡¡¡¡¡Nat Commun. 2022 Feb 3;13(1):652. doi: 10.1038/s41467-022-28263-2.¡¡¡¡¡¡PMID: 35115512

Ê£¹çÂÎ I ¤ÎÁ˳²ºÞ rotenone and Ê£¹çÂÎ II ¤ÎÁ˳²ºÞ TTFA ¤òƱ»þ¤ËÍ¿¤¨¤ë¡¢¤Þ¤¿¤Ï ATP ¹çÀ®¹ÚÁǤÎÁ˳²ºÞ¥ª¥ê¥´¥Þ¥¤¥·¥ó¤òÍ¿¤¨¤ë¤³¤È¤Ç¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Î ATP ¹çÀ®¤òÁ˳²¤¹¤ë¤È¡¢Æä˵¤¹¦ºÙ˦¤ÎºÙ˦¼Á ATP Ç»ÅÙ¤¬Äã²¼¤¹¤ë¡£¤½¤ì¤Ë¤è¤Ã¤ÆºÙ˦Ëì H+-ATPase ¤ÎƯ¤­¤¬Äã²¼¤·¤Æ pH ¤ÎÊѲ½¤¬¾®¤µ¤¯¤Ê¤ë¡£ºÙ˦¼Á¤Ë±¿¤Ð¤ì¤¿ ATP ¤Ï¡¢¤µ¤é¤ËÍÕÎÐÂΤ˱¿¤Ð¤ì¤Æ¥Ç¥ó¥×¥ó¹çÀ®¤Ê¤É¤Ë»È¤ï¤ì¤ë¡£¤½¤Î¤³¤È¤¬µ¤¹¦¤¬³«¤¯¤Î¤ËɬÍפǤ¢¤ë¡£µ¤¹¦ºÙ˦¤Î¸÷¹çÀ®Ç½ÎϤϹ⤯¤Ê¤¤¡£¡¡¡¡https://www.s.u-tokyo.ac.jp/ja/press/2022/8083/¡¡¡¡¡Ö¿¢Êª¤Îµ¤¹¦¤¬CO2¤Ë±þ¤¸¤ÆÊĤ¸¤ë¿·¤¿¤Ê»ÅÁȤߤòȯ¸«¡×¡¡°ÂÆ£ ±Ñ¸à¡¢ÌÚ²¼ ½Ó§¡¢»ûÅç °ìϺ³ÆÀèÀ¸¤Ë¤è¤ë¤¹¤Ð¤é¤·¤¤À®²Ì¤Ë¤¢¤ë¤è¤¦¤Ë¡¢ºÙ˦Ëì H+-ATPase ¤Ï¥ê¥ó»À²½¤µ¤ì¤ë¤³¤È¤Ç³èÀ­²½¤¹¤ë¡£H+-ATPase ¤¬Æ¯¤¯¤Ë¤Ï ATP ¤¬É¬Íפˤʤ롣¥ê¥ó»À²½¤Ë¤â ATP ¤¬É¬Íפˤʤ롣ATP ¤ÎÎ̤¬²¿¤«¤òÀ©¸æ¤¹¤ë¤³¤È¤Ï¤¢¤ê¤¨¤Ê¤¯¤Ï¤Ê¤¤¡£¡¡

¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½Äã²¼ÊÑ°ÛÂΤǤϵ¤¹¦¤¬³«¤­¤Ë¤¯¤¯´¥Áç¤Ë¶¯¤¯¤Ê¤ë¤È¤¤¤¦Êó¹ð¤¬Ê£¿ô¤¢¤ë¡£¤½¤Î¤³¤È¤È´Ø·¸¤·¤Æ¤¤¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

NRGA1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell ion channels and drought stress responses in Arabidopsis.¡¡¡¡¡¡Li CL, Wang M, Ma XY, Zhang W.¡¡¡¡¡¡Mol Plant. 2014 Oct;7(10):1508-21. doi: 10.1093/mp/ssu061. Epub 2014 May 19.¡¡¡¡¡¡PMID: 24842572 ¡¡¡¡¡¡¤È¤¤¤¦ÏÀʸ¤â¤¢¤Ã¤¿¡£¥ß¥È¥³¥ó¥É¥ê¥¢ ¤Ë¥Ô¥ë¥Ó¥ó»À¤òÍ¢Á÷¤¹¤ë NRGA1 ¤¬Æ¯¤«¤Ê¤¯¤Ê¤ë¤Èµ¤¹¦¤¬ÊĤ¸¤ä¤¹¤¯¤Ê¤ë¡£¿åʬ¤¬¾øȯ¤·¤Ë¤¯¤¯¤Ê¤ë¤Î¤Ç¿å¤òÍ¿¤¨¤Ê¤¤¾õÂÖ¤ÇĹ»þ´Ö²æËý¤Ç¤­¤ë¡£

¤·¤«¤·²òÅü·Ï¤Ë¤è¤ë ATP À¸»º¤¬½ÅÍפǤ¢¤ë²ÄǽÀ­¤â¤¢¤ë¡£

´óÀ¸¿¢Êª¤Ç¤¢¤ë¥ä¥É¥ê¥®¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤¬Äã²¼¤·¤Æ¤¤¤ë¡£¤·¤«¤·¡¢

S Smith, G R Stewart¡¡¡¡¡¡Effect of Potassium Levels on the Stomatal Behavior of the Hemi-Parasite Striga hermonthica¡¡¡¡¡¡Plant Physiol. 1990 Nov;94(3):1472-6.¡¡¡¡¡¡doi:10.1104/pp.94.3.1472.¡¡¡¡¡¡PMID: 16667856 PMCID: PMC1077401

¤Î Discussion ¤ÎÉôʬ¤Ë¡¢¥ä¥É¥ê¥®¤Ï¾ø»¶Î̤¬Â礭¤¤¡¢´¥Á礷¤Æ¤âµ¤¹¦¤¬ÊĤ¸¤Ë¤¯¤¤¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£ ¤Þ¤¿Ê̤Υ¿¥¤¥×¤Î´óÀ¸¿¢Êª¤Ç¤¢¤ë¥¹¥È¥é¥¤¥¬¤Ïµ¤¹¦¤¬¾ï¤Ë³«¤¤¤Æ¤¤¤Æ½É¼ç¤«¤é¿å¤ä±ÉÍÜʬ¤ò¼ýÃ¥¤¹¤ë¤È¡¢¿ùËܹ¬ÍµÀèÀ¸¤Ë¤è¤ë²òÀâ¡Ö¡ÖËâ½÷¤Î»¨Áð¡×¥¹¥È¥é¥¤¥¬¤ËÈë¤á¤é¤ì¤¿Ææ¡×¿¢Êª¤ÎÀ¸Ä¹Ä´Àá 55:No.1 67-69¡¡¤Ë½ñ¤«¤ì¤Æ¤¤¤ë¡£¥¹¥È¥é¥¤¥¬¤Ï¼«Ê¬¼«¿È¤Ï ABA ¤¬¸ú¤«¤Ê¤¤¤è¤¦¤Ë¤Ê¤Ã¤Æ¤¤¤Æ¡¢ABA ¤òʬÈ礷¤Æ½É¼ç¤ÎÀ®Ä¹¤òÁ˳²¤¹¤ë¤¿¤á¤Ë»È¤Ã¤Æ¤¤¤ë¤³¤È¤¬¾Ò²ð¤µ¤ì¤Æ¤¤¤ë¡£´óÀ¸¿¢Êª¤Ç¤Ïµ¤¹¦¼«ÂΤ¬Æüì¤Ç ATP ¤ò¤¢¤Þ¤ê»È¤ï¤º¤Ëµ¤¹¦¤ò³«¤±¤¿¤Þ¤Þ¤Ë¤·¤Æ¤¤¤ë²ÄǽÀ­¤¬¤¢¤ë¡£¥ä¥É¥ê¥®¤ÎÍÕÎÐÂΤϸ÷¹çÀ®Ç½¤¬Ä㤤¤Î¤Ç¡¢µ¤¹¦¤Ç¤âÍÕÎÐÂΤ¬¤è¤¯Æ¯¤¤¤Æ ATP ¤ò½½Ê¬¤ËÀ¸»º¤·¤Æ¤¤¤ë¤È¤¤¤¦¤³¤È¤Ï¤Ê¤¤¡£¡¡Effect of Potassium Levels on the Stomatal Behavior of the Hemi-Parasite Striga hermonthica¡¡¤Ç¤Ï¥«¥ê¥¦¥à¥¤¥ª¥óÇ»ÅÙ¤¬½ÅÍפÀ¤È¼¨¤µ¤ì¤Æ¤¤¤ë¡£¡ÖIn the leaves of many parasitic plants, including Striga, very large amounts of potassium are accumulated (up to 6% of dry weight).¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£ ¤³¤Î¤³¤È¤Ï²¿¤«¤Î¼åÅÀ¤Ë¤Ä¤Ê¤¬¤é¤Ê¤¤¤À¤í¤¦¤«¡£¥»¥·¥¦¥à¤òÍ¿¤¨¤ë¤È¥«¥ê¥¦¥à¤ÎÂå¤ï¤ê¤Ë¤¿¤¯¤µ¤ó¼è¤ê¹þ¤ó¤ÇÊѤʤ³¤È¤¬µ¯¤­¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

µ¤¹¦¤Î·Á¤Ï¿¢Êª¼ï¤Ë¤è¤Ã¤ÆÊѲ½¡¦°ã¤¤¤¬Â礭¤¯Â¿ÍÍÀ­¤¬¹â¤¤¤é¤·¤¤¡£¡¡Stomatal morphological variation contributes to global ecological adaptation and diversification of Brassica napus¡¡¡¡¡¡Planta. 2022 Aug 27;256(4):64. doi: 10.1007/s00425-022-03982-4.¡¡Yeke Chen ¤Ê¤É¡¡¡¡PMID: 36029339¡¡¡¡

¡Ö¥Ð¥¤¥ª¥Þ¥¹¤òCO₂µÛ¼ý¸»¤È¤·¤¿¥Í¥¬¥Æ¥£¥Ö¥¨¥ß¥Ã¥·¥ç¥óµ»½Ñ¡×¡¡¡¡https://www.jst.go.jp/crds/report/CRDS-FY2021-RR-05.html¡¡¡¡¡¡¤È¤¤¤¦ CRDS ¤ÎÊó¹ð½ñ¤Ë¼Í¾ìÀèÀ¸¤Î¡ÖÃϵå¹âCO2²½¤È¿¢Êª¤Î´Ä¶­Å¬±þ¡×¤È¤¤¤¦¹Ö±éµ­Ï¿¤¬¤¢¤ë¡£¤È¤Æ¤âÊÙ¶¯¤Ë¤Ê¤ë¡£¥·¥í¥¤¥Ì¥Ê¥º¥Ê¥¨¥³¥¿¥¤¥× Cape Verde Islands¡ÊCvi–0) ¤Ïµ¤¹¦¤¬ÊĤ¸¤Ë¤¯¤¤¤³¤È¡¢¥¨¥³¥¿¥¤¥× Me‒0 ¤Ïµ¤¹¦¤¬Â礭¤¤¤³¤È¤Ê¤É¤¬¾Ò²ð¤µ¤ì¤Æ¤¤¤ë¡£Â礭¤¤µ¤¹¦¤òÆ°¤«¤¹¤Ë¤Ï¥¨¥Í¥ë¥®¡¼¤¬Í¾·×¤ËɬÍפˤʤë¤é¤·¤¤¡£Â¾¤Ë¤â¶½Ì£¿¼¤¤¹Ö±éȯɽ¤¬¤¢¤ë¡£

¥ê¥ó¥´»À¤Ïµ¤¹¦¤òÊĤ¸¤ë¥·¥°¥Ê¥ë¤Ë¤Ê¤ë

¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤Ë°Û¾ï¤¬À¸¤¸¤ë¤È TCA ²óÏ©¤Î¹½À®Í×ÁǤǤ¢¤ëÍ­µ¡»À¤ÎÎ̤¬ÊѲ½¤¹¤ë¡£¤½¤ì¤é¤Î°ì¤Ä¤Ç¤¢¤ë¥ê¥ó¥´»À¤Ïµ¤¹¦¤òÊĤ¸¤ë¥·¥°¥Ê¥ë¤Ë¤Ê¤ë¤³¤È¤¬È¯¸«¤µ¤ì¤Æ¤¤¤ë¡£

Extracellular malate induces stomatal closure via direct activation of guard-cell anion channel SLAC1 and stimulation of Ca(2+) signalling.¡¡¡¡¡¡Mimata Y, Munemasa S, Nakamura T, Nakamura Y, Murata Y.¡¡¡¡¡¡New Phytol. 2022 Nov;236(3):852-863. doi: 10.1111/nph.18400. Epub 2022 Aug 9.¡¡¡¡¡¡PMID: 35879859

AOX¤È¶¦À¸

https://www.jstage.jst.go.jp/article/dojo/87/1/87_75/_pdf¡¡¡¡¡¡¡Ö¶Ýº¬¤Îʬ»ÒÀ¸Êª³Ø¤ÎºÇ¿·¾ðÊó¡×¾®È¬½ÅÁ±ÍµÀèÀ¸¤Ë¤è¤ë¹ñºÝ²ñµÄ¤Î¾Ò²ð¡¡¡¡¶¦À¸¤Ïȯã¤ÈÊø²õ¤ò·«¤êÊÖ¤·¤Ê¤¬¤é¶¯¸Ç¤Ê¤â¤Î¤Ë¤Ê¤Ã¤Æ¤¤¤¯¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£¶¦À¸¤Ï¥ê¥ó¤¬·ç˳¤·¤¿¾ò·ï¤ÇÀ®Î©¤·¤ä¤¹¤¤¡£¥ê¥ó·ç˳¤Ë¤è¤Ã¤Æ½É¼ç¤Îµ¡Ç½¤¬Äã²¼¤¹¤ë¤³¤È¤¬¶¦À¸¤Îȯã¡¢À®Î©¤Ë¤Ï¥×¥é¥¹¤ËƯ¤¯¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¶¦À¸¤·¤Ê¤¯¤Æ¤â½½Ê¬±ÉÍܤ¬¤¢¤ë¤Î¤Ê¤é¡¢¤ï¤¶¤ï¤¶¶¦À¸¤ò¤·¤è¤¦¤È¤Ï¤·¤Ê¤¤¤Î¤Ç¤Ï¤Ê¤¤¤«¡£¥ê¥ó¤¬·ç˳¤¹¤ë¤È ATP ¹çÀ®¤ËɬÍפʥê¥ó»À¤¬ÉÔ­¤¹¤ë¤Î¤Ç¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¤Ë¤âÂ礭¤Ê±Æ¶Á¤¬¤¢¤ë¡£AOX ¤òÍѤ¤¤Æή¤ì¤ëÅŻҤγä¹ç¤¬Â礭¤¯¤Ê¤ë¡£¤½¤Î¾õÂ֤ǤϳèÀ­»ÀÁÇÀ¸À®¤¬¾¯¤Ê¤¯¤Ê¤ë¡£³èÀ­»ÀÁÇÀ¸À®¤¬¾¯¤Ê¤¯¤Ê¤ë¤È¶¦À¸¶Ý¤¬´óÀ¸¤·¤ä¤¹¤¯¤Ê¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¤¬¡¢Ã±¤Ê¤ëÁÛÁü¤Ç¤·¤«¤Ê¤¤¡£

Unraveling the Initial Plant Hormone Signaling, Metabolic Mechanisms and Plant Defense Triggering the Endomycorrhizal Symbiosis Behavior.¡¡¡¡¡¡Bedini A, Mercy L, Schneider C, Franken P, Lucic-Mercy E.¡¡¡¡¡¡Front Plant Sci. 2018 Dec 17;9:1800. doi: 10.3389/fpls.2018.01800. eCollection 2018. Review.¡¡¡¡¡¡PMID: 30619390 ¡¡¡¡¡¡¤È¤¤¤¦¥ì¥Ó¥å¡¼¤Ç¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Î Alternative oxidase (AOX) ¤Ë¤Ä¤¤¤ÆµÄÏÀ¤µ¤ì¤Æ¤¤¤ë¡£Figure 5 ¤Ï¡¢AOX ¤ò¶¯¤¯Æ¯¤«¤»¤ë¤È¶¦À¸¤¬À®Î©¤·¤ä¤¹¤¤¤È½ñ¤¤¤Æ¤¢¤ë¤è¤¦¤Ë¸«¤¨¤ë¡£¤³¤ì¤Ï¹Í¤¨°ã¤¤¤Ç¡Ö¶¦À¸¤¬À®Î©¤¹¤ë¤È AOX ¤¬¶¯¤¯Æ¯¤¯¡×¤¬Àµ¤·¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¤Þ¤¿¤Ï¤½¤ÎξÊý¤«¤â¤·¤ì¤Ê¤¤¡£

AOX ¤Ï ¥¨¥Í¥ë¥®¡¼¤ò ATP ¹çÀ®¤Ë·ë¤Ó¤Ä¤±¤ºÇ®¤ËÉԲĵÕŪ¤ËÊѤ¨¤Æ¤·¤Þ¤¦¤¬¡¢¤½¤Î¤³¤È¤¬¤«¤¨¤Ã¤Æ¿¢Êª¤ÎÀ¸°é¤Ë¥×¥é¥¹¤ËƯ¤¯¤³¤È¤â¤¢¤ë¤é¤·¤¤¡£¡¡¡¡¡¡Alternative Oxidase Is Positive for Plant Performance.¡¡¡¡¡¡Selinski J, Scheibe R, Day DA, Whelan J.¡¡¡¡¡¡Trends Plant Sci. 2018 Apr 14. pii: S1360-1385(18)30080-3. doi: 10.1016/j.tplants.2018.03.012. [Epub ahead of print] Review.¡¡¡¡¡¡PMID: 29665989

AOX1a ¤ò·ç¼º¤·¤¿ÊÑ°ÛÂΤ¬Â¸ºß¤·¤Æ¸¦µæ¤Ë»È¤ï¤ì¤Æ¤¤¤ë¡£µÞ·ã¤Ê´¥Á祹¥È¥ì¥¹¤Ø¤ÎŬ±þ¤Ë´Ø·¸¤·¤Æ¤¤¤ë¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£

The Lack of Alternative Oxidase 1a Restricts in vivo Respiratory Activity and Stress-Related Metabolism for Leaf Osmoprotection and Redox Balancing Under Sudden Acute Water and Salt Stress in Arabidopsis thaliana.¡¡¡¡¡¡Del-Saz NF¡¡¤Ê¤É¡¡¡¡¡¡Front Plant Sci. 2022 May 17;13:833113. doi: 10.3389/fpls.2022.833113. eCollection 2022. PMID: 35656009

¹½Â¤À¸Êª³Ø¸¦µæ¤ÏÀ¸Êª³Ø¤Î³Î¤«¤ÊÅÚÂæ¤È¤Ê¤ë¡£ÅÚÂ椬¤·¤Ã¤«¤ê¤·¤Æ¤¤¤ë¤È¾åÉô¹½Â¤¤Ç¤¢¤ë¸¦µæÀ®²Ì¤â¿®Íê¤Ç¤­¤ë¤â¤Î¤Ë¤Ê¤ë¡£AOX1a ¤ÎΩÂι½Â¤¤Ë´Ø¤¹¤ëÏÀʸ¤¬½ÐÈǤµ¤ì¤¿¡£

Structural and Biophysical Characterization of Purified Recombinant Arabidopsis thaliana¡Çs Alternative Oxidase 1A (rAtAOX1A): Interaction With Inhibitor(s) and Activator¡¡¡¡¡¡ Front. Plant Sci., 16 June 2022 | https://doi.org/10.3389/fpls.2022.871208

¡¦´óÀ¸¿¢Êª¤Ï¶Ý¤È¶¦À¸¤·¤Æ¤¤¤ë¤«¡©

´óÀ¸¿¢Êª¤ÏñÆȤÇÀ¸¤­¤Æ¹Ô¤¯¤Ë¤Ï¸þ¤«¤Ê¤¤»ÅÁȤߤò»ý¤Á¤Ê¤¬¤é¡¢À¸Ì¿¤ò°Ý»ý¤·¤ÆÈË¿£¤·¤Æ¤¤¤ë¡£´óÀ¸¤ËÀ®¸ù¤·¤¿¤È¤­¤Ë¼ï»Ò¤òÂçÎ̤˺î¤ë¤Î¤À¤í¤¦¤¬¡¢¤½¤ì°Ê³°¤Ë¤âÀ¸¤­¤Æ¤¤¤¯¤¿¤á¤Î»ÅÁȤߤ¬¤¢¤ë¤«¤â¤·¤ì¤Ê¤¤¡£´óÀ¸¤¹¤ë¤¿¤á¤Î»ÅÁȤߤ¬¡¢¶Ý¤È¤Î¶¦À¸¤Ë¤âÌòΩ¤Ä¤«¤â¤·¤ì¤Ê¤¤¡£¤½¤¦¤¤¤¦¸¦µæÀ®²Ì¤Ï¤¢¤ë¤Î¤À¤í¤¦¤«¡£

https://katosei.jsbba.or.jp/view_html.php?aid=900¡¡¡¡¡¡¡Ö¥Í¥¸¥Ð¥Ê¤È¶Ýº¬¶Ý¤Î´Ø·¸¤òõ¤ë¡Ý¥Í¥¸¥Ð¥Ê¤Î¼ï»Ò¤òȯ²ê¤µ¤»¤ë¤Ë¤Ï¤É¤¦¤¹¤ì¤Ð¤è¤¤¤À¤í¤¦¤«¡×²½³Ø¤ÈÀ¸Êª¡¡55(12): 841-843 (2017)¡¡¹â¹»À¸¡ÊÅö»þ¡Ë¤ÎÈË¿¹¤µ¤ó¤Ë¤è¤ë¸¦µæÀ®²Ì¤Î¾Ò²ð¡¡¡¡¡¡¥Í¥¸¥Ð¥Ê¤Î¼ï»Ò¤Ï¤­¤ï¤á¤Æ¾®¤µ¤¯È¯²ê¤Î¤¿¤á¤Î±ÉÍܸ»¤ò»ý¤Ã¤Æ¤¤¤Ê¤¤¡£¤½¤Î¤¿¤á¶Ýº¬¶Ý¤È¶¦À¸¤·¤Æȯ²ê¤¬¤Ç¤­¤ë¤è¤¦¤Ë¤Ê¤ë¡£ÆÃÄê¤Î¼ïÎà¤Î¶Ýº¬¶Ý¤Ë¤À¤±¡¢È¯²ê¤òÂ¥¿Ê¤¹¤ëƯ¤­¤¬¤¢¤ë¤³¤È¤¬È¯¸«¤µ¤ì¤¿¡£¥Í¥¸¥Ð¥Ê¤Ï´óÀ¸¿¢Êª¤Ç¤Ï¤Ê¤¤¤¬¡¢¼ï»Ò¤¬¤­¤ï¤á¤Æ¾®¤µ¤¤¤³¤È¤Ï¥¹¥È¥é¥¤¥¬¤È»÷¤Æ¤¤¤ë¡£

´óÀ¸¿¢Êª¤ÎÀ­¼Á¤òÌÏÊ魯¤ë¼Â¸³·Ï

´óÀ¸¿¢Êª¤Ç¤¢¤ë¥¹¥È¥é¥¤¥¬¤Î¼ï»Ò¤Ï¡¢¥¹¥È¥ê¥´¥é¥¯¥È¥ó¤Ë¤è¤Ã¤Æȯ²ê¤¬Â¥¿Ê¤µ¤ì¤ë¡£¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Î¼ï»Ò¤Ï¹â²¹¤Ç¤Ïȯ²ê¤·¤Ë¤¯¤¯¤Ê¤ë¤¬¡¢¤½¤³¤Ë¹çÀ®¥¹¥È¥ê¥´¥é¥¯¥È¥ó¤Ç¤¢¤ë GR24 ¤ò²Ã¤¨¤ë¤Èȯ²ê¤¬²óÉü¤¹¤ë¡£¤³¤ÎºîÍѤϾ¤Î¼ïÎà¤Î¿¢Êª¥Û¥ë¥â¥ó¤ÈÊ£»¨¤ËÁê¸ßºîÍѤ·¤Æ¤¤¤ë¡£

Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination.¡¡¡¡¡¡Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y. Plant Cell Physiol. 2012 Jan;53(1):107-17. doi: 10.1093/pcp/pcr176. Epub 2011 Dec 14. PMID: 22173099

ÁлÒÍÕ¿¢Êª¤Èñ»ÒÍÕ¿¢Êª¤Î°ã¤¤

´óÀ¸¿¢Êª¤È½É¼ç¤ÎÀ­¼Á¤Î°ã¤¤¤¬Ëɽü¤ÎÌò¤ËΩ¤Ä¤³¤È¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£¡¡https://allianceforscience.cornell.edu/blog/2019/08/controlling-witchweed-infestations-africa/¡¡¡ÖControlling witchweed infestations in Africa¡×¡¡Imazapyr¡¡¤È¤¤¤¦½üÁðºÞ¤ËÂÑÀ­¤Ê¥È¥¦¥â¥í¥³¥·¤¬³èÍѤµ¤ì¤Æ¤¤¤ë¡£ÏÀʸ¤Ë¤â¤Ê¤Ã¤Æ¤¤¤ë¡£¡¡¡¡¡¡Assessment of Management Options on Striga Infestation and Maize Grain Yield in Kenya.¡¡¡¡¡¡Kanampiu F, Makumbi D, Mageto E, Omanya G, Waruingi S, Musyoka P, Ransom J. Weed Sci. 2018;66(4):516-524. doi: 10.1017/wsc.2018.4. Epub 2018 Jul 1. PMID: 33583963 ¡¡¡¡¡¡´óÀ¸¿¢Êª¤È¤·¤Æͭ̾¤Ê¥¹¥È¥é¥¤¥¬¤Ï¥Ï¥Þ¥¦¥Ä¥Ü²Ê¤Ë°¤¹¤ëÁлÒÍÕ¿¢Êª¤Ç¤¢¤ë¡£¥È¥¦¥â¥í¥³¥·¤Ê¤É¤Î¥¤¥Í²Ê¤Îºîʪ¤Ïñ»ÒÍÕ¿¢Êª¤Ç¤¢¤ë¡£ÁлÒÍÕ¿¢Êª¤Èñ»ÒÍÕ¿¢Êª¤Ë¤ÏÍÍ¡¹¤Ê°ã¤¤¤¬¸«¤é¤ì¤ë¡£Æä˥¤¥Í²Ê¤Îºîʪ¤Ç¤ÏºÙ˦Êɤò¹½À®¤¹¤ë¿ÅüÎà¤ËÂ礭¤Ê°ã¤¤¤¬¤¢¤ë¡£ÍÍ¡¹¤Ê°ã¤¤¤ò¸«¤Ä¤±¤ë¤Ë¤Ï¥²¥Î¥à¾ðÊ󤬴ðÈפˤʤêÌò¤ËΩ¤Ä¤À¤í¤¦¡£

ɸ¶¶Ý¤Î¡Ö¥¹¥Æ¥ë¥¹ºîÀï¡×¤È³èÀ­»ÀÁÇ

½É¼ç¤Ëµ¤¤¬¤Ä¤«¤ì¤º¤Ë´¶À÷¤¹¤ë¤·¤¯¤ß¤Ïɸ¶¶Ý¤Ë¹­¤¯¸«¤é¤ì¤ë¤é¤·¤¤¡£¡¡¡¡

¿¢Êª¤ÎÌȱ֥·¥¹¥Æ¥à¤ò¤«¤¤¤¯¤°¤ë¡¢¥«¥Ó¤Î¡Ö¥¹¥Æ¥ë¥¹ºîÀï¡×¤Îȯ¸«¡¡¡¡https://www.naro.affrc.go.jp/archive/nias/press/20090817/¡¡ºÙ˦ɽÌ̤ò¹½À®¤¹¤ëºÙ˦ÊÉ¿ÅüÎà¤Î¼ïÎà¤òÊѤ¨¤ë¤³¤È¤ÇÌȱÖÈ¿±þ¤¬µ¯¤­¤Ë¤¯¤¤¤è¤¦¤Ë¤·¤Æ¤¤¤ë¡£

´óÀ¸¿¢Êª¤â¡¢¤â¤·¤«¤·¤¿¤éºÙ˦ÊÉ¿ÅüÎà¤Î¼ïÎà¡¢ÁÈÀ®¤¬ÊѲ½¤·¤Æ¤¤¤ë¤«¤â¤·¤ì¤Ê¤¤¡£ÂÎÁ´ÂΤκÙ˦Êɤ¬ÊѲ½¤¹¤ë¤Î¤Ç¤Ê¤¯¡¢½É¼ç¤ÈÁê¸ßºîÍѤ¹¤ë¤È¤³¤í¤À¤±ÊѲ½¤¹¤ë¤Ê¤éÀ¸°é¤Ë±Æ¶Á¤òÍ¿¤¨¤º¤Ë²Äǽ¤Ë¤Ê¤ë¤À¤í¤¦¡£ ¥Ú¥¯¥Á¥ó¤ÏºÙ˦¤ÈºÙ˦¤ò·ë¹ç¤µ¤»¤ëÌò³ä¤¬¤¢¤ë¡£¥Ú¥¯¥Á¥ó¤¬Áý¤¨¤¿¤ê¤·¤¿¤é¡¢´óÀ¸¿¢Êª¤ÎºÙ˦¤È½É¼ç¤ÎºÙ˦¤¬·ë¹ç¤·¤ä¤¹¤¯¤Ê¤Ã¤Æ´óÀ¸¤·¤ä¤¹¤¤¤«¤â¤·¤ì¤Ê¤¤¡£ ´óÀ¸¤ËºÙ˦ÊɤËƯ¤¯¦Â-1,4-¥°¥ë¥«¥Ê¡¼¥¼¤¬½ÅÍפÀ¤È¤¤¤¦¤³¤È¤ò¼¨¤·¤¿¸¦µæ¤¬¡¢¤¹¤Ç¤Ëȯɽ¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡https://www.riken.jp/press/2020/20200807_5/index.html¡¡¡¡¡¡ ´óÀ¸¿¢Êª¤¬½É¼ç¿¢Êª¤Ë´óÀ¸¤¹¤ë»þ¤ËƯ¤¯°äÅÁ»Ò¤òȯ¸«¡¡¡Ý¿¢Êª¤ÎÀÜÌÚÀ®Î©¤È¶¦Ä̤¹¤ë¥á¥«¥Ë¥º¥à¡Ý¡¡Ì¾¸Å²°Âç³Ø¡¢Íý²½³Ø¸¦µæ½ê¤Ë¤è¤ë¤¹¤Ð¤é¤·¤¤¸¦µæ

¡Ö¿¢Êª¤ÎÀ¸Ä¹Ä´Àá¡×£²£°£²£°Ç¯ No.1 ¤Ë¡¢¿ùËÜÀèÀ¸¤Ë¤è¤ë¡ÖËâ½÷¤Î»¨Áð¡¡¥¹¥È¥é¥¤¥¬¤ËÈë¤á¤é¤ì¤¿Ææ¡×¤È¤¤¤¦²òÀâµ­»ö¤¬¤¢¤ë¡£¥¹¥È¥é¥¤¥¬¤Î¼ï»Ò¤Ïȯ²ê¤¹¤ë¤È¥¢¥Ö¥·¥¸¥ó»À¤òÂçÎ̤ËʬÈ礷¤Æ½É¼ç¤ÎÀ¸°é¤òÁ˳²¤¹¤ë¤³¤È¤¬¾Ò²ð¤µ¤ì¤Æ¤¤¤ë¡£¥¹¥È¥é¥¤¥¬¼«¿È¤Ï¡¢¥¢¥Ö¥·¥¸¥ó»À¤ÎºîÍѤò¼õ¤±¤Ê¤¤¤è¤¦¤Ë¥·¥°¥Ê¥ëÅÁã°ø»Ò PP2C ¤ËÊÑ°Û¤¬À¸¤¸¤Æ¤¤¤ë¡£¥¢¥Ö¥·¥¸¥ó»À¤Ë¤è¤Ã¤Æ¡¢½É¼ç¤ÎÄñ¹³¤òÍÞ¤¨¤Æ¿¯Æþ¤òÍưפˤ·¤Æ¤¤¤ë¤Î¤À¤í¤¦¤È¹Í»¡¤µ¤ì¤Æ¤¤¤ë¡£

2019 ǯ¤Ë¤Ê¤Ã¤Æ¤ä¤Ã¤Èµ¤¤¬¤Ä¤¤¤¿¤¬¡¢¤³¤¦¤¤¤¦ÏÀʸ¤¬ 2015 ǯ¤Ëȯɽ¤µ¤ì¤Æ¤¤¤¿¡£¡¡¡¡¡¡Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species.¡¡¡¡¡¡Wu J, Sun Y, Zhao Y, Zhang J, Luo L, Li M, Wang J, Yu H, Liu G, Yang L, Xiong G, Zhou JM, Zuo J, Wang Y, Li J.¡¡¡¡¡¡Cell Res. 2015 May;25(5):621-33. doi: 10.1038/cr.2015.46. Epub 2015 Apr 24.¡¡¡¡¡¡PMID:¡¡ 25906995

¿¢Êª¤Ë¡¡Pseudomonas syringae¡¡¤¬´¶À÷¤¹¤ë¤È¥µ¥ê¥Á¥ë»À¤ÎÁý²Ã¡¢ºÙ˦»à¤Ê¤É¤Î±þÅú¤ò¼¨¤¹¡£hypersensitive response (HR)¡¡¤È¸Æ¤Ð¤ì¤ë¡£mod1 (mosaic death 1) ¤È¤¤¤¦ÊÑ°ÛÂΤϥץ饹¥Á¥É¤Ç¤Î»éËûÀ¹çÀ®¤Ë·ç´Ù¤¬¤¢¤êºÙ˦»à¤¬¤ª¤­¤ä¤¹¤¤¡£¤½¤ÎÀ­¼Á¤òÂǤÁ¾Ã¤¹ÊÑ°ÛÂΤò¥¹¥¯¥ê¡¼¥Ë¥ó¥°¤¹¤ë¤È¡¢Ê£¹çÂÎI ³èÀ­¤¬Äã²¼¤¹¤ëÊÑ°Û¤¬¸«¤¤¤À¤µ¤ì¤¿¡£Â¾¤Î¼ïÎà¤ÎÊ£¹çÂÎI ³èÀ­Äã²¼ÊÑ°ÛÂΤȤÎÆó½ÅÊÑ°ÛÂΤˤ·¤Æ¤â¡¢ºÙ˦»à¤¬¤ª¤­¤Ë¤¯¤¯¤Ê¤Ã¤¿¡£»ä¤¬¤º¤Ã¤È¸¦µæÂоݤˤ·¤Æ¤¤¤ë nmat1 °äÅÁ»Ò¤ÎÊÑ°ÛÂΤâ¼Â¸³¤ËÍѤ¤¤é¤ì¤Æ¤¤¤¿¡£

´Ø·¸¤¹¤ëÏÀʸ¡§¡¡Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana.¡¡¡¡¡¡Zhao Y, Luo L, Xu J, Xin P, Guo H, Wu J, Bai L, Wang G, Chu J, Zuo J, Yu H, Huang X, Li J.¡¡¡¡¡¡Cell Res. 2018 Apr;28(4):448-461. doi: 10.1038/s41422-018-0024-8. Epub 2018 Mar 14.¡¡¡¡¡¡PMID: 29540758 ¡¡¡¡¡¡Deadlier than the malate.¡¡¡¡¡¡Ding P, Guo H, Jones JDG.¡¡¡¡¡¡Cell Res. 2018 Jun;28(6):609-610. doi: 10.1038/s41422-018-0042-6. No abstract available.¡¡¡¡¡¡PMID: 29844581

mod1 ¤Ê¤É¤ÎÊѰۤˤè¤Ã¤Æ¥ê¥ó¥´»À¤ÎÃßÀÑÎ̤¬Áý²Ã¤¹¤ë¡£¤½¤ì¤é¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤ËÍ¢Á÷¤µ¤ì¡¢malate dehydrogenase ¤Ë¤è¤Ã¤Æ¥ª¥­¥¶¥í¿Ý»À OAA ¤ËÊѲ½¤¹¤ë¡£¤½¤ÎºÝ¤Ë NAD+ ¤¬ NADH ¤Ë´Ô¸µ¤µ¤ì¤ë¡£NADH ¤«¤é¤ÎÅŻҤÏÊ£¹çÂÎI ¤Ë¤è¤Ã¤ÆÅÅ»ÒÅÁã·Ï¤Øή¤ì¹þ¤à¤¬¡¢¤½¤ÎºÝ¤Ë³èÀ­»ÀÁÇ ROS ¤¬ÂçÎ̤ËȯÀ¸¤·¤ÆºÙ˦»à¤ò°ú¤­µ¯¤³¤¹¸¶°ø¤Ë¤Ê¤ë¡£ ¤æ¤¨¤Ë¡¢Ê£¹çÂÎI ¤Î³èÀ­¤¬Äã²¼¤·¤Æ¤¤¤ë¤ÈºÙ˦»à¤¬¤ª¤­¤Ë¤¯¤¯¤Ê¤ë¡£Æ±¤¸»ÅÁȤߤ¬Æ°ÊªºÙ˦¤Ç¤â´Ñ»¡¤µ¤ì¤ë¤ÈÏÀʸ¤Ë½ñ¤¤¤Æ¤¢¤ë¡£Ê£¹çÂÎI ¤«¤éÀ¸À®¤¹¤ë³èÀ­»ÀÁǤÎƯ¤­¤Ï¡¢ºÙ˦Ëì¤Ë¸ºß¤¹¤ë NADPH oxidase ¤«¤é¤Î³èÀ­»ÀÁǤËÈæ¤Ù¤ë¤È¸«Íî¤È¤µ¤ì¤Æ overlook ¤¤¤¿¡£

Íý¶þŪ¤Ë¤Ï¡Ö¿¢Êª¤¬´óÀ¸¤¹¤ëºÝ¤Ë¤ÏµñÈÝÈ¿±þ¤È¤·¤Æ³èÀ­»ÀÁǤ¬À¸¤¸¤ë¡£Ê£¹çÂÎ I ¤¬Æ¯¤«¤Ê¤¯¤Ê¤ë¤È³èÀ­»ÀÁǤ¬¤Ç¤­¤Ë¤¯¤¯¤Ê¤Ã¤Æ´óÀ¸¤·¤ä¤¹¤¤¡×¤È¤¤¤¦¤³¤È¤â¤¢¤êÆÀ¤Ê¤¯¤Ï¤Ê¤¤¤«¤â¤·¤ì¤Ê¤¤¡£¤·¤«¤·½É¼ç¤Ë¤ÏÀµ¾ï¤Ê¥ß¥È¥³¥ó¥É¥ê¥¢¤ä³èÀ­»ÀÁÇÀ¸À®µ¡¹½¤¬¤¢¤ë¤ï¤±¤Ç´óÀ¸¿¢Êª¤ÎÊý¤À¤±¤¬ÊѲ½¤¹¤ë¤³¤È¤Ë°ÕÌ£¤¬¤¢¤ë¤Î¤À¤í¤¦¤«¡£´óÀ¸¿¢Êª¤¬³èÀ­»ÀÁǤòºî¤é¤Ê¤¤¤è¤¦¤Ë¤¹¤ë¤³¤È¤Ç¡¢½É¼ç¤Ëµ¤¤¬¤Ä¤«¤ì¤º¤ËÀܶᡦ¥³¥ó¥¿¥¯¥È¤Ç¤­¤ë¤È¸À¤¦¤³¤È¤â¤¢¤êÆÀ¤Ê¤¯¤Ï¤Ê¤¤¤«¤â¤·¤ì¤Ê¤¤¡£

¤³¤Î¹Í¤¨¤Ë´ð¤Å¤¯¤È¡Ö¿¢Êª¤Ï¾¤Î¿¢Êª¤¬¶á¤Å¤¤¤¿¤³¤È¤òǧ¼±¤¹¤ë¤¿¤á¤Ë¡¢³èÀ­»ÀÁǤò°ì¤Ä¤Î°ø»Ò¡Ê¤â¤Á¤í¤ó¤½¤ì°Ê³°¤Î°ø»Ò¤â¤¢¤ë¤À¤í¤¦¡Ë¤È¤·¤Æ»È¤Ã¤Æ¤¤¤ë¡×¤³¤È¤¬¿ä¬¤µ¤ì¤ë¡£´óÀ¸¿¢Êª¤Ï½É¼ç¤Ëµ¤¤¬¤Ä¤«¤ì¤º¤Ë¶á¤Å¤¯¤¿¤á¤Ë³èÀ­»ÀÁǤò¤Ê¤ë¤Ù¤¯ºî¤é¤Ê¤¤¤·¤¯¤ß¤ò»ý¤Ã¤Æ¤¤¤ë¤«¤â¤·¤ì¤Ê¤¤¡£AOX ¤äÅÅ»ÒÅÁã·ÏÊ£¹çÂΤÎÊѲ½¤¬¤½¤Î¤¿¤á¤Ëµ¯¤­¤Æ¤¤¤ë¤«¤â¤·¤ì¤Ê¤¤¡£ ¤Þ¤¿À¸À®¤·¤¿³èÀ­»ÀÁǤò¸úΨ¤è¤¯¾Ãµî¤¹¤ë¤·¤¯¤ß¤ò»ý¤Ã¤Æ¤¤¤ë¤³¤È¤â¿ä¬¤µ¤ì¤ë¡£

¥ä¥É¥ê¥®¤Ë¤Ä¤¤¤Æ¥Í¥Ã¥È¸¡º÷¤·¤Æ¤¤¤ë¤È¡¢Florel ¤È¤¤¤¦¥Û¥ë¥â¥óºÞ¤Ç¥ä¥É¥ê¥®¤ò½üµî¤Ç¤­¤ë¤È¤¤¤¦µ­»ö¤¬¤¢¤Ã¤¿¡£Florel ¤È¤¤¤¦¤Î¤Ï Bayer AG ¤ÎÀ½Éʤǡ¢Ethephon ¤¬³èÀ­À®Ê¬¤À¤È½ñ¤¤¤Æ¤¢¤ë¡£Ethephon ¤Ïµ¤ÂΤο¢Êª¥Û¥ë¥â¥ó¤Ç¤¢¤ë¥¨¥Á¥ì¥ó¤ËÊÑ´¹¤µ¤ì¿¢Êª¤ËºîÍѤ¹¤ë¡£¥¨¥Á¥ì¥ó¤Ï¥¹¥È¥é¥¤¥¬¤È¤¤¤¦´óÀ¸¿¢Êª¤Îȯ²ê¤òÂ¥¿Ê¤¹¤ë¤³¤È¤Ç¤â¤è¤¯ÃΤé¤ì¤Æ¤¤¤ë¡£

https://www.sciencedirect.com/science/article/pii/S2090123221000266#b0105

CSN improves seed vigor of aged sunflower seeds by regulating the fatty acid, glycometabolism, and abscisic acid metabolism¡¡¡¡¡¡Journal of Advanced Research ¡¡¡¡¡¡Available online 9 February 2021¡¡¡¡¡¡CSN ¤È¤¤¤¦¤Î¤Ï compound sodium nitrophenolate ¤Îά¤Ç¡¢¼ç¤ËÃæ¹ñ¤Ç»È¤ï¤ì¤Æ¤¤¤ë¿¢Êª²½³ØÄ´ÀáºÞ¤é¤·¤¤¡£¡ÖATONIK¡¡¡ÁAn Environment-Friendly Plant Stimulant¡Á¡×¤È¤¤¤¦¾¦ÉÊ̾¤ÇȯÇ䤵¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡https://www.oat-agrio.co.jp/en/product/Atonik.html¡¡¡¡¡¡´¥Áç¤Ê¤É¤Î¥¹¥È¥ì¥¹¤ò¼õ¤±¤¿ºÝ¤Ë¸ú²Ì¤¬¤¢¤ë¤é¤·¤¤¡£ÆüËܤǤϱ«¤¬Îɤ¯¹ß¤ë¤Î¤Ç»È¤ï¤ì¤Æ¤¤¤Ê¤¤¤é¤·¤¤¡£ Atonik ¤Ë´Ø¤¹¤ëÏÀʸ¡¡¡¡https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6236065/¡¡¡¡¡¡

¥ß¥È¥³¥ó¥É¥ê¥¢¤Ï´¶À÷ͶƳ¥¹¥È¥ì¥¹¤Ë±þÅú¤·¤Æ³°Ëì¤òæÍ¤»¤ë¡¡¡¡¡¡Xianhe Li, Julian Straub, Tânia Catarina Medeiros and more ¡¡¡¡¡¡https://www.science.org/doi/10.1126/science.abi4343

Toxoplasma gondii ¤È¤¤¤¦¥Ò¥È¤Ë´óÀ¸¤¹¤ë´óÀ¸À¸Êª¤Ï¡¢³°Ëì¤Ë¸ºß¤¹¤ë¥¿¥ó¥Ñ¥¯¼Á¤È·ë¹ç¤¹¤ë¥¨¥Õ¥§¥¯¥¿¡¼ TgMAF1¡¡¤òÍѤ¤¤Æ½É¼ç¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤Î³°Ëì¤òæÍ¤»¤ë¡£

sloh5 = ELONGATED MITOCHONDRIA1 (ELM1)

Mitochondrial Fission Complex is Required for Long-Term Heat Tolerance of Arabidopsis.¡¡¡¡¡¡Tsukimoto R, Isono K, Kajino T, Iuchi S, Shinozawa A, Yotsui I, Sakata Y, Taji T.¡¡¡¡¡¡Plant Cell Physiol. 2021 Dec 1:pcab171. doi: 10.1093/pcp/pcab171. Online ahead of print.¡¡¡¡¡¡PMID: 34865144

¿¢Êª¤ÏÍÍ¡¹¤Ê¥¿¥¤¥×¤Î¥¹¥È¥ì¥¹¤ò¼õ¤±¤ë¡£¤Þ¤¿¥¹¥È¥ì¥¹¤Ïû»þ´Ö¤À¤±µ¯¤­¤Æ¤¹¤°¤Ë¸µ¤ËÌá¤ë¤À¤±¤Ç¤Ê¤¯¡¢·Ñ³Ū¤Ë¥¹¥È¥ì¥¹¾õÂÖ¤¬Â³¤¯¤³¤È¤â¤¢¤ë¡£ ¤³¤ÎÏÀʸ¤Ç¤Ï¤½¤Î¤³¤È¤ËÃíÌܤ·¤Æ¡¢Ä¹»þ´Ö³¤¯Ç®¥¹¥È¥ì¥¹¤ËÂФ¹¤ë´¶¼õÀ­¤¬ÆðÛŪ¤Ë¹â¤¯¤Ê¤Ã¤¿ÊÑ°ÛÂΤòñΥ¤·¤ÆʬÀϤ·¤¿¡£ÊÑ°Û°äÅÁ»Ò¤Ï¡¢Mitochondrial Fission Complex ¤ò¹½À®¤¹¤ëÍ×ÁǤÀ¤Ã¤¿¡£

2022ǯ3·î¤Î¿¢ÊªÀ¸Íý³Ø²ñ¤Î¥·¥ó¥Ý¥¸¥¦¥à¡Ö´Ä¶­¤ÎÉÔµ¬Â§¤Ê·Ð»þÊÑÆ°¤ËÂФ¹¤ë¥¹¥Æ¡¼¥¸¥²¡¼¥È±þÅú¡×¤Ë¤ª¤¤¤Æ¡¢ÅìµþÇÀÂç¤ÎÂÀ¼£ÀèÀ¸¤Ë¤è¤ë¹Ö±é¡Ö¿¢Êª¤Î¹â²¹¤ËÂФ¹¤ë¥ì¥¸¥ê¥¨¥ó¥¹µ¡¹½¡×¤òʹ¤«¤»¤Æ¤¤¤¿¤À¤¤¤¿¡£ ¿¢Êª¤Ïû´üŪ¤Ê¥¹¥È¥ì¥¹¤Ë¤¹¤Ð¤ä¤¯±þÅú¤¹¤ë¡£¥¹¥È¥ì¥¹¤¬Â³¤¯¡¢·«¤êÊÖ¤·µ¯¤­¤ë¾ì¹ç¤Ïû´üŪ¤Ê¥¹¥È¥ì¥¹±þÅú¡Ê²ÄµÕ¤Ê¤³¤È¤¬Â¿¤¤¡Ë¤«¤é¼¡¤Î¥¹¥Æ¡¼¥¸¤Ç¤¢¤ëĹ´üŪ¤Ê¥¹¥È¥ì¥¹ÂÑÀ­³ÍÆÀ¾õÂÖ¡ÊÉԲĵդʤ³¤È¤¬¤¢¤ë¡Ë¤Ø°Ü¹Ô¤¹¤ë¡£Â¾¤Ë¤â±ÉÍÜÀ¸Ä¹´ü¤«¤éÈË¿£´ü¤Ø¤ÎÀÚ¤êÂؤ¨¤Ê¤É¡¢À¸Êª¤Î³èÆ°Á´ÂΤ˥¹¥Æ¡¼¥¸¤ÎÀÚ¤êÂؤ¨¤ÏÉáÊ×Ū¤Ë¸«¤é¤ì¤ë¡£¥¹¥Æ¡¼¥¸¤ÎÀÚ¤êÂؤ¨¤òȽÃǤ¹¤ë»ÅÁȤߡ¢¥¹¥Æ¥Ã¥×¤ò¥¹¥Æ¡¼¥¸¥²¡¼¥È¤È¸Æ¤Ö¤é¤·¤¤¡ÊºÇ½é¤ÎÀâÌÀ¤òʹ¤¤¤Æ¤¤¤Ê¤«¤Ã¤¿¤Î¤Ç¤è¤¯¤ï¤«¤Ã¤Æ¤¤¤Ê¤¤¡Ë¡£ÍÍ¡¹¤Ê¥¹¥Æ¡¼¥¸¥²¡¼¥È¤Î»ÅÁȤߤò²òÌÀ¤·¤ÆÈæ³Ó¤¹¤ë¤¹¤ë¤³¤È¤ÇÀ¸Êª¤ËÉáÊ×Ū¤Ê¥á¥«¥Ë¥º¥à¡¦¥Ý¥ê¥·¡¼¤ò¸«¤¤¤À¤·¤¿¤¤¤È¥·¥ó¥Ý¥¸¥¦¥à¤Î½ª¤ï¤ê¤Î°§»¢¤Ç¥ª¡¼¥¬¥Ê¥¤¥¶¡¼¤ÎÀèÀ¸¤¬¤ª¤Ã¤·¤ã¤Ã¤Æ¤¤¤¿¡£

¹â²¹¤ËÂѤ¨¤ë¤¿¤á¤Î»ÅÁÈ¤ß¤Ë¤Ï HsfA1 ¤¬Ã濴Ū¤Ê°ø»Ò¤È¤·¤ÆƯ¤¤¤Æ¤ª¤ê Hsp, ¥ª¡¼¥­¥·¥ó¤ä¥¸¥Ù¥ì¥ê¥ó¤¬À©¸æ¤µ¤ì¤Æ¤¤¤ë¡£¥Û¥ë¥â¥óºîÍѤˤè¤Ã¤ÆÍÕ¤¬¾å¤Ë»ý¤Á¾å¤¬¤ë¤È¤¤¤¦·ÁÂÖÊѲ½¡Ê¥Ð¥ó¥¶¥¤¤ò¤·¤¿¤è¤¦¤Ê¡Ë¤¬À¸¤¸¤ë¡£µ¤¹¦¤â¹â²¹ÂÑÀ­¤Ë½ÅÍפÊÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë¤³¤È¤âÃΤ뤳¤È¤¬¤Ç¤­¤¿¡£sloh5 ¤Ë´Ø¤·¤Æ¤â²òÀ⤬¤¢¤Ã¤¿¡£¾å¤ÎÊý¤Ë¤â½ñ¤¤¤¿¤è¤¦¤Ë¹¦ÊÕºÙ˦¤Ç¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Þ¤¿¤Ï²òÅü·Ï¤Ë¤è¤ë ATP ¹çÀ®¤¬ÂçÀÚ¤À¤È¤¤¤¦ÏÀʸ¤¬¤¢¤ë¡£¡¡Arabidopsis guard cell chloroplasts import cytosolic ATP for starch turnover and stomatal opening.¡¡¡¡¡¡Lim SL, Flütsch S, Liu J, Distefano L, Santelia D, Lim BL.¡¡¡¡¡¡Nat Commun. 2022 Feb 3;13(1):652. doi: 10.1038/s41467-022-28263-2.¡¡¡¡¡¡PMID: 35115512 ¡¡²¿¤«´Ø·¸¤¢¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

Root Primordium Defective 1 Encodes an Essential PORR Protein Required for the Splicing of Mitochondria Encoded Group II Introns and for Respiratory Complex I Biogenesis.¡¡¡¡¡¡Edris R, Sultan LD, Best C, Mizrahi R, Weinstein O, Chen S, Kamennaya NA, Keren N, Zer H, Zhu H, Ostersetzer-Biran O.¡¡¡¡¡¡Plant Cell Physiol. 2023 Sep 13:pcad101. doi: 10.1093/pcp/pcad101. Online ahead of print. PMID: 37702436¡¡¡¡¡¡¤Ç¤Ï¡¢¹â²¹¤Ç¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·ÏÊ£¹çÂΤΥ¢¥»¥ó¥Ö¥ê¡¼¤¬¤¦¤Þ¤¯¤¤¤«¤Ê¤¯¤Ê¤ë¤³¤È¤Ë¤Ä¤¤¤Æ discuss ¤µ¤ì¤Æ¤¤¤ë¡£ÆäËÊ£¹çÂÎ I ¤Ï¹â²¹¤Î±Æ¶Á¤ò¼õ¤±¤ä¤¹¤¤¡£Fig. S10 ¤Ç¤Ï¥¦¥¨¥¹¥¿¥ó¥Ö¥í¥Ã¥È¤Ë¤è¤Ã¤Æ¼¨¤µ¤ì¤Æ¤¤¤ë¡£Complex III ¤È ATP ¹çÀ®¹ÚÁǤΥǡ¼¥¿¤â¤¢¤ê¡¢¤½¤ì¤é¤Ï 22 ¡î¤«¤é 28 ¡î¤Ë°Ü¤·¤Æ¤âÊѲ½¤¬¤Ê¤¤¡£Complex II, CytC, COX ¤Ë´Ø¤¹¤ë¥Ç¡¼¥¿¤Ï¤Ê¤¤¡£¡¡¡¡¡¡How hot can mitochondria be? Incubation at temperatures above 43 ¡ëC induces the degradation of respiratory complexes and supercomplexes in intact cells and isolated mitochondria.¡¡¡¡¡¡Moreno-Loshuertos R, Marco-Brualla J, Meade P, Soler-Agesta R, Enriquez JA, Fernández-Silva P.¡¡¡¡¡¡Mitochondrion. 2023 Mar;69:83-94. doi: 10.1016/j.mito.2023.02.002. Epub 2023 Feb 9.¡¡¡¡¡¡PMID: 36764502¡¡¤È¤¤¤¦ÏÀʸ¤¬°úÍѤµ¤ì¤Æ¤¤¤ë¡£

sloh4 ÊÑ°ÛÂΤ˴ؤ¹¤ë¾Ò²ð¤â¤¢¤Ã¤¿¡£¡¡¡¡¡¡An ER-Golgi Tethering Factor SLOH4/MIP3 Is Involved in Long-Term Heat Tolerance of Arabidopsis.¡¡¡¡¡¡Isono K, Tsukimoto R, Iuchi S, Shinozawa A, Yotsui I, Sakata Y, Taji T. Plant Cell Physiol. 2021 May 11;62(2):272-279. doi: 10.1093/pcp/pcaa157. PMID: 33367686 ¡¡¡¡ANAC017 ¤Î¸¦µæ¤Ç¼¨¤µ¤ì¤Æ¤¤¤ë¤è¤¦¤Ë¡¢¾®Ë¦ÂΤȥߥȥ³¥ó¥É¥ê¥¢¤ÏÏ¢·È¤·¤ÆƯ¤¤¤Æ¤¤¤ë¡£sloh5 ¤Ç¤Ï¤¦¤Þ¤¯Ï¢·È¤Ç¤­¤Ê¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

The ER Is a Common Mediator for the Behavior and Interactions of Other Organelles¡¡¡¡ Front. Plant Sci., 25 March 2022 | https://doi.org/10.3389/fpls.2022.846970¡¡¡¡¡¡Jaideep Mathur¡¡¤Ê¤É¡¡¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£¡¡¡¡Splice variants of mitofusin 2 shape the endoplasmic reticulum and tether it to mitochondria¡¡¡¡SCIENCE¡¡23 Jun 2023¡¡Vol 380, Issue 6651¡¡DOI: 10.1126/science.adh9351¡¡¡¡¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£

PPR ¥¿¥ó¥Ñ¥¯¼Á¤òÁàºî¤·¤Æ°ð¤ÎÄã²¹ÂÑÀ­¤ò²þÁ±¤Ç¤­¤ë

A mitochondrial pentatricopeptide repeat protein enhances cold tolerance by modulating mitochondrial superoxide in rice.¡¡¡¡¡¡Zu X, Luo L, Wang Z, Gong J, Yang C, Wang Y, Xu C, Qiao X, Deng X, Song X, Chen C, Tan BC, Cao X.¡¡¡¡¡¡Nat Commun. 2023 Oct 25;14(1):6789. doi: 10.1038/s41467-023-42269-4.¡¡¡¡¡¡PMID: 37880207

¥¤¥Í¤Ç¤Ï plastid-localized pseudouridine synthase OsPUS1 ¤¬ÊÑ°Û¤¹¤ë¤ÈÄã²¹¤Ë¼å¤¯¤Ê¤ë¡£ospus1-1 ¤Î suppressor ¤È¤·¤Æ sop10 ¤òȯ¸«¤·¤¿¡£¤³¤Î°äÅÁ»Ò¤Ï mitochondria-localized pentatricopeptide repeat protein ¤ò¥³¡¼¥É¤·¤Æ¤¤¤Æ NAD2, NAD4, NAD5, NAD6 ¤Î¥¹¥×¥é¥¤¥·¥ó¥°¤ä editing ¤ËƯ¤¤¤Æ¤¤¤¿¡£¤½¤ì¤Ë¤è¤Ã¤ÆÊ£¹çÂÎ I ³èÀ­¤¬Äã²¼¤·¤Æ³èÀ­»ÀÁÇÀ¸À®¤¬Äã²¼¤·¡¢À¸°é¤ËÂФ¹¤ë¥À¥á¡¼¥¸¤¬¾®¤µ¤¯¤Ê¤Ã¤¿¡£Mn-SOD ¤ò¶¯¤¯Æ¯¤«¤»¤¿¥¤¥Í¤Ç¤âÄã²¹¤Ë¶¯¤¯¤Ê¤Ã¤¿¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Î superoxide À¸À®¤¬Äã²¹ÂÑÀ­¤Ë½ÅÍפǤ¢¤ë¤³¤È¤¬³Î¤«¤á¤é¤ì¤¿¡£

sop10 ÊÑ°ÛñÆȤǤâÌîÀ¸·¿¤è¤ê¤âÄã²¹¤Ë¶¯¤¯¤Ê¤Ã¤¿ (Fig. 6)¡£Àµ¾ï¤Ê²¹ÅÙ¤Ç¤Ï sop10 ¤ÏÀ¸°é¤Ë¤¢¤Þ¤ê±Æ¶Á¤òÍ¿¤¨¤Æ¤¤¤Ê¤¤¤è¤¦¤Ë¸«¤¨¤ë¡£Ê£¹çÂÎ I ¤Î³èÀ­Äã²¼¤ÎÅٹ礤¤¬¾®¤µ¤¤¤«¤é¤À¤È¹Í¤¨¤é¤ì¤ë¡£¹â²¹¤Ë¼å¤¯¤Ê¤Ã¤¿¤ê¤Ï¤·¤Ê¤¤¤Î¤À¤í¤¦¤«¡£Íý¶þŪ¤Ë¤Ï¤½¤¦¤Ê¤Ã¤Æ¤â¤ª¤«¤·¤¯¤Ê¤¤¡£

¤³¤¦¤¤¤Ã¤¿¸¦µæÀ®²Ì¤ä¾å¤Ë½ñ¤¤¤¿ PMID: 37702436 ¤Î·ë²Ì¤«¤é¡ÖÊ£¹çÂÎ I ¤Ï¿¢Êª¤¬²¹ÅÙ¤ò´¶¼õ¤¹¤ëµ¡¹½¤Î°ìÉô¤È¤·¤ÆÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë¡×¤È¿äÄꤹ¤ë¤³¤È¤â¤Ç¤­¤Ê¤¯¤Ï¤Ê¤¤¡£¤Þ¤¿¤Ï¡ÖÊ£¹çÂÎ I ¤«¤éȯÀ¸¤¹¤ë³èÀ­»ÀÁǤÎÎ̤Ȳ¹ÅÙ´¶¼õÀ­¤Ë¶¯¤¤´Ø·¸¤¬¤¢¤ë¡¦¾¯¤Ê¤¤¤ÈÄã²¹¤Ë¶¯¤¯¤Ê¤ê¿¤¤¤È¹â²¹¤Ë¶¯¤¯¤Ê¤ë¡×¤Ê¤É¤ÈÁÛÁü¤¹¤ë¤³¤È¤â¤Ç¤­¤ë¤«¤â¤·¤ì¤Ê¤¤¡£ 2024 ǯ3·î¤Î¿¢ÊªÀ¸Íý³Ø²ñǯ²ñ¤Ç¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¡¢ÆÃ¤Ë CytC ¤È COX Ê£¹çÂΤ˴ؤ¹¤ë¤¹¤Ð¤é¤·¤¤È¯É½¤¬Ê£¿ô¹Ô¤ï¤ì¤Æ¤¤¤¿¡£Ê£¹çÂÎ I ¤À¤±¤Ç¤Ê¤¯ÅÅ»ÒÅÁã·Ï¤Î¤½¤Î¤Û¤«¤Î°ø»Ò¤â²¹ÅÙ´¶ÃΤËƯ¤¤¤Æ¤¤¤ë¤³¤È¤âÁÛÁü¤Ç¤­¤ë¡£

Multi-scale analysis of heat stress acclimation in Arabidopsis seedlings highlights the primordial contribution of energy-transducing organelles.¡¡¡¡¡¡Réthoré E¡¡¤Ê¤É¡¡¡¡¡¡Plant J. 2024 Apr 13. doi: 10.1111/tpj.16763.¡¡¡¡¡¡PMID: 38613336¡¡¡¡¡¡¤È¤¤¤¦ÏÀʸ¤¬È¯É½¤µ¤ì¤¿¡£

Ê£¹çÂÎI ¤ËÊÑ°Û¤¬µ¯¤­¤ë¡¦³èÀ­¤òÁ˳²¤¹¤ë¤È³èÀ­»ÀÁǤÎÎ̤ÏÁý¤¨¤ë¤Î¤«¡¦¸º¾¯¤¹¤ë¤Î¤«¡©

¤³¤ì¤Ï»þ¤È¾ì¹ç¤Ë¤è¤Ã¤ÆÁý¤¨¤¿¤ê¸º¤Ã¤¿¤ê¤¹¤ë¤é¤·¤¤¡£

¥ß¥¯¥í¥°¥ê¥¢Ãæ¤Î¥ß¥È¥³¥ó¥É¥ê¥¢Ê£¹çÂΣɤγèÀ­¤¬¿À·Ð±ê¾É¤ò»ý³¤µ¤»¤ë¡¡¡¡2024ǯ4·î4Æü Nature 628, 8006 doi: 10.1038/s41586-024-07167-9¡¡¡¡¡¡¤³¤ÎÏÀʸ¤Ç¤Ï¡¢Ê£¹çÂÎI ¤ÇµÕÊý¸þ¤ÎÅÅ»ÒÅÁ㤬¤ª¤­¤ë¤È³èÀ­»ÀÁǼﻺÀ¸¤¬Â¥¿Ê¤µ¤ì¤ë¤³¤È¤¬¸ÀµÚ¤µ¤ì¤Æ¤¤¤ë¡£¡ÖµÕÊý¸þÅÅ»ÒÅÁã¡¡reverse electron transfer¡×¤Ï¥³¥Ï¥¯»À¤¬Â¿¤¤¤Èµ¯¤­¤ä¤¹¤¯¡¢¤½¤ÎºÝ¤Ë³èÀ­»ÀÁǤ¬ÂçÎ̤ËȯÀ¸¤¹¤ë¡£¤³¤Î¾ì¹ç¡¢Ê£¹çÂÎI¤òÁ˳²¤¹¤ë¤È³èÀ­»ÀÁÇ»ºÀ¸¤¬ÍÞ¤¨¤é¤ì¿À·Ð¤òÊݸ¤ë¤³¤È¤¬¤Ç¤­¤ë¡£

¥³¥Ï¥¯»À¤Ï¿´Â¡¤òÇ˲õ¤¹¤ë¡¡Nature 515, 7527¡¡2014ǯ11·î20Æü¡¡¡¡¡¡ µõ·ì¡ÊÄã»ÀÁǤˤʤë¡Ë¤ÎºÝ¤Ë¤Ï¡¢¥³¥Ï¥¯»À¥Ç¥Ò¥É¥í¥²¥Ê¡¼¥¼¡Êcomplex II¡Ë¤¬µÕÊý¸þ¤ËƯ¤¤¤Æ¥³¥Ï¥¯»À¤¬ÃßÀѤ¹¤ë¡£ºÆÞõή¡Ê»ÀÁǤ¬¶¡µë¤µ¤ì¤ë¡Ë¤ò¹Ô¤¦¤È¡¢ÃßÀѤ·¤¿¥³¥Ï¥¯»À¤¬µÞ®¤Ë»À²½¤µ¤ì¡¢¥ß¥È¥³¥ó¥É¥ê¥¢Ê£¹çÂÎI¤Çµ¯¤³¤ëµÕÊý¸þ¤ÎÅÅ»ÒÅÁã¤ò²ð¤·¤Æ³èÀ­»ÀÁǼﻺÀ¸¤òÂ¥¿Ê¤¹¤ë¡£¥³¥Ï¥¯»ÀÃßÀѤòÌôÍý³ØŪ¤ËÁ˳²¤·¤Æ¤ä¤ë¤È¡¢µõ·ìºÆÞõή½ý³²¤¬·Ú¸º¤µ¤ì¤ë¡£

ÂоÈŪ¤Ë¥í¥Æ¥Î¥ó¤ÇÊ£¹çÂÎI ¤òÁ˳²¤¹¤ë¤È³èÀ­»ÀÁÇÀ¸À®¤¬ÁýÂ礹¤ë¤³¤È¤¬¤µ¤Þ¤¶¤Þ¤ÊÏÀʸ¤Ë½ñ¤«¤ì¤Æ¤¤¤ë¡£

Ê£¹çÂÎI ¤Î³èÀ­¡¢²¹ÅÙ´¶¼õÀ­¤ò __ÀºÌ©¤Ë__ À©¸æ¤¹¤ë¤È²¹ÅÙÂÑÀ­¤òÊѤ¨¤é¤ì¤ë¡©

sop10 ¤ÎÏÀʸ¤Î·ë²Ì¤«¤é¤¹¤ë¤È¤½¤¦¤¤¤¦²ÄǽÀ­¤â¤Ê¤¤¤ï¤±¤Ç¤Ï¤Ê¤¤¡£Ê£¹çÂÎI ¤Ï¿¿ô¤Î¥µ¥Ö¥æ¥Ë¥Ã¥È¤«¤é¹½À®¤µ¤ì¤Æ¤¤¤Æ¡¢²¿¤ÎÌò¤ËΩ¤Ä¤Î¤«¤ï¤«¤é¤Ê¤¤¥µ¥Ö¥æ¥Ë¥Ã¥È¤â¤¢¤ë¡£¤½¤¦¤¤¤¦¥µ¥Ö¥æ¥Ë¥Ã¥È¤ÏÊ£¹çÂÎI ¤Î³èÀ­¤òÈù̯¤ËÄ´À᤹¤ë¤¿¤á¤Ë¸åÉÕ¤±¤Ç¥Ñ¥Ã¥Á¤òÅö¤Æ¤ë¤è¤¦¤Ë½Ð¸½¤·¤Æ¤­¤¿¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

¿¢Êª¥ª¥ë¥¬¥Í¥é¥²¥Î¥à¤Î±ö´ðÇÛÎó¤ò¿Í°ÙŪ¤ËÊÑ´¹¤¹¤ë¤¹¤Ð¤é¤·¤¤µ»½Ñ¤¬³«È¯¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡ Targeted A-to-G base editing in the organellar genomes of Arabidopsis with monomeric programmable deaminases.¡¡¡¡¡¡Zhou C, Okuno M, Nakazato I, Tsutsumi N, Arimura SI.¡¡¡¡ Plant Physiol. 2023 Dec 21:kiad678. doi: 10.1093/plphys/kiad678. Online ahead of print.¡¡¡¡PMID: 38128544¡¡¡¡¡¡¥²¥Î¥àÊÔ½¸¤Ë¤è¤Ã¤Æ¡¢Ê£¹çÂÎ I Åù¤Î³èÀ­¤ò»×¤¤Ä̤ê¤ËÀºÌ©¤ËÀ©¸æ¤¹¤ë¤³¤È¤â²Äǽ¤Ë¤Ê¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

¹Í¤¨¤Æ¤ß¤ë¤È¡¢¡Ö²¿¤é¤«¤Îµ¡Ç½¡¦¹ÚÁdzèÀ­¤òÀºÌ©¡¦Èù̯¤ËÀ©¸æ¤¹¤ë¡×¤È¤¤¤¦¤³¤È¤ÏÀ¸Êª³Ø¤Ë¤ª¤¤¤Æ¤¢¤Þ¤êÌÜɸ¤Ë¤µ¤ì¤Æ¤³¤Ê¤«¤Ã¤¿¤è¤¦¤Êµ¤¤¬¤¹¤ë¡£¥²¥Î¥àÊÔ½¸¤Ï¤½¤¦¤¤¤¦¤³¤È¤ò²Äǽ¤Ë¤¹¤ë¤«¤â¤·¤ì¤Ê¤¤¡£»ä¤Ï¿¢Êª¥Û¥ë¥â¥ó¤ä¿¢Êª²½³ØÄ´ÀáºÞ¤Î¤Û¤¦¤¬¤Ê¤¸¤ß¿¼¤¤Ê¬Ìî¤Ê¤Î¤Ç¡¢¤½¤¦¤¤¤¦¤â¤Î¤ò¤¦¤Þ¤¯»È¤¦ÊýË¡¤ò¹Í¤¨¤ì¤Ð¤è¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

PPR40 ¤ÎÊÑ°Û¤¬¿åÉÔ­¤ËÂФ¹¤ëÂÑÀ­¤ò¹â¤á¤ë

Mutation in Arabidopsis mitochondrial Pentatricopeptide repeat 40 gene affects tolerance to water deficit.¡¡¡¡¡¡Kant K, Rigó G, Faragó D, Benyó D, Tengölics R, Szabados L, Zsigmond L.¡¡¡¡¡¡Planta. 2024 Mar 1;259(4):78. doi: 10.1007/s00425-024-04354-w.¡¡¡¡¡¡PMID: 38427069

Ä̾ï¤ÎÀ¸°é¾ò·ï¤Ç¤ÏÊѰۤˤè¤Ã¤ÆÀ¸°é¤¬ÃÙ¤¯¤Ê¤ë¡£¤·¤«¤·¿å¤ä¤ê¤ò»ß¤á¤¿¾õÂÖ¤ÇÂѤ¨¤ëǽÎϤ¬¶¯¤¯¤Ê¤ë¡£

¤º¤Ã¤È°ÊÁ°¤Ë¤â PPR40 ¤òÍѤ¤¤Æ¥¹¥È¥ì¥¹ÂÑÀ­¤òÁý¶¯¤Ç¤­¤ë¤³¤È¤¬Êó¹ð¤µ¤ì¤Æ¤¤¤¿¡£¤·¤«¤·¤³¤Î¤³¤È¤Ï¼ÂÍѤËÌòΩ¤Æ¤é¤ì¤Æ¤¤¤Ê¤¤¡£À¸°é¤ä¼ï»Ò¤Î¼ý³ÏÎ̤ʤɤ˰­±Æ¶Á¤¬½Ð¤ë¤ÈͽÁÛ¤µ¤ì¤ë¤Î¤Ç¤½¤ó¤Ê¤³¤È¤Ë¼è¤êÁȤà¿Í¤Ï¤¤¤Ê¤¤¤Î¤À¤í¤¦¡£

Arabidopsis PPR40 connects abiotic stress responses to mitochondrial electron transport.¡¡¡¡¡¡Zsigmond L, Rigo G, Szarka A, Szekely G, Otvos K, Darula Z, Medzihradszky KF, Koncz C, Koncz Z, Szabados L.¡¡¡¡¡¡Plant Physiol. 2008 Apr;146(4):1721-37. PMID: 18305213 PMCID: PMC2287346

Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis.¡¡¡¡¡¡Zsigmond L, Szepesi A, Tari I, Rigo G, Kiraly A, Szabados L.¡¡¡¡¡¡Plant Sci. 2012 Jan;182(1):87-93. Epub 2011 Jul 26.¡¡¡¡¡¡PMID: 22118619¡¡¡¡¡¡PPR ¥¿¥ó¥Ñ¥¯¼Á¤Î¸¦µæ¤¬¡¢¿·¤·¤¤¥á¥«¥Ë¥º¥à¤Ë¤è¤ë¥¹¥È¥ì¥¹ÂÑÀ­Áý¶¯¤Ë¤Ä¤Ê¤¬¤Ã¤¿¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤òÀ©¸æ¤¹¤ë³Ë°äÅÁ»Ò¤Î¸¦µæ¤¬±þÍѤˤâÍ­ÍѤǤ¢¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

¥×¥í¥ê¥ó¤Ï¥¹¥È¥ì¥¹¤È´Ø·¸¤¬¿¼¤¤¡£ppr40 ÊÑ°ÛÂΤǤϡ¢Àµ¾ï¤Ê¾õÂ֤Ǥâ¥×¥í¥ê¥óÎ̤¬Ìó2ÇܤËÁý¤¨¤Æ¤¤¤¿¡£¤·¤«¤·µ¡Ç½Äã²¼ÊÑ°ÛÂΤϥ¹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤¤¡Ê¥·¥ã¡¼¥ì¤Ç¤Î°éÀ®¤Ç¸¡Æ¤¡¦2024ǯ¤ÎÏÀʸ¤Ç¤Ï¥Ý¥Ã¥ÈºÏÇݤǸ¡Æ¤¤·¤Æ´¥ÁçÂÑÀ­¤¬³Îǧ¤Ç¤­¤¿¡Ë¡£ ±ö¥¹¥È¥ì¥¹¤ÇÌîÀ¸·¿¤â ppr40 ¤â¥×¥í¥ê¥óÎ̤¬Â礭¤¯Áý²Ã¤¹¤ë¤¬¡¢¤½¤ÎºÝ¤â ppr40 ¤ÎÊý¤¬ 2 ÇÜ¿¤«¤Ã¤¿¡£²á¾êȯ¸½¤·¤¿¤â¤Î¤Ï±ö¥¹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤ë¤¬¡¢¥×¥í¥ê¥ó¤ÎÎ̤ÏÌîÀ¸·¿¤ÈƱ¤¸¤À¤Ã¤¿¡£¤À¤«¤é²á¾êȯ¸½ÂΤϥץí¥ê¥ó¤Î¤»¤¤¤Ç¥¹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤ë¤ï¤±¤Ç¤Ï¤Ê¤«¤Ã¤¿¡£

¾¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½ÊÑ°ÛÂΤǤ⡢Âå¼Õ»ºÊª¤Î°ì¤Ä¤È¤·¤Æ Pro ¤ò¬Äꤷ¤Æ¤¤¤ëÎ㤬¤¢¤ë¡£

 ¥¿¥Ð¥³ cmsII¡¡¡¡Dutilleul et al. (2005)¡¡PMC1203358¡¡¡¡¤Ë¥¢¥ß¥Î»À¤òʬÀϤ·¤¿·ë²Ì¤¬¤¢¤ë¡¡Pro ¤Ï½Ð¤Æ¤¤¤Ê¤¤
 nMat1 ÊÑ°ÛÂΡ¡¡¡Keren et al. (2012) ¡¡¡¡PMID: 22429648 ¡¡¡¡ÊѲ½¤·¤Æ¤¤¤Ê¤¤ 5-day-old ¡¡°Å´ü¤Î½ª¤ï¤ê¤Ë¥µ¥ó¥×¥ê¥ó¥°¡¡¥·¥çÅü¤¬¸º¤Ã¤Æ¤¤¤ë
 abo5 ÊÑ°ÛÂΡ¡¡¡Liu Y et al. (2010)¡¡¡¡https://pubmed.ncbi.nlm.nih.gov/20561255/¡¡¡¡ Figure 5e ¤Ë¥Ç¡¼¥¿¡¡24 »þ´ÖÌÀ¾ò·ï¤ÇÆó½µ´Ö°éÀ®¡¡2 Çܰʾå¤ËÁý¤¨¤Æ¤¤¤ë¡¡ABA ¤ò²Ã¤¨¤ë¤È¤µ¤é¤ËÁý¤¨¤ë¤¬¡¢¤½¤ÎºÝ¤â 2 ÇÜ¿¤¤      Figure 8d ¤Ë¤â¥Ç¡¼¥¿¡¡Æó½µÌܤο¢ÊªÂΡ¡24»þ´ÖϢ³ÌÀ¤Ç¤Ï 4 ÇÜ¡¡12/12 ¤Ç¤ÏÌîÀ¸·¿¤ÈÊѤï¤é¤Ê¤¤¡¡¥×¥í¥ê¥ó°Ê³°¤Ï¬¤Ã¤Æ¤¤¤Ê¤¤
 ndufs4 ÊÑ°ÛÂΡ¡¡¡Fig.6¡¡4 ½µÌܤο¢ÊªÂΤΥ¢¥ß¥Î»À¤Ê¤É¤ò¥á¥¿¥Ü¥í¡¼¥àŪ¤Ë¬Äê¡¡¥»¥ê¥ó¤¬Â礭¤¯Áý¤¨¤Æ¤¤¤ë¡¡10 Çܰʾ塡¥Á¥í¥·¥ó¤Ï 6-8 ÇÜ¡¡¥í¥¤¥·¥ó Leu¡¢¥Ð¥ê¥ó Val ¤Ï 2-5 ÇÜ¡¡¥×¥í¥ê¥ó¤Ï 2-3 ÇÜ¡¡ÌÀ´ü¤È°Å´ü¤ÇÊѲ½¤¬¤¢¤ë¡¡Leu, Val ¤Ï°Å´ü¤ËÇÜΨ¤¬Áý¤¨¤ë
 slo2 ÊÑ°ÛÂΡ¡https://pubmed.ncbi.nlm.nih.gov/23990142/¡¡¥í¥¼¥Ã¥ÈÍÕ¡Ê4 ½µ´Ö¡Ë¤Î¥¢¥ß¥Î»À¤ò¬Äꤹ¤ë¤È¡¢Orn, Gly, Ala Åù¿¤¯¤Î¼ïÎà¤ÇÁý²Ã¤·¤Æ¤¤¤¿¡£ÆÃ¤Ë Orn ¤Ï¸²Ãø¤À¤Ã¤¿¡£¥×¥í¥ê¥ó¤ÏÌó 2 ÇܤÀ¤Ã¤¿¡£Asp ¤Ï¸º¾¯¤·¤Æ¤¤¤¿¡ÊFigure 11¡Ë¡£
 A mutation in the E2 subunit of PDH¡¡¡¡Planta. 2012 PMID:22391856 ¥¢¥é¥Ë¥ó¤È¥·¥¹¥Æ¥¤¥ó¤ÎÁý²Ã¤¬¤È¤Æ¤âÂ礭¤¤¡£Proline ¤Ï 1.5 ÇÜ¡¡ À¸°é¤ÏÌîÀ¸·¿¤è¤ê¤â°­¤¤
 ndufs8.1 & 8.2 ÊÑ°ÛÂΡ¡¡¡Fig.6¡¡Plant Physiol. 2017¡¡¡¡¡¡PMID: 27852950¡¡Ä¹Æü¤ÈûÆü¤Ç¬Äꤷ¤ÆÈæ³Ó¡¡ndufs4 ¤ÈÈæ³Ó¤¹¤ë¤ÈÊѲ½¤Ï¾®¤µ¤¤¡¡

PMC2287346 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2287346/ ¤ÎÏÀʸ¤Î Fig. 10 ¤Ç¤Ï¡¢ppr40 ÊÑ°ÛÂΤΥߥȥ³¥ó¥É¥ê¥¢¤Ç¤Ï¡¢¥¢¥¹¥³¥ë¥Ó¥ó»À¤Ï CytC ¤òÄ̤¸¤ÆÅŻҤò COX ¤Ë¶¡µë¤·¤Æ¤¤¤ë¤È¿ä»¡¤µ¤ì¤Æ¤¤¤ë¡£¥¢¥¹¥³¥ë¥Ó¥ó»À¤â¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤È´Ø·¸¤¬¤¢¤ë¡£

NDUFS8.2 ¡ÊÊ£¹çÂÎI¤Î¥µ¥Ö¥æ¥Ë¥Ã¥È¤Î°ì¤Ä¤ò¥³¡¼¥É¤¹¤ë³Ë°äÅÁ»Ò¡Ë¤òÇ˲õ¤¹¤ë¤È¿åÍøÍѲÄǽÀ­¤ÎÄã²¼¤ËÂѤ¨¤ëǽÎϤ¬¹â¤Þ¤ë

Mitochondrial complex I subunit NDUFS8.2 modulates responses to stresses associated with reduced water availability.¡¡¡¡¡¡Zsigmond L¡¡¤Ê¤É¡¡¡¡¡¡Plant Physiol Biochem. 2024 Feb 23;208:108466. doi: 10.1016/j.plaphy.2024.108466.¡¡Online ahead of print.¡¡¡¡¡¡PMID: 38428158

¤³¤ì¤â PPR40 ¤ò¸¦µæ¤·¤Æ¤¤¤ë¥°¥ë¡¼¥×¤ÎÏÀʸ¤Ç¡¢¤µ¤Þ¤¶¤Þ¤Ê¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½´ØÏ¢ÊÑ°ÛÂΤò½¸¤á¤Æ¡¢¥¹¥È¥ì¥¹ÂÑÀ­¤ò¶¯¤¯¼¨¤¹¤â¤Î¤ò¥¹¥¯¥ê¡¼¥Ë¥ó¥°¤·¤¿¡£¤½¤Î·ë²Ì NDFUF8.2 ¤¬Ç˲õ¤µ¤ì¤¿¤â¤Î¤¬´¥ÁçÂÑÀ­¤ò¼¨¤·¤¿¡£

ɸ¶¶Ý±þÅú¤È¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¡¢UCR8

Deficiencies in the Mitochondrial Electron Transport Chain Affect Redox Poise and Resistance Toward Colletotrichum higginsianum.¡¡¡¡¡¡McCollum C, Geißelsöder S, Engelsdorf T, Voitsik AM, Voll LM.¡¡¡¡¡¡Front Plant Sci. 2019 Oct 17;10:1262. doi: 10.3389/fpls.2019.01262. eCollection 2019.¡¡¡¡¡¡PMID: 31681368

¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤¬Äã²¼¤·¤¿ÊÑ°ÛÂΤ覵æ¤Ï¡Ö¤½¤ó¤Êɵ¤¤Î¿¢Êª¤ò¸¦µæ¤·¤Æ¤Ê¤ó¤Î°ÕÌ£¤¬¤¢¤ë¤ó¤À¡×¤Èɾ²Á¤µ¤ì¤¬¤Á¤Ç¤¢¤ë¡£³Î¤«¤Ë¿¢ÊªÃ±ÂΤÎÀ¸°é¤ËÂФ·¤Æ¤ÏÍ­Íø¤Ë¤Ê¤ë¤³¤È¤Ï¤Ê¤¤¡Ê¤ÈÉáÄ̤Ïï¤Ç¤â¹Í¤¨¤ë¡Ë¡£¤·¤«¤· ahg2 ¤Î¸¦µæÀ®²Ì¤Ê¤É¤«¤é¡¢Â¾¤ÎÀ¸Êª¤È¤ÎÁê¸ßºîÍѤˤª¤¤¤Æ¤Ï¤½¤¦¤Ç¤â¤Ê¤¤¤³¤È¤¬¼¨º¶¤µ¤ì¤Æ¤­¤¿¡£

¤³¤ÎÏÀʸ¤Ç¤ÏÊ£¹çÂÎ I (ndufs4)¡¢II (sdh2)¡¢III (ucr8-1)¡¢UCP (ucp1-2)¡¡¤ÎÊÑ°ÛÂΤˤĤ¤¤Æ¡¢Colletotrichum higginsianum¡¡¤È¤¤¤¦¶ÝÎà¤ËÂФ¹¤ëÂÑÀ­¤òÄ´¤Ù¤Æ¤¤¤ë¡£¤³¤ì¤é¤Î¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½ÊÑ°ÛÂΤÎÆâ¤Ç ndufs4 ¤ÏÀ¸°é¤¬ÌîÀ¸·¿¤è¤ê¤âÃÙ¤¯¤Ê¤ë¡ÊSupplemental fig. ¤Ë¼Ì¿¿¤¬¤¢¤ë¡Ë¤¬¡¢È¯²ê¤«¤é¼ï»Ò·ÁÀ®¤Þ¤Ç¤ÎÀ¸³è´Ä¤ÏÀµ¾ï¤Ë¿Ê¹Ô¤¹¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¾ÃÈñ¤µ¤ì¤Ê¤¤´Ô¸µÎϤ¬ÃâÁÇƱ²½¤Ê¤É¤Ë»È¤ï¤ì¤ë¤Î¤Ç¥¢¥ß¥Î»À¤ÎÎ̤¬Â¿¤¯¤Ê¤ë¡£

I, II ¤¬¼º³è¤¹¤ë¤È less susceptible ´¶À÷¤Ë¶¯¤¯¤Ê¤ë¡Ê¶Ý¤Î¥²¥Î¥à DNA ¤ÎÎ̤ò¬Äꤹ¤ë¤È¾¯¤Ê¤¤¡¢ROS ¤¬Â¿¤¤¡¢¿¯ÆþÉô°Ì¤Ë¥«¥í¡¼¥¹¤¬¤Ç¤­¤ä¤¹¤¤¡Ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç»È¤ï¤ì¤º¤Ë;¤Ã¤¿´Ô¸µÎϤ¬´ÖÀÜŪ¤Ë¶Ý¤ËÂФ¹¤ëÄñ¹³ÎϤθþ¾å¤Ë¹×¸¥¤·¤Æ¤¤¤ë¡£¤·¤«¤· Supplemental fig. ¤Î¼Ì¿¿¤ò¸«¤ë¤È¡¢½½Ê¬¤ËÄñ¹³À­¤¬¸þ¾å¤·¤Æ¤¤¤ë¤Î¤À¤í¤¦¤«¡¦¶¯¤¯¤Ê¤Ã¤¿¤È¸À¤Ã¤Æ¤â¤Û¤ó¤Î¾¯¤·¤Ç¤Ï¤Ê¤¤¤Î¤À¤í¤¦¤«¤È¿´Çۤˤʤ롣

UCR8 ¤È¤¤¤¦°äÅÁ»Ò¤Ï¡¢¹ÚÊì¤ÇÊ£¹çÂÎIII ¤Î¥µ¥Ö¥æ¥Ë¥Ã¥È¤ò¥³¡¼¥É¤·¤Æ¤¤¤ë UCR8 °äÅÁ»Ò¤ÈÂбþ¤¹¤ë°ø»Ò¤Ç At3g10860 ¤Ë¥³¡¼¥É¤µ¤ì¤Æ¤¤¤ë¡£UniProt ¤Ç¸¡º÷¤¹¤ë¤È 72 ¥¢¥ß¥Î»À¤·¤«¤Ê¤¤¾®¤µ¤Ê¥¿¥ó¥Ñ¥¯¼Á¤Ç¤¢¤ë¡£¥²¥Î¥à¾å¤Ë¤Ïµ¡Ç½ÉÔÌÀ¤ÊŤµ 100 ¥¢¥ß¥Î»ÀÄøÅ٤Υ¿¥ó¥Ñ¥¯¼Á¤¬Â¿¿ô¸ºß¤·¤Æ¤¤¤ë¤¬¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Þ¤¿¤ÏÍÕÎÐÂΤÎÅÅ»ÒÅÁã·ÏÊ£¹çÂΤȴط¸¤¹¤ë¤â¤Î¤â¤¢¤ë¤Î¤À¤í¤¦¡£¤³¤Îʸ½ñ¤Î²¼¤ÎÊý¤Ë½Ð¤Æ¤¯¤ë B12D protein ¤â¤½¤¦¤¤¤¦¤â¤Î¤À¤Ã¤¿¡£ÅÅ»ÒÅÁã·ÏÊ£¹çÂΤò¥¤¥ó¥¿¥¯¥È¤Ê¾õÂÖ¤ÇÀºÀ½¤¹¤ë¤³¤È¤ÏÆñ¤·¤¤¡£ÆäËʬ»ÒÎ̤¬¾®¤µ¤¤¥µ¥Ö¥æ¥Ë¥Ã¥È¤ÏÊ£¹çÂΤ«¤é³°¤ì¤Æ¤·¤Þ¤¤Â¸ºß¤¬¤ï¤«¤é¤Ê¤¯¤Ê¤ë¤³¤È¤âµ¯¤­¤ä¤¹¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£At3g10860 ¤ò¤¹¤Ð¤é¤·¤¤È¯¸½¥Ç¡¼¥¿¥Ù¡¼¥¹ ATTED-II ¤Ç¸¡º÷¤¹¤ë¤È¡¢¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¥µ¥Ö¥æ¥Ë¥Ã¥È¤ò¹½À®¤¹¤ë°äÅÁ»Ò¤Èȯ¸½Áê´Ø¤¬¹â¤¤¤³¤È¤¬¤ï¤«¤ë¡£ATTED-II ¤ÎʬÀÏÎϤϤȤƤ⤹¤Ð¤é¤·¤¯¡¢At3g10860 ¤Èȯ¸½Áê´Ø¤¬¤¢¤êŤµ¤¬ 100 ¥¢¥ß¥Î»À¤è¤ê¤â¾®¤µ¤¤¥¿¥ó¥Ñ¥¯¼Á¤ò¥³¡¼¥É¤·¤Æ¤¤¤ë°äÅÁ»Ò¤¬Ê£¿ô¸Ä¥ê¥¹¥È¤ËÃê½Ð¤µ¤ì¤Æ¤­¤Æ¤¤¤ë¡£

¡Ö¿¢Êª¤ÎÀ¸Ä¹Ä´Àá¡×54¡§£±¡Ê2019ǯ¡Ë¡¢60 ¥Ú¡¼¥¸¤«¤é¤Ë¡¢ÉðÅÄÃÒÇ·¡¤²ÖÅĹ̲ðξÀèÀ¸¤Ë¤è¤ë¡Ö¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Îû¤¤¥³¡¼¥Ç¥£¥ó¥°°äÅÁ»Ò¤ËÆò½¤·¤¿È¯¸½¥Ç¡¼¥¿¥Ù¡¼¥¹¤È²á¾êȯ¸½ÂΥ饤¥Ö¥é¥ê¡¼¤Î¹½ÃۡפȤ¤¤¦¤¹¤Ð¤é¤·¤¤²òÀ⤬·ÇºÜ¤µ¤ì¤Æ¤¤¤ë¡£

2022ǯ3·î¤Î¿¢ÊªÀ¸Íý³Ø²ñǯ²ñ¤Ë¤ª¤¤¤ÆÉðÅÄÃÒÇ·¡¤²ÖÅĹ̲ðξÀèÀ¸¤é¤Î¥°¥ë¡¼¥×¤Ë¤è¤ë¹Ö±é¡¡¡¡2pB01 (0217)¡¡A de-novo gene originated from mitochondria controls flowering timing in Arabidopsis thaliana¡¡¤¬¤¢¤Ã¤¿¡£¿¢Êª¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Ï de novo °äÅÁ»Ò¡Ê¿Ê²½¤Î²áÄø¤ÇÆÃÄê¤Î¿¢Êª¼ï¤Ë¿·µ¬¤Ë½Ð¸½¤·¤¿°äÅÁ»Ò¡Ë¤¬È¯À¸¤¹¤ëµ¯¸»¤Î°ì¤Ä¤È¤·¤ÆƯ¤¤¤Æ¤¤¤ë¤È¸À¤¦¤³¤È¤òÃΤ뤳¤È¤¬¤Ç¤­¤¿¡£ de novo °äÅÁ»Ò¤Ë´Ø¤¹¤ë²òÀâµ­»ö¡¡¡¡¡¡https://www.natureasia.com/ja-jp/ndigest/v17/n1/%E3%82%BC%E3%83%AD%E3%81%8B%E3%82%89%E8%AA%95%E7%94%9F%E3%81%97%E3%81%9F%E9%81%BA%E4%BC%9D%E5%AD%90/101660¡¡¡¡¡¡¡Ö¥¼¥í¤«¤éÃÂÀ¸¤·¤¿°äÅÁ»Ò¡×Nature ¥À¥¤¥¸¥§¥¹¥È¤Îµ­»ö¡¡¡¡¡¡¾®¤µ¤¤ ORF ¤ò¤â¤Ä°äÅÁ»Ò¤Î»ºÊª¤¬¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¤¤Æ¤¤¤ë¤é¤·¤¤¤³¤È¡¢¤½¤Îȯ¸½¤òÊѲ½¤µ¤»¤ë¤³¤È¤Ë¤è¤ëɽ¸½·¿¤¬Êó¹ð¤µ¤ì¤Æ¤¤¤¿¡£¤³¤Îɽ¸½·¿¤ò¤É¤¦¤ä¤Ã¤Æ¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë·ë¤Ó¤Ä¤±¤ì¤Ð¤è¤¤¤Î¤À¤í¤¦¤«¡£»ä¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤Ë´Ø¤ï¤ëÊÑ°ÛÂΤò¤º¤Ã¤È¤¤¤¸¤Ã¤Æ¤­¤¿·ë²Ì¡Ö²¿¤ò¤¹¤ë¤Ë¤â¥¨¥Í¥ë¥®¡¼¡¢ATP ¤¬¤Ê¤¤¤Èʪ»ö¤Ï¿Ê¤Þ¤Ê¤¤¡×¤È¤¤¤¦¤³¤È¤ò¹Í¤¨¤ë¤è¤¦¤Ë¤Ê¤Ã¤¿¡£ATP ¤Î¾õÂÖ¤ò´¶ÃΤ¹¤ë»ÅÁȤߤϺÙ˦Æâ¤Ë²¿¼ïÎà¤â¤¢¤ë¤Î¤Ç¤½¤Î¤É¤ì¤«¤¬Æ¯¤¤¤Æ¤¤¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¤Þ¤¿¥ß¥È¥³¥ó¥É¥ê¥¢¤Ï´ðÁÃÂå¼Õ¤À¤±¤Ç¤Ê¤¯Êä¹ÚÁǤÎÀ¸¹çÀ®¤ËƯ¤¤¤Æ¤¤¤ë¡£¤½¤ì¤é¤Ï¥Ò¥¹¥È¥ó¤Î½¤¾þ¤òÄ̤¸¤Æ²ÖÀ®°äÅÁ»Ò¤Îȯ¸½¤Ë±Æ¶Á¤òÍ¿¤¨¤ë¤³¤È¤â¤¢¤êÆÀ¤ë¡£¤·¤«¤·¤³¤ÎÍý¶þ¤À¤È¥Ò¥¹¥È¥ó¤Î½¤¾þ¤¬´Ø·¸¤¹¤ëʪ»ö¤¬Á´Éô±Æ¶Á¤ò¼õ¤±¤ë¤³¤È¤Ë¤Ê¤Ã¤Æ¤·¤Þ¤¦¡£

ÏÀʸ¤È¤·¤Æ¤âȯɽ¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡A de novo gene originating from the mitochondria controls floral transition in Arabidopsis thaliana.¡¡¡¡¡¡Takeda T, Shirai K, Kim YW, Higuchi-Takeuchi M, Shimizu M, Kondo T, Ushijima T, Matsushita T, Shinozaki K, Hanada K.¡¡¡¡Plant Mol Biol. 2022 Oct 28. doi: 10.1007/s11103-022-01320-6. Online ahead of print.¡¡¡¡PMID: 36306001¡¡¡¡¡¡°äÅÁ»Òȯ¸½¥Ç¡¼¥¿¤¬¡¡ GSE184689¡¡¤Ç¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£¸«¤Æ¤ß¤ë¤È¡¢¤È¤Æ¤â¶½Ì£¿¼¤¤ÊÑÆ°¤¬µ¯¤­¤Æ¤¤¤ë¡£ÏÀʸ¤Ë½ñ¤«¤ì¤Æ¤¤¤ë¤è¤¦¤Ë¡¢FLC ¤È¤¤¤¦²ÖÀ®¤Ë´Ø¤¹¤ë°äÅÁ»Ò¤Îȯ¸½¤¬Â礭¤¯¹â¤Þ¤Ã¤Æ¤¤¤ë¡£FLC ¤Ï¥Ò¥¹¥È¥ó¤Î¥á¥Á¥ë²½¤ä¥¢¥»¥Á¥ë²½¤ÇÀ©¸æ¤µ¤ì¤ë¤È UniProt ¤Ë½ñ¤«¤ì¤Æ¤¤¤ë¡£¡¡¡¡https://www.uniprot.org/uniprotkb/Q9S7Q7/entry¡¡¡¡¤Ð¤é¤Ä¤­¤¬Â礭¤¤¤¬¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë´Ø¤ï¤ë°äÅÁ»Ò¤Îȯ¸½Î̤âÊѲ½¤·¤Æ¤¤¤ë¡£

¥ß¥È¥³¥ó¥É¥ê¥¢¤È FLC ¤Ë´Ø¤¹¤ëÏÀʸ¤¬¤¢¤Ã¤¿¡£¡¡¡¡¡¡The Arabidopsis J protein AtJ1 is essential for seedling growth, flowering time control and ABA response¡¡¡¡¡¡Plant Cell Physiol. 2014 Dec;55(12):2152-63.¡¡¡¡¡¡doi: 10.1093/pcp/pcu145. Epub 2014 Oct 13.¡¡¡¡¡¡Min Young Park, Soo Young Kim¡¡¡¡¡¡PMID: 25311198 ¡¡¡¡¡¡ABA ´¶¼õÀ­¤¬¹â¤¯¤Ê¤ë¤À¤±¤Ç¤Ê¤¯¡¢²ÖÀ®¤Î¥¿¥¤¥ß¥ó¥°¤¬ÃÙ¤¯¤Ê¤ë¡£FLC °äÅÁ»Ò¤Îȯ¸½Î̤Ï2Çܰʾå¤Ë¹â¤¯¤Ê¤Ã¤Æ¤¤¤¿¡£FT °äÅÁ»Ò¤Îȯ¸½Î̤ÏÂ礭¤¯¸º¾¯¤·¤Æ¤¤¤¿ (Fig. 7)¡£È¯²ê¸å¤ÎÀ¸°é¤¬ÃÙ¤¯¤Ê¤ë¤¬ºÇ½ªÅª¤ÊÀ¸½ÅÎ̤ÏÊѤï¤é¤Ê¤¤¡£¤·¤«¤·¼ï»Ò¤ÎÎ̤ϸº¤ë¡£

Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis¡¡¡¡¡¡Plant Physiol. 2011 Jul;156(3):1508-19.¡¡doi: 10.1104/pp.111.176776. Epub 2011 May 4.¡¡¡¡¡¡Guan-Feng Wang 1 , Savanna Seabolt, Safae Hamdoun, Gina Ng, Jin Park, Hua Lu¡¡¡¡PMID: 21543726 PMCID: PMC3135961 ¡¡¡¡¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£ WIN3 = PBS3 ¤Ç¥µ¥ê¥Á¥ë»À¹çÀ®¤ËƯ¤¯¤¬¡¢¤½¤ì°Ê³°¤Ë¤âƯ¤­¤¬¤¢¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

Shining in the dark: the big world of small peptides in plants¡¡¡¡¡¡Apr 2023 aBIOTECH¡¡¡¡¡¡Yan-Zhao Feng ¤Ê¤É¡¡¡¡¡¡https://link.springer.com/article/10.1007/s42994-023-00100-0¡¡¡¡¤È¤¤¤¦¥ì¥Ó¥å¡¼¤¬¸ø³«¤µ¤ì¤Æ¤¤¤¿¡£

ÍÕ»À¤È²ÖÀ®¤Î¥¿¥¤¥ß¥ó¥°

¥ß¥È¥³¥ó¥É¥ê¥¢¤È´Ø·¸¤¢¤ë¤«¤É¤¦¤«¤ï¤«¤é¤Ê¤¤¤¬¡¢ÍÕ»À¤È²ÖÀ®¤Î¥¿¥¤¥ß¥ó¥°¤Ë´Ø·¸¤¬¤¢¤ë¤³¤È¤¬Êó¹ð¤µ¤ì¤Æ¤¤¤ë¡£

ÍÕ»ÀÀ¸¹çÀ®¤ÎÁ˳²ºÞ¤È¤·¤Æ Sulfonamides ¤Ï¿¤¯¤Î¸¦µæ¤Ç»È¤ï¤ì¤Æ¤¤¤ë¡£

Sulfanilamide Regulates Flowering Time through Expression of the Circadian Clock Gene LUX.¡¡¡¡¡¡Hirohata A, Yamatsuta Y, Ogawa K, Kubota A, Suzuki T, Shimizu H, Kanesaka Y, Takahashi N, Endo M. Plant Cell Physiol. 2022 May 16;63(5):649-657. doi: 10.1093/pcp/pcac027. PMID: 35238923

¤³¤ÎÏÀʸ¤Ç¤Ï²ÖÀ®¤Î¥¿¥¤¥ß¥ó¥°¤ò¸«¤ë¤¿¤á¤Ë¡¢¥Ý¥Ã¥È¤Ë¼ï¤Þ¤­¤·¤ÆÄã²¹½èÍý3Æü¸å22¡î¤Ç°éÀ®¤·¤¿¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤ËÄê´üŪ¤Ë 500 ml ¤Î½èÍý±Õ¡Ê12 mM ¤Î sulfanilamide, ÍÕ»ÀÀ¸¹çÀ®¤ÎÁ˳²ºÞ¡Ë¤òÍ¿¤¨¤Æ¤¤¤ë¡£½èÍýÆü¤Ï 5, 9, 12, 16, 19, 23, 26, 30, 33, 37, 40, 44, 47 ÆüÌܤȽñ¤«¤ì¤Æ¤¤¤ë¡£¤³¤Î¾ò·ï¤Ç¤Ï²ÖÀ®¤¬ÍÞÀ©¤µ¤ìÃÙ¤¯¤Ê¤ë¤¬À¸°é¤ÏÁ´¤¯°­¤¯¤Ê¤Ã¤Æ¤¤¤Ê¤¤¡£Íý¶þŪ¤Ë¤Ï¡Ö¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë·Ú¤¤°Û¾ï¤¬µ¯¤­¤ë¤ÈÍÕ»À¤ÎÀ¸¹çÀ®¤¬Á˳²¤µ¤ì²ÖÀ®¤¬ÃÙ¤¯¤Ê¤ë¡£·Ú¤¤°Û¾ï¤Ç¤ÏÀ¸°é¤ËÂФ¹¤ë±Æ¶Á¤Ï¾®¤µ¤¤¡×¤È¤¤¤¦¤³¤È¤â¤¢¤êÆÀ¤Ê¤¯¤Ï¤Ê¤¤¡£

https://www.nature.com/articles/ncomms11640#f5¡¡¡¡MTHFD1 controls DNA methylation in Arabidopsis¡¡¡¡¡¡Martin Groth¡¡¤Ê¤É¡¡¡¡¡¡Nature Communications volume 7, Article number: 11640 (2016) ¡¡¡¡¡¡¤Î Figure 5 ¤Ë¡Ö Schematic representation of plant SAM and folate metabolism in the cytosol and mitochondria.¡×¡¡¤È¤¤¤¦¿ÞÌ̤¬¤¢¤ë¡£¡¡Tetrahydrofolate¡ÊTHF¡Ë¤ÏºÙ˦¼Á¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¥°¥ê¥·¥ó¡¦¥»¥ê¥ó¤ÎÂå¼Õ¤ËÍѤ¤¤é¤ì¤ë¡£ºÙ˦¼Á¤Ç¤Ï¥á¥Á¥ª¥Ë¥ó¡¢¤Þ¤¿¥á¥Á¥ë²½¤Ë½ÅÍ×¤Ê S-adenosyl-methionine (SAM) ¤ÎÀ¸¹çÀ®¤Ë»ÈÍѤµ¤ì¤ë¡£

B12D protein

The Mitochondrion-Located Protein OsB12D1 Enhances Flooding Tolerance during Seed Germination and Early Seedling Growth in Rice¡¡¡¡¡¡Dongli He, Hui Zhang, Pingfang Yang¡¡¡¡¡¡Int J Mol Sci. 2014 Aug; 15(8): 13461?13481. Published online 2014 Jul 31. doi: 10.3390/ijms150813461¡¡¡¡¡¡PMCID: PMC4159805

B12D¡Ê¤Þ¤¿¤Ï B12D1¡Ë¤Ïʬ»ÒÎ̤¬¾®¤µ¤¤¡¢µ¡Ç½ÉÔÌÀ¤ÇÄã»ÀÁǤʤɤΥ¹¥È¥ì¥¹¤ÇͶƳ¤µ¤ì¤ë¥Ý¥ê¥Ú¥×¥Á¥É¤ò¥³¡¼¥É¤·¤Æ¤¤¤ë¡£ Åö½é¤³¤Î°äÅÁ»Ò¤Ï¡¢ÂçÇþ¼ï»Ò¤ÎÀ®½Ï»þ¤Èȯ²ê»þ¤Ë¶¯¤¯Æ¯¤¯¡¢¥¸¥Ù¥ì¥ê¥ó¤ÇͶƳ¤µ¤ì¤ë°äÅÁ»Ò¤È¤·¤Æ¸«¤¤¤À¤µ¤ì¤¿¡£

Physiol Plant. 2001 Jul;112(3):403-413.¡¡¡¡¡¡Stability of Barley Aleurone Transcripts: Dependence on Protein Synthesis, Influence of the Starchy Endosperm and Destabilization by GA3¡¡¡¡¡¡R. B. Aalen 1 , Z. Salehian, T. M. Steinum¡¡¡¡¡¡PMID: 11473698 DOI: 10.1034/j.1399-3054.2001.1120314.x

¥¤¥Í¤Ï¿»¿å¤·¤¿¾õÂ֤ǤⲢÀ¹¤ËÀ¸°é¤¹¤ë¤³¤È¤¬¤Ç¤­¤ë¡£¥¤¥Í¤Î B12D ¤Ï¿»¿åÂÑÀ­¤Ë´ØÍ¿¤·¤Æ¤¤¤ë¤³¤È¡¢¤Þ¤¿¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤·¤ÆƯ¤¤¤Æ¤¤¤ë¤³¤È¤¬ He ¤é¤ÎÏÀʸ¤Ç¼¨¤µ¤ì¤¿¡£ÅÅ»ÒÅÁ㥵¥Ö¥æ¥Ë¥Ã¥È¤È¤·¤ÆƯ¤¤¤Æ¤¤¤ë¤Î¤Ç¤Ï¤Ê¤¯¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤Ë½ÅÍפÊÅ´¤ä»ÀÁǤ¬ÉÔ­¤·¤Ê¤¤¤è¤¦¤Ë¤¹¤ëƯ¤­¤¬¤¢¤ë¤Î¤Ç¤Ï¤Ê¤¤¤«¤È¹Í»¡¤µ¤ì¤Æ¤¤¤ë¡£¤³¤ÎÃø¼Ô¤é¤Î¹Í¤¨¤¬Àµ¤·¤¤¤Ê¤é¡¢¤³¤Î°äÅÁ»Ò¤Î¤è¤¦¤Ë¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤·¤Æµ¡Ç½¤¹¤ëʬ»ÒÎ̤µ¤¤¥Ý¥ê¥Ú¥×¥Á¥É¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤ò¶¯²½¤¹¤ë¤¿¤á¤ËÌòΩ¤Ä²ÄǽÀ­¤¬¤¢¤ë¡£

¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Ë¤âÁêÅö¤¹¤ë°äÅÁ»Ò At3g29970, At3g48140 ¤¬¤¢¤ê¡¢At3g29970 ¤ÏÄã»ÀÁÇ¥¹¥È¥ì¥¹¤Ç mRNA Î̤¬Áý²Ã¤¹¤ë¡£At3g48140 ¤Ï¥µ¥¤¥È¥«¥¤¥Ë¥ó¡¢¥¸¥Ù¥ì¥ê¥ó¤Ç mRNA Î̤¬Áý²Ã¤¹¤ë¤Î¤Çȯ²ê¤È´Ø·¸¤¹¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

http://pfam.xfam.org/family/PF06522#tabview=tab0¡¡¡¡¡¡B12D (PF06522) ¤Ï¡ÖNADH-ubiquinone reductase complex 1 MLRQ subunit¡×¤ÈÃí¼á¤¬¤Ä¤¤¤Æ¤¤¤ë¡£¤Þ¤¿ÍÍ¡¹¤Ê¥¿¥ó¥Ñ¥¯¼Á¤ò¹½À®¤¹¤ë¥É¥á¥¤¥ó¤Î°ìÉô¤È¤·¤Æ¤â½Ð¸½¤¹¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¥¿¡¼¥²¥Ã¥ÈÇÛÎ󤬸«Åö¤¿¤é¤Ê¤¤¤Î¤Ë¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤¹¤ë¤È¤¤¤¦¤³¤È¤Ç¤âÃíÌܤµ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡https://books.google.co.jp/books?id=a15YJlT1yNsC&pg=PA69&lpg=PA69&dq=b12d+barley&source=bl&ots=DH_gan0YRh&sig=ACfU3U1ghpMToYmzB9zYWEJMlQuOnwsbEg&hl=ja&sa=X&ved=2ahUKEwjR4_eR6ZvqAhVbMd4KHaTwAdoQ6AEwAnoECAcQAQ#v=onepage&q=b12d%20barley&f=false

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359495/¡¡¡¡¡¡Front Plant Sci. 2012; 3: 106.¡¡doi: 10.3389/fpls.2012.00106¡¡¡¡¡¡PMCID: PMC3359495¡¡PMID: 22654890¡¡¡¡¡¡Proteomic Investigations of Complex I Composition: How to Define a Subunit?¡¡¡¡Etienne H. Meyer¡¡¡¡¡¡¤Ë At3g29970 ¤¬ ¡ÖThe closest homolog of the MLQR subunit, encoded by At3g29970, has not been identified in any proteomic study.¡×¡¡¤È¾Ò²ð¤µ¤ì¤Æ¤¤¤ë¡£

ZmB12D, a target of transcription factor ZmWRKY70, enhances the tolerance of Arabidopsis to submergence.¡¡¡¡¡¡Gu L, Hou Y, Sun Y, Chen X, Wang H, Zhu B, Du X.¡¡¡¡¡¡Plant Physiol Biochem. 2023 Dec 30;206:108322. doi: 10.1016/j.plaphy.2023.108322. Online ahead of print.¡¡¡¡¡¡PMID: 38169225

¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤È¿å¿»±þÅú¤È ANAC017

Mitochondrial signalling is critical for acclimation and adaptation to flooding in Arabidopsis thaliana.¡¡¡¡¡¡Meng X, Li L, Narsai R, De Clercq I, Whelan J, Berkowitz O.¡¡¡¡¡¡Plant J. 2020 Feb 16. doi: 10.1111/tpj.14724. [Epub ahead of print] PMID: 32064696

¤³¤ÎÏÀʸ¤Ë¤â¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¥·¥°¥Ê¥ëÅÁã¤Î½ÅÍ×°ø»Ò ANAC017 ¤¬½Ð¤Æ¤¯¤ë¡£¡Ö¥ß¥È¥³¥ó¥É¥ê¥¢¤Ï¥¹¥È¥ì¥¹¥»¥ó¥µ¡¼¤È¤·¤Æ¤âƯ¤¯¡×¤È¤¤¤¦¤³¤È¤¬¶¯Ä´¤µ¤ì¤Æ¤¤¤ë¡£CDKE1 ¤È¤¤¤¦¥×¥í¥Æ¥¤¥ó¥­¥Ê¡¼¥¼¤â½Ð¤Æ¤¯¤ë¡£¡¡¡¡¡¡Cyclin-dependent Kinase E1 (CDKE1) Provides a Cellular Switch in Plants Between Growth and Stress Responses¡¡¡¡¡¡Sophia Ng 1 , Estelle Giraud, Owen Duncan, Simon R Law, Yan Wang, Lin Xu, Reena Narsai, Chris Carrie, Hayden Walker, David A Day, Nicolás E Blanco, Åsa Strand, James Whelan, Aneta Ivanova¡¡¡¡¡¡PMID: 23229550 PMCID: PMC3561563 DOI: 10.1074/jbc.M112.416727 ¡¡¡¡¡¡regulators of alternative oxidase (rao mutants) ¤ò¥¹¥¯¥ê¡¼¥Ë¥ó¥°¤·¤¿¡£rao1 ¤¬ CDKE1 ¤À¤Ã¤¿¡£¤³¤Î¥×¥í¥Æ¥¤¥ó¥­¥Ê¡¼¥¼¤¬¼º³è¤¹¤ë¤È¡¢¥¢¥ó¥Á¥Þ¥¤¥·¥ó½èÍý¤Ë¤è¤ë AOX1a ¥×¥í¥â¡¼¥¿¡¼¤Î³èÀ­²½¤¬¼å¤¯¤Ê¤ë¡£

¤â¤¦°ì¤Ä ANAC017 ¤È¿å¿»¥¹¥È¥ì¥¹±þÅú¤Ë´Ø¤¹¤ëÏÀʸ¤¬È¯É½¤µ¤ì¤¿¡£¡¡¡¡¡¡Differential submergence tolerance between juvenile and adult Arabidopsis plants involves the ANAC017 transcription factor¡¡¡¡¡¡Liem T. Bui, Vinay Shukla, Federico M. Giorgi, Alice Trivellini, Pierdomenico Perata, Francesco Licausi, Beatrice Giuntoli¡¡¡¡¡¡Plant J. First Published: 29 August 2020 ¡¡¡¡¡¡¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Ï3½µ´Ö°Ê¾å°éÀ®¤·¤¿ Adult ¤Ê¥¹¥Æ¡¼¥¸¤Ç¤Ï¿å¿»¥¹¥È¥ì¥¹±þÅú¤¬¼å¤¯¤Ê¤ë¡£¼ã¤¤Ãʳ¬¤Ç¤Ï¿å¿»¥¹¥È¥ì¥¹±þÅú¤Ë¤è¤Ã¤Æ ABA ºîÍÑ¡¢¹³»À²½ºîÍѤ˴ؤï¤ë°äÅÁ»Ò·²¤¬³èÀ­²½¤¹¤ë¡£¤½¤ì¤Ë ANAC017 ¤¬´ØÍ¿¤·¤Æ¤¤¤ë¡£Adult ¥¹¥Æ¡¼¥¸¤Ç¤â ANAC017 ¤Ï¼ã¤¤Ãʳ¬¤ÈƱ¤¸¤è¤¦¤ËƯ¤¯¤¬¡¢ABA ºîÍÑ¡¢¹³»À²½ºîÍѤ˴ؤï¤ë°äÅÁ»Ò·²¤Î¥×¥í¥â¡¼¥¿¡¼¤Î¥Ò¥¹¥È¥ó H3 ¤¬¥á¥Á¥ë²½¤µ¤ì¤Æ¥Ø¥Æ¥í¥¯¥í¥Þ¥Á¥ó¾õÂ֤ˤʤê³èÀ­²½¤µ¤ì¤Ê¤¯¤Ê¤ë¤Î¤ÇÈ¿±þ¤¬°­¤¯¤Ê¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

ANAC013¤È¿å¿»±þÅú

Endoplasmic reticulum-bound ANAC013 factor is cleaved by RHOMBOID-LIKE 2 during the initial response to hypoxia in Arabidopsis thaliana.¡¡¡¡¡¡Eysholdt-Derzsó E¡¡¤Ê¤É¡¡¡¡¡¡Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2221308120. doi: 10.1073/pnas.2221308120. Epub 2023 Mar 10.¡¡¡¡¡¡PMID: 36897975

ANAC017 ¤Ë´Ø·¸¤¹¤ëÏÀʸ¤ÏºÇ¶áÁý¤¨¤Æ¤¤¤ë

Mitochondrial and Chloroplast Stress Responses Are Modulated in Distinct Touch and Chemical Inhibition Phases.¡¡¡¡¡¡Van Aken O, De Clercq I, Ivanova A, Law SR, Van Breusegem F, Millar AH, Whelan J.¡¡¡¡¡¡Plant Physiol. 2016 Jul;171(3):2150-65. doi: 10.1104/pp.16.00273. Epub 2016 May 9.¡¡¡¡¡¡PMID: 27208304¡¡¡¡¡¡¤³¤ÎÏÀʸ¤Ë¤â ANAC017 ¤¬½Ð¤Æ¤¯¤ë¡£

Retrograde signalling caused by heritable mitochondrial dysfunction is partially mediated by ANAC017 and improves plant performance.¡¡¡¡¡¡Van Aken O, Ford E, Lister R, Huang S, Millar AH.¡¡¡¡¡¡Plant J. 2016 Nov;88(4):542-558. doi: 10.1111/tpj.13276. Epub 2016 Oct 17.¡¡¡¡¡¡PMID: 27425258

ANAC017 coordinates organellar functions and stress responses by reprogramming retrograde signaling.¡¡¡¡¡¡Meng X, Li L, DeClercq I, Narsai R, ¤Ê¤É¡¡¡¡¡¡Plant Physiol. 2019 Mar 14. pii: pp.01603.2018. doi: 10.1104/pp.18.01603. ¡¡¡¡¡¡PMID: 30872424

The NAC transcription factor ANAC017 regulates aluminum tolerance by regulating the cell wall-modifying genes.¡¡¡¡¡¡Tao Y, Wan JX, Liu YS, Yang XZ, Shen RF, Zhu XF. Plant Physiol. 2022 Aug 1;189(4):2517-2534. doi: 10.1093/plphys/kiac197. PMID: 35512200

¤³¤ÎÏÀʸ¤Ç¤Ï¡ÖANAC017 was localized in the nucleus¡×¤È¤¤¤¦¤³¤È¤ò ANAC017-GFP Í»¹ç°äÅÁ»Ò¤òÍѤ¤¤Æ¼¨¤·¤Æ¤¤¤ë¡£

°ìÊý 2013 ǯ¤ÎÏÀʸ¤Ç Ng ¤é¤Ï ANAC017 ¤¬¾®Ë¦ÂΤ˷ë¹ç¤·¤Æ¤¤¤ë¤³¤È¤ò¼¨¤·¤Æ¤¤¤ë¡£¡¡¡¡A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis.¡¡¡¡¡¡Ng S, Ivanova A, Duncan O, Law SR, Van Aken O, ¤Ê¤É¡¡¡¡¡¡Plant Cell. 2013 Sep;25(9):3450-71. doi: 10.1105/tpc.113.113985. Epub 2013 Sep 17.¡¡¡¡¡¡PMID: 24045017

Reductive stress triggers ANAC017-mediated retrograde signaling to safeguard the endoplasmic reticulum by boosting mitochondrial respiratory capacity.¡¡¡¡¡¡ Fuchs P, Bohle F, Lichtenauer S, Ugalde JM, Araujo EF, Mansuroglu B, Ruberti C, Wagner S, Müller-Schüssele SJ, Meyer AJ, Schwarzländer M.¡¡¡¡¡¡Plant Cell. 2022 Jan 25:koac017. doi: 10.1093/plcell/koac017. ¡¡¡¡¡¡PMID: 35078237 ¡¡¡¡¡¡aox1a ÊÑ°ÛÂΤꬤÎÀ¸Ä¹¤Ï¥Á¥ª¡¼¥ë¤Î´Ô¸µºÞ DTT ¤Ë´¶¼õÀ­¤¬¹â¤¤¤³¤È¤ò¤Þ¤º¸«¤Ä¤±¤¿¡£DTT ¤Ï¾®Ë¦ÂΤǤΠS-S ·ë¹ç·ÁÀ®¤ò³ÉÍ𤷤ƾ®Ë¦ÂÎ¥¹¥È¥ì¥¹¤òÍ¿¤¨¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Î¸ÆµÛ¤¬³èÀ­²½¤¹¤ë¤È¾®Ë¦ÂÎ¥¹¥È¥ì¥¹¤¬´ËϤµ¤ì¤ë¡£NAC017 ¤¬¤½¤Î»ÅÁȤߤ˴ØÍ¿¤·¤Æ¤¤¤ë¤Î¤Ç¡¢nac017 ÊÑ°ÛÂÎ¤Ï DTT ´¶¼õÀ­¤¬¹â¤¯¤Ê¤ë¡£DTT ¤ÏºÙ˦Æâ¤Ç NAD ¤ò´Ô¸µ¤¹¤ëƯ¤­¤â¤¢¤ë¡ÊNADH ¤¬Áý²Ã¤¹¤ë¡Ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç NADH dehydrogenase ¤¬¶¯¤¯Æ¯¤¯¤³¤È¤Ë¤è¤Ã¤Æ NADH ¤¬»À²½¤µ¤ì¸º¾¯¤¹¤ë¤³¤È¤¬¡¢¾®Ë¦ÂÎ¥¹¥È¥ì¥¹¤ò´ËϤ·¤Æ¤¤¤ë¡£

ACONITASE 3 is part of the ANAC017 transcription factor-dependent mitochondrial dysfunction response. ¡¡¡¡¡¡Pascual J¡¡¤Ê¤É¡¡¡¡¡¡Plant Physiol. 2021 Aug 3;186(4):1859-1877. doi: 10.1093/plphys/kiab225.¡¡¡¡¡¡PMID: 34618107

The retrograde signalling regulator ANAC017 recruits the MKK9-MPK3/6, ethylene, and auxin signalling pathways to balance mitochondrial dysfunction with growth.¡¡¡¡¡¡He C, Liew LC, Yin L, Lewsey MG, Whelan J, Berkowitz O.¡¡¡¡¡¡Plant Cell. 2022 Jun 16:koac177. doi: 10.1093/plcell/koac177. ¡¡PMID: 35708648

Coordinated regulation of the mitochondrial retrograde response by circadian clock regulators and ANAC017.¡¡¡¡¡¡Zhu Y, Narsai R, He C, Wang Y, Berkowitz O, Whelan J, Liew LC.¡¡¡¡¡¡Plant Commun. 2022 Dec 3:100501. doi: 10.1016/j.xplc.2022.100501. Online ahead of print.¡¡¡¡PMID: 36463409

Mitochondrial retrograde signalling (MRS) ¤ÏÆü¼þ¤Ë¤è¤ëÀ©¸æ¤È¶¨Ä´¤·¤ÆºîÍѤ·¤ÆºÙ˦µ¡Ç½¤òÄ´Àᤷ¤Æ¤¤¤ë¡£ myxothiazol (specific inhibitor of mitochondrial bc1 complex) or antimycin A (inhibitor of mitochondrial bc1 complex and cyclic electron transport in chloroplast in light conditions)¡¡¤ò¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½Á˳²ºÞ¤È¤·¤Æ»ÈÍѤ·Èæ³Ó¤·¤Æ¤¤¤ë¡£ ANAC017 ¤È³µÆü»þ·×¤Ï¤É¤Á¤é¤â ANAC013 ¤È AOX1a ¤òÀ©¸æ¤·¤Æ¤¤¤ë¡£ANAC107 ¤âÆü¼þ¤Ë¤è¤ëÀ©¸æ¤ò¼õ¤±¤Æ¤¤¤ë¡£LHY and CCA1 ¤Îž¼Ì¤Ï ANAC017 ¤Ë¤è¤Ã¤ÆÊѲ½¤¹¤ë¡£PIF4 ¤â´Ø·¸¤¬¤¢¤ë¡£

ANAC017 ¤¬´ØÍ¿¤·¤Ê¤¤ MRS ¤Ë¤Ä¤¤¤Æ¤â¿¨¤ì¤é¤ì¤Æ¤¤¤ë¡£¤½¤ì¤é¤Ïɸ¶¶Ý´¶À÷±þÅú¤ä¥µ¥ê¥Á¥ë»À±þÅú¤ÈÎà»÷¤·¤¿ÊѲ½¤òͶµ¯¤¹¤ë¡£¤½¤Î¤³¤È¤Ë¤Ä¤¤¤Æ¤Ï¤Û¤È¤ó¤ÉʬÀϤµ¤ì¤Æ¤¤¤Ê¤¤¡£

PRJNA843852, PRJNA843855, PRJNA894307 and PRJNA837635¡¡¤Ë¡¢RNAseq ¤Ê¤É¤Î¥Ç¡¼¥¿¤¬¤¢¤ë¡£

Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis.¡¡¡¡¡¡Kim HJ, Park JH, Kim J, Kim JJ, Hong S, Kim J, Kim JH, Woo HR, Hyeon C, Lim PO, Nam HG, Hwang D.¡¡¡¡¡¡Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4930-E4939. doi: 10.1073/pnas.1721523115. Epub 2018 May 7.¡¡¡¡¡¡PMID: 29735710

ANAC017 ¤¬Æ¯¤«¤Ê¤¤ÊÑ°ÛÂΤÏÀµ¾ï¤ËÀ¸°é¤¹¤ë¤¬¡¢¥í¥¼¥Ã¥ÈÍդΥ¯¥í¥í¥Õ¥£¥ë¤¬¸º¤ê¤ä¤¹¤¯¤Ê¤ë¡ÊFig. 2A, 2D¡Ë¡£¥»¥Í¥Ã¥»¥ó¥¹¤Î¥Þ¡¼¥«¡¼°äÅÁ»Ò SEN4 and SAG12 ¤Îȯ¸½Î̤¬Â®¤ä¤«¤ËÁý²Ã¤¹¤ë¡ÊFig. 2F, 2G¡Ë¡£µÕ¤Ë ANAC017 ¤ò¶¯¤¯È¯¸½¤µ¤»¤¿·Á¼Áž´¹ÂΤϥ¯¥í¥í¥Õ¥£¥ë¤ÎÎ̤¬¸º¤ê¤Ë¤¯¤¯¤Ê¤ë¡ÊSupplemental Fig. 5A, 5B¡Ë¡£¤·¤«¤·ÌîÀ¸·¿¤È¤Îº¹¤Ï¾®¤µ¤¤¡£ ANAC017 ¤Ï¡¢ÍդΥ»¥Í¥Ã¥»¥ó¥¹¤ò°ú¤­µ¯¤³¤¹³èÀ­»ÀÁÇ ROS ¤ÎºîÍѤòÍÞ¤¨¤ë¤È¿ä¬¤µ¤ì¤Æ¤¤¤ë¡ÊSupplemental Fig. 8C¡Ë¡£¤³¤Î ROS ¤¬ºÙ˦¤Î¤É¤³¤ÇÀ¸À®¤¹¤ë¤Î¤«¤È¤¤¤¦¤È¡¢PER71, PER34 ¤È¤¤¤¦°ø»Ò¤ÎƯ¤­¤Ë¤è¤Ã¤ÆºÙ˦ɽÌ̤Ǻî¤é¤ì¤ë¤È¿ÞÌ̤˽ñ¤«¤ì¤Æ¤¤¤ë¡ÊSupplemental Fig. 8B¡Ë¡£PER71 ¤Ï¡¡https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4677920/¡¡AtPRX71 = At5g64120¡¡¥Ú¥ë¥ª¥­¥·¥À¡¼¥¼¤Î¤³¤È¤é¤·¤¤¡£AtPRX71 ¤ÎƯ¤­¤òÍÞ¤¨¤ë¤È¿¢Êª¤¬Â礭¤¯¤Ê¤ë¡£

ANAC017 Coordinates Organellar Functions and Stress Responses by Reprogramming Retrograde Signaling¡¡¡¡¡¡Plant Physiol. 2019 May;180(1):634-653.¡¡¡¡¡¡doi: 10.1104/pp.18.01603. Epub 2019 Mar 14.¡¡¡¡¡¡Xiangxiang Meng ¤Ê¤É¡¡¡¡¡¡PMID: 30872424 PMCID: PMC6501098

¤³¤ÎÏÀʸ¤Ç¤Ï overexpression of ANAC017 ¤¬ÍդΥ»¥Í¥Ã¥»¥ó¥¹¤òÂ¥¿Ê¤¹¤ë¤ÈÊó¹ð¤µ¤ì¤Æ¤¤¤ë¡£Kim ¤é¤Î 2018 ǯ¤ÎÏÀʸ¤ÈµÕ¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£

¥»¥Í¥Ã¥»¥ó¥¹¤È ANAC017 ¤Î´Ø·¸¤Ë¤Ä¤¤¤Æ 2021 ǯ¤Ë¤âÏÀʸ¤¬½Ð¤¿¡£¼Â¸³¾ò·ï¤Î°ã¤¤¤Ê¤É¤Ë¤è¤Ã¤ÆºîÍѤ¬ÊѲ½¤·¤Æ¥»¥Í¥Ã¥»¥ó¥¹¤òÂ¥¿Ê¤·¤¿¤êÍÞÀ©¤·¤¿¤ê¤¹¤ë¤é¤·¤¤¡£

Increased expression of ANAC017 primes for accelerated senescence¡¡¡¡¡¡Plant Physiol. 2021 Aug 3;186(4):2205-2221. doi: 10.1093/plphys/kiab195.¡¡¡¡¡¡Martyna Broda ¤Ê¤É¡¡¡¡¡¡PMID: 33914871 PMCID: PMC8331134

The transcription factor ANAC017 is a key regulator of mitochondrial proteotoxic stress responses in plants.¡¡¡¡¡¡Kacprzak SM, Dahlqvist A, Van Aken O.¡¡¡¡¡¡Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190411. doi: 10.1098/rstb.2019.0411. Epub 2020 May 4.¡¡¡¡¡¡PMID: 32362262

Retrograde signals from mitochondria reprogramme skoto-morphogenesis in Arabidopsis thaliana via alternative oxidase 1a.¡¡¡¡¡¡Merendino L, Courtois F, Grübler B, Bastien O, Straetmanns V, Chevalier F, Lerbs-Mache S, Lurin C, Pfannschmidt T.¡¡¡¡¡¡Philos Trans R Soc Lond B Biol Sci. 2020 Jun 22;375(1801):20190567. doi: 10.1098/rstb.2019.0567. Epub 2020 May 4.¡¡¡¡¡¡PMID: 32362252

Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death¡¡¡¡¡¡Olivier Van Aken & Barry J Pogson ¡¡¡¡¡¡Cell Death & Differentiation volume 24, pages955–960¡¡(2017)

¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤ò°äÅÁ»ÒÊÔ½¸¤¹¤ë¤³¤È¤Ç¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Î¥³¥Ô¡¼¿ô¤ÎÊÑÆ°¤¬°ú¤­µ¯¤³¤µ¤ì¤¿¡£¤½¤ì¤Ë ANAC017 ¤¬´ØÍ¿¤¹¤ë¤³¤È¤¬²òÌÀ¤µ¤ì¤¿¡£¡¡¡¡¡¡Mitochondrial gene defects in Arabidopsis can broadly affect mitochondrial gene expression through copy number.¡¡¡¡¡¡Ayabe H, Toyoda A, Iwamoto A, Tsutsumi N, Arimura SI.¡¡¡¡¡¡Plant Physiol. 2023 Jan 27:kiad024. doi: 10.1093/plphys/kiad024. Online ahead of print.¡¡¡¡¡¡PMID: 36703221

ANAC017 ¤Ï¡¢³èÀ­»ÀÁÇ ROS ¥·¥°¥Ê¥ë¤Î¸¦µæ¼Ô¤«¤é¤â½ÅÍ׻뤵¤ì¸¦µæ¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡

Prediction of bipartite transcriptional regulatory elements using transcriptome data of Arabidopsis.¡¡¡¡¡¡Yamamoto YY, Ichida H, Hieno A, Obata D, Tokizawa M, Nomoto M, Tada Y, Kusunoki K, Koyama H, Hayami N¡¡¡¡¡¡DNA Res. 2017 Jun 1;24(3):271-278. doi: 10.1093/dnares/dsw065.¡¡¡¡¡¡PMID: 28158431¡¡¡¡¡¡BiP ¤ò¥³¡¼¥É¤¹¤ë°äÅÁ»Ò¤Î¥×¥í¥â¡¼¥¿¡¼¤¬ ANAC017 ¤ÎɸŪ¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£¡¡¡¡

Transcriptome Analysis and Identification of a Transcriptional Regulatory Network in the Response to H2O2.¡¡¡¡¡¡Hieno A, Naznin HA, Inaba-Hasegawa K, Yokogawa T, Hayami N, Nomoto M, Tada Y, Yokogawa T, Higuchi-Takeuchi M, Hanada K, Matsui M, Ikeda Y, Hojo Y, Hirayama T, Kusunoki K, Koyama H, Mitsuda N, Yamamoto YY.¡¡¡¡¡¡Plant Physiol. 2019 Jul;180(3):1629-1646. doi: 10.1104/pp.18.01426. Epub 2019 May 7.¡¡¡¡¡¡PMID: 31064811

ANAC017 ¤¬Æ¯¤«¤Ê¤¤¡¦²á¾êȯ¸½¤·¤¿ÊÑ°ÛÂΤΰäÅÁ»Òȯ¸½¥Ç¡¼¥¿¤â¤¢¤ë¡£

GSE41136https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41136
GSE92314https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA357201&o=acc_s%3Aa¡¡RNAseq ¥Ç¡¼¥¿¡¡https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92314¡¡¤«¤é¡¢SRA run selector ¤Ë¿Ê¤à¤È½Ð¤Æ¤¯¤ë
E-MTAB-8478https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-8478
PRJNA486068Arabidopsis stress treatments
PRJNA517774ANAC017 overexpression study
PRJNA843852https://www.ncbi.nlm.nih.gov/bioproject/PRJNA843852¡¡¡¡Arabidopsis thaliana transcriptome following antimycin A or myxothiazol treatment in the light and dark
PRJNA843855https://www.ncbi.nlm.nih.gov/bioproject/PRJNA843855¡¡¡¡To examine the circadian regulation of the mitochondrial retrograde response ANAC017 target genes and clock regulators.
PRJNA894307https://www.ncbi.nlm.nih.gov/bioproject/PRJNA894307¡¡¡¡Arabidopsis thaliana transcriptome for roots and shoots following antimycin A or myxothiazol treatment in the light and dark
PRJNA837635https://www.ncbi.nlm.nih.gov/bioproject/PRJNA837635¡¡¡¡ANAC017 ChIP-seq after antimycin A and myxothiazol treatment in the light or dark

Reoxygenation stress

Äã»ÀÁǾõÂÖ¤«¤é²óÉü¤¹¤ëºÝ¤Ë¤ÏµÞ¤Ë»ÀÁǤ¬ÍøÍѤµ¤ì¤ë¤³¤È¤Ç³èÀ­»ÀÁÇ¥¹¥È¥ì¥¹¤¬È¯À¸¤¹¤ë¡£Éµ¤¤È¤Î´Ø·¸¤â¤¢¤ë¡£¿¢Êª¤Ç¤â¤½¤¦¤¤¤¦¤³¤È¤¬¤¢¤ë¤é¤·¤¤¡£

Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation.¡¡¡¡Jethva J, Lichtenauer S¡¡¡¡¤Ê¤É¡¡¡¡¡¡New Phytol. 2022 Dec 4. doi: 10.1111/nph.18657. Online ahead of print.¡¡¡¡PMID: 36464787

Seed Oil Content (SOC) ¤òÁý²Ã¤µ¤»¤ë¥ß¥È¥³¥ó¥É¥ê¥¢°äÅÁ»ÒÊÑ°Û

A novel chimeric mitochondrial gene confers cytoplasmic effects on seed oil content in polyploid rapeseed (Brassica napus L.).¡¡¡¡¡¡Liu J, Hao W, Liu J, Fan S, Zhao W, Deng L, Wang X, Hu Z, Hua W, Wang H.¡¡¡¡¡¡Mol Plant. 2019 Jan 28. pii: S1674-2052(19)30017-6. doi: 10.1016/j.molp.2019.01.012. [Epub ahead of print]¡¡¡¡¡¡PMID: 30703566

¿¢Êª¤Ç¤Ï³Ë°Ê³°¤ËÍÕÎÐÂΡ¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë DNA ¤¬Â¸ºß¤·°äÅÁ»Ò¤ò¥³¡¼¥É¤·¤Æ¤¤¤ë¡£¤³¤ì¤é¤Î°äÅÁ»Ò¤Ë¤è¤Ã¤Æ·èÄꤵ¤ì¤ë°äÅÁŪ·Á¼Á¤Ï Cytoplasmic effects (CE) ºÙ˦¼Á¸ú²Ì¤È¸Æ¤Ð¤ì¤ë¡£ ¤³¤ÎÏÀʸ¤Ç¤Ï¼ï»Ò¤ÎÌý´ÞÎ̤˱ƶÁ¤òÍ¿¤¨¤ë¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Ë¥³¡¼¥É¤µ¤ì¤¿°äÅÁ»Ò orf188 ¤òȯ¸«¤·¤¿¡£ orf188 ¤Ï ATP ¤Î¼ýΨ¤ò²þÁ±¤¹¤ë¤³¤È¤Ç SOC ¤ò¡Ê¤Û¤ó¤Î¾¯¤·¡ËÁý²Ã¤µ¤»¤ë¡£

OXR2 (At2g05590)

J Exp Bot. 2019 Apr 4. pii: erz147. doi: 10.1093/jxb/erz147. [Epub ahead of print]¡¡¡¡¡¡ The mitochondrial OXidation Resistance protein AtOXR2 increases plant biomass and tolerance to oxidative stress.¡¡¡¡ Colombatti F1, Mencia R1, Garcia L1,2, Mansilla N1, Alemano S3, Andrade AM3,4, Gonzalez DH1, Welchen E1.

OXR2 ¤ò¶¯¤¯È¯¸½¤µ¤»¤ë¤ÈÀ¸°é¤¬Îɤ¯¤Ê¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

OXR2 increases plant defense against a hemibiotrophic pathogen via the salicylic acid pathway.¡¡¡¡¡¡Mencia R, Céccoli G, Fabro G, Torti P, Colombatti F, Ludwig-Müller J, Alvarez ME, Welchen E.¡¡¡¡¡¡Plant Physiol. 2020 Jul 29:pp.01351.2019. doi: 10.1104/pp.19.01351. PMID: 32727912

OXR2 ¤ò¶¯¤¯È¯¸½¤µ¤»¤ë¤È¥µ¥ê¥Á¥ë»À·ÐÏ©¤¬³èÀ­²½¤·¤Æ Pseudomonas syringae ¤Î´¶À÷¤Ë¶¯¤¯¤Ê¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£¾å¤ÎÏÀʸ¤È¹ç¤ï¤»¤ë¤È¡¢À¸°é¤¬Îɤ¯É¸¶¶Ý¤Ë¤â¶¯¤¤¥¹¡¼¥Ñ¡¼¿¢Êª¤¬ºî¤ì¤ë¤³¤È¤Ë¤Ê¤ë¡£¤½¤ó¤Ê¤ËÅÔ¹ç¤ÎÎɤ¤¤³¤È¤¬µ¯¤­¤ë¤Î¤À¤í¤¦¤«¤È¤¤¤¦µ¤¤â¤·¤Ê¤¯¤Ï¤Ê¤¤¡£¤³¤¦¤¤¤¦ÏÀʸ¤â¤¢¤ë¡£¡¡¡¡¡¡ Trade-off between synthesis of salicylates and growth of micropropagated Salix pentandra.¡¡¡¡¡¡Ruuhola T, Julkunen-Titto R.¡¡¡¡¡¡J Chem Ecol. 2003 Jul;29(7):1565-88.¡¡¡¡¡¡PMID: 12921436¡¡¡¡¡¡ °éÀ®¾ò·ï¤¬ÍýÁÛŪ¤Ç¡¢±ÉÍܤâ¸÷¤âÆó»À²½ÃºÁǤ⽽ʬ¤¢¤êɸ¶¶Ý¤ÏÁ´¤¯Â¸ºß¤·¤Ê¤¤¤Î¤Ê¤é¤¢¤êÆÀ¤Ê¤¯¤Ï¤Ê¤¤¤«¤â¤·¤ì¤Ê¤¤¡£¤Þ¤¿¤Ï Pseudomonas syringae ¤Ë¤Ï¶¯¤¤¤¬¥«¥Ó¤Ê¤É¤Ë¤Ï¼å¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

¤½¤ó¤Ê¤³¤È¤ò¹Í¤¨¤Æ¤¤¤¿¤é¡¢°Ê²¼¤Î¤è¤¦¤Ê¥³¥á¥ó¥È¤¬½Ð¤µ¤ì¤¿¡£¡¡¡¡¡¡On How to Build a Larger and Healthier Arabidopsis ROSette Using a Mitochondrial Protein (Spoiler: Reactive Oxygen Species).¡¡¡¡¡¡Moreno JE.¡¡¡¡¡¡Plant Physiol. 2020 Oct;184(2):566-567. doi: 10.1104/pp.20.01159.¡¡¡¡¡¡PMID: 33020324

¡ÖCan OXR2 be a novel marker for crop breeding programs to manipulate SA-inducible defenses with a low penalty in growth?¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£ºÙ˦Æâ¤Ç SA ¤òºî¤ë¤Ë¤Ï¥¨¥Í¥ë¥®¡¼¡¢¥³¥¹¥È¤¬É¬Íפˤʤ롣¤Þ¤¿ SA ¤Ï¿¢ÊªºÙ˦¼«ÂΤËÂ礭¤ÊÊÑÆ°¤ò¤â¤¿¤é¤¹¡£¤½¤¦¤¤¤Ã¤¿±Æ¶Á¤Ï¹òʪ¤¬¸·¤·¤¤Ìî³°´Ä¶­¤ÇÀ¸°é¤¹¤ë¾ì¹ç¤Ë¤É¤¦¤Ê¤Î¤«¤ÈÌä¤ï¤ì¤Æ¤¤¤ë¡£

¥Þ¥¤¥¯¥í¥¢¥ì¥¤¥Ç¡¼¥¿¤¬¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡

GSE114689https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114689¡¡¥¢¥¸¥ì¥ó¥È¤Î¥¢¥ì¥¤¡¡ÇÜΨ¤ÎÂпô¤Ë½èÍý¤·¤¿Ãͤ¬¸ø³«¤µ¤ì¤Æ¤¤¤ë

¸«¤Æ¤ß¤ë¤È¡¢Î²²«¤¬·ç˳¤·¤¿ºÝ¤Ë¶¯¤¯È¯¸½¤¹¤ë LSU1 ¤Ê¤É¤¬Â礭¤¯²¼¤¬¤Ã¤Æ¤¤¤ë¡£±ÉÍܤμè¤ê¹þ¤ß¤¬¤è¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£Disease resistance protein (TIR-NBS-LRR class) family¡¡¤ÈÃí¼á¤µ¤ì¤¿Ê£¿ô¤Î°äÅÁ»Ò¤Îȯ¸½¤¬Â礭¤¯¾å¤¬¤Ã¤Æ¤¤¤ë¡£É¸¶ºÙ¶Ý¤ËÈ¿±þ¤·¤ä¤¹¤¤¾õÂ֡ʥץ饤¥ß¥ó¥°¡Ë¤Ë¤Ê¤Ã¤Æ¤¤¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¡¡¡¡

Mitochondrial transcription termination-related protein (mTERF) ¤ÎÊÑ°Û

ÊÑ°Û°äÅÁ»Ò
At3g60400¡¡mTERF18 / SHOT1 ¡¡

Mutations in an Arabidopsis Mitochondrial Transcription Termination Factor-Related Protein Enhance Thermotolerance in the Absence of the Major Molecular Chaperone HSP101.¡¡¡¡¡¡Kim M, Lee U, Small I, des Francs-Small CC, Vierling E.¡¡¡¡¡¡Plant Cell. 2012 Aug 31. ¡¡¡¡¡¡PMID: 22942382

¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¯ mTERF18 ¤¬ÊÑ°Û¤¹¤ë¤³¤È¤Ç¡¢¥¹¥È¥ì¥¹ÂÑÀ­¤Ë¤Ê¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤Î Hsp, AOX ¤¬¶¯¤¯È¯¸½¤·¤Æ¤¤¤ë¡£¥Ñ¥é¥³¡¼¥È¡Ê»À²½¥¹¥È¥ì¥¹¤òÍ¿¤¨¤ëÌôºÞ¡Ë¤ËÂѤ¨¤ä¤¹¤¤¡£¥ß¥È¥³¥ó¥É¥ê¥¢´ØÏ¢ÊÑ°ÛÂΤϤۤȤó¤É¤¬¹â²¹¥¹¥È¥ì¥¹¤Ë¼å¤¤¤¬¡¢¤³¤ÎÊÑ°ÛÂΤϤ½¤ì¤È¤ÏµÕ¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£Â¿¤¯¤Î¥ß¥È¥³¥ó¥É¥ê¥¢°äÅÁ»Ò¤Îž¼Ì»ºÊª¤¬¶¦Ä̤·¤ÆÁýÂ礷¤Æ¤¤¤ë¡£ ¤É¤Î¤è¤¦¤Ë¤·¤Æ¥¹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤Ã¤Æ¤¤¤ë¤Î¤«¡£¥Þ¥¤¥¯¥í¥¢¥ì¥¤¤Î¥Ç¡¼¥¿¤ò¸«¤ë¤È¤¤¤¯¤Ä¤«¤Î Hsp, Hsf ¤Îȯ¸½¤¬¹â¤¯¤Ê¤Ã¤Æ¤¤¤ë¡£

Mitochondrial transcription termination factors (mTERFs) ¤Þ¤¿¤Ï Mitochondrial transcription termination-related protein ¤Ï¡¢¿¿³ËÀ¸Êª¤Ë¸ºß¤¹¤ë¥¿¥ó¥Ñ¥¯¼Á¤Ç¡¢½ÅÍפʰø»Ò¤Ç¤¢¤ë¡£ÍÍ¡¹¤ÊÊÑ°ÛÂΤ¬¸«¤Ä¤«¤Ã¤Æ¤¤¤ë¡£¥¹¥È¥ì¥¹ÂÑÀ­¤È´Ø·¸¤¢¤ë¤È¹Í¤¨¤é¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡The roles of mitochondrial transcription termination factors (MTERFs) in plants.¡¡¡¡¡¡Quesada V.¡¡¡¡¡¡Physiol Plant. 2016 Jul;157(3):389-99. doi: 10.1111/ppl.12416. Epub 2016 Mar 14. Review.¡¡¡¡¡¡PMID: 26781919

The Characterization of Arabidopsis mterf6 Mutants Reveals a New Role for mTERF6 in Tolerance to Abiotic Stress.¡¡¡¡¡¡Robles P, Navarro-Cartagena S, Ferrández-Ayela A, Núñez-Delegido E, Quesada V.¡¡¡¡¡¡Int J Mol Sci. 2018 Aug 14;19(8). pii: E2388. doi: 10.3390/ijms19082388.¡¡¡¡¡¡PMID: 30110886¡¡¡¡¡¡mTERF6 ¤¬ÊÑ°Û¤¹¤ë¤È¥¹¥È¥ì¥¹¤Ë¼å¤¯¤Ê¤ë¤Î¤ÇÌò¤ËΩ¤¿¤Ê¤¤¡£

Arabidopsis Mitochondrial Transcription Termination Factor mTERF2 Promotes Splicing of Group IIB Introns.¡¡¡¡¡¡Lee K, Leister D, Kleine T.¡¡¡¡¡¡Cells. 2021 Feb 3;10(2):315. doi: 10.3390/cells10020315.¡¡¡¡¡¡PMID: 33546419

Control of organelle gene expression by the mitochondrial transcription termination factor mTERF22 in Arabidopsis thaliana plants.¡¡¡¡¡¡ Shevtsov S, Nevo-Dinur K, Faigon L, Sultan LD, Zmudjak M, Markovits M, Ostersetzer-Biran O.¡¡¡¡¡¡PLoS One. 2018 Jul 30;13(7):e0201631. doi: 10.1371/journal.pone.0201631. eCollection 2018. PMID: 30059532¡¡¡¡¡¡mTERF22 At5g64950¡¡¤¬µ¡Ç½¤·¤Ê¤¯¤Ê¤ë¤È¡¢¥ß¥È¥³¥ó¥É¥ê¥¢ mRNA ¤ÎÎ̤¬¤È¤Æ¤â mild ¤Ë¸º¤ë¡£¤³¤ÎÏÀʸ¤Î Table 1 ¤Ë¡¢¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Î mTERF ¤Î¥ê¥¹¥È¤¬¤¢¤ë¡£mTERF1 ¤«¤é 35 ¤Þ¤Ç¸ºß¤¹¤ë¡£

mTERF ¤Ë´Ø¤¹¤ëÁíÀâ¡¡¡¡¡¡The molecular function of plant mTERFs as key regulators of organellar gene expression.¡¡¡¡¡¡Wobbe L.¡¡¡¡¡¡Plant Cell Physiol. 2020 Oct 17:pcaa132. doi: 10.1093/pcp/pcaa132. ¡¡¡¡¡¡PMID: 33067620

ÍÕÎÐÂΤÇƯ¤¯¥á¥ó¥Ð¡¼¤â¸ºß¤¹¤ë¡£¡¡¡¡¡¡mTERF8, a Member of the Mitochondrial Transcription Termination Factor Family, is Involved in the Transcription Termination of Chloroplast Gene psbJ1.¡¡¡¡¡¡Xiong HB, Wang J, Huang C, Rochaix JD, Lin FM, Zhang JX, Ye LS, Shi XH, Yu QB, Yang ZN.¡¡¡¡¡¡Plant Physiol. 2019 Nov 4. pii: pp.00906.2019. doi: 10.1104/pp.19.00906.¡¡¡¡¡¡PMID: 31685645¡¡¡¡¡¡ Roles for the chloroplast¡¾localized pentatricopeptide repeat protein 30 and the ¡Çmitochondrial¡Ç transcription termination factor 9 in chloroplast quality control¡¡¡¡¡¡Plant Journal¡¡Kamran Alamdari, Karen E. Fisher, Andrew B. Sinson, Joanne Chory, Jesse D. Woodson¡¡Version of Record online: 17 September 2020

ÍÕÎÐÂΤËƯ¤¯Á˳²ºÞ¤Ë¤è¤Ã¤Æ¥Ò¡¼¥È¥·¥ç¥Ã¥¯¥¿¥ó¥Ñ¥¯¼Á Hsp ¤Îȯ¸½¤¬À©¸æ¤µ¤ì¤ë¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£¡¡¡¡¡¡Cell Rep. 2018 Feb 13; 22(7): 1657–1665. Published online 2018 Feb 13. doi: 10.1016/j.celrep.2018.01.054¡¡¡¡ PMCID: PMC5847188¡¡¡¡PMID: 29444421¡¡¡¡ Chloroplast Signaling Gates Thermotolerance in Arabidopsis¡¡¡¡¡¡ mTERF18 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤À¤±¤Ç¤Ê¤¯ÍÕÎÐÂÎÆâ¤Ç¤âƯ¤¤¤Æ¤¤¤Æ¡¢¤½¤ÎƯ¤­¤¬°­¤¯¤Ê¤ë¤³¤È¤Ç Hsp ¤Ë±Æ¶Á¤¬½Ð¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¤È»×¤Ã¤¿¤¬¡¢¤½¤¦¤Ç¤Ï¤Ê¤¯¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¤¤Æ¤¤¤ë¤È¤¤¤¦ÏÀʸ¤¬½ÐÈǤµ¤ì¤¿¡£

mTERF18 and ATAD3 are required for mitochondrial nucleoid structure and their disruption confers heat tolerance in Arabidopsis thaliana. ¡¡¡¡¡¡Kim M, Schulz V, Brings L, Schoeller T, Kühn K, Vierling E.¡¡¡¡¡¡New Phytol. 2021 Sep 5. doi: 10.1111/nph.17717. Online ahead of print.¡¡¡¡PMID: 34482561

mTERF18/SHOT1 ¤ò¡¢suppressor screen of a heat sensitive mutant of the molecular chaperone HSP101¡¡¤Ë¤è¤Ã¤Æ¸«¤Ä¤±¤Æ¤¤¤ë¡£Ê£¹çÂÎ I ¤¬Àµ¾ï¤Ç¤Ê¤¯¤Ê¤ê¡¢Æ±»þ¤Ë¹â²¹ÂÑÀ­¤¬¾å¤¬¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£»ä¤¬¸«¤Ä¤±¤¿Ê£¹çÂÎ I µ¡Ç½Äã²¼ÊÑ°ÛÂÎ css1 ¤Ï¹â²¹¤Ë¼å¤¤¡£¤É¤¦°ã¤¦¤Î¤À¤í¤¦¤«¡£shot1 ¤Ç¤ÏÊ£¹çÂÎ IV ¤Î³èÀ­¤âÄã²¼¤·¤Æ¤¤¤ë¡£¤½¤Á¤é¤ÎÊý¤¬º¹¤¬Â礭¤¤¤è¤¦¤Ë¸«¤¨¤ë¡£ËÝÌõ¤Ë¤âÊѲ½¤¬¤¢¤ë¡£¥×¥í¥Æ¥ª¡¼¥à¤Î·ë²Ì¤«¤é¡¢¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁãʣ¹çÂΤ¬Á´ÉôÄã²¼¤·¤Æ¤¤¤ë¤ÈȽÃǤµ¤ì¤¿¤¬ I ¤È IV ¤Ø¤Î±Æ¶Á¤¬Â礭¤¤¡£

²¼¤Ë¤â½ñ¤¤¤¿¤è¤¦¤Ë¡¢¥í¥Æ¥Î¥ó¤Ê¤É¤ÎÁ˳²ºÞ¤Ë¤è¤ëÊ£¹çÂÎ I ¤Îµ¡Ç½Äã²¼¤Ç±ö¥¹¥È¥ì¥¹¤Ë¡Ê¾¯¤·¡Ë¶¯¤¯¤Ê¤ë¤³¤È¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£

Kaori Sako, Yushi Futamura, Takeshi Shimizu, Akihiro Matsui, Hiroyuki Hirano Yasumitsu Kondoh, Makoto Muroi, Harumi Aono, Maho Tanaka, Kaori Honda, Kenshirou Shimizu, Makoto Kawatani, Takeshi Nakano, Hiroyuki Osada, Ko Noguchi, Motoaki Seki, Inhibition of mitochondrial complex I by the novel compound FSL0260 enhances high salinity-stress tolerance in Arabidopsis thaliana, Scientific Reports, 10.1038/s41598-020-65614-9

¤³¤ì¤ÏÏÀʸ¤òÆɤó¤Ç»ä¤â¥í¥Æ¥Î¥ó¤Ç»î¤·¤Æ¤ß¤Æ¤½¤¦¤Ê¤Ã¤¿¤Î¤Ç´Ö°ã¤¤¤Ê¤¤¡£¥í¥Æ¥Î¥ó¤Ï°Æ³°À¸°é¤òÍÞÀ©¤·¤Ê¤¤¡£Ê£¹çÂÎ I ¤ÏµðÂç¤ÊÊ£¹çÂΤǤ¢¤ê¡¢Á˳²¤µ¤ì¤ëÉô°Ì¤â²¿Ä̤ê¤â¤¢¤êÆÀ¤ë¤À¤í¤¦¡£Á˳²¤Ë¤è¤ëÆó¼¡Åª¤ÊºîÍѤâÊ£»¨¤ÇÍÍ¡¹¤Ê¤³¤È¤¬µ¯¤­¤ë¡£¤½¤ÎÆâ¤Ç¤É¤ó¤Ê¤³¤È¤«ÂçÀڤʤΤ«¤è¤¯¤ï¤«¤é¤Ê¤¤¡£¤Þ¤¿ FSL0260 ¤ä¥í¥Æ¥Î¥ó¤Ë¤âÊ£¹çÂÎ I °Ê³°¤ÎºîÍÑÅÀ¤¬¤¢¤ë¤«¤â¤·¤ì¤Ê¤¤¡£ ¥í¥Æ¥Î¥ó¤ÏÊ£¹çÂÎ I ¤Î Nqo8 ¥µ¥Ö¥æ¥Ë¥Ã¥È¤Ë·ë¹ç¤¹¤ë¤³¤È¤¬²òÌÀ¤µ¤ì¤Æ¤¤¤ë¡£¤³¤ì¤Ï¿¢Êª¤À¤È NAD1 ¤ËÁêÅö¤·¤Æ¥æ¥Ó¥­¥Î¥ó¤ÈÁê¸ßºîÍѤ¹¤ëÉôʬ¤ËÅö¤¿¤ë¡£css1 ¤Ê¤É¤ÎÊÑ°ÛÂΤȤϰۤʤꡢʣ¹çÂÎ I ¤Î¹½Â¤¤¬²õ¤ì¤¿¤ê¤¹¤ë¤³¤È¤Ï¤Ê¤¤¤é¤·¤¤¡£Ê£¹çÂÎI ¤Î³èÀ­¤ò¬Äꤹ¤ë°ìÈÖ´Êñ¤ÊÊýË¡¤Ë¡¢ÈóÊÑÀ­¥²¥ëÅŵ¤±ËÆ°¤·¤Æ NADH ¤ò´Þ¤àȯ¿§±Õ¤Ë¿»¤·¤Æ NBT ¤Î´Ô¸µ¤Ë¤è¤ë³èÀ­À÷¿§¤ò¹Ô¤¦ÊýË¡¤¬¤¢¤ë¡£Ê£¹çÂÎI ¤ÎÊÑ°ÛÂΤǤϳèÀ­¤¬¤Ê¤¯¤Ê¤ê¥Ð¥ó¥É¤¬½Ð¤Ê¤¯¤Ê¤ë¤¬¡¢¥í¥Æ¥Î¥ó¤Ï¤³¤Î³èÀ­À÷¿§¤òÁ˳²¤·¤Ê¤¤¡¢¤È¤É¤³¤«¤Ë½ñ¤¤¤Æ¤¢¤ë¤Î¤òÆɤó¤À³Ð¤¨¤¬¤¢¤ë¡£¥í¥Æ¥Î¥ó¤Ï¥æ¥Ó¥­¥Î¥ó¤ËÅŻҤ¬ÅϤë¤Î¤òÁ˳²¤¹¤ë¤È¿Þ²ò¤µ¤ì¤Æ¤¤¤¿¡£

https://www.amed.go.jp/news/release_20211208-02.html¡¡¡Ö¥ß¥È¥³¥ó¥É¥ê¥¢¹ÚÁǤÎÁ˳²ºÞ¤Ë¤è¤ë¿·¤·¤¤¹³¤¬¤ó¥á¥«¥Ë¥º¥à¤Îȯ¸«¡½¤¬¤óÁÈ¿¥¤ÎÆÃħ¤òÍøÍѤ·¤¿¿·¤·¤¤¤¬¤ó¼£ÎŤβÄǽÀ­¡½¡×¡¡¡Ö¸ÆµÛº¿Ê£¹çÂÎIÁ˳²ºÞ¤Ë¤è¤Ã¤Æ»À²½Åª¥ê¥ó»À²½·ÐÏ©¤¬Á˳²¤µ¤ì¤¿·ë²Ì¡¢ºÙ˦Æâ¤Ë¤ª¤±¤ëÆý»À¤ÎÃßÀѤª¤è¤Ó¡¢ºÙ˦³°¤Ë¤ª¤±¤ëÆý»ÀʬÈ礬¥¿Ê¤µ¤ì¡¢ºÙ˦Æâ³°¤ÎpH¤¬Äã²¼¤¹¤ë¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£²òÅü·Ï¤¬³èȯ¤ËƯ¤¤¤Æ¤¤¤ë¤Î¤Ç¡¢ATP ¤¬¸Ï³é¤¹¤ë¤³¤È¤Ï¤Ê¤¤¤é¤·¤¤¡£¿¢Êª¤Ç¤ÏÆý»À¤¬ÃßÀѤ¹¤ë¤³¤È¤Ï¤¢¤Þ¤ê¤Ê¤¤¤è¤¦¤À¤¬¡¢¤Û¤«¤ÎÍ­µ¡»À¤¬Áý¤¨¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

TERF¤È¿¢Êª¥Û¥ë¥â¥ó¤Î´Ø·¸

Phytohormones as Regulators of Mitochondrial Gene Expression in Arabidopsis thaliana¡¡¡¡Int J Mol Sci. 2023 Nov 29;24(23):16924. doi: 10.3390/ijms242316924.¡¡¡¡Ivan A Bychkov ¤Ê¤É¡¡¡¡PMID: 38069246 PMCID: PMC10707152

TERF ¤Ê¤É¤Î mt-related nuclear genes ¤¬¥Û¥ë¥â¥ó¤Ë¤è¤Ã¤ÆÀ©¸æ¤µ¤ì¤ë¤³¤È¤Ë¤Ä¤¤¤Æ½ñ¤«¤ì¤Æ¤¤¤ë¡£

UCP ¤Îȯ¸½¤ò¶¯²½¤·¤¿¿¢Êª

Overexpression of UCP1 in tobacco induces mitochondrial biogenesis and amplifies a broad stress response.¡¡¡¡¡¡Barreto P, Okura VK, Neshich IA, Maia Ide G, Arruda P.¡¡¡¡¡¡BMC Plant Biol. 2014 May 28;14:144. doi: 10.1186/1471-2229-14-144.¡¡¡¡¡¡PMID: 24886177

¤³¤ì¤ÏÊÑ°ÛÂΤǤϤʤ¤¤¬¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¯ Uncoupling protein ¤ò¶¯¤¯È¯¸½¤¹¤ë¤³¤È¤Ë¤è¤Ã¤Æ¥¹¥È¥ì¥¹±þÅú¤ò²þÁ±¤Ç¤­¤ë¤³¤È¤ò¼¨¤·¤¿ÏÀʸ¤Ç¡¢¶½Ì£¿¼¤¤¡£

Íý¶þ¾å¤Ï¡¢UCP ¤ÈƱ¤¸ºîÍÑ¡Ê¥×¥í¥È¥ó¤ÎÇ»ÅÙ¸ûÇÛ¤ò¾Ã¼º¤µ¤»¤ë¡Ë¤ò¤¹¤ëÌôºÞ¤Ç¤â¤½¤¦¤¤¤¦ÊѲ½¤¬µ¯¤­¤Æ¤â¤ª¤«¤·¤¯¤Ê¤¤¤³¤È¤Ë¤Ê¤ë¡£¤È»×¤Ã¤¿¤¬¡¢¤½¤ì¤Ï´Ö°ã¤¤¤é¤·¤¤¡£UCP ¤Ë¤Ï¥×¥í¥È¥ó¤ÎÇ»ÅÙ¸ûÇÛ¤ò¾®¤µ¤¯¤¹¤ë°Ê³°¤Ë¤âµ¡Ç½¤¬¤¢¤ë¤³¤È¤¬¼¨¤µ¤ì¤¿¡£

Uncoupling proteins 1 and 2 (UCP1 and UCP2) from Arabidopsis thaliana are mitochondrial transporters of aspartate, glutamate and dicarboxylates.¡¡¡¡¡¡Monne M, Daddabbo L, Gagneul D, Obata T, Hielscher B, Palmieri L, Miniero DV, Fernie AR, Weber APM, Palmieri F.¡¡¡¡¡¡J Biol Chem. 2018 Jan 25. pii: jbc.RA117.000771. doi: 10.1074/jbc.RA117.000771. [Epub ahead of print]¡¡¡¡¡¡PMID: 29371401 [PubMed - as supplied by publisher]

At2g22500 UCP5 uncoupling protein 5 ¤Ï¡¢DIC1 DICARBOXYLATE CARRIER 1¡¡¤È¤¤¤¦Ì¾Á°¤Ç¤â¸Æ¤Ð¤ì¤Æ¤¤¤ë¡£

¥ß¥È¥³¥ó¥É¥ê¥¢¤È Äã»ÀÁÇ PRT6 N-degron pathway

Mitochondrial retrograde signaling through UCP1-mediated inhibition of the plant oxygen-sensing pathway.¡¡¡¡¡¡Barreto P, Dambire C, Sharma G, Vicente J, Osborne R, Yassitepe J, Gibbs DJ, Maia IG, Holdsworth MJ, Arruda P.¡¡¡¡¡¡ Curr Biol. 2022 Jan 28:S0960-9822(22)00048-3. doi: 10.1016/j.cub.2022.01.037. ¡¡¡¡¡¡PMID: 35114096

¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎƯ¤­¤Ë¤Ï»ÀÁǤ¬É¬ÍפʤΤǡ¢Äã»ÀÁDZþÅú¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë´Ø·¸¤¬¤¢¤ë¤³¤È¤Ï¤â¤Ã¤È¤â¤Ê¤³¤È¤Ç¤¢¤ë¡£¤³¤ÎÏÀʸ¤Ç¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤ÏÄã»ÀÁDZþÅú¤ÇÀ©¸æ¤µ¤ì¤ë¤À¤±¤Ç¤Ê¤¯¡¢UCP ¤¬´ØÍ¿¤¹¤ë»ÅÁȤߤˤè¤Ã¤ÆÄã»ÀÁDZþÅú¤òÍÞÀ©¤¹¤ë¤³¤È¤ò¼¨¤·¤Æ¤¤¤ë¡£

 

UCP ¤òƯ¤«¤Ê¤¯¤¹¤ë¤³¤È¤Ë¤è¤ë±Æ¶Á¤òÄ´¤Ù¤¿ÏÀʸ

The Knockdown of Mitochondrial Uncoupling Proteins 1 and 2 (AtUCP1 and 2) in Arabidopsis thaliana Impacts Vegetative Development and Fertility. ¡¡¡¡¡¡Arcuri MLC, Nunes-Laitz AV, Lima RPM, Barreto P, Marinho AN, Arruda P, Maia IG.¡¡¡¡¡¡Plant Cell Physiol. 2021 Jul 28:pcab117. doi: 10.1093/pcp/pcab117.¡¡¡¡¡¡PMID: 34314506

ATP/ADP ratios ¤¬¹â¤¯¤Ê¤ë¤¬¡¢¸ÆµÛ®ÅÙ¤ÏÄã²¼¤·¤Æº¬¤Î¿­Ä¹¤¬ºÇŬ¾ò·ï¡¢¥¹¥È¥ì¥¹¾ò·ï¤Î¤É¤Á¤é¤Ç¤â°­¤¯¤Ê¤ë¡£¼ï»Ò¤Î¼ýÎ̤¬Äã²¼¤¹¤ë¡£²Ö´ï´±¤Ç³èÀ­»ÀÁǤ¬Áý²Ã¤·¤Æ¤¤¤ë¡£AOX ¤¬ÂåÂؤȤ·¤Æ³èÀ­²½¤·¤Æ¤¤¤ë¡£Supp.Table S2 ¤Ë¥á¥¿¥Ü¥é¥¤¥ÈʬÀϤ¬¤¢¤ë¡£Xanthine ¤Ê¤É¤¬Áý²Ã¤·¤Æ¤¤¤ë¡£

UCP ¤ò³èÀ­²½¤¹¤ë¤Î¤Ç¤Ï¤Ê¤¯¥¢¥ó¥«¥×¥é¡¼¤òÍ¿¤¨¤Æ¡¢¥¨¥ó¥É¥µ¥¤¥È¡¼¥·¥¹¤ËÍ¿¤¨¤ë±Æ¶Á¤ò¼¨¤·¤¿ÏÀʸ¤¬È¯É½¤µ¤ì¤¿¡£

Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification.¡¡¡¡¡¡Dejonghe W, Kuenen S, Mylle E, Vasileva M, Keech O, Viotti C, Swerts J, Fendrych M, Ortiz-Morea FA, Mishev K, Delang S, Scholl S, Zarza X, Heilmann M, Kourelis J, Kasprowicz J, Nguyen le SL, Drozdzecki A, Van Houtte I, Szatmári AM, Majda M, Baisa G, Bednarek SY, Robert S, Audenaert D, Testerink C, Munnik T, Van Damme D, Heilmann I, Schumacher K, Winne J, Friml J, Verstreken P, Russinova E.¡¡¡¡¡¡Nat Commun. 2016 Jun 8;7:11710. doi: 10.1038/ncomms11710.¡¡¡¡¡¡PMID: 27271794

¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤¬Äã²¼¤¹¤ë¤È ATP À¸»ºÇ½ÎϤ¬Äã²¼¤¹¤ë¡£¤½¤ì¤ËÂбþ¤¹¤ë¤Ë¤Ï¥¨¥Í¥ë¥®¡¼¤ò¿¤¯¾ÃÈñ¤¹¤ë²áÄø¤òÍÞ¤¨¤Ê¤¤¤È¤¤¤±¤Ê¤¤¡£¾®Ë¦Í¢Á÷¤ÏÍÞ¤¨¤é¤ì¤ëɸŪ¤Ë¤Ê¤ë¤é¤·¤¤¡£Nature ¤Ëµ²²î¾õÂ֤κݤ覵æÀ®²Ì¤¬·ÇºÜ¤µ¤ì¤Æ¤¤¤¿¡£Ê£¿ô¤ÎºÙ˦ÆâÍ¢Á÷·ÐÏ©¤¬ÍÞÀ©¤µ¤ì¤ë¡£

ºÙ˦À¸Êª³Ø¡§GAPDH¤Ïµ²²î¤Ë¤ª¤¤¤ÆºÙ˦¤Î¥¨¥Í¥ë¥®¡¼¹±¾ïÀ­¤Î¤¿¤á¤ËºÙ˦Æâ·ÐÏ©¤òÁ˳²¤¹¤ë¡¡¡¡¡¡Nature 561, 7722 | Published: 2018ǯ9·î13Æü | doi: 10.1038/s41586-018-0475-6

ºÙ˦¤ò¥¢¥ó¥«¥×¥é¡¼¤Ç½èÍý¤¹¤ë¤È¡¢ºÙ˦Æâ¤Ç¼÷Ì¿¤¬Ã»¤¤ ACC synthase ¥¿¥ó¥Ñ¥¯¼Á¤¬°ÂÄê²½¤µ¤ì¤ë¤È¤¤¤¦ÏÀʸ¤â¤¢¤Ã¤¿¡£ATP ¤Ë°Í¸¤·¤Æµ¯¤­¤ë¥¿¥ó¥Ñ¥¯¼Áʬ²ò¤âºÙ˦ÆâÍ¢Á÷¤ÈƱ¤¸¤è¤¦¤Ë ATP ¤òÀáÌó¤·¤¿¤¤ºÝ¤ËÍÞ¤¨¤é¤ì¤ë¤Î¤À¤í¤¦¡£ºÙ˦Æâ¤Ç¤Ï¥¿¥ó¥Ñ¥¯¼Á¤Îʬ²ò¤ÇÀ©¸æ¤µ¤ì¤ëʪ»ö¤Ï¤È¤Æ¤â¿¤¤¤Î¤Ç¡¢ÍÍ¡¹¤Ê²áÄø¤ËƱ»þ¤Ë±Æ¶Á¤¬½Ð¤ë¤³¤È¤Ë¤Ê¤êʬÀϤ¬Æñ¤·¤¤¡£

Turnover of 1-aminocyclopropane-1-carboxylic Acid synthase protein in wounded tomato fruit tissue.¡¡¡¡¡¡Kim WT, Yang SF.¡¡¡¡¡¡Plant Physiol. 1992 Nov;100(3):1126-31.¡¡¡¡¡¡PMID: 16653094¡¡¡¡¡¡

The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein.¡¡¡¡¡¡Chae HS, Faure F, Kieber JJ.¡¡¡¡¡¡Plant Cell. 2003 Feb;15(2):545-59.¡¡¡¡¡¡PMID: 12566591

ACC synthase ¥¿¥ó¥Ñ¥¯¼Á¤Ï¡¢E3 - ¥×¥í¥Æ¥¢¥½¡¼¥à·Ï¤Çʬ²ò¤µ¤ì¤ë¤³¤È¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£Á´Éô¤Ç¤Ï¤Ê¤¤¤À¤í¤¦¤¬¡¢¥×¥í¥Æ¥¢¥½¡¼¥à¤Çʬ²ò¤µ¤ì¤ëÃÁÇò¼Á¤Î°ìÉô¤Ï ATP ¤¬¸º¾¯¤¹¤ë¤È°ÂÄê²½¤¹¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7.¡¡¡¡¡¡Lyzenga WJ, Booth JK, Stone SL.¡¡¡¡¡¡Plant J. 2012 Jul;71(1):23-34. doi: 10.1111/j.1365-313X.2012.04965.x. PMID: 22339729

SOAR1 (At5g11310 Pentatricopeptide repeat (PPR) superfamily protein)

Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses.¡¡¡¡¡¡Jiang SC, Mei C, Liang S, Yu YT, Lu K, Wu Z, Wang XF, Zhang DP.¡¡¡¡¡¡Plant Mol Biol. 2015 Jul;88(4-5):369-85. doi: 10.1007/s11103-015-0327-9. Epub 2015 Jun 21.¡¡¡¡¡¡PMID: 26093896

SOAR1 °äÅÁ»Ò¤ò²á¾êȯ¸½¤¹¤ë¤È¥¹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤ê¡¢¤·¤«¤âÀ¸°é¤ËÂФ¹¤ë°­¤¤±Æ¶Á¤Ï¤Ê¤¤¤È½ñ¤¤¤Æ¤¢¤ë¡£SOAR1 ¤Ï PPR¥¿¥ó¥Ñ¥¯¼Á¤ò¥³¡¼¥É¤·¤Æ¤¤¤ë¤¬¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Ï¤Ê¤¯³Ë¡¢ºÙ˦¼Á¤Ë¶Éºß¤¹¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£¤·¤«¤· PPR¥¿¥ó¥Ñ¥¯¼Á¤Î°ì¤Ä¤Ê¤Î¤Ç¤³¤³¤Ë½ñ¤¤¤Æ¤ª¤¯¡£UniProt ¥Ç¡¼¥¿¥Ù¡¼¥¹¤ò¸«¤ë¤È¡¢SOAR1 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤¹¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£À¸Êª³Ø¤È¤¤¤¦¤â¤Î¤ÏÁ´¤¯¤â¤Ã¤Æ¤à¤º¤«¤·¤¤¡£

SLO2, NDUFS4, SLG1, At12Cys °äÅÁ»Ò¤½¤ì¤¾¤ì¤ÎÊÑ°ÛÂΤǤⴥÁ祹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤ë¤¬¡¢¤½¤ì¤Ï·ç¼º¡¦µ¡Ç½Äã²¼¤·¤¿ÊÑ°ÛÂΤǡ¢¥í¥¼¥Ã¥ÈÍÕ¤ÎÃʳ¬¤À¤Ã¤¿¡£SLG1 ¤Î¾ì¹ç¤Ï ABA ´¶¼õÀ­¤Î¾å¾º¤Î¤¿¤áµ¤¹¦¤¬ÊĤޤäƤ¤¤ë¤«¤é¤È¿äÄꤵ¤ì¤Æ¤¤¤ë¡£

¤½¤ì¤È¤Ï°Û¤Ê¤ê¡¢SOAR1 ¤Î²á¾êȯ¸½¤Ç¤Ï¡¢²êÀ¸¤¨¤Ç¥¹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤Ã¤Æ¤¤¤ë¡£ ·ç¼ºÊѰۤβêÀ¸¤¨¤Ç¤Ï¡¢Â¾¤Î¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½ÊÑ°ÛÂΤΤ褦¤Ë¥¹¥È¥ì¥¹¤Ë¼å¤¯¤Ê¤ë¡£ ¤Þ¤¿¥í¥¼¥Ã¥ÈÍÕ¤ÎÃʳ¬¤Î¥¹¥È¥ì¥¹±þÅú¥Ç¡¼¥¿ (NaCl treatment) ¤â¤¢¤ê¡¢°ì±þ¥¹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤Ã¤¿¤è¤¦¤Ë¤â¸«¤¨¤ë¼Ì¿¿¤¬½Ð¤Æ¤¤¤ë¡£SOAR1 ¼«ÂΤâ salt- and cold-induced gene ¤À¤Ã¤¿¡£ SOAR1 ¤ò²á¾êȯ¸½¤¹¤ë¤È¡¢ABI2 °äÅÁ»Ò¤Îȯ¸½¤¬¸²Ãø¤Ë¾å¾º¤·¤¿¡£¤½¤Î¾¤Îŵ·¿Åª¤Ê¥¹¥È¥ì¥¹±þÅú°äÅÁ»Ò¤ÎÊѲ½¤Ï¡¢¤½¤ì¤Û¤É¤Ï¤Ã¤­¤ê¤·¤Ê¤«¤Ã¤¿¡£

slo2

¿¢Êª¼ï
A.thaliana
:¸«¤Ä¤±¤é¤ì¤¿ÊýË¡:
ÊÑ°Û°äÅÁ»Ò--slo2
PPR ¥¿¥ó¥Ñ¥¯¼Á¤Î°ì¼ï

References

The Arabidopsis thaliana RNA Editing Factor SLO2, which Affects the Mitochondrial Electron Transport Chain, Participates in Multiple Stress and Hormone Responses.¡¡¡¡¡¡Zhu Q, Dugardeyn J, Zhang C, Muhlenbock P, Eastmond PJ, Valcke R, De Coninck B, Oden S, Karampelias M, Cammue BP, Prinsen E, Van Der Straeten D.¡¡¡¡¡¡Mol Plant. 2013 Aug 29. PMID:¡¡ 23990142

¥í¥¼¥Ã¥È¤¬´¥Á祹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤ë¡ÊFigure 4¡Ë¡£µ¤¹¦¤¬ÊĤ¸¤Æ¤¤¤ë³ä¹ç¤¬Â¿¤¤¤È¤¤¤¦¼Ì¿¿¤¬¤¢¤ë¡£ABA¡¡¤Ë¤è¤ë°äÅÁ»Òȯ¸½Í¶Æ³¤¬¶¯¤¤¡ÊFigure 7¡Ë¡£¥í¥¼¥Ã¥ÈÍÕ¡Ê4 ½µ´Ö¡Ë¤Î¥¢¥ß¥Î»À¤ò¬Äꤹ¤ë¤È¡¢Orn, Gly, Ala Åù¿¤¯¤Î¼ïÎà¤ÇÁý²Ã¤·¤Æ¤¤¤¿¡£ÆÃ¤Ë Orn ¤Ï¸²Ãø¤À¤Ã¤¿¡£ ¥×¥í¥ê¥ó¤ÏÌó 2 ÇܤÀ¤Ã¤¿¡£Asp ¤Ï¸º¾¯¤·¤Æ¤¤¤¿¡ÊFigure 11¡Ë¡£

SLO2, a mitochondrial PPR protein affecting several RNA editing sites, is required for energy metabolism.¡¡¡¡¡¡Zhu Q, Dugardeyn J, Zhang C, Takenaka M, Kuhn K, Craddock C, Smalle J, Karampelias M, Denecke J, Peters J, Gerats T, Brennicke A, Eastmond P, Meyer EH, Van Der Straeten D.¡¡¡¡¡¡Plant J. 2012 Apr 28. doi: 10.1111/j.1365-313X.2012.05036.x. [Epub ahead of print]¡¡¡¡¡¡PMID: 22540321 [PubMed - as supplied by publisher]

SLG1

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--
¡¡PPR¥¿¥ó¥Ñ¥¯¼Á¤Î°ì¤Ä

Functional disruption of the PPR protein SLG1 affects mitochondrial RNA editing, plant development, and responses to abiotic stresses in Arabidopsis.¡¡¡¡¡¡Yuan H, Liu D.¡¡¡¡¡¡Plant J. 2012 Jan 5. doi: 10.1111/j.1365-313X.2012.04883.x. ¡¡¡¡¡¡PMID: 22221074

slg1 ¤Ï ABA ´¶¼õÀ­¤¬¹â¤¯¤Ê¤ê¡¢´¥Á祹¥È¥ì¥¹¤ËÂѤ¨¤ëÎϤ¬¶¯¤¯¤Ê¤ë¤È½ñ¤¤¤Æ¤¢¤ë¡£NAD3, NADH dehydrogenase ¤Ë·ç´Ù¤¬À¸¤¸¤ë¤È½ñ¤¤¤Æ¤¢¤ë¡£´¥Á祹¥È¥ì¥¹¤ËÂѤ¨¤ëÎϤ¬¶¯¤¯¤Ê¤ë¤Î¤Ï¥Ý¥Ã¥È¤Ç°éÀ®¤·¥í¥¼¥Ã¥ÈÍÕ¤ò²¿Ëç¤âÉÕ¤±¤¿»þ´ü¤Ç¤¢¤ë¡£´¥Áç»þ¤Îµ¤¹¦¤ÎÊĤ¸Êý¤¬¶¯¤¤¤È½ñ¤¤¤Æ¤¢¤ë¡£ BlueNativePAGE ¤Î·ë²Ì¤¬¤¢¤ë¡£¥¢¥ß¥Î»ÀʬÀϤϹԤï¤ì¤Æ¤¤¤Ê¤¤¡£

¥¤¥Í¤Ç¤â PPR protein ¤ÎÊѰۤǴ¥Áç¤Ë¶¯¤¯¤Ê¤ë¤³¤È¤¬¤¢¤ë¡£

Pentatricopeptide repeat gene-mediated mitochondrial RNA editing impacts on rice drought tolerance¡¡¡¡¡¡Zhi Luo, JIE XIONG, Lei Wang, Lei Wang, Guihua Hou, Zhaoyang Li, Jing Li, Hengling Zhou, Tianfei Li, Lijun Luo, and Hui Xia

PAP2 (Purple acid phosphatase 2)¡¡¤¬À¸°é¤È¼ï»Ò¼ýÎ̤ò²þÁ±¤¹¤ë

A dual-targeted purple acid phosphatase in Arabidopsis thaliana moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield.¡¡¡¡¡¡Sun F, Suen PK, Zhang Y, Liang C, Carrie C, Whelan J, Ward JL, Hawkins ND, Jiang L, Lim BL.¡¡¡¡¡¡New Phytol. 2012 Apr;194(1):206-19. doi: 10.1111/j.1469-8137.2011.04026.x. Epub 2012 Jan 23.¡¡¡¡¡¡PMID: 22269069

PAP2 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤È¥×¥é¥¹¥Á¥É¤ÎξÊý¤ËÍ¢Á÷¤µ¤ì¤ë¡£²á¾êȯ¸½¤¹¤ë¤ÈÀ¸°éÂ¥¿Ê¸ú²Ì¤¬¤¢¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£¡Öa phosphatase dually anchored on the outer membranes of chloroplasts and mitochondria, can boost the plant growth and seed yield of Arabidopsis thaliana ¡×

Overlapping Functions of the Paralogous Proteins AtPAP2 and AtPAP9 in Arabidopsis thaliana¡¡¡¡¡¡Int J Mol Sci. 2021 Jul; 22(14): 7243.¡¡Published online 2021 Jul 6. doi: 10.3390/ijms22147243¡¡PMCID: PMC8303434¡¡PMID: 34298863¡¡¤È¡¡AtPAP2 modulates the import of the small subunit of Rubisco into chloroplasts.¡¡¡¡¡¡Zhang R, Guan X, Law YS, Sun F, Chen S, Wong KB, Lim BL Plant Signal Behav. 2016 Oct 2; 11(10):e1239687.¡¡¤Ê¤É¤Ç¡¢¡ÖPAP2 ¤Ï¥ª¥ë¥¬¥Í¥é¤ËÍ¢Á÷¤µ¤ì¤ë¥¿¥ó¥Ñ¥¯¼Á¤Î¥È¥é¥ó¥¸¥Ã¥È¥Ú¥×¥Á¥É¤¬¥ê¥ó»À²½¤µ¤ì¤Ê¤¤¤è¤¦¤Ë¤¹¤ë¤³¤È¤Ç¡¢ÍÕÎÐÂΤȥߥȥ³¥ó¥É¥ê¥¢¤ËÍ¢Á÷¤µ¤ì¤ë¥¿¥ó¥Ñ¥¯¼Á¤ÎÍ¢Á÷¸úΨ¤ò¹â¤á¤ë¤³¤È¤Ç¥ª¥ë¥¬¥Í¥é¤ò³èÀ­²½¤¹¤ë¡×¤È¤¤¤¦¤è¤¦¤Ê¤³¤È¤¬½ñ¤«¤ì¤Æ¤¤¤ë¡£

A Balance between the Activities of Chloroplasts and Mitochondria Is Crucial for Optimal Plant Growth.¡¡¡¡¡¡Xu Z, Zhang R, Yang M, Law YS, Sun F, Hon NL, Ngai SM, Lim BL.¡¡¡¡¡¡Antioxidants (Basel). 2021 Jun 9;10(6):935. doi: 10.3390/antiox10060935.¡¡¡¡¡¡PMID: 34207819

¾å¤ÎÏÀʸ¤Ë½Ð¤Æ¤­¤¿ AtPAP2 ¤ò¥¯¥í¥í¥×¥é¥¹¥È¤À¤±¡¢¤Þ¤¿¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤À¤±¤ËÍ¢Á÷¤µ¤ì¤ë¤è¤¦¤Ë²þÊѤ·¤ÆƳÆþ¤¹¤ë¤È¡¢À¸°éÂ¥¿Ê¸ú²Ì¤Ï¾®¤µ¤¯¤Ê¤Ã¤¿¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤À¤±¤¬³èÀ­²½¤·¤Æ¤â¥Ð¥é¥ó¥¹¤¬Êø¤ì¤Æ¤«¤¨¤Ã¤Æ°­¤¯¤Ê¤ë¤È¹Í»¡¤µ¤ì¤Æ¤¤¤ë¡£

A dual-targeted purple acid phosphatase in Arabidopsis thaliana moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield.¡¡¡¡¡¡Sun F, Suen PK, Zhang Y, Liang C, Carrie C, Whelan J, Ward JL, Hawkins ND, Jiang L, Lim BL.¡¡¡¡¡¡New Phytol. 2012 Apr;194(1):206-19. doi: 10.1111/j.1469-8137.2011.04026.x. Epub 2012 Jan 23.¡¡¡¡¡¡PMID: 22269069

¤³¤Î¤È¤­¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Ë¥³¡¼¥É¤µ¤ì¤Æ¤¤¤ë cytochrome c maturation (Ccm) genes ¤Î editing ¤µ¤ì¤ëÅٹ礤¤¬ÊѲ½¤¹¤ë¡£RNAseq ¤ò¹Ô¤¤¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Ë¥³¡¼¥É¤µ¤ì¤Æ¤¤¤ë mRNA ¤ÎÇÛÎó¤òÄ´¤Ù¤ë¤³¤È¤Ç¸¡½Ð¤·¤Æ¤¤¤ë¡£¥¿¥ó¥Ñ¥¯¼Á¤ÎÎ̤âÄ´¤Ù¤Æ¡¢ CcmFN1 ¤È¤¤¤¦°äÅÁ»Ò¤Î»ºÊª¤ÎÎ̤¬¾¯¤·Áý²Ã¤·¤Æ¤¤¤ë¤è¤¦¤Ë¤â¸«¤¨¤ë¡£AtPAP2 ¤Ï MORF ¤È¤¤¤¦°ø»Ò¤È¶¨ÎϤ·¤Æ editing ¤ËƯ¤¤¤Æ¤¤¤ë¡£

RNAseq ¥Ç¡¼¥¿¤¬ GSE57790 and GSE57791 ¤Ç¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£

Inducible NAD-overproducing nadC plant

NAD Acts as an Integral Regulator of Multiple Defense Layers.¡¡¡¡¡¡Petriacq P, Ton J, Patrit O, Tcherkez G, Gakiere B.¡¡¡¡¡¡Plant Physiol. 2016 Nov;172(3):1465-1479. Epub 2016 Sep 12.¡¡¡¡¡¡PMID: 27621425

NADH ¤ÏÊ£¹çÂÎI ¤Î´ð¼Á¤È¤·¤ÆÅÅ»ÒÅÁã·Ï¤ËÅŻҤò¶¡µë¤· ATP ¹çÀ®¤Î¥¨¥Í¥ë¥®¡¼¸»¤Ë¤Ê¤ë¡£NADH ¤È¤½¤Î»À²½·¿ NAD+ ¤ÎƯ¤­¤Ï¤½¤ì¤À¤±¤Ç¤Ê¤¯¡¢Â¿ÍͤǽÅÍפÊÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë¡£»À²½´Ô¸µÈ¿±þ¤ÎÊä¹ÚÁǤˤʤ뤳¤È¤¬Â¿¤¤¡£ ¥ê¥ó»À²½¤µ¤ì¤Æ NADPH, NADP+ ¤Ë¤Ê¤ê¡¢¤³¤ì¤é¤âƱÍͤËƯ¤¯¡£¥Ò¥¹¥È¥ó¤Î楢¥»¥Á¥ë²½¤È¤¤¤¦À÷¿§ÂΡ¢°äÅÁ»Òȯ¸½¤È´Ø¤ï¤ëÉôʬ¤Ë¤â NAD+ ¤¬Êä¹ÚÁǤȤ·¤Æ´ØÍ¿¤·¤Æ¤¤¤ë¡£¸÷¹çÀ®¤Ç¤Ï ATP ¤À¤±¤Ç¤Ê¤¯ NADPH ¤¬ NADP ¤«¤éÀ¸À®¤¹¤ë¡£ ºÙ˦Æâ¤Ë¤Ï NADH¡Ê´Ô¸µ·¿¡¦ÅŻҤòÊÝ»ý¡Ë¤È NAD+¡Ê»À²½·¿¡Ë¤¬Â¸ºß¤¹¤ë¤¬¡¢NAD+ ¤¬Àê¤á¤ë³ä¹ç¤ÎÊý¤¬Â¿¤¤¡£

¿¢Êª¤Ç NAD+ / NADH ratio ¤òÄ´¤Ù¤¿·ë²Ì¡¡¡¡¡¡¡¡¡¡¡¡ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016682/¡¡¡¡¤Î Fig. 6¡¡¡¡¡¡ÌîÀ¸·¿¤Ç¤Ï NAD+ ¤ÎÊý¤¬ 10 Çܤ¯¤é¤¤Â¿¤¤¡£

ưʪºÙ˦¤Ç NAD+ / NADH ratio ¤òÄ´¤Ù¤¿·ë²Ì¤¬¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡ http://www.nature.com/nprot/journal/v11/n8/fig_tab/nprot.2016.074_T2.html

NAD+ ¤ÏËɸæ±þÅú¤ò°ú¤­µ¯¤³¤¹¥·¥°¥Ê¥ëʬ»Ò¤Ç¤¢¤ë¤³¤È¤¬¸«¤¤¤À¤µ¤ì¤Æ¡¢ÃíÌܤµ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡https://www.tandfonline.com/doi/full/10.1080/07352689.2018.1505591¡¡¡¡¡¡Supplemental Fig. S1 ¤Î A ¤ò¸«¤ë¤È NADH ¤¬Â¿¤¤¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£¤·¤«¤· B ¤ò¸«¤ë¤È NAD+ ¤¬Â¿¤¤¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£Figure legend ¤Ë¤â´Ö°ã¤¤¤¬¤¢¤ë¡£ nadC ¤ÏÂçIJ¶Ý¤Ç quinolinic acid (ά¾Î Q) ¤«¤é NAD ¤ò¹çÀ®¤¹¤ëÈ¿±þ¤ò¿¨ÇÞ¤¹¤ë¹ÚÁǤǡ¢¿¢Êª¤Ë¤Ï¤³¤Î·ÐÏ©¤Ï¸ºß¤·¤Ê¤¤¡£¤³¤ì¤ò¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤ËƳÆþ¤·¤¿¡£ ¤½¤¦¤¹¤ë¤È¡¢quinolinic acid ¤òÍ¿¤¨¤¿¤È¤­¤Î¤ß¡¢NAD ¤¬ÂçÎ̤˺î¤é¤ì¤ë¤è¤¦¤Ë¤Ç¤­¤¿¡£ ¤½¤ì¤Ë¤è¤Ã¤Æ¡¢¿¢Êª¤ÎËɸæÈ¿±þ¤Ë¤ª¤±¤ë NAD ¤ÎÌò³ä¤ò²òÌÀ¤·¤è¤¦¤È¤·¤¿¡£

NAD ¤¬Áý¤¨¤ë¤³¤È¤Ë¤è¤ë³èÀ­»ÀÁǤÎÀ¸À®¤Ë¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¤ª¤±¤ë¸ÆµÛ¤¬´ØÍ¿¤·¤Æ¤¤¤¿¡£³èÀ­»ÀÁǤÎÀ¸À®¤òľÀܸ«¤ë¤¿¤á¤Ë DCFH-DA ¤È¤¤¤¦·Ö¸÷¿§ÁǤò»È¤Ã¤Æ¤¤¤ë (Fig. 4)¡£ ¤Þ¤¿¡¢¥Þ¡¼¥«¡¼°äÅÁ»Ò¤È¤·¤ÆÃΤé¤ì¤Æ¤¤¤ë GSTU24, AOX1 (1a?) ¤Îȯ¸½Î̤òÈæ³Ó¤·¤Æ¤¤¤ë (Fig. 3)¡£ KCN ¤òÍ¿¤¨¤ÆÊ£¹çÂÎ IV ¥·¥È¥¯¥í¥à C ¥ª¥­¥·¥À¡¼¥¼¤òÁ˳²¤¹¤ë¤³¤È¤Ç¡¢NAD ¤Ë¤è¤ë³èÀ­»ÀÁǤÎÀ¸À®¤¬»ß¤Þ¤ë¡£

ÃíÌܤ¹¤Ù¤­¤³¤È¤È¤·¤Æ¡¢NAD ¤ÎÎ̤¬Áý¤¨¤ë¤È¤½¤ì¤ÈÁê´Ø¤·¤Æ¥µ¥ê¥Á¥ë»À (SA) ¤ÎÎ̤âÁý¤¨¤ë (Fig. S1)¡£¥µ¥ê¥Á¥ë»À¤È¤Î´ØÏ¢¤Ï¡¢ahg2 ¤Ê¤É¤Î¥ß¥È¥³¥ó¥É¥ê¥¢´ØÏ¢ÊÑ°ÛÂΤǤâÊó¹ð¤µ¤ì¤Æ¤¤¤ë¡£ahg2 ¤Ç¤âËɸæÈ¿±þ¤¬³èÀ­²½¤·¤Æ¤¤¤ë¡£¥µ¥ê¥Á¥ë»À_salicylate_¤Ë¤Ä¤¤¤Æ

¥«¥í¡¼¥¹¤ÎÎ̤â 92 ÇܤËÁý¤¨¤ë¡£

NAD ¤¬Áý²Ã¤·¤¿ºÝ¤Ë¤É¤Î¤è¤¦¤ÊÊѲ½¤¬µ¯¤­¤ë¤Î¤«¡¢Á´ÂÎÁü¤òÇÄ°®¤¹¤ë¤¿¤á¤Ë¥á¥¿¥Ü¥í¡¼¥àʬÀϤò¹Ô¤Ã¤¿¡£¤½¤ÎÊѲ½¤Î¥Ñ¥¿¡¼¥ó¤ò¡¢¥¨¥ê¥·¥¿¡¼½èÍý¡¢¥¸¥ã¥¹¥â¥ó»À½èÍý¤ò¹Ô¤Ã¤¿¾ì¹ç¤ÎÊѲ½¤ÈÈæ³Ó¤·¤¿¡£NAD ¤¬Áý²Ã¤·¤¿ºÝ¤ÎÂå¼ÕÊѲ½¤Ï¡¢¥¨¥ê¥·¥¿¡¼½èÍý¡¢¥¸¥ã¥¹¥â¥ó»À½èÍý¤ò¹Ô¤Ã¤¿ºÝ¤ÎÂå¼ÕÊѲ½¤ÈÎà»÷¤·¤Æ¤¤¤¿¡£ÌîÀ¸·¿¿¢Êª¤Ë quinolinic acid ¤ò²Ã¤¨¤¿ºÝ¤ÎÂå¼ÕÊѲ½¤Ï¡¢¾®¤µ¤«¤Ã¤¿¤¬¤¢¤ë¡£ Æó¼¡Âå¼Õ»ºÊª¤âÁý²Ã¤·¤¿¡ÊSupplemental Fig. S10AB¡Ë ¿¢Êª¥Û¥ë¥â¥ó ABA, JA, SA ¤ÎÎ̤âÁý¤¨¤Æ¤¤¤¿¡£NAD ¼«ÂΤòÌîÀ¸·¿¿¢Êª¤ËÍ¿¤¨¤ë¤À¤±¤Ç¤â¸ú²Ì¤¬¤¢¤Ã¤¿¡£

¿¢ÊªÉ¸¶¶Ý¤Ë¤Ï¿¢Êª¤ÎÌȱ֥·¥¹¥Æ¥à¤òÙøÍ𤹤ëʬ»Ò¤òºÙ˦Æâ¤ËÁ÷¤ê¹þ¤à¤â¤Î¤¬¤¢¤ë¡£¤½¤ì¤é¤Îʬ»Ò¤Ï¥¨¥Õ¥§¥¯¥¿¡¼¤È¸Æ¤Ð¤ì¤ë¡£¡¡¡¡¡¡The effector AvrRxo1 phosphorylates NAD in planta.¡¡¡¡¡¡Shidore T, Broeckling CD, Kirkwood JS, Long JJ, Miao J, Zhao B, Leach JE, Triplett LR.¡¡¡¡¡¡PLoS Pathog. 2017 Jun 19;13(6):e1006442. doi: 10.1371/journal.ppat.1006442. eCollection 2017 Jun.¡¡¡¡¡¡PMID: 28628666¡¡¡¡¡¡ ¤È¤¤¤¦ÏÀʸ¤Ç¤Ï¡¢AvrRxo1 ¤È¤¤¤¦¥¨¥Õ¥§¥¯¥¿¡¼¤¬ NAD ¤ò¥ê¥ó»À²½¤¹¤ë¤³¤È¤¬¼¨¤µ¤ì¤¿¡£

Plant Immunity: Danger Perception and Signaling.¡¡¡¡¡¡Zhou JM, Zhang Y. Cell. 2020 May 20:S0092-8674(20)30491-8. doi: 10.1016/j.cell.2020.04.028. ¡¡¡¡¡¡PMID: 32442407¡¡¡¡¡¡¤È¤¤¤¦¥ì¥Ó¥å¡¼¤Ë¤â NAD+ ¤¬½Ð¤Æ¤¯¤ë¡£

TIR Domain Proteins Are an Ancient Family of NAD(+)-Consuming Enzymes.¡¡¡¡¡¡Essuman K, Summers DW, Sasaki Y, Mao X, Yim AKY, DiAntonio A, Milbrandt J.¡¡¡¡¡¡ Curr Biol. 2018 Feb 5;28(3):421-430.e4. doi: 10.1016/j.cub.2017.12.024. Epub 2018 Jan 25.¡¡¡¡¡¡PMID: 29395922¡¡¡¡¡¡TIR domain protein ¤Ï Toll¡¿¥¤¥ó¥¿¡¼¥í¥¤¥­¥ó-1¼õÍÆÂΡÊTIR¡Ë¥É¥á¥¤¥ó¤ò¤â¤Ä¥¿¥ó¥Ñ¥¯¼Á¤Ç NAD+ ¤òʬ²ò¤¹¤ë¡£NADH ¤Ïʬ²ò¤µ¤ì¤Ê¤¤¡£

²½³Ø¤ÈÀ¸Êª¡ÊÆüËÜÇÀ·Ý³Ø²ñµ¡´Ø»ï¡Ë 2020 ǯ 7 ·î¹æ¤Ë¡¢µÈµ×ºÓ²Ö¡¢ÅèÅÄ·¼ÂÀ¡¢µÈ¼ÃÒÈþ¡¢»³¸ý¸ø»Ö¡¢ÀîºêÅØÀèÀ¸¤é¤Ë¤è¤ë¡Ö¿¢Êª¤Î¼«Á³Ìȱָ¦µæ¤ÎºÇÁ°Àþ¡×¤È¤¤¤¦¤¹¤Ð¤é¤·¤¤²òÀ⤬·ÇºÜ¤µ¤ì¤Æ¤¤¤ë¡£¤½¤Î²òÀâ¤Ç¤Ï TIR ¥É¥á¥¤¥ó¤Ë¤Ä¤¤¤Æ¤â¾Ò²ð¤µ¤ì¤Æ¤¤¤ë¡£ TIR ¥É¥á¥¤¥ó¤ò¤â¤Ä¥¿¥ó¥Ñ¥¯¼Á¤Ï¥Ð¥¯¥Æ¥ê¥¢¤Ë¸ºß¤¹¤ë¤¬¡¢¿¢Êª¤Ë¤â TIR-NB-LRR ·¿¥¿¥ó¥Ñ¥¯¼Á¤È¤·¤Æ¸ºß¤¹¤ë¡£¡ÖTIR-NB-LRR ·¿¥¿¥ó¥Ñ¥¯¼Á¤Ï NB-LRR·¿¼õÍÆÂΤΰì¼ï¤Ç¡¤É¸¶¶Ý¤¬ºÙ˦Æâ¤ËʬÈ礷¤¿¥¨¥Õ¥§¥¯¥¿¡¼¤òǧ¼±¤·¡¤¶¯¤¤Äñ¹³À­¤òͶƳ¤¹¤ë¡×¤È²òÀ⤵¤ì¤Æ¤¤¤ë¡£ ¡Ö¤É¤¦¤·¤ÆNAD¡Ü¤Îʬ²ò¤Ë¤è¤Ã¤ÆºÙ˦»à¤¬Í¶Æ³¤µ¤ì¤ë¤Î¤«¤Ë¤Ä¤¤¤Æ¤ÏÌÀ¤é¤«¤Ë¤Ê¤Ã¤Æ¤ª¤é¤º¡¤º£¸å¤Î¸¦µæ¤Ë´üÂÔ¤µ¤ì¤ë¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

Changes in intracellular NAD status affect stomatal development in an abscisic acid¡¾dependent manner¡¡¡¡¡¡Elias Feitosa¡¾Araujo¤é¡¡¡¡¡¡Pages: 1149-1168 | First Published: 29 September 2020

NAD(+)/NADH homeostasis affects metabolic adaptation to hypoxia and secondary metabolite production in filamentous fungi.¡¡¡¡¡¡Shimizu M. Biosci Biotechnol Biochem. 2018 Feb;82(2):216-224. doi: 10.1080/09168451.2017.1422972. Epub 2018 Jan 12. PMID: 29327656 Review.

¶ÝÎà¤Ë¤ª¤¤¤Æ¤â NAD+ ¤È NADH ¤ÎÈæΨ¤ÏºÙ˦¤ÎÍÍ¡¹¤Ê²áÄø¡¢ÆäËÂå¼Õ¤ËÂ礭¤Ê±Æ¶Á¤òÍ¿¤¨¤ë¡£

ºÙ˦¤Î¥¨¥Í¥ë¥®¡¼¾õÂÖ¤ÈƼ¥¤¥ª¥ó·ç˳´¶¼õÀ­Å¾¼Ì°ø»Ò

Energy status-promoted growth and development of Arabidopsis require copper deficiency response transcriptional regulator SPL7.¡¡¡¡¡¡Schulten A, Pietzenuk B, Quintana J, Scholle M, Feil R, Krause M, Romera-Branchat M, Wahl V, Severing E, Coupland G, Krämer U.¡¡¡¡¡¡Plant Cell. 2022 Jul 22:koac215. doi: 10.1093/plcell/koac215. ¡¡¡¡PMID: 35866980

¥ß¥È¥³¥ó¥É¥ê¥¢¤ÏºÙ˦¤¬¸úΨ¤è¤¯ ATP ¤òÀ¸»º¤¹¤ë¤¿¤á¤Ëɬ¿Ü¤ÎƯ¤­¤ò¤·¤Æ¤¤¤ë¡Ê¤â¤Á¤í¤ó¸÷¹çÀ®¤â¤½¤¦¤À¤¬¡Ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¤Ï ATP ¹çÀ®¹ÚÁǤ¬Æ¯¤¯¤¿¤á¤Î¿åÁÇ¥¤¥ª¥óÇ»ÅÙ¸ûÇۡʳ°Â¦¤ÈÆ⦤ÎÇ»ÅÙº¹¡¡Ç»ÅÙº¹¡á¥¨¥Í¥ë¥®¡¼¤Î°ì¤Ä¤Î·Á¡Ë¤ò·ÁÀ®¤¹¤ë¡£ÅÅ»ÒÅÁã·Ï¤ÏÅŻҤÎή¤ì¤ò·ÁÀ®¤¹¤ë¤¿¤á¤ÎÊä°ø»Ò¤È¤·¤ÆÅ´¸¶»Ò¡¢Æ¼¸¶»Ò¤ò´Þ¤à¡£

Schulten A ¤é¤ÎÏÀʸ¤Ç¤Ï spl7 ÊÑ°ÛÂΤˤĤ¤¤ÆÄ´¤Ù¤Æ¤¤¤ë¡£SPL7 ¤ÏƼ·ç˳¤ËÂбþ¤·¤ÆƯ¤¯¡¢Cu homeostasis ¤Ë½ÅÍפÊÌò³ä¤ò²Ì¤¿¤¹Å¾¼Ì°ø»Ò¤Ç¤¢¤ë¡£spl7 ÊÑ°ÛÂΤǤϡ¢WT ¤Ç¸«¤é¤ì¤ë¡ÖCu ·ç˳»þ¤Î¥·¥çÅü¤Ë¤è¤ëÀ¸°éÂ¥¿Ê¡×¤¬µ¯¤­¤Ê¤¯¤Ê¤ë¡£spl7 ÊÑ°ÛÂΤǤÏÅü¤¬ÃßÀѤ·¤Æ¤¤¤ë¡£Åü¥·¥°¥Ê¥ë¤Ë½ÅÍ×¤Ê T6P ¥È¥ì¥Ï¥í¡¼¥¹6¥ê¥ó»À¤âÃßÀѤ·¤Æ¤¤¤ë¡£Åü¤ÎÂå¼Õ¤Ë°Û¾ï¤¬¤¢¤ë¡£¤·¤«¤· spl7 ÊÑ°ÛÂΤΥߥȥ³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¤Ç¤Ï Cytochrome c oxidase (COX¡¢Æ¼¤ò´Þ¤à) ¤¬¤è¤¯Æ¯¤­ ATP¹çÀ®¤âµ¯¤­¤Æ¤¤¤ë¡£Ã±¤ËƼ¤¬ÉÔ­¤·¤Æ¤¤¤ë¤Î¤Ç¤Ï¤Ê¤¤¡£Åü¥·¥°¥Ê¥ëʬ»Ò¤Ç¤¢¤ë TOR, SnRK1 ¤Ï spl7 ÊÑ°ÛÂΤǤâƯ¤¤¤Æ¤¤¤ë¡£spl7 ÊÑ°ÛÂΤÏƼ¤ÎÎ̤ˤ«¤«¤ï¤é¤ºÄ¹Æü¤Ç²ÖÀ®¤¬ÌîÀ¸·¿¤è¤êÃÙ¤¯¤Ê¤Ã¤¿¡£ SPL7 ¤ÎľÀܤÎɸŪ°äÅÁ»Ò¤òÄ´¤Ù¤¿¡£FSD1 (Fe SOD), CITF1 (ÊÌ̾ bHLH160, At1g71200), CITF2 (ÊÌ̾ bHLH23, At4g28790) ¤Ê¤É¤¬¤¢¤Ã¤¿¡£

ÅüÇ»Å٤θú²Ì¤Ë¤Ä¤¤¤Æ¤âÄ´¤Ù¤Æ¤¤¤ë¡£Æ¼·ç˳¡Ü¹âÇ»ÅÙ¤ÎÅü¡¡¤Ç¡¢Fe, Cu ¤¬·ç˳¤·¤ä¤¹¤¤¤È½ñ¤¤¤Æ¤¢¤ë¡ÊSuppl. Fig. S1AB¡Ë¡£¤½¤Î¤È¤­ MIR398B ¤¬¶¯¤¯Æ¯¤¤¤Æ¤½¤ÎɸŪ¤Î CSD2 (Cu, Zn SOD) ¤Î mRNA ÃßÀÑÎ̤¬¸º¾¯¤¹¤ë¡£

RNAseq ¥Ç¡¼¥¿¤¬ PRJEB47134, ERR6548266-277 ¤Ç¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£

phb3

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
Prohibitin ¤Î·ç»¡¡AtPHB3 knock-out mutant
ÊÑ°Û°äÅÁ»Ò--phb3
Prohibitin PHB3

References

Functional verification and screening of protein interacting with the slPHB3¡¡¡¡¡¡Plant Signal Behav. 2022 Dec 31;17(1):2025678.¡¡¡¡¡¡doi: 10.1080/15592324.2022.2025678. Epub 2022 Feb 3.¡¡¡¡¡¡Haining Li ¤Ê¤É¡¡¡¡¡¡PMID: 35112644 PMCID: PMC9176260

PHB3 ¤ò¶¯¤¯Æ¯¤«¤»¤¿¥¿¥Ð¥³¡¢¹ÚÊì¤Ï¥¹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤Ã¤¿¡£

PROHIBITIN 3 forms complexes with ISOCHORISMATE SYNTHASE 1 to regulate stress-induced salicylic acid biosynthesis in Arabidopsis.¡¡¡¡¡¡Seguel AL, Jelenska J, Herrera-Vasquez A, Marr SK, Joyce MB, Gagesch KR, Shakoor N, Jiang SC, Fonseca A, Wildermuth M, Greenberg JT, Holuigue L.¡¡¡¡¡¡Plant Physiol. 2018 Feb 1. pii: pp.00941.2017. doi: 10.1104/pp.17.00941.¡¡¡¡¡¡PMID: 29438088

PHB3 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤À¤±¤Ç¤Ê¤¯ÍÕÎÐÂΤˤ⸺ߤ·¡¢¥µ¥ê¥Á¥ë»ÀÀ¸¹çÀ®¹ÚÁÇ ICS1 ¤ÈÊ£¹çÂΤò·ÁÀ®¤·¤Æ¡¢¹ÚÁdzèÀ­¤ò¹â¤á¤Æ¤¤¤ë¤³¤È¤¬¤ï¤«¤Ã¤¿¡£PHB3 ¤¬·ç»¤¹¤ë¤È¡¢Àµ¾ï¤Ê¾õÂ֤ǤΥµ¥ê¥Á¥ë»À¤ÎÎ̤ÏÊѲ½¤·¤Ê¤¤¤¬¡¢¥¹¥È¥ì¥¹¤ò¼õ¤±¤¿ºÝ¤Î¥µ¥ê¥Á¥ë»À¤ÎÁý²Ã¤¬¾¯¤Ê¤¯¤Ê¤ë¡ÊȾʬ¤¯¤é¤¤¤Ë¸º¤ë¡Ë¡£¥µ¥ê¥Á¥ë»À¤ÎÎ̤ò·è¤á¤ë»ÅÁȤߤΰì¤Ä¤Ë¡¢À¸¹çÀ®¹ÚÁǤΥץí¥Ò¥Ó¥Á¥ó¤Ë¤è¤ë°ÂÄê²½¤¬´Ø·¸¤·¤Æ¤¤¤ë¤³¤È¤¬¼¨¤µ¤ì¤¿¡£Â¾¤Î¥Û¥ë¥â¥ó¤Ç¤â¤½¤¦¤¤¤¦¤³¤È¡ÊÀ¸¹çÀ®¹ÚÁǤ¬Â¾¤Î¥¿¥ó¥Ñ¥¯¼Á¤Ç°ÂÄê²½¤¹¤ë¡¦Æä˥¹¥È¥ì¥¹¾ò·ï¤Ç¡Ë¤¬¤¢¤ë¤«¤â¤·¤ì¤Ê¤¤¡£¥µ¥ê¥Á¥ë»À¡¢¥¢¥Ö¥·¥¸¥ó»À¡¢¥¸¥ã¥¹¥â¥ó»À¤ÏÍÕÎÐÂΤËÀ¸¹çÀ®¹ÚÁǤΰìÉô¤¬Â¸ºß¤·¡¢¥¹¥È¥ì¥¹¤È´Ø·¸¤¬¿¼¤¤¡£¥¨¥Á¥ì¥óÀ¸¹çÀ®¤ÏºÙ˦¼Á¤Çµ¯¤­¤ë¤¬¡¢¤½¤ì¤Ë´Ø¤ï¤ë¹ÚÁǤϺÙ˦Æâ¤ÇÉÔ°ÂÄê¤ÇȾ¸º´ü¤¬Ã»¤¤¡£¤½¤¦¤¤¤¦¹ÚÁǤˤϡְÂÄê²½°ø»Ò¡×¤¬Â¸ºß¤¹¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

Mitochondrial type-I prohibitins of Arabidopsis thaliana are required for supporting proficient meristem development.¡¡¡¡¡¡Van Aken O, Pecenkova T, van de Cotte B, De Rycke R, Eeckhout D, Fromm H, De Jaeger G, Witters E, Beemster GT, Inze D, Van Breusegem F.¡¡¡¡¡¡Plant J. 2007 Dec;52(5):850-64. Epub 2007 Sep 19.

¤³¤ÎÏÀʸ¤Î supplement ¤Ë¡¢PHB3, PHB4 ¤ò¤½¤ì¤¾¤ì²á¾êȯ¸½¡¢µ¡Ç½·ç»¤µ¤»¤¿ºÝ¤Ëȯ¸½¥ì¥Ù¥ë¤¬£²ÇܰʾåÊѲ½¤¹¤ë°äÅÁ»Ò¤Î¥ê¥¹¥È¤¬·ÇºÜ¤µ¤ì¤Æ¤¤¤ë¡£

PHB3 ¤ò²á¾êȯ¸½¤·¤¿¾ì¹ç defensin, chitinase Åù¤ÎËɸæ°äÅÁ»Ò¤¬¹âȯ¸½¤¹¤ë¡£¥µ¥ê¥Á¥ë»ÀÀ¸¹çÀ®¹ÚÁǤϽФƤ­¤Æ¤¤¤Ê¤¤¤¬¡¢¥µ¥ê¥Á¥ë»ÀͶƳ¤µ¤ì¤ë°äÅÁ»Ò¤¬¤¤¤¯¤Ä¤«´Þ¤Þ¤ì¤Æ¤¤¤ë¡£¤·¤«¤·¤³¤ì¤Ï¥µ¥ê¥Á¥ë»À¤Ç¤Ê¤¯¥¨¥Á¥ì¥ó¤«¥¸¥ã¥¹¥â¥ó»À¤ÎºîÍѤˤâ¶á¤¤¤«¤â¤·¤ì¤Ê¤¤¡£PHB3 ¤Ï¥µ¥ê¥Á¥ë»ÀÀ¸¹çÀ®¹ÚÁǤγèÀ­¤ò½õ¤±¤ë¤È¸À¤¦¤³¤È¤¬¼¨¤µ¤ì¤¿¤¬¡¢Â¾¤Î¥Û¥ë¥â¥ó¤ÎÀ¸¹çÀ®¤â½õ¤±¤ë¤«¤â¤·¤ì¤Ê¤¤¡£¤Þ¤¿¥Û¥ë¥â¥ó¹çÀ®°Ê³°¤Ë¤âɸŪ¤Ï¤¢¤ë¤À¤í¤¦¡£¥Û¥ë¥â¥óͶƳ¤µ¤ì¤ë°äÅÁ»Ò¤ÎÊѲ½¤ÏÂ礭¤¯¤ÆÇÜΨ¤¬¹â¤¤¤³¤È¤¬Â¿¤¤¤Î¤Ç¡¢¥ê¥¹¥È¤Ë¤¹¤ë¤È¾å°Ì¤Ë½Ð¤Æ¤­¤ä¤¹¤¤¡£ phb3 ÊѰۤˤʤë¤È¡¢¥ß¥È¥³¥ó¥É¥ê¥¢´ØÏ¢ÊÑ°Û°äÅÁ»Ò¤¬Â¿¿ôÊѲ½¤·¤Æ¤¤¤ë¡£

PHB4 ¤ò²á¾êȯ¸½¤·¤¿¾ì¹ç¡¢phb3 ÊѰۡʵ¡Ç½Äã²¼¡Ë¤È»÷¤¿ÊѲ½¤¬À¸¤¸¤ë¤³¤È¤¬¡¢¥ª¡¼¥Ð¡¼¥é¥Ã¥×¤òÄ´¤Ù¤ë¤³¤È¤Ç¼¨¤µ¤ì¤Æ¤¤¤ë¡£¡¡phb4 ÊѰۤǤÏȯ¸½ÊѲ½¤¹¤ë°äÅÁ»Ò¤Ï¤È¤Æ¤â¾¯¤Ê¤¤¡£

Retrograde signalling caused by heritable mitochondrial dysfunction is partially mediated by ANAC017 and improves plant performance.¡¡¡¡¡¡Van Aken O, Ford E, Lister R, Huang S, Millar AH.¡¡¡¡¡¡Plant J. 2016 Nov;88(4):542-558. doi: 10.1111/tpj.13276. Epub 2016 Oct 17.¡¡¡¡¡¡PMID: 27425258 ¡¡¤Ç¤Ï¡¢phb3 ÊѰۤⰷ¤Ã¤Æ¤¤¤ë¡£¡¡¡¡¡¡https://www.omicsdi.org/dataset/arrayexpress-repository/E-MTAB-4655¡¡¡¡¡¡¤Ë¡¢phb3 ÊѰۤΥǡ¼¥¿¤ò´Þ¤à RNA-seq ¤Î·ë²Ì¤¬¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£

https://www.omicsdi.org/¡¡¤Ï¡¢RNA-seq ¤Ê¤É¤Î¥Ç¡¼¥¿¤ò¸¡º÷¤·¤ä¤¹¤¤·Á¤Ë¤Þ¤È¤á¤Æ¤¢¤ê¡¢¶½Ì£¿¼¤¤¥Ç¡¼¥¿¤ò¸«¤Ä¤±¤ä¤¹¤¤¡£

PHB3 Maintains Root Stem Cell Niche Identity through ROS-Responsive AP2/ERF Transcription Factors in Arabidopsis.¡¡¡¡¡¡Kong X, Tian H, Yu Q, Zhang F, Wang R, Gao S, Xu W, Liu J, Shani E, Fu C, Zhou G, Zhang L, Zhang X, Ding Z.¡¡¡¡¡¡Cell Rep. 2018 Jan 30;22(5):1350-1363. doi: 10.1016/j.celrep.2017.12.105.¡¡¡¡¡¡PMID: 29386120

¤³¤ÎÏÀʸ¤Ç¤Ïº¬Ã¼ºÙ˦¤Îʬ²½¤ò°·¤Ã¤Æ¤¤¤ë¡£°ÊÁ°¤«¤é³èÀ­»ÀÁǤ¬½ÅÍפǤ¢¤ë¤È¤ï¤«¤Ã¤Æ¤¤¤¿¡£¤Þ¤¿º¬Ã¼ºÙ˦¤Ç PHB3 °äÅÁ»Ò¤¬¶¯¤¯È¯¸½¤·¤Æ¤¤¤ë¤³¤È¤â¤ï¤«¤Ã¤Æ¤¤¤¿¡£AP2/ERF ž¼Ì°ø»Ò¤Ç¤¢¤ë¡¡ERF115, ERF114, and ERF109 ¤Ïº¬Ã¼ºÙ˦¤ÇƯ¤­ Stem Cell Nitch (SCN) ¤Î°Ý»ý¤ËƯ¤¯¡£PHB3 ¤¬ÊÑ°Û¤¹¤ë¤È¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤ËÊѲ½¤¬À¸¤¸¤ë¡£¤½¤ì¤Ë¤è¤Ã¤Æ³èÀ­»ÀÁÇÀ¸À®¤¬Áý²Ã¤¹¤ë¡£¤½¤ì¤¬ ERF ¤Ë±Æ¶Á¤òÍ¿¤¨¤ë¡£phb3 ÊÑ°ÛÂΤǤϡ¢Ã±¤Ëº¬¤¬Ã»¤¯¤Ê¤ë¤Î¤Ç¤Ï¤Ê¤¯ÀÅ»ßÃæ¿´ QC ¤ÎºÙ˦¤Ë°Û¾ï¤¬¸«¤é¤ì¤ë¡£ÀŻߤ»¤º¤ËʬÎö¤¹¤ë¤è¤¦¤Ë¤Ê¤ë (Fig. 1)¡£

¥ß¥È¥³¥ó¥É¥ê¥¢¤ËÊѲ½¤¬À¸¤¸¤ë¤ÈÍÍ¡¹¤Ê³èÀ­¤¬Äã²¼¤¹¤ë¤³¤È¤¬¤Û¤È¤ó¤É¤À¤¬¡¢¤³¤ÎÊÑ°ÛÂΤκ¬Ã¼ºÙ˦¤Ç¤Ï NADH dehydrogenase ³èÀ­¤¬¹â¤¯¤Ê¤Ã¤Æ¤¤¤ë (Fig. 3D)¡£AOX ¤ä NDA, NDB ¤Îȯ¸½¤¬¹â¤¯¤Ê¤Ã¤Æ¤¤¤ë (Fig. 3C)¤³¤È¤Ï¾¤ÎÊÑ°ÛÂΤÈƱ¤¸¤Ç¤¢¤ë¡£

DPI ¤È¤¤¤¦³èÀ­»ÀÁǤÎÀ¸À®¤òÁ˳²¤¹¤ëÁ˳²ºÞ¤¬¤¢¤ë¡£Ê£¹çÂÎI¡¢¤Þ¤¿ NADPH oxidase ¤òÁ˳²¤¹¤ë¡£ ÌîÀ¸·¿¿¢Êª¤Ï DPI ¤ò 0.5 ¦Ì£í£ï£ìÍ¿¤¨¤ë¤Èº¬¤Î¿­Ä¹¤¬¶¯¤¯Á˳²¤µ¤ì¤ë¡£¤·¤«¤· phb3 ¤Ç¤Ï¤½¤Î¸ú²Ì¤¬¾®¤µ¤¤ (Fig. 3K)¡£Ê£¹çÂÎI ¤òÂåÂؤ¹¤ë¥Ç¥Ò¥É¥í¥²¥Ê¡¼¥¼¤¬¤¦¤Þ¤¯Æ¯¤¤¤Æ¤¤¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¤¬¡¢²¿¤â¹Í»¡¤µ¤ì¤Æ¤¤¤Ê¤¤¡£

phb3 ¤Îº¬Ã¼ºÙ˦¤Ç¤Ï ERF115, ERF114, and ERF109 ¤¬¤È¤Æ¤â¶¯¤¯È¯¸½¤¹¤ë¤è¤¦¤Ë¤Ê¤Ã¤Æ¤¤¤ë (Fig. 4A)¡£È¯¸½¤¹¤ë¾ì½ê¤â³ÈÂ礷¤Æ¤¤¤ë (Fig. 4B, 4C, 4D)¡£DPI ¤òÍ¿¤¨¤ë¤È¤¤¤¯¤é¤«ÍÞ¤¨¤é¤ì¤ë (4E, 4F, 4G)¡£º¬Ã¼ºÙ˦¤Ë²á»À²½¿åÁǤòÍ¿¤¨¤Æ¤â¶¯¤¯È¯¸½¤¹¤ë (Fig. 5A, 5B)¡£

PHB3 Is Required for the Assembly and Activity of Mitochondrial ATP Synthase in Arabidopsis.¡¡¡¡¡¡Wei Q, Chen B, Wang J, Huang M, Gui Y, Sayyed A, Tan BC.¡¡¡¡¡¡Int J Mol Sci. 2023 May 15;24(10):8787. doi: 10.3390/ijms24108787.¡¡¡¡¡¡PMID: 37240131

¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£

OPENER

OPENER Is a Nuclear Envelope and Mitochondria Localized Protein Required for Cell Cycle Progression in Arabidopsis.¡¡¡¡¡¡Wang W, Zhang X, Niittylä T.¡¡¡¡¡¡Plant Cell. 2019 Jul;31(7):1446-1465. doi: 10.1105/tpc.19.00033. Epub 2019 Apr 25.¡¡¡¡¡¡PMID: 31023726

µ¡Ç½ÉÔÌÀ°äÅÁ»Ò Genes with Unknown Function ¤Ë¤Ä¤¤¤Æ·ÏÅýŪ¤ËÄ´¤Ù¤ë¥×¥í¥¸¥§¥¯¥È¤Î²áÄø¤Ç¡¢º¬Ã¼¤ÇƯ¤¯É¬¿Ü°äÅÁ»Ò¤¬¸«¤¤¤À¤µ¤ì OPENER °äÅÁ»Ò¤È̾ÉÕ¤±¤é¤ì¤¿¡£¤³¤Î°äÅÁ»Ò¤Î»ºÊª¤Ï PHB3, PHB4 ¥¿¥ó¥Ñ¥¯¼Á¤È·ë¹ç¤¹¤ë¤³¤È¤¬¤ï¤«¤Ã¤¿¡£

PHB3 ¤È nitric oxide

The Arabidopsis Prohibitin Gene PHB3 Functions in Nitric Oxide-Mediated Responses and in Hydrogen Peroxide-Induced Nitric Oxide Accumulation.¡¡¡¡¡¡Wang Y, Ries A, Wu K, Yang A, Crawford NM.¡¡¡¡¡¡Plant Cell. 2010 Jan 12. [Epub ahead of print]

Prohibitin3 ¤È¡¢Niric oxide ¤Ë´Ø·¸¤¬¤¢¤ë¤³¤È¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£

º¬¤ËH2O2¤ò½èÍý¤¹¤ë¤ÈNO¤¬È¯À¸¤¹¤ë¡£¤½¤ì¤òDAF-FM DA¤È¤¤¤¦·Ö¸÷¿§ÁǤǸ¡½Ð¤·¤Æ¤¤¤ë (fig. 1)¡£phb3-3ÊÑ°ÛÂΤǤÏH2O2¤òÍ¿¤¨¤¿¤È¤­¤ÎDAF·Ö¸÷¤¬¼å¤¤¡£¤·¤«¤·¤½¤ì¤ÏH2O2Ç»ÅÙ¤¬100¡Á200¦ÌM¤Î»þ¤À¤±¤Ç¡¢¤½¤ì°Ê¾å¤Ç¤Ïº¹¤¬¤Ê¤¤¡£º¹¤¬ºÇÂç¤Î100¦ÌM¤Ç¤â¡¢ÃͤȤ·¤Æ¤Ï2Çܤΰ㤤¤Ç¤¢¤ë¡£¤·¤«¤·½½Ê¬¤ËºÆ¸½À­¤è¤¯º¹¤¬´Ñ»¡¤Ç¤­¤ë¤Î¤À¤í¤¦¡£

º¬¤òNaCl¤Ç½èÍý¤¹¤ë¤ÈNO¤¬È¯À¸¤·¡¢±ö¥¹¥È¥ì¥¹±þÅú¤Ë½ÅÍפǤ¢¤ë¤³¤È¤¬ÃΤé¤ì¤Æ¤¤¤ë¡£phb3-3ÊÑ°ÛÂΤκ¬¤Ç¤ÏNO¤¬È¯À¸¤·¤Ë¤¯¤¤(fig. 7a)¡£phb3-3ÊÑ°ÛÂΤκ¬¤Î¿­Ä¹¤ÏÃÙ¤¤¤¬¡¢±ö¥¹¥È¥ì¥¹¤Ë¤è¤Ã¤Æ¿­Ä¹¤¬ÍÞÀ©¤µ¤ì¤Ë¤¯¤¤(fig. 7b)¡£¹¦ÊÕºÙ˦¤ÏABA¤Ç½èÍý¤µ¤ì¤ë¤ÈNO¤òÀ¸À®¤¹¤ë¡£¤½¤ÎÎ̤¬phb3-3ÊÑ°ÛÂΤǤϾ¯¤Ê¤¯¤Ê¤Ã¤Æ¤¤¤ë (fig. 5A)¡£

H2O2¤ËÂФ¹¤ë±þÅú¤Ï¡¢ÊѤï¤Ã¤Æ¤¤¤Ê¤¤(Table 1)¡£H2O2¤Ë¤è¤¯±þÅú¤¹¤ë¥Þ¡¼¥«¡¼°äÅÁ»Ò¤È¤·¤Æ¡¢WRKY6, HSFA4, TCH3, GSTU12 ¤òÍѤ¤¤Æ¤¤¤ë¡£

Discussion ¤Ç¤Ï¡¢ÅÅ»ÒÅÁã·Ï¤¬NO¹çÀ®¤Ë²Ì¤¿¤¹Ìò³ä¤Ë¤Ä¤¤¤Æ¿¨¤ì¤é¤ì¤Æ¤¤¤ë¡£¤·¤«¤·Prohibitin¤¬¥ß¥È¥³¥ó¥É¥ê¥¢¤ò´Þ¤àºÙ˦Æâ¤Î¤É¤Î¾ì½ê¤Ç¡¢¤É¤Î¤è¤¦¤Êµ¡Ç½¤ò²Ì¤¿¤·¤Æ¤¤¤ë¤Î¤«¡¢¤Ï¤Ã¤­¤ê¤È¤·¤¿¤³¤È¤Ï¤ï¤«¤Ã¤Æ¤¤¤Ê¤¤¤Î¤ÇÌÀ³Î¤Ê¤³¤È¤Ï¸À¤¤¤Ë¤¯¤¤¡£¥ß¥È¥³¥ó¥É¥ê¥¢°Ê³°¤ÎÉô°Ì¤ÇƯ¤¤¤Æ¤¤¤Æ¡¢¤½¤ì¤¬½ÅÍפȸÀ¤¦¤³¤È¤â¤¢¤êÆÀ¤ë¡£NO¤¬ abiotic stress ±þÅú¤Ë½ÅÍפǤ¢¤ë¤³¤È¤Ï¡¢¤³¤ÎÊÑ°ÛÂΡ¢¸¦µæ¤Ë¤è¤Ã¤Æ¼¨¤µ¤ì¤¿¡£

¥×¥í¥Ò¥Ó¥Á¥ó¤¬ÍÕÎÐÂΤˤ⸺ߤ¹¤ë¤³¤È¤¬¼¨¤µ¤ì¤¿¤Î¤Ç¡¢NO ¤Î¹çÀ®¤ÏÍÕÎÐÂΤǵ¯¤­¤Æ¤¤¤ë¤È¹Í¤¨¤Æ²¿¤ÎÌäÂê¤â¤Ê¤¯¤Ê¤ë¡£NO ¤È´Ø·¸¤¹¤ë¥¿¥ó¥Ñ¥¯¼Á NOA1 ¤âÍÕÎÐÂΤÇƯ¤¯°ø»Ò¤Ç¤¢¤ë¡£

Mutational loss of the prohibitin AtPHB3 results in an extreme constitutive ethylene response phenotype coupled with partial loss of ethylene-inducible gene expression in Arabidopsis seedlings¡¡¡¡¡¡Christians MJ, Larsen PB.¡¡¡¡¡¡J Exp Bot. 2007;58(8):2237-48. Epub 2007 May 24.¡¡PMID: 17525078

¶¯¤¤¥¨¥Á¥ì¥ó¥ì¥¹¥Ý¥ó¥¹¤ò¼¨¤¹ÊÑ°ÛÂΤȤ·¤Æ¡¢eer3-1 ¤¬Ã±Î¥¤µ¤ì¤¿¡£¤½¤ì¤Ï PHB3 °äÅÁ»Ò¤ËÊÑ°Û¤¬¤¢¤Ã¤¿¡£¤³¤ÎÏÀʸ¤ÎÉ®¼Ô¤¿¤Á¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Î¤³¤È¤Ë¤Ä¤¤¤Æ¿¨¤ì¤Æ¤¤¤Ê¤¤¡£³Ë¤äºÙ˦¼Á¤Ë¤â prohibitin ¤Ï¸ºß¤¹¤ë¤È¸À¤Ã¤Æ¤¤¤ë¡£¥×¥í¥Ò¥Ó¥Á¥ó¤ÏºÙ˦Æâ¤ÎÊ£¿ô¤Î¾ì½ê¤ÇƯ¤¤¤Æ¤¤¤ë¤Î¤À¤í¤¦¡£eer3 ¤Ï¥¨¥Á¥ì¥ó¤ò¿¤¯¹çÀ®¤·¤Æ¤¤¤¿ (Fig. 2D)¡£¤·¤«¤· ein2 ¤ÈÆó½Å¤ËÊÑ°Û¤·¤Æ¤â¥¨¥Á¥ì¥ó¥ì¥¹¥Ý¥ó¥¹¤¬µ¯¤­¤ë¤Î¤Ç¡¢¥¨¥Á¥ì¥ó¤ò¤¿¤¯¤µ¤óºî¤Ã¤Æ¤¤¤ë¤»¤¤¤À¤±¤Ç¤Ï¤Ê¤¯¡¢¥ì¥¹¥Ý¥ó¥¹¤Ë¤âÊѲ½¤¬À¸¤¸¤Æ¤¤¤ë¡£

EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling.¡¡¡¡¡¡Zhang F, Qi B, Wang L, Zhao B, Rode S, Riggan ND, Ecker JR, Qiao H.¡¡¡¡¡¡Nat Commun. 2016 Oct 3;7:13018. doi: 10.1038/ncomms13018.¡¡¡¡¡¡PMID: 27694846 ¡¡¤È¤¤¤¦ÏÀʸ¤Î Discussion ¤Ë¤Ï¡¢

Exactly how EIN2 CEND functions in the nucleus is still unknown. The isolation of EER3 or PHB3, which is an enhancer of ethylene response and interacts with EIN2 CEND

¤È½ñ¤¤¤Æ¤¢¤ë¡£EIN2 ¤Î CËöü¦¤ËÂçÀڤʥɥᥤ¥ó¤¬¤¢¤ê CEND ¤È¸Æ¤Ð¤ì¤Æ¤¤¤ë¡£¤½¤³¤Ë Prohibitin ¤¬·ë¹ç¤¹¤ë¤é¤·¤¤¡£Prohibitin ¤ÏºÙ˦¼Á¤ä³Ë¤Ç¤âƯ¤¯¤Î¤À¤í¤¦¡£¤·¤«¤·¥Ç¡¼¥¿¤Ï¤É¤³¤Ë¤â¤Ê¤¤¡£

¡Ö¥Õ¥Ã¥¯¤¬¶¯¤¯¶Ê¤¬¤ë¡×¡ÖÀ¸°é¤¬ÍÞ¤¨¤é¤ì¤ë¡×¤³¤È¤«¤é¥¨¥Á¥ì¥ó¥Õ¥§¥Î¥¿¥¤¥×¤È¸À¤Ã¤Æ¤¤¤ë¡£¤·¤«¤·¡¢¤³¤ÎÏÀʸ¤Î fig.5 ¤Ç¼¨¤µ¤ì¤Æ¤¤¤ë¡Ö¥¨¥Á¥ì¥ó¤Ë¤è¤ëAtEBP, PDF1.2 ¤ÎmRNAͶƳ¤¬µ¯¤­¤Ë¤¯¤¯¤Ê¤Ã¤Æ¤¤¤ë¡×¤³¤È¤Ë¤âÃíÌܤ¹¤ë¤Ù¤­¤«¤â¤·¤ì¤Ê¤¤¡£

Unraveling the functions of type II-prohibitins in Arabidopsis mitochondria.¡¡¡¡¡¡Piechota J, Bereza M, Sokołowska A, Suszyński K, Lech K, Jańska H.¡¡¡¡¡¡Plant Mol Biol. 2015 Jun;88(3):249-67. doi: 10.1007/s11103-015-0320-3. Epub 2015 Apr 21.¡¡¡¡¡¡PMID: 25896400

Identification and characterization of high molecular weight complexes formed by matrix AAA proteases and prohibitins in mitochondria of Arabidopsis thaliana.¡¡¡¡¡¡Piechota J, Kolodziejczak M, Juszczak I, Sakamoto W, Janska H. J Biol Chem. 2010 Apr 23;285(17):12512-21. doi: 10.1074/jbc.M109.063644. Epub 2010 Feb 19.¡¡¡¡¡¡PMID: 20172857

The prohibitin genes in Arabidopsis thaliana: expression in seeds, hormonal regulation and possible role in cell cycle control during seed germination.¡¡¡¡¡¡De Diego JG, David Rodríguez F, Rodríguez Lorenzo JL, Cervantes E.¡¡¡¡¡¡J Plant Physiol. 2007 Mar;164(3):371-3. Epub 2006 Jul 31.¡¡¡¡¡¡PMID: 16876910

¤ÛÆýÎà¤Ë¤â¥×¥í¥Ò¥Ó¥Á¥ó¤¬Â¸ºß¤·¤Æ¡¢ºÙ˦Æâ¤ÎÊ£¿ô¤Î¾ì½ê¤Ç¿ÍͤÊƯ¤­¤ò¤·¤Æ¤¤¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤â½ÅÍפÊƯ¤­¤ò¤·¤Æ¤¤¤ë¤³¤È¤¬¤ï¤«¤Ã¤Æ¤¤¤ë¡£¡¡¡¡¡¡http://onlinelibrary.wiley.com/doi/10.1002/iub.1366/pdf¡¡Prohibitin 2: At a communications crossroads¡¡A Bavelloni Ãø - ‎2015

SIORRM4

The RNA Editing Factor SlORRM4 Is Required for Normal Fruit Ripening in Tomato.¡¡¡¡¡¡Yang Y, Zhu G, Li R, Yan S, Fu D, Zhu B, Tian H, Luo Y, Zhu H.¡¡¡¡¡¡Plant Physiol. 2017 Dec;175(4):1690-1702. doi: 10.1104/pp.17.01265. Epub 2017 Oct 23. PMID: 29061908

¥È¥Þ¥È¤Î RNA editing factor ¤Ë¤Ï²Ì¼Â¤¬À®½Ï¤¹¤ëºÝ¤Ëȯ¸½¤·¤Æ¤¤¤ë¤â¤Î¤¬¤¢¤ë¡£¤½¤ì¤é¤ÎÆâ¤Ç SlORRM4 ¤È¤¤¤¦°ø»Ò¤Îµ¡Ç½¤òÍÞ¤¨¤ë¤È¡¢²Ì¼Â¤ÎÀ®½Ï¤¬Ã٤졢¥¨¥Á¥ì¥óÀ¸À®¤È¸ÆµÛÎ̤ÎÁý²Ã¤âÍÞ¤¨¤é¤ì¤¿¡£Æ±»þ¤Ë¿¿ô¤ÎÀ®½Ï´ØÏ¢°äÅÁ»Ò¤Îȯ¸½¤âÊѲ½¤·¤Æ¤¤¤¿¡£À®½Ï¤¬ÃÙ¤ì¤ë¤¬À®½Ï¤·¤Ê¤¤¤ï¤±¤Ç¤Ï¤Ê¤¯¡¢ºÇ½ªÅª¤Ë¤ÏÉáÄ̤ËÀÖ¤¯¤Ê¤ë¡£

²Ì¼Â¤¬À®½Ï¤¹¤ëºÝ¤Ë¸ÆµÛ¤¬°ì»þŪ¤ËÁý²Ã¤¹¤ë¤³¤È¤¬¤¢¤ê¡¢¥¯¥ê¥Þ¥¯¥Æ¥ê¥Ã¥¯ climacteric ²Ì¼Â¤È¸Æ¤Ð¤ì¤ë¡£¥È¥Þ¥È¤Ï¥¯¥ê¥Þ¥¯¥Æ¥ê¥Ã¥¯²Ì¼Â¤Î°ì¤Ä¤Ç¤¢¤ë¡£¤½¤ÎºÝ¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎÊѲ½¤Ë¤Ä¤¤¤Æ¸¦µæ¤¬¹Ô¤ï¤ì¤Æ¤¤¤ë¡£¥¨¥Á¥ì¥ó¤Ï¸ÆµÛÎ̤ÎÁý²Ã¤Ë´ØÍ¿¤·¤Æ¤¤¤ë¡£

ORRM ¤Ï RNA recognition motif-containing protein ¤Î°ì¼ï¤Ç¡¢¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Ç¤âÊÑ°ÛÂΤ¬Ã±Î¥¤µ¤ì¸¦µæ¤µ¤ì¤Æ¤¤¤ë¡£¤³¤Î¥ê¥¹¥È¤Ç¤â²¼¤Ë½Ð¤Æ¤¯¤ë¡£

PRECOCIOUS1 (POCO1)

PRECOCIOUS1 (POCO1), a Mitochondrial Pentatricopeptide Repeat (PPR) Protein Affects Flowering Time in Arabidopsis thaliana.¡¡¡¡¡¡ Emami H, Kempken F.¡¡¡¡Plant J. 2019 Jun 20. doi: 10.1111/tpj.14441. [Epub ahead of print] PMID:¡¡31219634

Transcriptomic Analysis of poco1, a Mitochondrial Pentatricopeptide Repeat Protein Mutant in Arabidopsis Thaliana¡¡¡¡¡¡BMC Plant Biol. 2020 May 12;20(1):209.¡¡¡¡¡¡doi: 10.1186/s12870-020-02418-z.¡¡¡¡¡¡Hossein Emami, Abhishek Kumar, Frank Kempken¡¡¡¡¡¡PMID: 32397956 PMCID: PMC7216612

²ÖÀ®¤Î¥¿¥¤¥ß¥ó¥°¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë´Ø·¸¤¬¤¢¤ë¤é¤·¤¤¤È½ñ¤¤¤Æ¤¢¤ë¡£

¤³¤ì¤â RNA-seq ¥Ç¡¼¥¿¤¬¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£¡¡https://www.ebi.ac.uk/ena/data/view/PRJEB37708¡¡

AtOM66 (At3g50930), TTM1 ³°Ëì¶Éºß¥¿¥ó¥Ñ¥¯¼Á¤È cell death

The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana.¡¡¡¡¡¡Zhang B, Van Aken O, Thatcher L, De Clercq I, Duncan O, Law SR, Murcha MW, van der Merwe M, Seifi HS, Carrie C, Cazzonelli C, Radomiljac J, Höfte M, Singh KB, Van Breusegem F, Whelan J.¡¡¡¡¡¡Plant J. 2014 Nov;80(4):709-27. doi: 10.1111/tpj.12665.¡¡¡¡¡¡PMID: 25227923

AtOM66 ¤ò¶¯¤¯È¯¸½¤¹¤ë¿¢Êª¤òºîÀ®¤¹¤ë¤È¡¢¥í¥¼¥Ã¥ÈÍÕ¤ÎÃʳ¬¤Ç´¥Áç¤Ë¶¯¤¯¤Ê¤Ã¤¿¤È¤¤¤¦¼Ì¿¿¤¬¼¨¤µ¤ì¤Æ¤¤¤ë (Figure 6)¡£´¥Áç¤Ë¤è¤ë³èÀ­»ÀÁǤÎÀ¸À®¤¬¾¯¤Ê¤¯¤Ê¤Ã¤Æ¤¤¤ë¡£¥µ¥ê¥Á¥ë»À¤ÎÎ̤¬Áý¤¨¤ë¡ÊÆóÇܤ¯¤é¤¤¡Ë¡£Pseudomonas syringae ¤Î´¶À÷¤Ë¶¯¤¯¤Ê¤Ã¤Æ¤¤¤ë (figure 9a)¡£ahg2 ¤Ç¤â¥µ¥ê¥Á¥ë»À¤ÎÎ̤¬Áý¤¨¤ë¤¬¡¢ahg2 ¤Ï³èÀ­¤ò¼º¤¦ÊѰۤǤ½¤¦¤Ê¤ë¡£AtOM66 ¤Ï²á¾ê¤Ëȯ¸½¤¹¤ë¤³¤È¤Ç¤½¤¦¤Ê¤Ã¤Æ¤¤¤ë¡£

Mitochondrial Function Modulates Touch Signalling in Arabidopsis thaliana.¡¡¡¡¡¡Xu Y, Berkowitz O, Narsai R, De Clercq I, Hooi M, Vincent B, Van Breusegem F, Whelan J, Wang Y.¡¡¡¡¡¡Plant J. 2018 Dec 8. doi: 10.1111/tpj.14183. [Epub ahead of print]¡¡¡¡¡¡PMID: 30537160¡¡¤È¤¤¤¦ÏÀʸ¤Ë¤Ï¡¢OM66 ¤Ïµ¡³£»É·ã touch stimuli ¤ÇµÞ® 30min °ÊÆâ¤Ëž¼Ì»ºÊª¤¬ÁýÂ礹¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£¤½¤ì¤Ï WRKY15, WRKY40 ¤È¤¤¤¦Å¾¼Ì°ø»Ò¤ÈϢư¤·¤Æ¤¤¤ë¡£Ê£¹çÂÎI ¤¬¼º³è¤·¤¿ ndufs4 ÊÑ°ÛÂÎ¤Ç¤Ï OM66 ¤ÎͶƳ¤ÏÍÞ¤¨¤é¤ì¤ë¤¬¡¢WRKY40 ¤ÏÍÞ¤¨¤é¤ì¤Ê¤¤¡£At12Cys-1 (At5g64400) and At12Cys-2 (At5g09570) ¤Ï twin Cysteine protein ¤È¤¤¤¦¥ß¥È¥³¥ó¥É¥ê¥¢¥¿¥ó¥Ñ¥¯¼Á¤ò¥³¡¼¥É¤·¤Æ¤¤¤ë¡£At12Cys-2 ¤Ï¿¤¯¤Î¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½ÊÑ°ÛÂΤÇȯ¸½¤¬¾å¾º¤¹¤ë¡£¤³¤ì¤é¤Î°äÅÁ»Ò¤¬ÊÑ°Û¤¹¤ë¤ÈÀÜ¿¨»É·ã±þÅú¤¬¶¯¤¯¤Ê¤ë¡£ µ¡³£»É·ãͶƳÀ­¤Ç¤è¤¯ÃΤé¤ì¤Æ¤¤¤ë TCH3, TCH4 ¤È OM66 ¤ÏͶƳ¤Î¤µ¤ìÊý¤¬°Û¤Ê¤êÊ̤Υ¯¥é¥¹¥¿¡¼¤Ëʬ¤±¤é¤ì¤ë¡£

¥Û¥ë¥â¥ó¤È¤ÎÁê¸ßºîÍѤˤĤ¤¤Æ¤âÄ´¤Ù¤é¤ì¤Æ¤¤¤ë¡£KIN10 ¤È¤¤¤¦°ø»Ò¤ËÃíÌܤ·¤Æ¤¤¤ë¡£

¥ß¥È¥³¥ó¥É¥ê¥¢¤È cell death ¤Î´Ø·¸¤Ë¤Ä¤¤¤Æ¡¢¤³¤¦¤¤¤¦ÏÀʸ¤â¤¢¤Ã¤¿¡£TTM1 ¤â outer membrane ¤ÇƯ¤¯¥¿¥ó¥Ñ¥¯¼Á¤Ç¤¢¤ë¡£ABA ¤¬´Ø·¸¤·¤Æ¤¤¤ë¡£

Multiple phosphorylation events of the mitochondrial membrane protein TTM1 regulate cell death during senescence¡¡¡¡¡¡Purva Karia, Keiko Yoshioka, Wolfgang Moeder¡¡¡¡¡¡Version of Record online: 02 September 2021

Frataxin

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--frataxin
¡¡Å´¥¤¥ª¥ó¥Û¥á¥ª¥¹¥¿¥·¥¹¡¢Fe-S ¥¯¥é¥¹¥¿¡¼¤Î·ÁÀ®¡¢¥Ø¥à¤Î¹çÀ®¤ËɬÍפʥߥȥ³¥ó¥É¥ê¥¢¶Éºß¥¿¥ó¥Ñ¥¯¼Á¡£ ¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¤ÏÅ´¤ò´Þ¤à½ÅÍפʥ¿¥ó¥Ñ¥¯¼Á¤¬¿ô¿¤¯Â¸ºß¤¹¤ë¡£¥¿¥°¥é¥¤¥ó¤Ç´°Á´¤Ê·ç¼ºÂΤϼè¤ì¤Ê¤«¤Ã¤¿¡£µ¡Ç½Äã²¼¤·¤¿¥é¥¤¥ó¤ÏÀ¸°é²Äǽ¤À¤Ã¤¿¡£³èÀ­»ÀÁÇÀ¸À®¤¬Â¥¿Ê¤µ¤ì¤Æ¤¤¤ë(NBTÀ÷¿§¤Ç¤Î·ë²Ì)¡£

Frataxin ¤Ï¡¢°äÅÁÉ¤θ¶°ø°äÅÁ»Ò¤Ç¤¢¤ë¤Î¤Ç½ÅÍפǤ¢¤ë¡£¡¡¡¡¡¡http://www.cellbio.med.osaka-u.ac.jp/iron02.htm¡¡¡¡¡¡ÂçºåÂç³ØÂç³Ø±¡ À¸Ì¿µ¡Ç½¸¦µæ²Ê¡¡ºÙ˦¥Í¥Ã¥È¥ï¡¼¥¯¹ÖºÂ ¡¡Âå¼ÕÄ´Àá³Ø¸¦µæ¼¼¡¡´ä°æ¶µ¼ø¤Î¥°¥ë¡¼¥× ¤Ë¤è¤ë¸¦µæ²òÀâ¡¡¡Ö½Ð²ê¹ÚÊì¤Ë¤ª¤¤¤Æ¤âÅ´¤Ïɬ¿Ü¤Î±ÉÍÜÁǤǤ¢¤ê¡¢½Ð²ê¹ÚÊì¤ÎÅ´¡¢Å´Êä·çʬ»Ò²¤Î¸¦µæ¤«¤é¥Õ¥ê¡¼¥É¥ê¥Ã¥Ò¼ºÄ´¾É¤Î¸¶°ø°äÅÁ»Ò¤Ç¤¢¤ë¥Õ¥é¥¿¥­¥·¥ó¤Îµ¡Ç½¤¬ÌÀ¤é¤«¤Ë¤Ê¤ë¤Ê¤É¡¢Å´Âå¼Õ¸¦µæ¤ÎÍ­ÍѤʥâ¥Ç¥ëÀ¸Êª¤Ë¤Ê¤Ã¤Æ¤¤¤Þ¤¹¡£¡×¤È¡¢½ñ¤«¤ì¤Æ¤¤¤ë¡£¹ÚÊì¤äưʪ¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤Î½ÅÍפʵ¡Ç½¤Î°ì¤Ä¤Ë¡¢Å´¥¤¥ª¥ó¤Î¹±¾ïÀ­°Ý»ý¤¬¤¢¤ë¤³¤È¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£

2018 ǯ¤Ë¡¢¿¢Êª¤Î frataxin ¤Ï¥Ø¥à¤ÎÀ¸¹çÀ®¤ò¿¨ÇÞ¤¹¤ë³èÀ­¤ò»ý¤Ä¤È¤¤¤¦ÏÀʸ¤¬È¯É½¤µ¤ì¤¿¡£

Ferrochelatase activity of plant frataxin.¡¡¡¡¡¡Armas AM, Balparda M, Terenzi A, Busi MV, Pagani MA, Gomez-Casati DF.¡¡¡¡¡¡Biochimie. 2018 Oct 18;156:118-122. doi: 10.1016/j.biochi.2018.10.009.¡¡¡¡¡¡PMID: 30342111

°ÊÁ°¤Ë¤â¡¢frataxin ¤Ï¥Ø¥à¤ÎÀ¸¹çÀ®¤Ë´Ø¤ï¤ë¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£

The mitochondrial protein frataxin is essential for heme biosynthesis in plants.¡¡¡¡¡¡Maliandi MV, Busi MV, Turowski VR, Leaden L, Araya A, Gomez-Casati DF.¡¡¡¡¡¡FEBS J. 2010 Nov 20. doi: 10.1111/j.1742-4658.2010.07968.x.

¥Ø¥à¤ÎÀ¸¹çÀ®¤ò¿¨ÇÞ¤¹¤ë Ferrochelatase (FC) ¤Ï¡¢¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Ç¤Ï FC1 (At5g26030), FC2 (At2g30390) ¤ÎÆó¼ïÎब¤¢¤ë¡£ FC2 ¤ÏÍÕÎÐÂΤËɬÍפʥإà¤ÎÀ¸¹çÀ®¤ò¹Ô¤Ã¤Æ¤¤¤ë¡£FC1 ¤ÏÍÕÎÐÂΰʳ°¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¡¢¾®Ë¦ÂΡ¢ºÙ˦¼Á¤Ê¤É¤ÇɬÍפʥإà¤Î¹çÀ®¤ò¹Ô¤Ã¤Æ¤¤¤ë¡£¤É¤Á¤é¤âÍÕÎÐÂÎÆâ¤Ë¸ºß¤·¤Æ¤¤¤ë¡£ ¤³¤Î¤³¤È¤ò¼¨¤·¤¿ÏÀʸ¡§

Allocation of Heme Is Differentially Regulated by Ferrochelatase Isoforms in Arabidopsis Cells.¡¡¡¡¡¡Espinas NA, Kobayashi K, Sato Y, Mochizuki N, Takahashi K, Tanaka R, Masuda T.¡¡¡¡¡¡Front Plant Sci. 2016 Aug 31;7:1326. doi: 10.3389/fpls.2016.01326. eCollection 2016.¡¡¡¡¡¡PMID: 27630653

Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants.¡¡¡¡¡¡Woodson JD, Perez-Ruiz JM, Chory J.¡¡¡¡¡¡Curr Biol. 2011 May 24;21(10):897-903. Epub 2011 May 12.¡¡PMID: 21565502

¿¢Êª¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¥Ø¥à¤¬À¸¹çÀ®¤µ¤ì¤ë¤Î¤«¤É¤¦¤«¤Ï¡¢¿¢Êª¤Î¼ïÎà¤ä´ï´±¤Î±Æ¶Á¤¬¤¢¤êÆñ¤·¤¤ÌäÂê¤é¤·¤¤¡£

Transgenic Tobacco Lines Expressing Sense or Antisense FERROCHELATASE 1 RNA Show Modified Ferrochelatase Activity in Roots and Provide Experimental Evidence for Dual Localization of Ferrochelatase 1.¡¡¡¡¡¡Hey D, Ortega-Rodes P, Fan T, Schnurrer F, Brings L, Hedtke B, Grimm B.¡¡¡¡¡¡Plant Cell Physiol. 2016 Dec;57(12):2576-2585. Epub 2016 Oct 22.¡¡¡¡¡¡PMID: 27818378

Frataxin ¤ÏÍÕÎÐÂΤǤâƯ¤¯¤È¤¤¤¦ÏÀʸ¤¬¤¢¤ë¡£

Frataxin Is Localized to Both the Chloroplast and Mitochondrion and Is Involved in Chloroplast Fe-S Protein Function in Arabidopsis.¡¡¡¡¡¡Turowski VR, Aknin C, Maliandi MV, Buchensky C, Leaden L, Peralta DA, Busi MV, Araya A, Gomez-Casati DF.¡¡¡¡¡¡PLoS One. 2015 Oct 30;10(10):e0141443. doi: 10.1371/journal.pone.0141443. eCollection 2015.¡¡¡¡¡¡PMID: 26517126

Frataxin ¤¬¿¢Êª¤Î¼«Á³Ìȱ֤˴ØÍ¿¤·¤Æ¤¤¤ë¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£

Iron-sulfur cluster protein NITROGEN FIXATION S-LIKE 1 and its interactor FRATAXIN function in plant immunity. ¡¡¡¡¡¡Fonseca JP, Lee HK, Boschiero C, Griffiths M, Lee S, Zhao PX, York L, Mysore KS.¡¡¡¡¡¡Plant Physiol. 2020 Sep 17:pp.00950.2020. doi: 10.1104/pp.20.00950. ¡¡¡¡¡¡PMID: 32943465

frataxin ¤È°ì»À²½ÃâÁǤδط¸¤ò¼¨¤¹ÏÀʸ¤¬¸øɽ¤µ¤ì¤Æ¤¤¤ë¡£

Nitric oxide and frataxin: two players contributing to maintain cellular iron homeostasis.¡¡¡¡¡¡Ramirez L, Zabaleta EJ, Lamattina L.¡¡¡¡¡¡Ann Bot. 2010 May;105(5):801-10. Epub 2009 Jun 25. Review.¡¡¡¡¡¡PMID: 19556267

Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants.¡¡¡¡¡¡Martin M, Colman MJ, Gomez-Casati DF, Lamattina L, Zabaleta EJ.¡¡¡¡¡¡FEBS Lett. 2009 Feb 4;583(3):542-8. Epub 2008 Dec 27.¡¡¡¡¡¡PMID: 19114041

SAL1/FRY1

The PAP/SAL1 retrograde signaling pathway is involved in iron homeostasis.¡¡¡¡¡¡Balparda M, Armas AM, Estavillo GM, Roschzttardtz H, Pagani MA, Gomez-Casati DF.¡¡¡¡¡¡Plant Mol Biol. 2020 Jan 3. doi: 10.1007/s11103-019-00950-7. ¡¡¡¡¡¡PMID: 31900819

SAL1/FRY1 ¤Ï¥·¥°¥Ê¥ëʬ»Ò¤Ç¤¢¤ë 3'-phosphoadenisine-5'-phosphate (PAP) ¤òʬ²ò¤¹¤ë¥Û¥¹¥Õ¥¡¥¿¡¼¥¼¤Ç¡¢¤³¤ì¤é¤Ï¥¯¥í¥í¥×¥é¥¹¥È¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤·¤Æ¤¤¤ë¡£ PAP ¤Ïž¼Ì¸åÄ´Àá¥ê¥Ü¥Ì¥¯¥ì¥¢¡¼¥¼¡ÊAHG2 ¤Î¤è¤¦¤Êʬ»Ò¡©¡Ë¤Î³èÀ­¤òÁ˳²¤¹¤ë¡£ SAL1/FRY1 ¤Îµ¡Ç½¤¬Äã²¼¤¹¤ë¤È¥Õ¥§¥ê¥Á¥ó°äÅÁ»Ò¤Ë¥³¡¼¥É¤µ¤ì¤¿ mRNA ¤ÎÃßÀÑÎ̤¬Áý²Ã¤¹¤ë¡£¤Þ¤¿Å´·ç˳ÇÝÃϤǤÎÀ¸°é¤¬¤è¤¯¤Ê¤ë¤È½ñ¤¤¤Æ¤¢¤ë¡£¥¨¥Á¥ì¥ó¤â´Ø·¸¤·¤Æ¤¤¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

The Arabidopsis SAL1-PAP Pathway: A Case Study for Integrating Chloroplast Retrograde, Light and Hormonal Signaling in Modulating Plant Growth and Development?¡¡¡¡¡¡Phua SY, Yan D, Chan KX, Estavillo GM, Nambara E, Pogson BJ.¡¡¡¡¡¡Front Plant Sci. 2018 Aug 8;9:1171. doi: 10.3389/fpls.2018.01171. eCollection 2018.¡¡¡¡¡¡PMID: 30135700 ¡¡¡¡¡¡¥¹¥È¥ì¥¹¾õÂÖ¤Ç¤Ï SAL1/FRY1 ¤Ë¤è¤ë PAP ¤Îʬ²ò¤¬¤ª¤­¤Ë¤¯¤¯¤Ê¤ê¡¢PAP ¤ÎÃßÀÑÎ̤¬Áý²Ã¤¹¤ë¡£PAP ¤Ï³Ë¤Ë°ÜÆ°¤·¤Æ nuclear exoribonucleases (XRNs) ¤Î³èÀ­¤òÁ˳²¤¹¤ë¡£¤½¤ì¤Ë¤è¤Ã¤Æ¥¹¥È¥ì¥¹±þÅú¤¬µ¯¤­¤ë¡£XRNs ¤Ï 5'-3' exoribonucleases ¤Ê¤Î¤Ç PARN (AHG2) ¤È¤ÏÈ¿ÂЦ¤Ë¤Ê¤ë¡£

CBSX3

Plant Sci, 294, 110458¡¡¡¡¡¡CBSX3-Trxo-2 Regulates ROS Generation of Mitochondrial Complex II (Succinate Dehydrogenase) in Arabidopsis¡¡¡¡¡¡Jin Seok Shin 1 , Won Mi So 1 , Soo Youn Kim 2 , Minsoo Noh 1 , Sujin Hyoung 1 , Kyoung Shin Yoo 3 , Jeong Sheop Shin¡¡¡¡¡¡PMID: 32234226

CBSX3 ¤ò knock down ¤¹¤ë¤È¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·ÏÊ£¹çÂÎII ¡Ê¥³¥Ï¥¯»À¥Ç¥Ò¥É¥í¥²¥Ê¡¼¥¼¡Ë¤«¤é¤Î ROS À¸À®¤¬¾¯¤Ê¤¯¤Ê¤ê¡¢¥ê¥°¥Ë¥ó¤¬¸º¤Ã¤ÆÀ¸°é¤¬¤è¤¯¤Ê¤ë¡£

FSL0260

¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Î²êÀ¸¤¨¤ÎÂѱöÀ­¤ò¹â¤á¤ë²½¹çʪ¤Îõº÷¤Ë¤è¤Ã¤Æ¡¢FSL0260 ¤È¤¤¤¦²½¹çʪ¤¬¸«¤¤¤À¤µ¤ì¤¿¡£¤³¤Î²½¹çʪ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¤ÎÊ£¹çÂÎ I ¤òÁ˳²¤¹¤ë¤³¤È¤¬È½ÌÀ¤·¤¿¡£Å¬ÅÙ¤ËÁ˳²¤¹¤ë¤³¤È¤Ë¤è¤ê AOX ¥¿¥ó¥Ñ¥¯¼Á¤ÎÎ̤¬Áý²Ã¤·¤Æ³èÀ­»ÀÁÇÀ¸À®¤¬¸º¾¯¤·¥¹¥È¥ì¥¹ÂÑÀ­¤ò¹â¤á¤ë¤È¿ä»¡¤µ¤ì¤Æ¤¤¤ë¡£¥¹¥È¥ì¥¹ÂÑÀ­¤ò¹â¤á¤ëÇ»ÅÙ¡Ê20 ¡Á 40 ¦ÌM¡Ë¤Ç¤Ï¡¢Ê£¹çÂÎ I ¤Î³èÀ­¤ÏȾʬ°Ê¾å»Ä¤Ã¤Æ¤¤¤ë¡Ê»î¸³´ÉÆâ¤Î¥¢¥Ã¥»¥¤¤Ç¡Ë¤È¤¤¤¦¥Ç¡¼¥¿¤¬¤¢¤ë (Fig. 4B)¡£ ¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Î¾ì¹ç¡¢20 ¦ÌM ¤Î FSL0260 ¤ÏÂѱöÀ­¤ò¹â¤á¤ë¤¬¡¢±ö¥¹¥È¥ì¥¹¤Î¤Ê¤¤Ä̾ï¤Î¾ò·ï¤Ç¤Ï ¤«¤Ê¤êÀ¸°é¤òÁ˳²¤¹¤ë (Supplemental Fig. 1)¡£¤·¤«¤·¥¤¥Í¤Ç¤ÏƱ¤¸Ç»ÅÙ¤ÇÂѱöÀ­¤¬¸þ¾å¤¹¤ë¤Î¤ÏƱ¤¸¤À¤¬¡¢±ö¥¹¥È¥ì¥¹¤¬¤Ê¤¤¾ò·ï¤ÇÀ¸°éÁ˳²¤¬¤Û¤È¤ó¤É¤Ê¤¤ (Fig. 6)¡£ °äÅÁ»Ò¤ÎÊѰۤǥ¿¥ó¥Ñ¥¯¼Á¤¬¤¦¤Þ¤¯ºî¤é¤ì¤Ê¤¯¤Ê¤ë¤È¤½¤Î¥¿¥ó¥Ñ¥¯¼Á¤ÎÎ̤ϸº¾¯¤·¤Æµ¡Ç½¤¬Äã²¼¤¹¤ë¡£°ìÊýÁ˳²ºÞ¤òÍ¿¤¨¤¿¾ì¹ç¤Ïɬ¤º¤·¤âɸŪ¥¿¥ó¥Ñ¥¯¼Á¤ÎÎ̤ϸº¾¯¤¹¤ë¤È¤Ï¸Â¤é¤Ê¤¤¡£¤«¤¨¤Ã¤ÆÁý²Ã¤¹¤ë¾ì¹ç¤â¤¢¤ë¡£¤½¤¦¤¤¤¦¤³¤È¤ò¹Í¤¨¤ë¤ÈÁ˳²ºÞ¤òÍѤ¤¤¿¸¦µæ¤ÏÊÑ°ÛÂΤòÍѤ¤¤¿¸¦µæ¤ÈÁêÊäŪ¤ËƯ¤¤¤ÆñÆȤǤϤ狼¤é¤Ê¤¤¤³¤È¤Îȯ¸«¤Ë¤Ä¤Ê¤¬¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

Kaori Sako, Yushi Futamura, Takeshi Shimizu, Akihiro Matsui, Hiroyuki Hirano Yasumitsu Kondoh, Makoto Muroi, Harumi Aono, Maho Tanaka, Kaori Honda, Kenshirou Shimizu, Makoto Kawatani, Takeshi Nakano, Hiroyuki Osada, Ko Noguchi, Motoaki Seki, Inhibition of mitochondrial complex I by the novel compound FSL0260 enhances high salinity-stress tolerance in Arabidopsis thaliana, Scientific Reports, 10.1038/s41598-020-65614-9

Íý¸¦¤«¤é¥×¥ì¥¹¥ê¥ê¡¼¥¹¤¬È¯É½¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡https://www.riken.jp/press/2020/20200526_1/index.html

ÏÀʸ¤òÆɤó¤Ç»ä¤â¥í¥Æ¥Î¥ó¤Ç»î¤·¤Æ¤ß¤ë¤È³Î¤«¤Ë¾¯¤·±ö¥¹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤Ã¤¿¡£¥í¥Æ¥Î¥ó¤Ï°Æ³°À¸°é¤òÍÞÀ©¤·¤Ê¤¤¡£

±ö¥¹¥È¥ì¥¹¤ÏÍÍ¡¹¤ÊºÙ˦¤Îµ¡Ç½¤òÁ˳²¤¹¤ë¤¬¡¢¸÷¹çÀ®¤ò¤·¤Æ¤¤¤ëºÙ˦¤Ç¤Ï¸÷²½³Ø·Ï¤ËÂФ¹¤ë±Æ¶Á¤¬¤È¤Æ¤âÂ礭¤¤¡£±ö¥¹¥È¥ì¥¹¤È¸÷¤¬Áê¾èŪ¤Ë¸÷²½³Ø·Ï¤Ë¥À¥á¡¼¥¸¤òÍ¿¤¨¤ë¤³¤È¤¬ÃΤé¤ì¤Æ¤¤¤ë¡£Sako ¤é¤ÎÏÀʸ¤Ç¤âÎв½¤·¤¿²êÀ¸¤¨¤òÍѤ¤¡¢¥¯¥í¥í¥Õ¥£¥ë¤ÎÂ࿧¤¬ÍÞ¤¨¤é¤ì¤ë¤³¤È¤ò»Øɸ¤Ë¤·¤Æ¤¤¤ë¡£

Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in synechocystis.¡¡¡¡¡¡Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N. Plant Physiol. 2002 Nov;130(3):1443-53. doi: 10.1104/pp.011114. PMID: 12428009

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC116483/¡¡¡¡¡¡Plant Physiol. 2001 Jul; 126(3): 1266–1274.¡¡¡¡¡¡doi: 10.1104/pp.126.3.1266¡¡¡¡¡¡PMCID: PMC116483¡¡¡¡¡¡PMID: 11457977¡¡¡¡¡¡Mitochondrial Adaptations to NaCl. Complex I Is Protected by Anti-Oxidants and Small Heat Shock Proteins, Whereas Complex II Is Protected by Proline and Betaine¡¡¡¡¡¡E. William Hamilton, and Scott A. Heckathorn¡¡¡¡¡¡Ê£¹çÂÎ I ¤Ï NaCl ¤ÇÁý²Ã¤¹¤ë ROS ¤Ç´ÖÀÜŪ¤Ë¥À¥á¡¼¥¸¤ò¼õ¤±¤ë¤¬ antioxidants and sHsps¡¡¤ÇÊݸ¤ì¤ë¡£¤³¤Î¸¦µæ¤Ï¥È¥¦¥â¥í¥³¥·¤Î°Å½ê²êÀ¸¤¨¤ò»È¤Ã¤Æ¤¤¤ë¤Î¤Ç¸÷¹çÀ®¤Ï´Ø·¸¤Ê¤¤¡£

The role of mitochondrial respiration in salinity tolerance.¡¡¡¡¡¡ Jacoby RP, Taylor NL, Millar AH.¡¡¡¡¡¡ Trends Plant Sci. 2011 Nov;16(11):614-23. doi: 10.1016/j.tplants.2011.08.002. Epub 2011 Sep 7. ¡¡¡¡¡¡PMID: 21903446¡¡¡¡¡¡¤È¤¤¤¦¥ì¥Ó¥å¡¼¤Ç¡¢±ö¥¹¥È¥ì¥¹¤È¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¤Î´Ø·¸¤Ë¤Ä¤¤¤Æ¹Í»¡¤µ¤ì¤Æ¤¤¤ë¡£¡¡Mitochondrial proteome during salt stress-induced programmed cell death in rice.¡¡¡¡¡¡Chen X, Wang Y, Li J, Jiang A, Cheng Y, Zhang W. Plant Physiol Biochem. 2009 May;47(5):407-15. doi: 10.1016/j.plaphy.2008.12.021. Epub 2009 Jan 9. ¡¡¡¡¡¡PMID: 19217306 ¡¡¡¡¡¡¤Ç¤ÏÊ£¹çÂÎ I ¤Î³èÀ­À÷¿§¤ò¹Ô¤Ã¤Æ¤¤¤ë¡ÊFig. 6¡Ë¡£¥¹¥È¥ì¥¹½èÍý¤Ç³èÀ­¤¬ 60% ¤Ë²¼¤¬¤ë¡£¤½¤ì¤Û¤É¸²Ãø¤Ë²¼¤¬¤ë¤ï¤±¤Ç¤Ï¤Ê¤¤¡£

AOX ¤¬¥¹¥È¥ì¥¹ÂÑÀ­¤Ë´ØÍ¿¤·¤Æ¤¤¤ë¤³¤È¤Ë¤Ä¤¤¤Æ¿¿ô¤Î¸¦µæ¤¬¤¢¤ë¡£¡¡¡¡Photoprotection by mitochondrial alternative pathway is enhanced at heat but disabled at chilling.¡¡¡¡¡¡ Li YT, Liu MJ, Li Y, Liu P, Zhao SJ, Gao HY, Zhang ZS.¡¡¡¡¡¡Plant J. 2020 Jul 19. doi: 10.1111/tpj.14931. ¡¡¡¡¡¡PMID: 32683757

TIM17-1 (At1g20350) ¤Î¥Î¥Ã¥¯¥¢¥¦¥È

The mitochondrial protein import component, TRANSLOCASE OF THE INNER MEMBRANE17-1, plays a role in defining the timing of germination in Arabidopsis.¡¡¡¡¡¡Wang Y, Law SR, Ivanova A, van Aken O, Kubiszewski-Jakubiak S, Uggalla V, van der Merwe M, Duncan O, Narsai R, Whelan J, Murcha MW. Plant Physiol. 2014 Nov;166(3):1420-35. doi: 10.1104/pp.114.245928. Epub 2014 Sep 24. PMID: 25253887

¼ï»Ò¤¬È¯²ê¤¹¤ëºÝ¤Ë¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤¬½¤Éü¤µ¤ì¡¢³èÀ­²½¤¹¤ë¡£È¯²ê»þ¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë´Ø¤·¤ÆºÇ¶á¸¦µæ¤¬¿Ê¤ó¤Ç¤¤¤ë¡£TIM17 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Ø¤Î¥¿¥ó¥Ñ¥¯¼ÁÍ¢Á÷¤Ë´Ø¤ï¤Ã¤Æ¤¤¤ë¡£Fig. 3 ¤Ë¡ÖAttim17-1 KO lines exhibit faster germination rates on various sugars and exhibit mild ABA insensitivity. ¡×¤È¤¤¤¦¥Ç¡¼¥¿¤¬·ÇºÜ¤µ¤ì¤Æ¤¤¤ë¡£ ¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë´Ø¤¹¤ëÊÑ°ÛÂΤϤɤì¤âȯ²ê¤¬ÃÙ¤¯¤Ê¤ë¤â¤Î¤Ð¤«¤ê¤À¤Ã¤¿¤¬¡¢¤³¤Î¾ì¹ç¤Ï¤½¤ÎµÕ¤Çȯ²ê¤¬Â¥¿Ê¤µ¤ì¤Æ¤¤¤ë¡£¤³¤ì¤ÏÄÁ¤·¤¤¡£

¤·¤«¤·¡¢¼ï»Ò¤È¤ÏÆñ¤·¤¤¤â¤Î¤Ç¡¢¼ï»Ò¤ò¼è¤ë¤¿¤á¤Ë°éÀ®¤·¤Æ¤¤¤ë¿¢ÊªÂΤËÅö¤Æ¤ë¸÷¤Î¼Á¡Ê¥Õ¥£¥È¥¯¥í¡¼¥à¤Î±Æ¶Á¡Ë¤ä°éÀ®²¹ÅÙ¤¬ÊѤï¤ë¤È¡¢¼è¤ì¤¿¼ï»Ò¤ÎµÙ̲¤ÎÅٹ礤¤¬ÊѲ½¤¹¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë»ñÎÁ¤¬¤¢¤Ã¤¿¡£¤Þ¤¿¼ï»Ò¤ÎÊݸ¾ò·ï¡¢Êݸ´ü´Ö¤Ë¤è¤Ã¤Æ¤âȯ²ê¤Þ¤Ç¤Î»þ´Ö¤¬ÊѲ½¤¹¤ë¤«¤â¤·¤ì¤Ê¤¤¡£HY5 °äÅÁ»Ò¤Îȯ²ê¤ËÂФ¹¤ë¸ú²Ì¤¬¡¢¤½¤¦¤¤¤¦¤³¤È¤ÇÏÀÁè¤Ë¤Ê¤Ã¤Æ¤¤¤¿¡£¤¢¤ëÏÀʸ¤ËÂФ¹¤ëÈ¿ÏÀ¤À¤±¤ÇÏÀʸ¤Ë¤Ê¤Ã¤Æ¤¤¤¿¡£

Attim17-1 ¤Î mRNA Î̤ϴ¥Áç¼ï»Ò¤Ç¹â¤¯¡¢µÛ¿å¤¹¤ë¤È 1 »þ´Ö°ÊÆâ¤Ë¸º¾¯¤¹¤ë¡£Attim17-3 ¤¬Æþ¤ìÂؤï¤ë¤è¤¦¤ËƯ¤­½Ð¤¹¡£Attim17-1 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤òÍÞ¤¨¤ë¤è¤¦¤Ëµ¡Ç½¤·¡¢È¯²ê¸å¤Ï tim17-3 ¤¬¥ß¥È¥³¥ó¥É¥ê¥¢¤ò³èÀ­²½¤¹¤ë¤ÈÁÛÁü¤¹¤ë¤³¤È¤Ï¤Ç¤­¤ë¡£

ATH1 ¤Î¥Þ¥¤¥¯¥í¥¢¥ì¥¤¥Ç¡¼¥¿¡¡GSE48488 ¤¬¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£ cel ¥Õ¥¡¥¤¥ë¤ò Bioconductor ¤Î RMA ´Ø¿ô¤Ç½èÍý¤·¤Æ¸«¤Æ¤ß¤ë¤È¡¢tim17 ¤Îµ¡Ç½¤¬¼º¤ï¤ì¤¿¤³¤È¤Ë¤è¤ë°äÅÁ»Òȯ¸½¤ÎÊѲ½¤Ï¤È¤Æ¤â¾®¤µ¤¤¡£¤³¤ó¤Ê¤Î¤Çȯ²ê¤¬Â¥¿Ê¤µ¤ì¤ë¤Î¤À¤í¤¦¤«¤È¿´Çۤˤʤ롣

MAB1 (MACCI-BOU)¡¢IAR4¡¢mte2

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡ÀþÂоÎÀ­¤ä»ÒÍդηÁÀ®¤Ë´Ø·¸¤¹¤ë¿·µ¬¤Î°äÅÁ»Ò¤òÁܤ¹°Ù¤Ë¡¢pid¤òÊÑ°Û¸¶½èÍý¤¹¤ë»ö¤ÇËÀ¾õ¤Î²êÀ¸¤¨¤ò»ý¤Äpid¥¨¥ó¥Ï¥ó¥µ¡¼macchibou(mab)1-4¤òñΥ¤·¤¿¡£¡¡¡¡¡¡http://kaken.nii.ac.jp/ja/p/14036222/2005/3/ja¡¡¡¡¡¡ÅÄºä ¾»À¸¡¢ÁêÅÄ ¸÷¹¨¡¡Î¾Çî»Î¤Î¸¦µæ¤Ë¤è¤Ã¤Æ¸«¤¤¤À¤µ¤ì¤¿¡£IAR4¤Ï¡¢a gene required for auxin conjugate sensitivity
ÊÑ°Û°äÅÁ»Ò--
¡¡MAB1¤Ï¡¢At5g50850¡¡¡¡¡¡http://atted.jp/data/locus/At5g50850.shtml¡¡¡¡¡¡¥ß¥È¥³¥ó¥É¥ê¥¢¡¡¥Ô¥ë¥Ó¥ó»À¥Ç¥Ò¥É¥í¥²¥Ê¡¼¥¼E1¦Â¥µ¥Ö¥æ¥Ë¥Ã¥È¤ò¥³¡¼¥É¡¡Åµ·¿Åª¤Ê¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¯Âå¼Õ°äÅÁ»Ò¡¡IAR4¤Ï¡¢pyruvate dehydrogenase E1alpha homolog¡¡¡¡¡¡http://atted.jp/data/locus/At1g24180.shtml

Êó¹ð½ñ¤Ë¤Ï¡ÖATPÀ¸»º¤¬Íî¤Á¤ë²ÄǽÀ­¤¬¼¨º¶¤µ¤ì¡¢¤½¤Î¤¿¤á¤ËºÙ˦Áý¿£¤Ë±Æ¶Á¤¬½Ð¤Æ»ÒÍդηÁÀ®Á˳²¤¬µ¯¤³¤Ã¤¿¤È¹Í¤¨¤é¤ì¤ë¡£¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£¤·¤«¤·»ä¤Î¤è¤¦¤Ë¥ß¥È¥³¥ó¥É¥ê¥¢´ØÏ¢ÊÑ°ÛÂΤòÄ´¤Ù¤Æ¤¤¤ë¤È¡¢¡ÖATPÀ¸»º¡×¤È¡¢¡Ö»ÒÍդηÁÀ®¡×¤Î´Ö¤Ë¡¢¤â¤¦¾¯¤·Ê£»¨¤Ê¤³¤È¤¬¤¢¤ë¤è¤¦¤Ë»×¤¨¤¿¡£

mab1 ÊÑ°ÛÂΤ˴ؤ¹¤ë¤¹¤Ð¤é¤·¤¤À®²Ì¤¬ 2019ǯ¤ËÏÀʸ¤È¤·¤Æȯɽ¤µ¤ì¤¿¡£

Mitochondrial Pyruvate Dehydrogenase Contributes to Auxin-Regulated Organ Development.¡¡¡¡¡¡Ohbayashi I, Huang S, Fukaki H, Song X, Sun S, Morita MT, Tasaka M, Millar AH, Furutani M.¡¡¡¡¡¡Plant Physiol. 2019 Jun;180(2):896-909. doi: 10.1104/pp.18.01460. Epub 2019 Mar 20.¡¡¡¡¡¡PMID: 30894418

PDH ¤Î³èÀ­Äã²¼¤Ë¤è¤Ã¤Æ¥ª¡¼¥­¥·¥ó¤Î¶ËÀ­Í¢Á÷¤Ë°Û¾ï¤¬µ¯¤­¤ë¡£¥¢¥é¥Ë¥ó¤ÎÃßÀѤˤâÃíÌܤ·¤Æ¤¤¤ë¡£TCA ¥µ¥¤¥¯¥ë¤Îµ¡Ç½¤òÁ˳²ºÞ¤ÇÄã²¼¤µ¤»¤ë¤³¤È¤Ë¤è¤Ã¤Æ¤â¡¢PIN1 ¤¬ÉÔ°ÂÄê¤Ë¤Ê¤Ã¤Æ PIN1 ¥¿¥ó¥Ñ¥¯Î̤¬¸º¤ë¡£

¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤È¥ª¡¼¥­¥·¥ó¤Ë´ØÏ¢¤¬¤¢¤ë¤³¤È¤ò¼¨¤¹ÏÀʸ¤Ï¾¯¤·¤º¤ÄÁý²Ã¤·¤Æ¤¤¤ë¡£

Mitochondrial Heat Shock Cognate Protein 70 (MtHsc70-1)

Mitochondrial Heat Shock Cognate Protein 70 Contributes to Auxinmediated Embryo Development. ¡¡¡¡¡¡Li G, Li Z, Yang Z, Leshem Y, Shen Y, Men S.¡¡¡¡¡¡Plant Physiol. 2021 Mar 21:kiab138. doi: 10.1093/plphys/kiab138. ¡¡¡¡¡¡PMID: 33744930

MtHSC70-1 ¤¬Æ¯¤«¤Ê¤¯¤Ê¤ë¤È¡¢¥ª¡¼¥­¥·¥ó¤ÎÀ¸¹çÀ®¡¢Í¢Á÷¤Ë°Û¾ï¤¬À¸¤¸¤ë¤³¤È¤¬¼¨¤µ¤ì¤¿¡£

IAR4 = E2 subunit of the mitochondrial pyruvate dehydrogenase complex

IAR4, a gene required for auxin conjugate sensitivity in Arabidopsis, encodes a pyruvate dehydrogenase E1alpha homolog.¡¡¡¡¡¡Leclere S, Rampey RA, Bartel B.¡¡¡¡¡¡Plant Physiol. 2004 Jun;135(2):989-99. Epub 2004 Jun 1.¡¡¡¡¡¡PMID: 15173569 ¤È¤¤¤¦ÏÀʸ¤â¤¢¤ë¡£MAB1 ¤È°ã¤¦¥µ¥Ö¥æ¥Ë¥Ã¥È¤À¤¬¡¢PDH¤ò¥³¡¼¥É¤·¤Æ¤¤¤ë¡£¡¡¡¡¡¡

Mutations in the three Arabidopsis genes that encode the E2 subunit of the mitochondrial pyruvate dehydrogenase complex differentially affect enzymatic activity and plant growth.¡¡¡¡¡¡Song L, Liu D.¡¡¡¡¡¡Plant Cell Rep. 2015 Nov;34(11):1919-26. doi: 10.1007/s00299-015-1838-1. Epub 2015 Jul 21.¡¡¡¡¡¡PMID: 26194327

¤È¤¤¤¦ÏÀʸ¤Ë¤Ï¡¢E2 ¥µ¥Ö¥æ¥Ë¥Ã¥È¤ÎÊÑ°ÛÂÎ mte2 ¤¬½Ð¤Æ¤¯¤ë¡£mte2-1 ¤Î²êÀ¸¤¨¤Ï¡¢º¬¤¬¾¯¤·¼Ð¤á¤Ë¶Ê¤¬¤Ã¤Æ¿­¤Ó¤ë¡Ê¼Ì¿¿¤¬¤¢¤ë¡Ë¡£¤è¤¯ÃΤé¤ì¤Æ¤¤¤ë¥ª¡¼¥­¥·¥óÊÑ°ÛÂÎ axr1 ¤Ê¤É¤ÈÈæ¤Ù¤ë¤È¤¿¤¤¤·¤¿ÊѲ½¤Ç¤Ï¤Ê¤¤¤¬¡¢Ãø¼Ô¤é¤Ï¥ª¡¼¥­¥·¥ó¤ÎÊѲ½¤Ë¤è¤ë½ÅÎ϶þÀ­¤ÎÄã²¼¤Î¤»¤¤¤Ç¤Ï¤Ê¤¤¤«¤È¹Í¤¨¤Æ¤¤¤ë¡£º¬ÌӤοô¤â¾¯¤·¾¯¤Ê¤¯¸«¤¨¤ë¡Ê¤¿¤¤¤·¤¿º¹¤Ç¤Ï¤Ê¤¤¡Ë¡£¥í¥¼¥Ã¥È¤òºî¤êÃêÂݤ·¤¿Ãʳ¬¤Ç¤ÏÌîÀ¸·¿¤È¸«Ê¬¤±¤¬¤Ä¤«¤Ê¤¯¤Ê¤ë¡£

A mutation in the E2 subunit of the mitochondrial pyruvate dehydrogenase complex in Arabidopsis reduces plant organ size and enhances the accumulation of amino acids and intermediate products of the TCA cycle.¡¡¡¡¡¡Yu H, Du X, Zhang F, Zhang F, Hu Y, Liu S, Jiang X, Wang G, Liu D.¡¡¡¡¡¡Planta. 2012 Aug;236(2):387-99. doi: 10.1007/s00425-012-1620-3. Epub 2012 Mar 6. ¡¡¡¡¡¡PMID: 22391856¡¡¡¡¡¡¤È¤¤¤¦ÏÀʸ¤â¤¢¤Ã¤¿¡£¥¢¥ß¥Î»À¤¬ÃßÀѤ¹¤ë¤È¡¢¤½¤ì¤é¤¬ IAA ¤È¤Î·ë¹çÂΤòºî¤ê¤ä¤¹¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£Fig. 5B ¤Ë¤Ï¥Ô¥ë¥Ó¥ó»À¤ò¬Äꤷ¤¿·ë²Ì¤¬¤¢¤ê¡¢ÊÑ°ÛÂΤÇÌó 3 ÇܤËÁý¤¨¤Æ¤¤¤¿¡£¥³¥Ï¥¯»À¤Ï 2 ÇܤËÁý¤¨¤Æ¤¤¤¿¡£Â¾¤ÎÍ­µ¡»À¤ÎÊѲ½¤Ï¾®¤µ¤«¤Ã¤¿¡£ ¥¢¥ß¥Î»À¤Ç¤Ï¡¢¥¢¥é¥Ë¥ó¤È¥·¥¹¥Æ¥¤¥ó¤ÎÁý²Ã¤¬¤È¤Æ¤âÂ礭¤«¤Ã¤¿¡£Ala ¤Ï¥Ô¥ë¥Ó¥ó»À¤«¤é¥¢¥ß¥Î¥È¥é¥ó¥¹¥Õ¥§¥é¡¼¥¼¤ÇÀ¸À®¤¹¤ë¡£Trp ¤â 3 ÇܤËÁý¤¨¤Æ¤¤¤¿¡£¤½¤ì°Ê³°¤Î¥¢¥ß¥Î»À¤â¿¤¯¤¬ 2 Çܤ¯¤é¤¤Áý¤¨¤Æ¤¤¤¿¡£ À¸°é¤ÏÌîÀ¸·¿¤è¤ê¤â¤À¤¤¤Ö°­¤¯¤Ê¤Ã¤Æ¤¤¤¿ (Fig.3)¡£

Arabidopsis IAR4 modulates auxin response by regulating auxin homeostasis.¡¡¡¡¡¡Quint M, Barkawi LS, Fan KT, Cohen JD, Gray WM.¡¡¡¡¡¡Plant Physiol. 2009 Jun;150(2):748-58. Epub 2009 Apr 24.¡¡¡¡¡¡PMID: 19395411 ¤È¤¤¤¦ÏÀʸ¤â¤¢¤ë¡£

Enhancers of tir1-1 auxin resistance ¤ò¥¹¥¯¥ê¡¼¥Ë¥ó¥°¤·¤¿¤é¡¢IAR4 ¤¬½Ð¤Æ¤­¤¿¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£ÍÍ¡¹¤ÊÊýË¡¤Ç¥ª¡¼¥­¥·¥ó´ØÏ¢ÊÑ°ÛÂΤò¥¹¥¯¥ê¡¼¥Ë¥ó¥°¤·¤Æ¡¢ ¶¦Ä̤·¤Æ IAR4 ¤¬½Ð¤Æ¤¯¤ë¤È¤¤¤¦¤³¤È¤Ï¡¢IAR4 ¤È¥ª¡¼¥­¥·¥ó¡¢¥¤¥ó¥É¡¼¥ë¿Ý»À¤Î·ë¤Ó¤Ä¤­¤¬³Î¤«¤Ë¸ºß¤¹¤ë¤³¤È¤ò¼¨º¶¤·¤Æ¤¤¤ë¡£2019ǯ¤Î Ohbayashi ¤é¤ÎÀ®²Ì¤Ë¤è¤Ã¤Æ¤½¤Î¤³¤È¤¬¼¨¤µ¤ì¤¿¡£

IAR4 ¤Î¸ú²Ì¤Ï¡¢Æâºß¤Î¥¤¥ó¥É¡¼¥ë¿Ý»À¤Î¹çÀ®¤òÁý¤ä¤¹¤³¤È¤ÇÂǤÁ¾Ã¤·²óÉü¤¹¤ë¤³¤È¤¬¤Ç¤­¤ë¤Î¤Ç¡¢À¸¹çÀ®¤Þ¤¿¤Ïʬ²ò catabolism ¤Ë¸ú¤¤¤Æ¤¤¤ë¡£ Í·Î¥·¿¤Î IAA ¤ÎÎ̤ÏÌîÀ¸·¿¤ÈÊѲ½¤·¤Ê¤¤¤¬¡¢¥¢¥ß¥Î»À·ë¹ç·¿¤¬Áý¤¨¤Æ¤¤¤ë¤È½ñ¤¤¤Æ¤¢¤ë¡£ IAA-¥¢¥ß¥Î»ÀÁ´ÂΡ¢IAA-Asp, IAA-Glu¡Ê¥°¥ë¥¿¥ß¥ó»À¡Ë¤ÎÎ̤Υǡ¼¥¿¤¬ Fig.6 ¤Ë¤¢¤ë¡£IAA-¥¢¥ß¥Î»ÀÁ´ÂΤÎÎ̤¬ 2 ÇܤËÁý¤¨¤Æ¤¤¤¿¡£¸ÄÊ̤ˬÄꤹ¤ë¤È¡¢IAA-Asp ¤ÏÁý¤¨¤Æ¤¤¤Ê¤«¤Ã¤¿¡£IAA-Glu ¤¬ 1.5 Çܤ¯¤é¤¤Áý¤¨¤Æ¤¤¤¿¡£ Trp °Ê³°¤Î·ÐÏ©¤Ë¤è¤ë IAA ¹çÀ®¤¬µ¯¤­¤Æ¤¤¤ë¤È¤â½ñ¤¤¤Æ¤¢¤ë¡£

Alterations in auxin homeostasis suppress defects in cell wall function.¡¡¡¡¡¡Steinwand BJ, Xu S, Polko JK, Doctor SM, Westafer M, Kieber JJ.¡¡¡¡¡¡PLoS One. 2014 May 23;9(5):e98193. doi: 10.1371/journal.pone.0098193. eCollection 2014.¡¡PMID: 24859261¡¡¡¡¡¡¤³¤ÎÏÀʸ¤Ë¤â IAR4 ¤¬½Ð¤Æ¤¯¤ë¡£

Leucine-rich-repeat receptor-like kinases (LRR-RLKs) ¤Ç¤¢¤ë FEI1, FEI2 ¤ÎÆó½ÅÊÑ°ÛÂΤǤϡ¢¥»¥ë¥í¡¼¥¹¹çÀ®¤¬Á˳²¤µ¤ìû¤¯¤ÆÈîÂ礷¤¿º¬¤Ë¤Ê¤ë¡£¤³¤ì¤Ï¥»¥ë¥í¡¼¥¹¹çÀ®Á˳²ºÞ½èÍý¤ä¾¤Î¥»¥ë¥í¡¼¥¹¹çÀ®ÊÑ°ÛÂΤǤâ´Ñ»¡¤µ¤ì¤ë¤Î¤ÈƱ¤¸¤Ç¤¢¤ë¡£¤³¤ÎÀ­¼Á¤òsuppress¤¹¤ëÊÑ°Û¤ò¥¹¥¯¥ê¡¼¥Ë¥ó¥°¤·¤¿¤é¡¢IAR4 ¤¬¸«¤¤¤À¤µ¤ì¤¿¡£IAR4 ¤ÎÊѰۤˤè¤Ã¤Æ¡¢Â¾¤Î¥»¥ë¥í¡¼¥¹¹çÀ®ÊÑ°ÛÂΤ¬¼¨¤¹À­¼Á¤âÉôʬŪ¤Ësuppress¤µ¤ì¤ë¡£iar4 ¤Ï¥»¥ë¥í¡¼¥¹¹çÀ®Á˳²ºÞ¤ËÂФ¹¤ë´¶¼õÀ­¤âÊѲ½¤¹¤ë¡£wei8, tar2-2 ¤È¤¤¤¦¤Î¤Ï¼çÍפʥª¡¼¥­¥·¥ó¤Ç¤¢¤ë¥¤¥ó¥É¡¼¥ë¿Ý»À¹çÀ®¤Î¼çÍ×·ÐÏ©¤ÇƯ¤¯¥È¥ê¥×¥È¥Õ¥¡¥ó¥¢¥ß¥Î¥È¥é¥ó¥¹¥Õ¥§¥é¡¼¥¼°äÅÁ»Ò¤Ç¡¢¤³¤ì¤é¤¬Æ¯¤«¤Ê¤¯¤Ê¤ë¤È¥ª¡¼¥­¥·¥ó¤ÎÎ̤¬¸º¤ë¡£¥ª¡¼¥­¥·¥ó¤¬´Ø¤ï¤ë½ÅÎ϶þÀ­¤¬¤ª¤«¤·¤¯¤Ê¤ë¤Î¤Çº¬¤¬¾å¤ò¸þ¤¤¤Æ¤¤¤ë¡£¤³¤ì¤é¤¬Æ¯¤«¤Ê¤¤ÊÑ°Û¿¢Êª¤Èfei1fei2¤ò³Ý¤±¹ç¤ï¤»¤Æ4¤Ä¤ÎÊÑ°Û¤òƱ»þ¤Ë¤â¤¿¤»¤Æ¤â¡¢º¬¤¬ËĤé¤Þ¤Ê¤¯¤Ê¤Ã¤¿¡£

2019 ǯ¤Ë¤â¡¢¥ª¡¼¥­¥·¥ó¤ÈºÙ˦ÊÉ¡Ê¥»¥ë¥í¡¼¥¹¹çÀ®Á˳²¤Ë¤è¤ëºÙ˦ÊɤμåÂ⽤¬°ú¤­µ¯¤³¤¹¶ËÀ­¤Î¾Ã¼º¡Ë¤Ë´ØÏ¢¤¬¤¢¤ë¤È¤¤¤¦ÏÀʸ¤¬È¯É½¤µ¤ì¤¿¡£

Auxin and cell wall crosstalk as revealed by the Arabidopsis thaliana cellulose synthase mutant radially swollen 1.¡¡¡¡¡¡Lehman TA, Sanguinet KA. Plant Cell Physiol. 2019 Apr 20. pii: pcz055. doi: 10.1093/pcp/pcz055. [Epub ahead of print]¡¡¡¡¡¡PMID: 31004494

¤·¤¯¤ß¤Ï¤è¤¯¤ï¤«¤é¤Ê¤¤¤¬¡¢iar4 ÊÑ°ÛÂΤϥª¡¼¥­¥·¥ó¤¬¸º¾¯¤·¤¿¤è¤¦¤ÊÀ­¼Á¤ò¼¨¤·¤Æ¡¢IAA-¥¢¥ß¥Î»À¤¬ÃßÀѤ·¡¢IAA ¤òÍ¿¤¨¤ë¤³¤È¤Ë¤è¤Ã¤Æ²óÉü¤¹¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£ IAA-¥¢¥ß¥Î»ÀÁ´ÂΡ¢IAA-Asp, IAA-Glu¡Ê¥°¥ë¥¿¥ß¥ó»À¡Ë¤ÎÎ̤Υǡ¼¥¿¤Ï¡¢https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689969/¡¡¤Î Fig.6 ¤Ë¤¢¤ë¡£IAA-¥¢¥ß¥Î»ÀÁ´ÂΤÎÎ̤¬ 2 ÇܤËÁý¤¨¤Æ¤¤¤¿¡£¸ÄÊ̤ˬÄꤹ¤ë¤È¡¢IAA-Asp ¤ÏÁý¤¨¤Æ¤¤¤Ê¤«¤Ã¤¿¡£IAA-Glu ¤¬ 1.5 Çܤ¯¤é¤¤Áý¤¨¤Æ¤¤¤¿¡£IAA-Ala ¤ò¬Äꤷ¤¿Êý¤¬¤è¤¤¤È»×¤¦¤¬Æñ¤·¤¤¤Î¤À¤í¤¦¡£

IAA ¤Ï¾¯¤·¤·¤«¤Ê¤¤Êý¤¬¶ËÀ­¤Î³ÎΩ¤Ë¤Ï¤è¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¥ª¡¼¥­¥·¥ó¤òÂçÎ̤˺î¤Ã¤Æ¤¤¤ë¤È¡¢pin1 ¤Ë¤è¤ë¶ËÀ­¤ò¤â¤Ã¤¿Í¢Á÷¤ÎǽÎϤòĶ¤¨¤Æ¤·¤Þ¤¦¤³¤È¤¬µ¯¤³¤ê¤ä¤¹¤¤¤À¤í¤¦¡£¤½¤¦¤Ê¤ë¤Èñ¤Ê¤ë³È»¶¤Ë¤è¤ë¡¢Ç»ÅÙº¹¤ËÈæÎ㤷¤¿Í¢Á÷¤Î¤Û¤¦¤¬¼ç¤Ë¤Ê¤ë¡£¤½¤¦¤Ê¤ë¤È¶ËÀ­¤ò¼º¤Ã¤Æ¤·¤Þ¤¤¤ä¤¹¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¥°¥ë¥³¡¼¥¹¤¬ pin1 ¤Îȯ¸½¤òÀ©¸æ¤¹¤ë¤È¤¤¤¦ÏÀʸ¤â¤¢¤Ã¤¿¡£ ARA MASA Çî»Î¤Ë¤è¤Ã¤Æ¾Ò²ð¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡https://www.google.co.jp/search?q=%E3%82%B0%E3%83%AB%E3%82%B3%E3%83%BC%E3%82%B9%E3%81%8C+pin1+%E3%81%AE%E7%99%BA%E7%8F%BE%E3%82%92%E5%88%B6%E5%BE%A1&ie=utf-8&oe=utf-8

mab1 ¤ÈƱ¤¸¥¹¥¯¥ê¡¼¥Ë¥ó¥°¤Ç mab2, 3, 4 ÊÑ°ÛÂΤâñΥ¤µ¤ì¤Æ¤¤¤ë¡£mab3 ¤Ï PIN1 °äÅÁ»Ò¤ËÊÑ°Û¤¬¤¢¤ë¤È¾Ò²ð¤µ¤ì¤Æ¤¤¤ë¡£¸ÅëÇî»Î¤Î¹Ö±éÍ׻ݡ¡www.biol.s.u-tokyo.ac.jp/seminar/plant/1203pla.doc

IAA ¤ÏÍ­µ¡»À¤Ç¡¢pH ¤¬Ä㤤¤È¥×¥í¥È¥ó¤¬¤Ä¤¤¤¿·Á¤Ë¤Ê¤ë¡£¤½¤¦¤Ê¤ë¤ÈÅŲ٤ò¤â¤¿¤Ê¤¤¤Î¤ÇºÙ˦Ëì¤òÄ̲ᤷ¤ä¤¹¤¯¤Ê¤ë¡£¤·¤«¤·ºÙ˦Æâ¤ËÆþ¤ê¹þ¤à¤È pH = 7 ¤Ê¤Î¤ÇÅÅÎ¥¤·¤¿·Á¤Ë¤Ê¤êºÙ˦Ëì¤òÄ̲á¤Ç¤­¤Ê¤¯¤Ê¤ë¡£ ¤½¤ì¤Ë¤è¤Ã¤ÆºÙ˦Æâ¤Ë¤È¤É¤Þ¤ë¡£ºÙ˦³°¤Ë½Ð¤ë¤Ë¤Ï PIN1 ¤Î¤è¤¦¤ÊÍ¢Á÷ÂΤò²ð¤·¤ÆÆ°¤¯¡£ ºÙ˦³°¤Î pH ¤¬ÂçÀڤʤ³¤È¤Ë¤Ê¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤ËÊѲ½¤¬µ¯¤­¤ÆÍ­µ¡»À¤ÎÎ̤¬ÊѲ½¤·¤¿¤éºÙ˦³°¤Î pH ¤¬ÊѤï¤ë¤³¤È¤Ç¥ª¡¼¥­¥·¥ó¤Ë±Æ¶Á¤¬½Ð¤ë¤«¤â¤·¤ì¤Ê¤¤¡£pH ¤¬¹â¤¯¤Ê¤ë¤È³È»¶¤ÇºÙ˦Æâ¤ËÆþ¤ë¤³¤È¤Ï¤Ê¤¤¤Î¤Ç¤½¤ÎʬºÙ˦Æâ¤Ë¸ºß¤¹¤ë¥ª¡¼¥­¥·¥ó¤¬¸º¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

Íý¸¦¤Î¥°¥ë¡¼¥×¤Î¤¹¤Ð¤é¤·¤¤¸¦µæ¤Ë¤è¤Ã¤Æ¡¢¥¤¥ó¥É¡¼¥ë¿Ý»À¤Î¼çÍפÊÀ¸¹çÀ®¤Ï¥È¥ê¥×¥È¥Õ¥¡¥ó¡¢¥¤¥ó¥É¡¼¥ë¥Ô¥ë¥Ó¥ó»À¡¢¥¤¥ó¥É¡¼¥ë¿Ý»À¤Î3Ãʳ¬¤Ç¹Ô¤ï¤ì¤ë¤³¤È¤¬ÌÀ¤é¤«¤Ë¤µ¤ì¤¿¡£¥È¥ê¥×¥È¥Õ¥¡¥ó¤«¤é¥¤¥ó¥É¡¼¥ë¥Ô¥ë¥Ó¥ó»À¤Ï¡¢¥È¥ê¥×¥È¥Õ¥¡¥ó¥¢¥ß¥Î¥È¥é¥ó¥¹¥Õ¥§¥é¡¼¥¼¤Ç¿¨ÇÞ¤µ¤ì¤ëÈ¿±þ¤Ç¤¢¤ë¡£¥È¥ê¥×¥È¥Õ¥¡¥ó¤È¦Á¥±¥È»À¤ò´ð¼Á¤È¤·¤Æ¡¢¥È¥ê¥×¥È¥Õ¥¡¥ó¤Î¥¢¥ß¥Î´ð¤¬¥±¥È»À¤Ø°ÜÆ°¤¹¤ë¡£¥Ô¥ë¥Ó¥ó»À¤â´ð¼Á¤Ë¤Ê¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063437/¡¡¡¡¡¡

Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis.¡¡¡¡¡¡Sairanen I, Novák O, Pěnčík A, Ikeda Y, Jones B, Sandberg G, Ljung K.¡¡¡¡¡¡Plant Cell. 2012 Dec;24(12):4907-16. doi: 10.1105/tpc.112.104794. Epub 2012 Dec 3.¡¡¡¡¡¡PMID: 23209113 ¡¡¡¡¡¡¤È¤¤¤¦ÏÀʸ¤Ç¤Ï¡¢5 % ¥°¥ë¥³¡¼¥¹¤òÍ¿¤¨¤ë¤È IAA ¤ÎÀ¸¹çÀ®¤¬Â¥¿Ê¤µ¤ì¤ë¤È½ñ¤¤¤Æ¤¢¤ë¡£ÇÝÃϤÎÅü¤ÎÎ̤¬¾¯¤Ê¤¤¤Û¤É¡¢IAA ¤ÎÃßÀÑÎ̤Ͼ¯¤Ê¤¯¤Ê¤ë¡£ ¡ÖÅü¤òÍ¿¤¨¤ë -> ¡© -> PIFž¼Ì°ø»Ò³èÀ­²½ -> YUC9³èÀ­¾å¾º -> IAA À¸¹çÀ®³èÀ­²½¡¢Î̤âÁý²Ã¡× ¤È½ñ¤¤¤Æ¤¢¤ë¤è¤¦¤Ë»×¤¨¤ë¡£¡©¤Ï¥°¥ë¥³¡¼¥¹¤½¤Î¤â¤Î¤Ç¤Ï¤Ê¤¤¤é¤·¤¤¡£ ¡©¤ÎÎ̤ÏÂçÎ̤ËÅü¤òÍ¿¤¨¤ë¤³¤È¤ÇÁý²Ã¤·¡¢IAR4 ¤¬ÊÑ°Û¤¹¤ë¤³¤È¤Ç¸º¤Ã¤Æ¤·¤Þ¤¦¤È¤¤¤¦¤è¤¦¤Ë¿ä¬¤¹¤ë¤³¤È¤â¤Ç¤­¤ë¡£¤³¤¦¤¤¤¦¤³¤È¤ò¹Í¤¨¤ë¤È¡¢°ì±þ IAA ¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë´ðÁÃŪ¤ÊÂå¼Õ¤ò²ð¤·¤Æ¤Ä¤Ê¤¬¤ê¤¬¤¢¤ë¤È¤¤¤¦¿ä¬¤¬¤Ç¤­¤ë¡£ ¤·¤«¤· IAR4 ¤Ç¤Ï IAA ¤ÎÎ̤ϸº¤Ã¤Æ¤¤¤Ê¤¤¤È¤¤¤¦·ë²Ì¤¬½Ð¤µ¤ì¤Æ¤¤¤ë¤«¤é¡¢¾å¤Ë½ñ¤¤¤¿¤³¤È¤Ï²ø¤·¤¤¡£

ºÇ¶áưʪ¤ÎʬÌî¤Ç´ðÁÃŪ¤ÊÂå¼Õ»ºÊª¤¬ÍÍ¡¹¤ÊÄ´Àáʬ»Ò¤È¤·¤Æ¤ÎƯ¤­¤âÊ»¤»»ý¤Ã¤Æ¤¤¤ë¤È¤¤¤¦ÏÀʸ¤¬¤¿¤¯¤µ¤ó½Ð¤Æ¤¤¤ë¡£ IAA ¤Ï¿¢Êª¤¬À¸¤­¤ë¤¿¤á¤Ëɬ¿Ü¤Ê¥Û¥ë¥â¥ó¤Ç¤¢¤ë¤«¤é¡¢À¸¤­¤ë¤¿¤á¤Ëɬ¿Ü¤ÊÃ濴Ū¤ÊÂå¼Õ¤ÇÀ¸¤¸¤ëÂå¼Õ»ºÊª¤Î¤É¤ì¤«¤¬¡¢IAA Î̤ÎÄ´Àáʬ»Ò¤È¤·¤ÆƯ¤¤¤Æ¤¤¤ë¤È¤¤¤¦¤³¤È¤¬¤¢¤Ã¤Æ¤â¤ª¤«¤·¤¯¤Ê¤¤¡£

A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling Regulates Alternative Oxidase1a Expression in Arabidopsis.¡¡¡¡¡¡Ivanova A, Law SR, Narsai R, Duncan O et al.Plant Physiol 2014 May 12;165(3):1233-1254. PMID: 24820025¡¡¡¡¡¡¤È¤¤¤¦ÏÀʸ¤â¤¢¤Ã¤¿¡£

Knockdown of Succinate Dehydrogenase Assembly Factor 2

¤³¤ÎÊÑ°ÛÂΤ⥪¡¼¥­¥·¥ó¤È¤Î´ØÏ¢¤¬¸«¤¤¤À¤µ¤ì¤¿¡£

Knockdown of Succinate Dehydrogenase Assembly Factor 2 Induces Reactive Oxygen Species-Mediated Auxin Hypersensitivity Causing pH-dependent Root Elongation¡¡¡¡¡¡Plant Cell Physiol. 2021 May 21;pcab061. ¡¡¡¡¡¡Nathan D Tivendale ¤Ê¤É¡¡¡¡¡¡PMID: 34018557 DOI: 10.1093/pcp/pcab061

Cytchrome C ¤Îȯ¸½¤ò¶¯¤¯ÍÞ¤¨¤¿¡¦ÁýÂ礷¤¿¿¢Êª

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¿Í°ÙŪ¤Êȯ¸½ÍÞÀ©
ÍÞÀ©¡¦¶¯È¯¸½¤·¤¿°äÅÁ»Ò--
¡¡CytC-1, CytC-2

Lack of cytochrome c in Arabidopsis decreases stability of Complex IV and modifies redox metabolism without affecting Complexes I and III.¡¡¡¡¡¡Welchen E, Hildebrandt TM, Lewejohann D, Gonzalez DH, Braun HP.¡¡¡¡¡¡Biochim Biophys Acta. 2012 Apr 19. [Epub ahead of print]¡¡¡¡¡¡PMID: 22551905

¥¢¥¹¥³¥ë¥Ó¥ó»ÀÀ¸¹çÀ®¤ÎºÇ¸å¤ÎÃʳ¬¤Î¹ÚÁǤϡ¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤·¤ÆƯ¤¯¡£ Cytochrome ¥·¥È¥¯¥í¥à C ¤Ï¤³¤Î¹ÚÁǤ«¤éÅŻҤò¼õ¤±¼è¤ë¼õÍÆÂΤȤ·¤ÆƯ¤¤¤Æ¤¤¤ë¡£¤·¤«¤· cytochrome C ¤ÎÎ̤òÂ礭¤¯ÍÞÀ©¤·¤¿¿¢Êª¤Ç¤â¥¢¥¹¥³¥ë¥Ó¥ó»À¤ÎÎ̤ÏÊѲ½¤·¤Ê¤«¤Ã¤¿¡ÊFig. 8¡Ë¡£¤Û¤ó¤Î¾¯¤· CytC ¤¬Â¸ºß¤¹¤ì¤Ð½½Ê¬¤Ç¤¢¤ë¤È¹Í»¡¤µ¤ì¤Æ¤¤¤ë¡£

Interplay between cytochrome c and gibberellins during Arabidopsis vegetative development.¡¡¡¡¡¡Racca S, Welchen E, Gras DE, Tarkowská D, Turečková V, Maurino VG, Gonzalez DH.¡¡¡¡¡¡Plant J. 2018 Apr;94(1):105-121. doi: 10.1111/tpj.13845. Epub 2018 Mar 12.¡¡¡¡¡¡PMID: 29385297

¤³¤ì¤âƱ¤¸¥°¥ë¡¼¥×¤«¤é¤ÎÏÀʸ¤Ç¡¢¥·¥È¥¯¥í¥à C ¤ÎÎ̤òÊѲ½¤µ¤»¤ë¤È¥¸¥Ù¥ì¥ê¥óÀ¸¹çÀ®¡¦¥·¥°¥Ê¥ê¥ó¥°¤ËÊѲ½¤¬À¸¤¸¤ë¤³¤È¤ò¼¨¤·¤Æ¤¤¤ë¡£¥·¥È¥¯¥í¥à C ¤ÎÎ̤ò¸º¤é¤¹¤ÈÀ®Ä¹¤À¤±¤Ç¤Ê¤¯¥í¥¼¥Ã¥ÈÍÕ¤ò¤Ä¤±¤¿¸å¤ÎÃêÂݤ¬ÃÙ¤¯¤Ê¤ë¡£°Å´ü¡Ê¸÷¹çÀ®¤ÇÃßÀѤ·¤¿¥Ç¥ó¥×¥ó¤òʬ²ò¤·¤Æ¸ÆµÛ¤·¤Æ¤¤¤ë´ü´Ö¡Ë¤Î½ª¤ï¤ê¤Ë¤ª¤±¤ë¥Ç¥ó¥×¥ó¤ÎÃßÀѤ¬Â¿¤¯¤Ê¤ë¡£ÌÀ´ü¤Ë¤ª¤¤¤Æ¤â¥Ç¥ó¥×¥ó¤ÎÃßÀÑÎ̤¬Áý¤¨¤ë¡£ÃêÂݤ¬ÃÙ¤¤¤È¤¤¤¦À­¼Á¤Ï¥¸¥Ù¥ì¥ê¥ó¤òÍ¿¤¨¤ë¤È²óÉü¤¹¤ë¡£¤½¤³¤Ç¥¸¥Ù¥ì¥ê¥ó¤ÎÎ̤ò¬Äꤹ¤ë¤È¸º¾¯¤·¤Æ¤¤¤¿¡£DELLA ¥¿¥ó¥Ñ¥¯¼Á¤ÎÎ̤ò·Ö¸÷¥¿¥ó¥Ñ¥¯¼Á¤Ç¸«ÀѤâ¤ì¤ë¤è¤¦¤Ë°äÅÁ»Ò¤òƳÆþ¤·¤ÆÄ´¤Ù¤ë¤È¥·¥È¥¯¥í¥à C ¤¬¸º¾¯¤·¤¿¿¢Êª¤Ç¤ÏÃßÀÑÎ̤¬Áý²Ã¤·¤Æ¤¤¤¿¡£

È¿ÂФ˥·¥È¥¯¥í¥à C °äÅÁ»Ò¤ò¶¯¤¯È¯¸½¤µ¤»¤¿¿¢Êª¤Ç¤Ï¡¢Æ±¤¸Æü¿ô¤Ç¡¢¥í¥¼¥Ã¥È¤ÎÂ礭¤µ¡¢¥Ð¥¤¥ª¥Þ¥¹ÎÌ¡¢Íդοô¤¬ÌîÀ¸·¿¤è¤ê¤âÁýÂ礷¤¿¡£ÃêÂݤ¬µ¯¤­¤ë¥¿¥¤¥ß¥ó¥°¡ÊÍդοô¡Ë¤ÏÌîÀ¸·¿¤ÈƱ¤¸¤À¤¬¡¢Æü¿ô¤ÏÌîÀ¸·¿¤è¤ê¤âÁ᤯¤Ê¤Ã¤¿¡£¤³¤ì¤é¤Î¸ú²Ì¤Ë¤Ï¥¸¥Ù¥ì¥ê¥ó¤ÎºîÍѤ¬É¬ÍפǤ¢¤ë¤³¤È¤ò ga1 ÊÑ°ÛÂΤòÍѤ¤¤Æ¼¨¤·¤¿¡£

ÅÅ»ÒÅÁã·Ï¤Î°Û¾ï¤¬ÍÍ¡¹¤ÊÊѲ½¤ò¤â¤¿¤é¤¹¤³¤È¤ÏÍÍ¡¹¤ÊÏÀʸ¤Ç¾ÜºÙ¤Ë¸¡Æ¤¤µ¤ì¤Æ¤¤¤ë¡£À¸°éÃʳ¬¡¢ÁÈ¿¥¡¢±ÉÍܤä¸÷¾ò·ï¤Î°ã¤¤¤Çµ¯¤­¤ë¤³¤È¤¬Â礭¤¯ÊѤï¤ê¡¢Ê£»¨¤Ç¤ï¤«¤ê¤Ë¤¯¤¤¡£¿¢Êª¥Û¥ë¥â¥ó¤¬¤É¤Î¤è¤¦¤Ë¤½¤ì¤Ë´Ø·¸¤·¤Æ¤¤¤ë¤Î¤«¤Ï¡¢¤Ï¤Ã¤­¤ê¤·¤Ê¤¤¤È¤³¤í¤¬¤¢¤ë¡£

Decreasing electron flux through the cytochrome and/or alternative respiratory pathways triggers common and distinct cellular responses dependent on growth conditions.¡¡¡¡¡¡Kühn K, Yin G, Duncan O, Law SR, Kubiszewski-Jakubiak S, Kaur P, Meyer E, Wang Y, Small CC, Giraud E, Narsai R, Whelan J.¡¡¡¡¡¡Plant Physiol. 2015 Jan;167(1):228-50. doi: 10.1104/pp.114.249946. Epub 2014 Nov 6.¡¡¡¡¡¡PMID: 25378695

CytC ¥¿¥ó¥Ñ¥¯¼Á¤Ï 14-3-3 ¥¿¥ó¥Ñ¥¯¼Á¤È·ë¹ç¤¹¤ë

2021ǯ¤Ë¡¢CytC ¥¿¥ó¥Ñ¥¯¼Á¤¬ 14-3-3 ¥¿¥ó¥Ñ¥¯¼Á¤È·ë¹ç¤¹¤ë¤È¤¤¤¦ÏÀʸ¤¬È¯É½¤µ¤ì¤¿¡£14-3-3 ¥¿¥ó¥Ñ¥¯¼Á¤Ï¥¸¥Ù¥ì¥ê¥ó¤ä¥¢¥Ö¥·¥¸¥ó»À¤Ê¤É¤Î¥Û¥ë¥â¥ó¤ÎºîÍѵ¡¹½¡¢Åü¥·¥°¥Ê¥ë¤Ê¤É¤­¤ï¤á¤Æ¿¿ô¤Î²áÄø¤Ë´ØÍ¿¤·¤Æ¤¤¤ë¡£CytC ¥¿¥ó¥Ñ¥¯¼Á¤ÎÎ̤ä¶ÉºßÀ­¤ÎÊѲ½¤¬ºÙ˦¤Ë²¿¤é¤«¤Î±Æ¶Á¤òµÚ¤Ü¤¹»ÅÁȤߤΰì¤Ä¤Ë¤Ê¤êÆÀ¤ë¡£¤³¤Î¤³¤È¤ò²¿¤«Ìò¤ËΩ¤Ä¤³¤È¤Ë·ë¤Ó¤Ä¤±¤é¤ì¤Ê¤¤¤À¤í¤¦¤«¡£º£¤Î¤È¤³¤í¹Í¤¨¤Ä¤«¤Ê¤¤¡£

Proposed mechanism for regulation of H2O2 -induced programmed cell death in plants by binding of cytochrome c to 14-3-3 proteins.¡¡¡¡¡¡Elena-Real CA, González-Arzola K, Pérez-Mejías G, Díaz-Quintana A, Velázquez-Campoy A, Desvoyes B, Gutiérrez C, De la Rosa MA, Díaz-Moreno I. ¡¡¡¡¡¡Plant J. 2021 Apr;106(1):74-85. doi: 10.1111/tpj.15146. ¡¡¡¡¡¡PMID: 33354856

14-3-3 ¥¿¥ó¥Ñ¥¯¼Á¤òɸŪ¤È¤¹¤ë¿¢ÊªÆÇÁÇ¡¦²½³ØÄ´Àáʪ¼Á¤È¤·¤Æ ¥Õ¥·¥³¥­¥ó ¡Ê¥Õ¥·¥³¥¯¥·¥ó¡Ë fusicoccin ¤¬ÃΤé¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡Fusicoccin affects cytochrome c leakage and cytosolic 14-3-3 accumulation independent of H-ATPase activation.¡¡¡¡¡¡Malerba M, Crosti P, Cerana R, Bianchetti R. Physiol Plant. 2004 Mar;120(3):386-394. doi: 10.1111/j.0031-9317.2004.00261.x. PMID: 15032835¡¡¡¡¡¡¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£ 14-3-3 ¥¿¥ó¥Ñ¥¯¼Á¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Ê¤É¤Î¥ª¥ë¥¬¥Í¥é¤Ç¤âƯ¤¤¤Æ¤¤¤ë¤Î¤Ç¿ÍͤÊÊѲ½¤¬µ¯¤­¤¦¤ë¡£

Cytochrome C ¤È ABI4 ž¼Ì°ø»Ò

Cytochrome c and the transcription factor ABI4 establish a molecular link between mitochondria and ABA-dependent seed germination.¡¡¡¡¡¡Racca S, Gras DE, Canal MV, Ferrero LV, Rojas BE, Figueroa CM, Ariel FD, Welchen E, Gonzalez DH. New Phytol. 2022 May 30. doi: 10.1111/nph.18287. Online ahead of print. PMID: 35637555

ABA ¤ò´Þ¤àÇÝÃϤ˼ï»Ò¤òÇŤ¯¤Èȯ²ê¤¬ÍÞ¤¨¤é¤ì¤ë¡£ABA ¤ÎÎ̤¬¾¯¤Ê¤á¤À¤Èȯ²ê¤Ï¤¹¤ë¤¬¤½¤Î¸å¤Î²êÀ¸¤¨¤ÎÀ®Ä¹¤¬ÍÞ¤¨¤é¤ì¡¢ÌÀ½ê¤Ç¤â»ÒÍÕ¤¬Îв½¤·¤Ê¤¯¤Ê¤êÀ®Ä¹¤¬»ß¤Þ¤ë¡£ABI4 ¤Ïȯ²ê¤È²êÀ¸¤¨¤ÎÃʳ¬¤Ç¤Î ABAºîÍѤ˴ØÍ¿¤·¤Æ¤ª¤êÅü¤Ë¤è¤ë²êÀ¸¤¨¤ÎÀ¸°éÁ˳²¤Ë¤â½ÅÍפÊÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë¡£¤³¤ÎÏÀʸ¤Ç¤Ï¥·¥È¥¯¥í¥à C ¤¬¸º¾¯¤·¤¿ÊÑ°ÛÂΤǤÏȯ²ê¤¬ÃÙ¤ì¤ë¤³¤È¤ò¼¨¤·¤¿¡£ABI4 ¤Ï CytC-2 °äÅÁ»Ò¤Îȯ¸½¤òÀ©¸æ¤¹¤ë¤³¤È¤Ç ABA ¤È¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤ò¥ê¥ó¥¯¤µ¤»¤Æ¤¤¤ë¡£

Cytochrome C ¤È¥¨¥Í¥ë¥®¡¼À©¸æ

Cytochrome c levels affect the TOR pathway to regulate growth and metabolism under energy-deficient conditions.¡¡¡¡¡¡Canal MV, Mansilla N, Gras DE, Ibarra A, Figueroa CM, Gonzalez DH, Welchen E.¡¡¡¡¡¡New Phytol. 2024 Jan 8. doi: 10.1111/nph.19506. Online ahead of print.¡¡¡¡¡¡PMID: 38191763

Ê£¹çÂÎII ¤Î·ç´Ù¤Ç¡¢ÄãÃâÁǾõÂ֤ǤÎÀ¸°é¤¬¤è¤¯¤Ê¤ë

A deficiency in the flavoprotein of Arabidopsis mitochondrial complex II results in elevated photosynthesis and better growth in nitrogen-limiting conditions.¡¡¡¡¡¡Fuentes D, ¤Ê¤É ¡¡¡¡¡¡Plant Physiol. 2011 Nov;157(3):1114-27. doi: 10.1104/pp.111.183939. Epub 2011 Sep 15. PMID: 21921116

»¨¼ï¶¯Àª¤È TCA¥µ¥¤¥¯¥ë¤Ë´Ø·¸¤¬¸«¤¤¤À¤µ¤ì¤¿

¡Ö¥Ð¥¤¥ª¥Þ¥¹Áý²Ã¤ò¤â¤¿¤é¤¹F1»¨¼ï¤Ë¤ª¤±¤ëÂå¼Õʪ¤ÎÊѲ½¤ò²òÌÀ¡×¡¡¡¡https://www.riken.jp/press/2023/20230620_2/index.html¡¡¡¡ÃÞÇÈÂç³Ø¡¢Íý²½³Ø¸¦µæ½ê¤Ê¤É¤Î¶¦Æ±¸¦µæ¥°¥ë¡¼¥×¤Ë¤è¤ë¤¹¤Ð¤é¤·¤¤À®²Ì

TCA¥µ¥¤¥¯¥ë¤Î¹ÚÁÇ¡¡¦Á-ketoglutarate dehydrogenase¡¡¤¬³Ë¤Ë°Ü¹Ô¤·¤Æ¥¯¥í¥Þ¥Á¥ó¹½Â¤¤òÄ´À᤹¤ë

Control of histone demethylation by nuclear-localized ¦Á-ketoglutarate dehydrogenase.¡¡¡¡¡¡Huang F, Luo X, Ou Y, Gao Z, Tang Q, Chu Z, Zhu X, He Y.¡¡¡¡¡¡Science. 2023 Jul 14;381(6654):eadf8822. doi: 10.1126/science.adf8822. Epub 2023 Jul 14.¡¡¡¡¡¡PMID: 37440635

¦Á-¥±¥È¥°¥ë¥¿¥ë»À¡Ê2-¥ª¥­¥½¥°¥ë¥¿¥ë»À¡Ë¤Ï TCA ¥µ¥¤¥¯¥ë¤ò¹½À®¤¹¤ë¥á¥ó¥Ð¡¼¤Ç¤¢¤ë¤È¤Æ¤â½ÅÍפÊÍ­µ¡»À¤Ç¤¢¤ë¡£Æ±»þ¤Ë¡¢¤³¤ÎÍ­µ¡»À¤ÏÍÍ¡¹¤Ê¹ÚÁÇÈ¿±þ¤Î´ð¼Á¤È¤·¤Æ¤âÍøÍѤµ¤ì¤ë¡£½ÅÍפÊÎã¤È¤·¤Æ¥¸¥Ù¥ì¥ê¥ó¤Î¿å»À²½¹ÚÁǤʤɤ¬¤¢¤ë¡£¥Ò¥¹¥È¥ó¤Îæ¥á¥Á¥ë²½¹ÚÁǤǤ¢¤ë JMJ ¤â¡¢¿¨ÇÞºîÍѤòȯ´ø¤¹¤ëºÝ¤Ë¦Á-¥±¥È¥°¥ë¥¿¥ë»À¤òɬÍפȤ¹¤ë¡£

TCA¥µ¥¤¥¯¥ë¤Î¹ÚÁÇ¡¡¦Á-ketoglutarate dehydrogenase¡¡¤¬³Ë¤Ë¤ª¤¤¤Æ ¦Á-¥±¥È¥°¥ë¥¿¥ë»À¤òÂå¼Õ¤¹¤ë¤³¤È¤Ë¤è¤Ã¤Æ¥Ò¥¹¥È¥ó¤Îæ¥á¥Á¥ë²½¤È°äÅÁ»Òȯ¸½¤òÄ´À᤹¤ë¤³¤È¤¬È¯¸«¤µ¤ì¤¿¡£¤½¤Î·ë²Ì FLC ¤Îȯ¸½Î̤â¾å¾º¤·¤Æ²ÖÀ®¤¬ÃÙ¤¯¤Ê¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢´ØÏ¢°äÅÁ»Ò¤ÎÊѲ½¤Ç²ÖÀ®»þ´ü¤¬ÊѲ½¤¹¤ë¤³¤È¤Ï¤³¤Î¥ê¥¹¥È¤Ë¤â¤¤¤¯¤Ä¤«½Ð¤Æ¤­¤Æ¤¤¤ë¡£ ¦Á-¥±¥È¥°¥ë¥¿¥ë»À¤ÎÎ̼«ÂΤâ°äÅÁ»Òȯ¸½¤òÄ´À᤹¤ë°ø»Ò¤Î°ì¤Ä¤Ë¤Ê¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

fro1 (frostbite 1) = NDUFS4 ¤ÎÊÑ°Û

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
Äã²¹¤Ë¤è¤ë RD29A ¥×¥í¥â¡¼¥¿¡¼¤Î³èÀ­²½¤¬¼å¤¤¡¡¡¡Äã²¹¥¹¥È¥ì¥¹Å¬±þ¤¬¼å¤¤¡¡ÍÕ¤¬¿å¿»¾õ¤Ë¤Ê¤ê¤ä¤¹¤¤¡¡ÅŲò¼Á¤¬Ï³½Ð¤¹¤ë¡¡³èÀ­»ÀÁǤ¬¾ï¤ËÀ¸À®¤¹¤ë¡ÊDAB À÷¿§¤Ç¼¨¤·¤Æ¤¤¤ë¡Ë¡¡¿»Æ©°µÅ¬±þ¤¬¤Ç¤­¤Ë¤¯¤¤¡Êȯ²ê¥Æ¥¹¥È¤Î¤ß¡Ë

ÊÑ°Û°äÅÁ»Ò--FRO1
³Ë¥³¡¼¥É¤Î¡¢¥ß¥È¥³¥ó¥É¥ê¥¢Ê£¹çÂÎI (NADH dehydrogenase) ¥µ¥Ö¥æ¥Ë¥Ã¥È¤Î°ì¤Ä¡¡18kD Fe-S subunit of complex I¡¡¤ÈÃí¼á¤µ¤ì¤Æ¤¤¤ë¤¬¡¢UniProt ¤Ë¤è¤ë¤È FeS ¤È·ë¹ç¤¹¤ë¥É¥á¥¤¥ó¤Ï¤Ê¤¤¤é¤·¤¤¡£¡¡Ê£¹çÂÎ I ¤Ç¤Ï¥Þ¥È¥ê¥Ã¥¯¥¹¤ËÆͤ­½Ð¤·¤¿Éôʬ¤Ë¸ºß¤¹¤ë¡£
¤³¤Î¥µ¥Ö¥æ¥Ë¥Ã¥È¤Ï¡¢NDUFS4 ¤È¤¤¤¦Ì¾Á°¤¬¤Ä¤¤¤Æ¤¤¤Æ¡¢¸å¤Ë¤Ê¤Ã¤Æ¤³¤Î¥µ¥Ö¥æ¥Ë¥Ã¥È¤ò¥Î¥Ã¥¯¥¢¥¦¥È¤·¤¿ÊÑ°ÛÂΤθ¦µæ¤¬¹Ô¤ï¤ì¤Æ¤¤¤ë¡£ ưʪ¤ÎÊ£¹çÂÎ I ¤Ç¤â NDUFS4 ¤¬Æ¯¤¤¤Æ¤¤¤Æ¡¢ÊÑ°Û¤¬Éµ¤¤Î¸¶°ø¤Ë¤Ê¤ë¤³¤È¤«¤é½ÅÍפʥơ¼¥Þ¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£¤½¤ì¤Ë¤è¤Ã¤Æ NDUFS4 ¤¬¤Ï¤¿¤·¤Æ¤¤¤ë½ÅÍפʵ¡Ç½¤¬ÌÀ¤é¤«¤Ë¤Ê¤Ã¤¿¡£²¼¤ÎÊý¤Ë½ñ¤¤¤Æ¤¢¤ë¡£

References

A mitochondrial complex I defect impairs cold-regulated nuclear gene expression.¡¡¡¡¡¡Lee BH, Lee H, Xiong L, Zhu JK.¡¡¡¡¡¡Plant Cell. 2002 Jun;14(6):1235-51. PMID: 12084824

In comparison with nitrate nutrition, ammonium nutrition increases growth of the frostbite1 Arabidopsis mutant.¡¡¡¡¡¡Podgorska A, Ostaszewska M, Gardestrom P, Rasmusson AG, Szal B.¡¡¡¡¡¡Plant Cell Environ. 2014 Jul 8. doi: 10.1111/pce.12404. PMID: 25040883

Nitrogen Source Dependent Changes in Central Sugar Metabolism Maintain Cell Wall Assembly in Mitochondrial Complex I-Defective frostbite1 and Secondarily Affect Programmed Cell Death.¡¡¡¡¡¡Podgorska A, Ostaszewska-Bugajska M, Tarnowska A, Burian M, Borysiuk K, Gardestrom P, Szal B.¡¡¡¡¡¡Int J Mol Sci. 2018 Jul 28;19(8). pii: E2206. doi: 10.3390/ijms19082206.¡¡¡¡¡¡PMID: 30060552

ndufs4

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
Ê£¹çÂÎI ¤Î¡¢NDUFS4 ¤È¤¤¤¦¥µ¥Ö¥æ¥Ë¥Ã¥È¤ËÃíÌܤ·T-DNA ¤Ç¥¿¥°¤µ¤ì¤¿¥é¥¤¥ó¤òÆþ¼ê¤·¤¿¡£
ÊÑ°Û°äÅÁ»Ò--NUDFS4
Ê£¹çÂÎI ¤Î¡¢NDUFS4 ¤È¤¤¤¦¥µ¥Ö¥æ¥Ë¥Ã¥È¡¡¡¡¡¡¤³¤Î¥µ¥Ö¥æ¥Ë¥Ã¥È¤Ï¡¢fro1 ÊÑ°ÛÂΤÎÊÑ°Û°äÅÁ»Ò¤ÈƱ¤¸¤â¤Î¤Ç¤¢¤ë¡£

2009 ǯ¤ÎÏÀʸ¤«¤é¡§

Fig.6¡¡4 ½µÌܤο¢ÊªÂΤΥ¢¥ß¥Î»À¤Ê¤É¤ò¥á¥¿¥Ü¥í¡¼¥àŪ¤Ë¬Äê¡¡¥»¥ê¥ó¤¬Â礭¤¯Áý¤¨¤Æ¤¤¤ë¡¡10 Çܰʾ塡¥Á¥í¥·¥ó¤Ï 6-8 ÇÜ¡¡¥í¥¤¥·¥ó Leu¡¢¥Ð¥ê¥ó Val ¤Ï 2-5 ÇÜ¡¡¥×¥í¥ê¥ó¤Ï 2-3 ÇÜ¡¡ÌÀ´ü¤È°Å´ü¤ÇÊѲ½¤¬¤¢¤ë¡¡Leu, Val ¤Ï°Å´ü¤ËÇÜΨ¤¬Áý¤¨¤ë

Fig.7¡¡ATP, ADP ¤Î¬Äê¡¡¾ò·ï¤Ë¤è¤Ã¤Æ¤Ï¡¢ATPÎ̤¬Áý²Ã¤·¤Æ¤¤¤ë¡Ê¥Ñ¥Í¥ëA)¡¡¡¡¡¡º¹¤ÏÈæ³ÓŪ¾®¤µ¤¤¤è¤¦¤Ë»×¤¨¤ë¡¡¡¡¡¡Fig.8¡¡¸÷¹çÀ®¤Î¬Äê¡¡¤¢¤Þ¤êº¹¤¬¤Ê¤¤¤è¤¦¤Ë¸«¤¨¤ë¡¡¡¡¡¡Fig.9¡¡¥Ñ¥Í¥ëA¡¡NBTÀ÷¿§¡¡³èÀ­»ÀÁǤ¬Áý²Ã¤·¤Æ¤¤¤ë¡¡¤³¤ì¤Ï FRO1 ÊÑ°ÛÂΤÈƱ¤¸¡¡¥Ñ¥Í¥ëB¡¡¥¹¥È¥ì¥¹´¶¼õÀ­¡¡¿©±ö¤ä¥Þ¥ó¥Ë¥È¡¼¥ë¤Çº¬¤ÎÀ®Ä¹¤¬ÍÞ¤¨¤é¤ì¤ä¤¹¤¤¡¡

¥Ñ¥Í¥ëC¡¡¿å¤ä¤êÄä»ß¤Ç´¥Á祹¥È¥ì¥¹¡¡ÌîÀ¸·¿¤ÈÊÑ°ÛÂΤòÊÌ¡¹¤Î¥Ý¥Ã¥È¤Ë¿¢¤¨¤Æ¤¤¤ë¡£¤½¤¦¤¹¤ë¤ÈNDUF4SÊÑ°ÛÂΤÏĹ»ý¤Á¤·¤Æ¤¤¤ë¡¡°ìÊý¡¢¥Ñ¥Í¥ëD¡¡¤Ç¤ÏƱ¤¸¥Ý¥Ã¥È¤Ëʤ٤Ƥ¤¤ë¡£¤½¤¦¤¹¤ë¤È¡¢ÌîÀ¸·¿¤È°ã¤¤¤¬Ìµ¤¯¡¢´¥Áç¤ËÂѤ¨¤é¤ì¤Ê¤¤¡£

¤³¤Î¤³¤È¤Ï¡¢NDUF4SÊÑ°ÛÂΤϻþ´ÖÅö¤¿¤ê¤Îº¬¤«¤éµÛ¤¤¾å¤²¤ë¿å¤ÎÎ̤¬¾¯¤Ê¤¤¡¦»þ´ÖÅö¤¿¤ê¤ÎÍÕ¤«¤é¤Î¾ø»¶Î̤¬¾®¤µ¤¤¤³¤È¤ò¼¨º¶¤·¤Æ¤¤¤ë¡£¤½¤Î¤¿¤áÇÝÍÜÅڤ˸ºß¤¹¤ë¿åʬ¤òĹ»þ´Ö¾¯¤·¤º¤Ä»È¤¦¤³¤È¤¬¤Ç¤­¤ë¡£Æ±¤¸¥Ý¥Ã¥È¤Ë¿¢¤¨¤ë¤È¡¢ÌîÀ¸·¿¤¬¿å¤òµÛ¤¤¾å¤²¤Æ¾ø»¶¤·¤Æ¤·¤Þ¤¦¤Î¤Ç°ÕÌ£¤¬Ìµ¤¯¤Ê¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢ÊѰۤˤè¤Ã¤Æ¡¢´ÖÀÜŪ¤Ëµ¤¹¦¤Ë±Æ¶Á¤¬½Ð¤Æ¤¤¤ë²ÄǽÀ­¤¬¤¢¤ë¡£

References

Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night.¡¡¡¡¡¡Meyer EH, Tomaz T, Carroll AJ, Estavillo G, Delannoy E, Tanz SK, Small ID, Pogson BJ, Millar AH.¡¡¡¡¡¡Plant Physiol. 2009 Oct;151(2):603-19.

Complete Mitochondrial Complex I Deficiency Induces an Up-Regulation of Respiratory Fluxes That Is Abolished by Traces of Functional Complex I.¡¡¡¡¡¡Kuhn K, Obata T, Feher K, Bock R, Fernie AR, Meyer EH.¡¡¡¡¡¡¡¡Plant Physiol. 2015 Aug;168(4):1537-49. doi: 10.1104/pp.15.00589. Epub 2015 Jul 1.¡¡¡¡¡¡PMID: 26134164

Photoperiod Affects the Phenotype of Mitochondrial Complex I Mutants.¡¡¡¡¡¡Petriacq P, de Bont L, Genestout L, Hao J, Laureau C, Florez-Sarasa I, Rzigui T, Queval G, Gilard F, Mauve C, Guerard F, Lamothe-Sibold M, Marion J, Fresneau C, Brown S, Danon A, Krieger-Liszkay A, Berthome R, Ribas-Carbo M, Tcherkez G, Cornic G, Pineau B, Gakiere B, De Paepe R.¡¡¡¡¡¡Plant Physiol. 2017 Jan;173(1):434-455. doi: 10.1104/pp.16.01484. Epub 2016 Nov 16.¡¡¡¡¡¡PMID: 27852950

À¸½ÅÎÌÅö¤¿¤ê¤Î GSH, ¥¢¥¹¥³¥ë¥Ó¥ó»À¤ÎÎ̤¬ÌîÀ¸·¿¤ÈÈæ³Ó¤·¤Æ 1.5~2 ÇܤËÁý²Ã¤·¤Æ¤¤¤ë¡£

ưʪ¤Î NDUFS4 ¤Ï¡¢Ê£¹çÂÎI ¤È¥¯¥ê¥¹¥Æ¤ÎÁê¸ßºîÍѤ˽ÅÍפÊÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë

ưʪ¤ÎÊ£¹çÂÎI ¤Ç¤â NDUFS4 ¤Ï½ÅÍפÊÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë¡£²¬»³Âç³Ø¤Î¸¦µæ¥Á¡¼¥à¤Ë¤è¤Ã¤Æ¤¹¤Ð¤é¤·¤¤¸¦µæÀ®²Ì¤¬Êó¹ð¤µ¤ì¤¿¡£

https://www.okayama-u.ac.jp/tp/release/release_id1198.html¡¡¡¡¡ÖÅüǢɴØÏ¢¿Õ¡É¤ο·¤¿¤Ê°­²½¥á¥«¥Ë¥º¥à¤òȯ¸«¡ª¡Á¿Õ¡¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¸ÆµÛº¿I¤Ï¿·¤¿¤Ê¼£ÎÅɸŪ¤Ë¤Ê¤ë²ÄǽÀ­¡Á¡×

¡ÖNDUFS4 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¥¯¥ê¥¹¥Æ¹½À®¥¿¥ó¥Ñ¥¯¼Á¤Ç¤¢¤ë STOML2¡ÊStomatin-Like Protein 2¡Ë¤È·ë¹ç¤·¡¢¥¯¥ê¥¹¥Æ¤ä¥ß¥È¥³¥ó¥É¥ê¥¢¤Î¹½Â¤¡¦µ¡Ç½°Ý»ý¤Ë´óÍ¿¤·¤Æ¤¤¤ë¤³¤È¤¬Ê¬¤«¤ê¤Þ¤·¤¿¡£¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

¤Þ¤¿¡¢NDUFS4 ¤ò²á¾êȯ¸½¤µ¤»¤ë¤³¤È¤Ç¡¢³èÀ­»ÀÁÇ»ºÀ¸ÁýÂç¤Ê¤É¤Î¥À¥á¡¼¥¸¤ò´ËϤ¹¤ë¤³¤È¤¬¤Ç¤­¤ë¤³¤È¤â¼¨¤µ¤ì¤Æ¤¤¤ë¡£

Stomatin-like proteins (STOML)

¾å¤Ë½ñ¤¤¤¿¤è¤¦¤Ëưʪ¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Ï NDUFS4 ¤¬ Stomatin-like protein 2 ¤È·ë¹ç¤·¤Æ¤¤¤ë¤³¤È¤¬ÌÀ¤é¤«¤Ë¤Ê¤Ã¤¿¡£¿¢Êª¤Ç¤â Stomatin-like protein ¤ÎÊÑ°ÛÂΤ¬¸«¤Ä¤±¤é¤ì¸¦µæ¤µ¤ì¤Æ¤¤¤ë¡£

An Arabidopsis stomatin-like protein affects mitochondrial respiratory supercomplex organization¡¡¡¡¡¡Plant Physiol. 2014 Mar;164(3):1389-400. doi: 10.1104/pp.113.230383. Epub 2014 Jan 14.¡¡¡¡¡¡Bernadette Gehl ¤Ê¤É¡¡¡¡¡¡PMID: 24424325 PMCID: PMC3938628

Stomatins ¤Ï band-7 protein family¡¡¤Ë°¤¹¤ë¥¿¥ó¥Ñ¥¯¼Á¤Ç¿¼ïÎà¤ÎÀ¸Êª¤Ç¤è¤¯Êݸ¤µ¤ì¤Æ¤¤¤ë¡Êµ¤¹¦¤È¤Ï´Ø·¸¤Ê¤¤¡Ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎÆâËì¤Ë¸ºß¤¹¤ë¥¿¥ó¥Ñ¥¯¼ÁÊ£¹çÂΤȷë¹ç¤·¤Æ°ÂÄê²½¤¹¤ë¡£

¡ÖAt4g27585 At5g54100 SPFH/Band 7/PHB domain-containing membrane-associated protein family¡×¤ÈÃí¼á¤µ¤ì¤Æ¤¤¤ë¡£

At5g54100 ¤¬½Ð¤Æ¤¯¤ëÏÀʸ¤¬¤¢¤Ã¤¿¡£¡¡¡¡Cesium toxicity in Arabidopsis.¡¡¡¡¡¡Hampton CR, Bowen HC, Broadley MR, Hammond JP, Mead A, Payne KA, Pritchard J, White PJ.¡¡¡¡¡¡Plant Physiol. 2004 Nov;136(3):3824-37. doi: 10.1104/pp.104.046672. Epub 2004 Oct 15.¡¡¡¡¡¡PMID: 15489280

¥»¥·¥¦¥à½èÍý¤Çȯ¸½¤¬¾å¾º¤¹¤ë°äÅÁ»Ò¤Î¥ê¥¹¥È¤Ë´Þ¤Þ¤ì¤Æ¤¤¤ë¡£È¯¸½¥Ç¡¼¥¿¥Ù¡¼¥¹¤ò¸«¤ë¤È¡¢At5g54100 ¤Ï¥¢¥ó¥Á¥Þ¥¤¥·¥ó¡¢¥ª¥ê¥´¥Þ¥¤¥·¥ó½èÍý¤Ë¤è¤Ã¤Æ¤â°äÅÁ»Òȯ¸½Î̤¬Áý²Ã¤·¤Æ¤¤¤ë¡£

¿¢Êª¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¡¢ÍÕÎÐÂΤ˺îÍѤ¹¤ëɸ¶¶ÝÆÇÁÇ

Total Synthesis, Absolute Configuration, and Phytotoxic Activity of Foeniculoxin¡¡¡¡¡¡Chemistry. 2022 Nov 10. doi: 10.1002/chem.202203396. Online ahead of print.¡¡¡¡Akane Yamagishi ¤Ê¤É¡¡¡¡PMID: 36354746

Foeniculoxin ¤Ï Phomopsis foeniculi ¤È¤¤¤¦¿¿¶Ý¤¬ºî¤ë¿¢ÊªÆÇÁǤǤ¢¤ë¡£geranylhydroquinone ¤Î°ì¼ï¤Ç¤¢¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¡¢ÍÕÎÐÂΤ˰۾ï¤ò°ú¤­µ¯¤³¤¹¤³¤È¤¬²òÌÀ¤µ¤ì¤¿¡£

Effects of Benzoquinones on Radicles of Orobanche and Phelipanche Species.¡¡¡¡Fernández-Aparicio M, Masi M, Cimmino A, Evidente A. Plants (Basel). 2021 Apr 11;10(4):746. doi: 10.3390/plants10040746. PMID: 33920368 ¡¡¡¡¤È¤¤¤¦ÏÀʸ¤Ë Foeniculoxin ¤Ë¤Ä¤¤¤Æ¸ÀµÚ¤µ¤ì¤Æ¤¤¤¿¡£¥­¥Î¥óÎà¤ÏºÙ˦Æâ¤Ç»À²½´Ô¸µ¤ò¼õ¤±¤Æ³èÀ­»ÀÁÇÀ¸À®¤ò°ú¤­µ¯¤³¤¹¤³¤È¤¬¤¢¤ë¡£DMBQ ¥¸¥á¥Á¥ë¥Ù¥ó¥¾¥­¥Î¥ó¤Ï´óÀ¸¿¢Êª¤ÎµÛ´ï·ÁÀ®¤Î¥·¥°¥Ê¥ëʬ»Ò¤È¤·¤ÆƯ¤¯¤¬Íĺ¬ radicle ¤ÎÀ¸°é¤ÏÁ˳²¤¹¤ë¡£


´¥Á祹¥È¥ì¥¹¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Î´Ø·¸¤ò¼¨¤·¤¿ÏÀʸ¡¡The Mitochondrial Thioredoxin System Contributes to the Metabolic Responses Under Drought Episodes in Arabidopsis¡¡¡¡¡¡Paula da Fonseca-Pereira Danilo M Daloso ... Show more Plant and Cell Physiology, Volume 60, Issue 1, 1 January 2019, Pages 213–229, https://doi.org/10.1093/pcp/pcy194¡¡¡¡¡¡Â¾¤Ë¤â¤¢¤ë¡£

¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤·¤ÆƯ¤¤¤Æ¤¤¤ë ALDH2B7 ¤¬´¥ÁçÂÑÀ­¤Î³ÍÆÀ¤ËÌòΩ¤Ä¤³¤È¤ò¼¨¤·¤¿¤¹¤Ð¤é¤·¤¤À®²Ì¤¬Íý¸¦¤Î¥°¥ë¡¼¥×¤Ë¤è¤Ã¤Æȯɽ¤µ¤ì¤Æ¤¤¤ë¡£

Sci Rep. 2018; 8: 7831.¡¡¡¡¡¡Published online 2018 May 18. doi: 10.1038/s41598-018-26103-2¡¡¡¡¡¡PMCID: PMC5959891¡¡¡¡¡¡PMID: 29777132¡¡¡¡¡¡The modulation of acetic acid pathway genes in Arabidopsis improves survival under drought stress¡¡¡¡¡¡Sultana Rasheed,#1,2 Khurram Bashir,#1,3 Jong-Myong Kim,1 Marina Ando,1 Maho Tanaka,1,4 and Motoaki Seki

¿¢ÊªÉ¸¶ºÙ¶Ý¤¬´¶À÷¤·¤¿ºÝ¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¥¿¥ó¥Ñ¥¯¼Á¤ÎÊѲ½¤òÄ´¤Ù¤¿ÏÀʸ¡¡¡¡Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae.¡¡¡¡¡¡Jones AM, Thomas V, Bennett MH, Mansfield J, Grant M.¡¡¡¡¡¡Plant Physiol. 2006 Dec;142(4):1603-20. Epub 2006 Oct 6.¡¡¡¡¡¡PMID: 17028151


¤³¤³¤«¤é²¼¤ÎÊÑ°ÛÂΤϡ¢ÊѰۤˤè¤Ã¤ÆÍ­Íø¤Ê¤³¤È¡¢¼Ò²ñŪ¤Ë°ÕÌ£¤Î¤¢¤ë¤³¤È¤Ï²¿¤âµ¯¤³¤é¤Ê¤¤¤Î¤Ç¡Ö¤³¤ó¤Ê¤â¤Î¤ò¸¦µæ¤·¤Æ¤â°ÕÌ£¤Ï¤Ê¤¤¡×¤¬¡¢¤½¤¦¤Ç¤â¤Ê¤¤¤È»ä¤Ï»×¤¦¤Î¤Ç½ñ¤¤¤Æ¤ª¤¯¡£ÅÅ»ÒÅÁã·ÏÊ£¹çÂÎ I ¤Îµ¡Ç½ÊÑ°ÛÂΤ¬Â¿¤¤¡£

css1

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¥»¥ë¥í¡¼¥¹¹çÀ®Á˳²ºÞ¤Ë¤è¤ëº¬¤ÎÈîÂ礬µ¯¤­¤Ë¤¯¤¤¡¡¡¡¡¡¸«¤Ä¤±¤¿¤Î¤Ï¡¢¤³¤Î¥Ú¡¼¥¸¤ò½ñ¤¤¤Æ¤¤¤ëËÜ¿Í¡¡
¼«Ê¬¤Ç¸«¤Ä¤±¤¿¤â¤Î¤Ï²ÁÃͤ¬¤¢¤ë¤â¤Î¤È¹Í¤¨¤¬¤Á¤Ç¤¢¤ë¡£¤·¤«¤·¤½¤¦¤¤¤¦¤³¤È¤Ë¤È¤é¤ï¤ì¤ë¤Î¤Ï¤è¤¯¤Ê¤¤¤³¤È¤Ç¤¢¤ë¤È²þ¿´¤·¤¿¡£

ÊÑ°Û°äÅÁ»Ò--css1
At-nMat1a¡¡(AT1g30010)¡¡¡¡¡¡¡Ö¥ß¥È¥³¥ó¥É¥ê¥¢Ê£¹çÂÎI (NADH dehydrogenase) ¥µ¥Ö¥æ¥Ë¥Ã¥È¤Î°ì¤Ä¡¢NAD4¡Ê¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Ë¥³¡¼¥É¤µ¤ì¤Æ¤¤¤ë¡Ë¡×¤Î mRNA¤¬ÊÝ»ý¤¹¤ë¥°¥ë¡¼¥×II¥¤¥ó¥È¥í¥ó¤ò¥¹¥×¥é¥¤¥¹¤¹¤ë¤¿¤á¤ËɬÍפʡ¢³Ë¥³¡¼¥É°ø»Ò¡Ê¤ä¤ä¤³¤·¤¤¡Ë

¥¹¥×¥é¥¤¥·¥ó¥°¤Î°Û¾ï¤Ï¡¢¥Ò¥È¤Îɵ¤¤Î¸¶°ø¤Ë¤â¤Ê¤ë¡£¥¹¥×¥é¥¤¥·¥ó¥°¤Î°Û¾ï¤ò²óÉü¤µ¤»¤ëÌôºÞ¤Î³«È¯¤¬¿Ê¤ó¤Ç¤¤¤ë¡£»ä¤Î¸¦µæ¤È¤Ï´Ø·¸¤Ê¤¤¤¬¡¢¿¢Êª¥Û¥ë¥â¥ó¤Î¥µ¥¤¥È¥«¥¤¥Ë¥ó¤Î°ì¼ï¤Ç¤¢¤ë¥«¥¤¥Í¥Á¥ó¤¬¡¢¥¹¥×¥é¥¤¥·¥ó¥°¤Î°Û¾ï¤ò²óÉü¤µ¤»¤ë¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£¥«¥¤¥Í¥Á¥ó¤Ê¤é»ä¤Î¸¦µæ¼¼¤Ë¤â¤¢¤ë¤¬¡¢¤½¤ó¤Ê³èÀ­¤¬¤¢¤ë¤³¤È¤Ï 2020 ǯ¤Þ¤ÇÁ´¤¯ÃΤé¤Ê¤«¤Ã¤¿¡£

Rescue of a human mRNA splicing defect by the plant cytokinin kinetin.¡¡¡¡¡¡Slaugenhaupt SA, Mull J, Leyne M, Cuajungco MP, Gill SP, Hims MM, Quintero F, Axelrod FB, Gusella JF. ¡¡¡¡¡¡Hum Mol Genet. 2004 Feb 15;13(4):429-36. doi: 10.1093/hmg/ddh046. Epub 2004 Jan 6. ¡¡¡¡¡¡PMID: 14709595 ¡¡¡¡¡¡¡ÖNeurodegeneration Drug Screening Consortium¡×¤Ë¤è¤ë¥¹¥¯¥ê¡¼¥Ë¥ó¥°¤Çȯ¸«¤µ¤ì¤¿¤é¤·¤¤¡£

¤³¤Î¸¦µæÀ®²Ì¤Ï¤½¤Î¸å¤µ¤é¤Ë³Îǧ¤µ¤ì¿ÊÊ⤷¤Æ¤¤¤ë¡£¥¹¥×¥é¥¤¥·¥ó¥°¤Î°Û¾ï¤ò²óÉü¤µ¤»¤ë²½¹çʪ¤Ï rectifier of aberrant splicing (RECTAS) ¤ÈÁí¾Î¤µ¤ì¤ë¤è¤¦¤Ë¤Ê¤Ã¤¿¡£¡¡¡¡¡¡Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia.¡¡¡¡¡¡Yoshida M, Kataoka N, Miyauchi K, Ohe K, Iida K, Yoshida S, Nojima T, Okuno Y, Onogi H, Usui T, Takeuchi A, Hosoya T, Suzuki T, Hagiwara M. ¡¡¡¡¡¡Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2764-9. doi: 10.1073/pnas.1415525112. Epub 2015 Feb 9. ¡¡¡¡¡¡PMID: 25675486¡¡¡¡¡¡¥Ñ¡¼¥­¥ó¥½¥óɤμ£ÎÅË¡¤È¤·¤ÆÍ­¸ú¤Ç¤¢¤ë¤³¤È¤¬¼¨¤µ¤ì¤¿¡£¡¡¡¡A patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson¡Çs disease.¡¡¡¡¡¡Boussaad I¡¡¤Ê¤É¡¡Sci Transl Med. 2020 Sep 9;12(560):eaau3960. doi: 10.1126/scitranslmed.aau3960. PMID: 32908004

ÍÕÎÐÂΰäÅÁ»Ò¤«¤éž¼Ì¤µ¤ì¤ë mRNA ¤Î¥¹¥×¥é¥¤¥·¥ó¥°¤ò»î¸³´ÉÆâ¤ÇºÆ¸½¤Ç¤­¤ë¡¢¤¹¤Ð¤é¤·¤¤ in vitro ·Ï¤¬³«È¯¤µ¤ì¤¿¡£¡¡¡¡¡¡Development of an In Vitro Chloroplast Splicing System: Sequences Required for Correct pre-mRNA Splicing¡¡¡¡¡¡ Keiko Inaba-Hasegawa, Ayumi Ohmura, Masayo Nomura, Masahiro Sugiura¡¡¡¡¡¡Plant and Cell Physiology, Volume 62, Issue 8, August 2021, Pages 1311–1320, https://doi.org/10.1093/pcp/pcab095

References

A mutation in At-nMat1a, which encodes a nuclear gene having high similarity to group II intron maturase, causes impaired splicing of mitochondrial NAD4 transcript and altered carbon metabolism in Arabidopsis thaliana.¡¡¡¡¡¡Nakagawa N, Sakurai N.¡¡¡¡¡¡Plant Cell Physiol. 2006 Jun;47(6):772-83. PMID: 16621844

¤³¤ÎÏÀʸ¤Ë´Ø¤¹¤ëÀâÌÀ¡¡¡¡¡¡Plant¡¡Cell¡¡Physiology¡¡47(6)¡¡772-783(2006)_¤Ë¤Ä¤¤¤Æ

nMat1 ¤Ê¤É¤Î¡¢¿¢ÊªÆȼ«¤Î³Ë¥³¡¼¥É group II intron splicing factors (maturase) ¤Ë´Ø¤¹¤ë¥ì¥Ó¥å¡¼¡¡¡¡¡¡Group II Intron- Encoded Proteins (IEPs / Maturases) as Key Regulators of Nad1 Expression and Complex I Biogenesis in Land Plant Mitochondria.¡¡¡¡¡¡Mizrahi R, Shevtsov-Tal S, Ostersetzer-Biran O.¡¡¡¡¡¡Genes (Basel). 2022 Jun 24;13(7):1137. doi: 10.3390/genes13071137.¡¡¡¡¡¡PMID: 35885919

ȯ²ê¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¤Ï´ØÏ¢¤¬¤¢¤ë¡£ºÇ¶á¸¦µæ¤¬Áý¤¨¤Æ¤¤¤ë¡£

In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis.¡¡¡¡¡¡Narsai R, Law SR, Carrie C, Xu L, Whelan J.¡¡¡¡¡¡Plant Physiol. 2011 Nov;157(3):1342-62. Epub 2011 Sep 9.¡¡¡¡¡¡ PMID: 21908688

¡Ö¥°¥ë¡¼¥×II¥¤¥ó¥È¥í¥ó¤ò¥¹¥×¥é¥¤¥¹¤¹¤ë°ø»Ò¡×¤È¡¢¡Ö¼ï»Ò¤Îȯ²ê¡×¤ò¡¢²¿¤Î¼ê¤¬¤«¤ê¤â¤Ê¤·¤Ë·ë¤Ó¤Ä¤±¤ë¤³¤È¤ÏÆñ¤·¤¤¡£È¯²ê»þ¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¤Ä¤¤¤ÆÄ´¤Ù¤Æ¤¤¤ë¸¦µæ¤¬´û¤Ë¤¢¤ë¡£¤½¤ì¤é¤òÃΤé¤Ê¤±¤ì¤Ðµ¤¤Å¤­¤Ë¤¯¤¤¡£¤·¤«¤·¡¢Å¾¼Ì»ºÊª¤ÎÌÖÍåŪ²òÀϤˤè¤Ã¤ÆÆÀ¤é¤ì¤¿¥Ç¡¼¥¿¤ò¸µ¤Ë¤¹¤ë¤³¤È¤Ç¡¢¤½¤Î´Ø·¸¤¬¸«¤¤¤À¤µ¤ì¤¿¡£

¤³¤ÎÏÀʸ¤Ë css1ÊÑ°ÛÂÎ (ÊÑ°Û°äÅÁ»Ò¤ÏAt1g30010, ¸Æ¤Ó̾¤È¤·¤Æ¡¡At-nMat1a¡¡¤Þ¤¿¤Ï Atnmat1)¡¡¤¬½Ð¤Æ¤¯¤ë¡£¼Ì¿¿¤â½Ð¤Æ¤¯¤ë¡£

nMAT1, a Nuclear-encoded Maturase involved in the trans-splicing of nad1 intron 1, is essential for mitochondrial complex I assembly and function.¡¡¡¡¡¡Keren I, Tal L, des Francs-Small CC, Araújo WL, Shevtsov S, Shaya F, Fernie AR, Small I, Ostersetzer-Biran O.¡¡¡¡¡¡Plant J. 2012 Mar 16. doi: 10.1111/j.1365-313X.2012.04998.x. [Epub ahead of print]¡¡¡¡¡¡PMID: 22429648

nMAT1a (nMAT1) ¤¬ NAD4 ¤Î¥¹¥×¥é¥¤¥·¥ó¥°°Ê³°¤Ë¤â¸ú¤¤¤Æ¤¤¤ë¤³¤È¤¬³Î¤«¤á¤é¤ì¤¿¡£

CMS1(CMSI)¡¡Counter

¿¢Êª¼ï
N.sylvestris¡¡¥¿¥Ð¥³¤Î°ì¼ï¡¡
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
ͺÀ­ÉÔÌ­¡¡¥×¥í¥È¥×¥é¥¹¥ÈÇÝÍܤ«¤éºÆÀ¸¤·¤¿¿¢Êª¤Ë¤ß¤é¤ì¤¿ÊÑ°Û
ÊÑ°Û°äÅÁ»Ò--CMS1(CMSI)
NADH dehydrogenase deficient, NAD7 deletion¡¡¡¡¡¡NAD7 ¤Ï¥Ð¥¯¥Æ¥ê¥¢¤ÎNADH dehydrogenase¤Î NuoD (D subunit) ¤ÈÁêƱÀ­¤¬¤¢¤ë¡£NuoD (D subunit) ¤Ï¥×¥í¥È¥óÍ¢Á÷¤Ë¤ÏľÀܴؤï¤Ã¤Æ¤¤¤Ê¤¤¡£
À­¼Á
ȯ²ê¤«¤é²Ö¤Î·ÁÀ®¤Þ¤Ç°Û¾ï¡¡À¸°é¤¬ÃÙ¤¤¡¡¸÷¤¬¼å¤¤¤ÈÉÔÌ­¤¬¤Ò¤É¤¯¤Ê¤ë Æ󼡸µÅŵ¤±ËÆ°¤ÇNAD9¤È38k subunit¤¬·ç¼º¡¡¸ÆµÛ¤¬°Û¾ï¡¡¥°¥ê¥·¥ó¤Î»À²½¤¬ÍÞÀ©¡¡¥³¥Ï¥¯»À»À²½¤ÏÀµ¾ï¡¡¥í¥Æ¥Î¥ó´¶¼õÀ­¤¬Ä㤤¡¡AOX³èÀ­, mRNA¤¬¾å¾º¡¡ÂåÂØNADH dehydrogenase ¤¬³èÀ­²½¡¡5mM KCN¤ËÂѤ¨¤ë

References

Respiratory complex I deficiency results in low nitric oxide levels, induction of hemoglobin and upregulation of fermentation pathways.¡¡¡¡¡¡Shah JK1, Cochrane DW, De Paepe R, Igamberdiev AU.¡¡¡¡¡¡Plant Physiol Biochem. 2013 Feb;63:185-90. doi: 10.1016/j.plaphy.2012.11.022. Epub 2012 Dec 5.

Cytoplasmic male sterility is associated with large deletions in the mitochondrial DNA of two Nicotiana sylvestris protoclones.¡¡¡¡¡¡Chetrit P, Rios R, De Paepe R, Vitart V, Gutierres S, Vedel F.¡¡¡¡¡¡Curr Genet. 1992 Feb;21(2):131-7.

Deletion of the last two exons of the mitochondrial nad7 gene results in lack of the NAD7 polypeptide in a Nicotiana sylvestris CMS mutant.¡¡¡¡¡¡Pla M, Mathieu C, De Paepe R, Chetrit P, Vedel F.¡¡¡¡¡¡Mol Gen Genet. 1995 Jul 22;248(1):79-88.

Lack of mitochondrial and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sylvestris mitochondrial deletion mutants.¡¡¡¡¡¡Gutierres S, Sabar M, Lelandais C, Chetrit P, Diolez P, Degand H, Boutry M, Vedel F, de Kouchkovsky Y, De Paepe R.¡¡¡¡¡¡Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3436-41.

CMS2 (CMSII)

¿¢Êª¼ï
N.sylvestris¡¡¥¿¥Ð¥³¤Î°ì¼ï¡¡¥¿¥Ð¥³¤Î¥ß¥È¥³¥ó¥É¥ê¥¢ÊÑ°ÛÂΤȤ·¤Æ¤Ï°ìÈÖ¸¦µæÏÀʸ¤¬Â¿¤¤
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
ͺÀ­ÉÔÌ­¡¡¥×¥í¥È¥×¥é¥¹¥ÈÇÝÍܤ«¤éºÆÀ¸¤·¤¿¿¢Êª¤Ë¤ß¤é¤ì¤¿ÊÑ°Û
ÊÑ°Û°äÅÁ»Ò--CMS2(CMSII)
NADH dehydrogenase deficient, NAD7 deletion¡¡¡¡¡¡NAD7 ¤Ï¥Ð¥¯¥Æ¥ê¥¢¤ÎNADH dehydrogenase¤Î NuoD (D subunit) ¤ÈÁêƱÀ­¤¬¤¢¤ë¡£NuoD (D subunit) ¤Ï¥×¥í¥È¥óÍ¢Á÷¤Ë¤ÏľÀܴؤï¤Ã¤Æ¤¤¤Ê¤¤¡£
À­¼Á
ȯ²ê¤«¤é²Ö¤Î·ÁÀ®¤Þ¤Ç°Û¾ï¡¡À¸°é¤¬ÃÙ¤¤¡¡¸÷¤¬¼å¤¤¤ÈÉÔÌ­¤¬¤Ò¤É¤¯¤Ê¤ë Æ󼡸µÅŵ¤±ËÆ°¤ÇNAD9¤È38k subunit¤¬·ç¼º¡¡¸ÆµÛ¤¬°Û¾ï¡¡¥°¥ê¥·¥ó¤Î»À²½¤¬ÍÞÀ©¡¡¥³¥Ï¥¯»À»À²½¤ÏÀµ¾ï¡¡¥í¥Æ¥Î¥ó´¶¼õÀ­¤¬Ä㤤¡¡AOX³èÀ­, mRNA¤¬¾å¾º¡¡ÂåÂØNADH dehydrogenase ¤¬³èÀ­²½¡¡5mM KCN¤ËÂѤ¨¤ë

References (CMS1 ¤Îʬ¤Ï½ü¤¯¡Ë

Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism.¡¡¡¡¡¡Dutilleul C, Lelarge C, Prioul JL, De Paepe R, Foyer CH, Noctor G.¡¡¡¡¡¡Plant Physiol. 2005 Sep;139(1):64-78.

¤³¤ÎÏÀʸ¤ÏÍÍ¡¹¤Ê¤³¤È¤ò¤è¤¯Ê¬ÀϤ·¤Æ¤¤¤ë¡£ÃâÁÇÂå¼Õ¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Î´Ø·¸¤ò¾ÜºÙ¤Ë¼¨¤·¤Æ¤¤¤ë¡£

Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris.¡¡¡¡¡¡Pellny TK, Van Aken O, Dutilleul C, Wolff T, Groten K, Bor M, De Paepe R, Reyss A, Van Breusegem F, Noctor G, Foyer CH.¡¡¡¡¡¡Plant J. 2008 Jun;54(6):976-92.

C/N Èæ¤Î¥»¥ó¥·¥ó¥°¤ËÂФ¹¤ë±Æ¶Á¡¢Shoot/Root ratio, GAÀ¸¹çÀ®¤ËÂФ¹¤ë±Æ¶Á¤ò¼¨¤·¤Æ¤¤¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎÊѲ½¤ÏÍÍ¡¹¤ÊÉôʬ¤Ë±Æ¶Á¤òÍ¿¤¨¤ë¤³¤È¤ò¼¨¤·¤Æ¤¤¤ë¡£

Respiratory complex I deficiency results in low nitric oxide levels, induction of hemoglobin and upregulation of fermentation pathways.¡¡¡¡¡¡Shah JK, Cochrane DW, De Paepe R, Igamberdiev AU.¡¡¡¡¡¡Plant Physiol Biochem. 2012 Dec 5;63C:185-190. doi: 10.1016/j.plaphy.2012.11.022. [Epub ahead of print] ¡¡¡¡¡¡PMID: 2326636

¿¢Êª¤ÏÄã»ÀÁǾò·ï¤Ç°ì»À²½ÃâÁǤòȯÀ¸¤¹¤ë¡£¤½¤ÎÎ̤¬¡¢NAD7 ¤ò·ç¤¯ CMS ÊÑ°ÛÂΤǤϾ¯¤Ê¤¯¤Ê¤ë¡£Äã»ÀÁǾò·ï¤Ç¤Ï¡¢¥Ø¥â¥°¥í¥Ó¥ó¤¬°ì»À²½ÃâÁǤÎȯÀ¸¤Ë¤«¤«¤ï¤Ã¤Æ¤¤¤ë¤é¤·¤¤¡£CMS ÊÑ°ÛÂΤǤÏÄã»ÀÁǤdzèÀ­²½¤µ¤ì¤ë¥¢¥ë¥³¡¼¥ëȯ¹Ú·ÐÏ©¡¢¥Ø¥â¥°¥í¥Ó¥ó¤¬³èÀ­²½¤·¤Æ¤¤¤¿¡£

Conditional modulation of NAD levels and metabolite profiles in Nicotiana sylvestris by mitochondrial electron transport and carbon/nitrogen supply.¡¡¡¡¡¡Hager J, Pellny TK, Mauve C, Lelarge-Trouverie C, De Paepe R, Foyer CH, Noctor G.¡¡¡¡¡¡Planta. 2010 Feb 25. [Epub ahead of print]

Effects of drought stress and subsequent rewatering on photosynthetic and respiratory pathways in Nicotiana sylvestris wild type and the mitochondrial complex I-deficient CMSII mutant.

Galle A, Florez-Sarasa I, Thameur A, de Paepe R, Flexas J, Ribas-Carbo M.

J Exp Bot. 2010 Mar;61(3):765-75.

L-galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I.¡¡¡¡¡¡Pineau B, Layoune O, Danon A, De Paepe R.¡¡¡¡¡¡ J Biol Chem. 2008 Nov 21;283(47):32500-5.

¥¢¥¹¥³¥ë¥Ó¥ó»ÀÀ¸¹çÀ®¤ÎºÇ¸å¤ÎÃʳ¬¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤·¤ÆƯ¤¯¡£

Changes in energy status of leaf cells as a consequence of mitochondrial genome rearrangement.

Szal B, Dabrowska Z, Malmberg G, Gardestrom P, Rychter AM.

Planta. 2008 Feb;227(3):697-706.

The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris.

Liu YJ, Norberg FE, Szilagyi A, De Paepe R, Akerlund HE, Rasmusson AG.

Plant Cell Physiol. 2008 Feb;49(2):251-63.

Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in tobacco.

Vidal G, Ribas-Carbo M, Garmier M, Dubertret G, Rasmusson AG, Mathieu C, Foyer CH, De Paepe R.

Plant Cell. 2007 Feb;19(2):640-55.

The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance.

Priault P, Fresneau C, Noctor G, De Paepe R, Cornic G, Streb P.

J Exp Bot. 2006;57(9):2075-85.

Targeting the NAD7 subunit to mitochondria restores a functional complex I and a wild type phenotype in the Nicotiana sylvestris CMS II mutant lacking nad7.¡¡¡¡¡¡Pineau B, Mathieu C, Gerard-Hirne C, De Paepe R, Chetrit P.¡¡¡¡¡¡J Biol Chem. 2005 Jul 15;280(28):25994-6001.

Targeting the NAD7 subunit to mitochondria restores a functional complex I and a wild type phenotype in the Nicotiana sylvestris CMS II mutant lacking nad7.

Pineau B, Mathieu C, Gerard-Hirne C, De Paepe R, Chetrit P.

J Biol Chem. 2005 Jul 15;280(28):25994-6001.

Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism.

Noctor G, Dutilleul C, De Paepe R, Foyer CH.

J Exp Bot. 2004 Jan;55(394):49-57.

Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation.

Dutilleul C, Garmier M, Noctor G, Mathieu C, Chetrit P, Foyer CH, de Paepe R.

Plant Cell. 2003 May;15(5):1212-26.

Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients.

Dutilleul C, Driscoll S, Cornic G, De Paepe R, Foyer CH, Noctor G.

Plant Physiol. 2003 Jan;131(1):264-75.

Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris.

Sabar M, De Paepe R, de Kouchkovsky Y.

Plant Physiol. 2000 Nov;124(3):1239-50.

In the Nicotiana sylvestris CMSII mutant, a recombination-mediated change 5¡Ç to the first exon of the mitochondrial nad1 gene is associated with lack of the NADH:ubiquinone oxidoreductase (complex I) NAD1 subunit.

Gutierres S, Combettes B, De Paepe R, Mirande M, Lelandais C, Vedel F, Chetrit P.

Eur J Biochem. 1999 Apr;261(2):361-70.

Organization and expression of the mitochondrial genome in the Nicotiana sylvestris CMSII mutant.

Lelandais C, Albert B, Gutierres S, De Paepe R, Godelle B, Vedel F, Chetrit P.

Genetics. 1998 Oct;150(2):873-82.

NCS2, 4, 6

¿¢Êª¼ï
Z.mays
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
ͺÀ­ÉÔÌ­
ÊÑ°Û°äÅÁ»Ò--NCS2
NADH dehydrogenase deficient, impaired O2 uptake
ÊÑ°Û°äÅÁ»Ò--NCS4
deletion mutant
ÊÑ°Û°äÅÁ»Ò--NCS6
COX deficient

References

Mitochondrial respiratory deficiencies signal up-regulation of genes for heat shock proteins.¡¡¡¡¡¡Kuzmin EV, Karpova OV, Elthon TE, Newton KJ.¡¡¡¡¡¡J Biol Chem. 2004 May 14;279(20):20672-7. Epub 2004 Mar 11.

Differential expression of alternative oxidase genes in maize mitochondrial mutants.¡¡¡¡¡¡Karpova OV, Kuzmin EV, Elthon TE, Newton KJ.¡¡¡¡¡¡Plant Cell. 2002 Dec;14(12):3271-84.

Involvement of S2 episomal sequences in the generation of NCS4 deletion mutation in maize mitochondria.¡¡¡¡¡¡Newton KJ, Mariano JM, Gibson CM, Kuzmin E, Gabay-Laughnan S.¡¡¡¡¡¡Dev Genet. 1996;19(3):277-86.

The maize NCS2 abnormal growth mutant has a chimeric nad4-nad7 mitochondrial gene and is associated with reduced complex I function.¡¡¡¡¡¡Marienfeld JR, Newton KJ.¡¡¡¡¡¡Genetics. 1994 Nov;138(3):855-63.

Lauer M, Knudsen C, Newton KJ, Gabay-Laughnan S, Laughnan JR.¡¡¡¡¡¡A partially deleted mitochondrial cytochrome oxidase gene in the NCS6 abnormal growth mutant of maize.¡¡¡¡¡¡New Biol. 1990 Feb;2(2):179-86.

	

Karpova OV, Kuzmin EV, Elthon TE, Newton KJ.¡¡¡¡¡¡Differential expression of alternative oxidase genes in maize mitochondrial mutants.¡¡¡¡¡¡Plant Cell. 2002 Dec;14(12):3271-84. Mitochondrial DNA changes in abnormal growth (nonchromosomal stripe) mutants of maize.¡¡¡¡¡¡Newton KJ, Coe EH.¡¡¡¡¡¡Proc Natl Acad Sci U S A. 1986 Oct;83(19):7363-7366.

EMPTY PERICARP8

The pentatricopeptide repeat protein EMPTY PERICARP8 is required for the splicing of three mitochondrial introns and seed development in maize.¡¡¡¡¡¡ Sun F, Zhang X, Shen Y, Wang H, Liu R, Wang X, Gao D, Yang YZ, Liu Y, Tan BC.¡¡¡¡¡¡Plant J. 2018 Jul 12. doi: 10.1111/tpj.14030.¡¡¡¡¡¡ PMID: 30003606

NMS1

¿¢Êª¼ï
N.sylvestris¡¡¥¿¥Ð¥³¤Î°ì¼ï
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
ͺÀ­ÉÔÌ­
ÊÑ°Û°äÅÁ»Ò--NMS1
¥ß¥È¥³¥ó¥É¥ê¥¢ NAD4 mRNA¤Î¥¹¥×¥é¥¤¥·¥ó¥°¤ËɬÍפʰø»Ò¡£¤³¤Î°ø»Ò¼«ÂΤϳˤ˥³¡¼¥É¤µ¤ì¤ë¡£¥·¥í¥¤¥Ì¥Ê¥º¥Ê At-nmat1a ¤ËÁêÅö¤¹¤ë¡¢¥¿¥Ð¥³¤Î°ø»Ò¤È¿ä¬¤µ¤ì¤ë¤¬¤Þ¤ÀñΥ¤µ¤ì¤Æ¤¤¤Ê¤¤¡£

References

L-galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I.¡¡¡¡¡¡Pineau B, Layoune O, Danon A, De Paepe R.¡¡¡¡¡¡J Biol Chem. 2008 Nov 21;283(47):32500-5.

¥¢¥¹¥³¥ë¥Ó¥ó»ÀÀ¸¹çÀ®¤ÎºÇ¸å¤ÎÃʳ¬¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤·¤ÆƯ¤¯¡£

Defective splicing of the first nad4 intron is associated with lack of several complex I subunits in the Nicotiana sylvestris NMS1 nuclear mutant.¡¡¡¡¡¡Brangeon J, Sabar M, Gutierres S, Combettes B, Bove J, Gendy C, Chetrit P, Des Francs-Small CC, Pla M, Vedel F, De Paepe R.¡¡¡¡¡¡Plant J. 2000 Feb;21(3):269-80.

Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris.¡¡¡¡¡¡Sabar M, De Paepe R, de Kouchkovsky Y.¡¡¡¡¡¡Plant Physiol. 2000 Nov;124(3):1239-50.

chm (= msh1)

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤ÎÁÈ´¹¤¨¤òÂ¥¿Ê¤¹¤ë°ø»Ò¡¢ÈÃÆþ¤ê¡¡ variegated phenotype¡¡¤Î¸¶°ø°äÅÁ»Ò
ÊÑ°Û°äÅÁ»Ò--chm
¡¡¡ÊÊÌ̾¡¡MSH1 - MUTL protein-like protein 1¡Ë¡¡http://atted.jp/data/locus/At3g24320.shtml

References

MSH1 is required for maintenance of the low mutation rates in plant mitochondrial and plastid genomes.¡¡¡¡¡¡Wu Z, Waneka G, Broz AK, King CR, Sloan DB.¡¡¡¡¡¡Proc Natl Acad Sci U S A. 2020 Jun 29. pii: 202001998.¡¡doi: 10.1073/pnas.2001998117.¡¡¡¡¡¡PMID: 32601224

MSH1 (chm) ¤¬¥ª¥ë¥¬¥Í¥é¥²¥Î¥à DNA ¤ÎÁÈ´¹¤¨¤òÂ¥¿Ê¤¹¤ë¤³¤È¤Ç¡¢¥ª¥ë¥¬¥Í¥é¥²¥Î¥à¤¬ÊÑ°Û¤¹¤ë¤³¤È¤òËɤ°¤³¤È¤¬ÌÀ¤é¤«¤Ë¤Ê¤Ã¤¿¡£

Altered mitochondrial gene expression in a maternal distorted leaf mutant of Arabidopsis induced by chloroplast mutator.¡¡¡¡¡¡Sakamoto W, Kondo H, Murata M, Motoyoshi F.¡¡¡¡¡¡Plant Cell. 1996 Aug;8(8):1377-90.¡¡¡¡¡¡PMID: 8776901

Mutations at the Arabidopsis CHM locus promote rearrangements of the mitochondrial genome.¡¡¡¡¡¡Martínez-Zapater JM, Gil P, Capel J, Somerville CR.¡¡¡¡¡¡Plant Cell. 1992 Aug;4(8):889-99.¡¡¡¡¡¡PMID: 1356535

2022 ǯ¤ËÏÀʸ¤¬½Ð¤¿¡£¡¡¡¡Long-read sequencing characterizes mitochondrial and plastid genome variants in Arabidopsis msh1 mutants¡¡¡¡Yi Zou,Weidong Zhu,Daniel B. Sloan,Zhiqiang Wu¡¡¡¡Plant J.¡¡¡¡First published: 13 September 2022 https://doi.org/10.1111/tpj.15976

CTP:PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE ¤ÎÊÑ°ÛÂÎ(pect1)

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
TILLING Ë¡ ¡ÊÌÜŪ°äÅÁ»Ò¤ËÅÀÊÑ°Û¤òµ¯¤³¤·¤Æ¤¤¤ëÊÑ°Û¸ÄÂΤòDNA¥×¡¼¥ë¤ÎʬÀϤ«¤é¸«¤Ä¤±¤ëÊýË¡¡Ë¡¡´°Á´¤Ëµ¡Ç½¤ò¼º¤¦¤ÈÀ¸¤¨¤Ê¤¯¤Ê¤ë
ÊÑ°Û°äÅÁ»Ò--
CTP:PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE (pect1)

ºÇ¶á¿¢Êª»é¼Á¤Î¸¦µæ¤¬¥Ð¥¤¥ªÇ³ÎÁ¤Î¤³¤È¤â¤¢¤êÃíÌܤòÍá¤Ó¤Æ¤¤¤ë¡£¤Þ¤¿¿¢Êª¤¬¥ê¥ó·ç˳¤ËÂбþ¤¹¤ë»ÅÁȤߤΰì¤Ä¤Ë¡¢¥ê¥ó»é¼Á¤¬Åü»é¼Á¤Ê¤É¤ËÃÖ¤­´¹¤ï¤ë¤³¤È¤¬¤¢¤ë¤³¤È¤¬Å칩Âç¤ÎÂÀÅÄÀèÀ¸¤Î¥°¥ë¡¼¥×Åù¤Ë¤è¤Ã¤Æ²òÌÀ¤µ¤ì¤³¤ì¤âÃíÌܤµ¤ì¤Æ¤¤¤ë¡£¤½¤Î¤¿¤á¥ê¥ó»é¼Á¤Ê¤É¤ÎÀ¸¹çÀ®¡¢ºÆ¹½Ãۤ˴ؤï¤ë¹ÚÁǤ覵æ¤Ï½ÅÍ×À­¤¬¹â¤¤¡£¤½¤Î°ì¤Ä¤Ç¥ê¥ó»é¼Á¤ÎƬÉô¶ËÀ­´ð¤Î°ì¤Ä¤Ç¤¢¤ë¥¨¥¿¥Î¡¼¥ë¥¢¥ß¥ó¤Î¹çÀ®¤Ë´ØÍ¿¤¹¤ë CTP:PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE ¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Î³°Ëì¤Ë¶Éºß¤¹¤ë¤³¤È¤¬Êó¹ð¤µ¤ì¤¿¡£

¤³¤Î°äÅÁ»Ò¤Ë·ç´Ù¤¬À¸¤¸¤ë¤È¡¢Ã±Î¥¥ß¥È¥³¥ó¥É¥ê¥¢¥á¥ó¥Ö¥ì¥ó¤Î PE ¤¬¸º¤ë¤³¤È¤Ë¤è¤Ã¤Æ¸ÆµÛ¤Ë±Æ¶Á¤¬½Ð¤ë¤³¤È¤âÌÀ¤é¤«¤Ë¤µ¤ì¤¿¡£°ìÈÌŪ¤Ê¡¢Cyt C ¤È Cyt C oxidase ¤ò·Ðͳ¤¹¤ë¸ÆµÛ¤ÏÄã²¼¤¹¤ë¤¬ AOX ¤ò·Ðͳ¤¹¤ë¸ÆµÛ¤ÏÄã²¼¤·¤Æ¤¤¤Ê¤¤¡£¤Þ¤¿ pect1-4 ÊÑ°ÛÂΤϼ¼²¹¤Ç¤ÏÌîÀ¸·¿¤ÈÀ¸°é¤¬Í¾¤êÊѤï¤é¤Ê¤¤¤¬¡¢ÅÓÃ椫¤éÄã²¹¡Ê8Å١ˤ˰ܤ¹¤ÈÌîÀ¸·¿¤ËÈæ¤Ù¤ÆÀ¸°é¤¬ÃÙ¤¯¾®¤µ¤¯¤Ê¤ë¡ÊFigure 3A, 3B¡Ë¡£Äã²¹¤È´Ø·¸¤¢¤ëÀ­¼Á¤¬½Ð¤Æ¤¯¤ë¤³¤È¤Ï fro1 ¤È»÷¤Æ¤¤¤ë¡£

Defects in CTP:PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE affect embryonic and postembryonic development in Arabidopsis.¡¡¡¡¡¡Mizoi J, Nakamura M, Nishida I.¡¡¡¡¡¡Plant Cell. 2006 Dec;18(12):3370-85. Epub 2006 Dec 22.¡¡¡¡¡¡PMID: 17189343

Mitochondrial phosphatidylethanolamine level modulates Cyt c oxidase activity to maintain respiration capacity in Arabidopsis thaliana rosette leaves.¡¡¡¡¡¡Otsuru M, Yu Y, Mizoi J, Kawamoto-Fujioka M, Wang J, Fujiki Y, Nishida I.¡¡¡¡¡¡Plant Cell Physiol. 2013 Oct;54(10):1612-9. doi: 10.1093/pcp/pct104. Epub 2013 Jul 19.¡¡¡¡¡¡PMID: 23872271

otp43

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
A reverse genetics screen of PPR proteins
ÊÑ°Û°äÅÁ»Ò--otp43
A member of PPR protein, AT1g74900

¡ÖÍÕ¤¬¥«¡¼¥ë¤¹¤ë¡×¤È¤¤¤¦À­¼Á¤Ï¡¢¥Ö¥é¥·¥Î¥é¥¤¥É¤¬¸º¾¯¤·¤¿ºÝ¤Ë¤â¸«¤é¤ì¤ë¤³¤È¤¬ÃΤé¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡www.riken.jp/~/media/riken/outreach/ip/backissues/patent23.pdf¡¡¡¡¡¡Àõ¸«ÀèÀ¸¤Î¥°¥ë¡¼¥×¤Ë¤è¤ë¸¦µæ

References

The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 Intron 1 in Arabidopsis thaliana.¡¡¡¡¡¡de Longevialle AF, Meyer EH, Andres C, Taylor NL, Lurin C, Millar AH, Small ID.¡¡¡¡¡¡Plant Cell. 2007 Oct;19(10):3256-65.

loi1

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
Lovastatin insensitive
ÊÑ°Û°äÅÁ»Ò--loi1
PPR ¥¿¥ó¥Ñ¥¯¼Á¤Î°ì¼ï
-

References

The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing.¡¡¡¡¡¡Tang J, Kobayashi K, Suzuki M, Matsumoto S, Muranaka T.¡¡¡¡¡¡Plant J. 2009 Nov 19. [Epub ahead of print]PMID: 19929879 [PubMed - as supplied by publisher]Related articles

Lovastatin insensitive 1, a Novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis.¡¡¡¡¡¡Kobayashi K, Suzuki M, Tang J, Nagata N, Ohyama K, Seki H, Kiuchi R, Kaneko Y, Nakazawa M, Matsui M, Matsumoto S, Yoshida S, Muranaka T.¡¡¡¡¡¡Plant Cell Physiol. 2007 Feb;48(2):322-31. Epub 2007 Jan 8. PMID: 17213228

has2 = loi1, MEF11

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
ABA-deficiency ¤Î¥µ¥×¥ì¥Ã¥µ¡¼ÊÑ°Û¡¡ABA ¤Ë´¶¼õÀ­¤¬¹â¤¤
ÊÑ°Û°äÅÁ»Ò--has2
PPR ¥¿¥ó¥Ñ¥¯¼Á¤Î°ì¼ï¡¢loi1, MEF11 ¤ÈƱ¤¸°äÅÁ»Ò¤ËÊÑ°Û¤ò¤â¤Ä

References

The ABA-deficiency suppressor locus HAS2 encodes the PPR protein LOI1/MEF11 involved in mitochondrial RNA editing.¡¡¡¡¡¡Sechet J, Roux C, Plessis A, Effroy D, Frey A, Perreau F, Biniek C, Krieger-Liszkay A, Macherel D, North HM, Mireau H, Marion-Poll A.¡¡¡¡¡¡Mol Plant. 2015 Apr;8(4):644-56. doi: 10.1016/j.molp.2014.12.005. Epub 2014 Dec 17.¡¡¡¡¡¡PMID: 25708384

ABA À¸¹çÀ®¤Ë·ç´Ù¤¬¤¢¤ëÊÑ°ÛÂÎ ABA-deficient aba3-1 mutant¡Êabscisic aldehyde oxidase AAO3 ¤¬µ¡Ç½¤·¤Ê¤¤¡Ë¤Ë¡¢¤µ¤é¤ËÊÑ°Û¤òƳÆþ¤·¤Æ aba3 ¤¬¼¨¤¹À­¼Á¡Êcold leaf phenotype¡¡ABA ¤¬¾¯¤Ê¤¤¤Î¤Çµ¤¹¦¤¬³«¤­¤ä¤¹¤¯Äã²¹¤Ç¾ø»¶¤¬²á¾ê¤Ëµ¯¤­¤ë¡Ë¤òÂǤÁ¾Ã¤¹¡¢ABA ¤ËÂФ¹¤ë´¶¼õÀ­¤¬¹â¤¯¤Ê¤ëÆó½ÅÊÑ°ÛÂΤò¥¹¥¯¥ê¡¼¥Ë¥ó¥°¤·¤¿¡£

ƱÄꤵ¤ì¤¿ has2 °äÅÁ»Ò¤Ï¡¢PPR ¥¿¥ó¥Ñ¥¯¼Á¤Î°ì¼ï¤ò¥³¡¼¥É¤¹¤ë°äÅÁ»Ò¤ËÊÑ°Û¤¬À¸¤¸¤Æ¤¤¤¿¡£¤³¤Î°äÅÁ»Ò¤Ï loi1, MEF11 ¤È¤·¤Æ¾¤Î¸¦µæ¤Ç¤â¸«¤¤¤À¤µ¤ì¤Æ¤¤¤¿¡£

¡Ömef11 plants were more resistant to progressive water stress ¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£ABA ´¶¼õÀ­¤¬¹â¤¤¤Î¤ÇÍÕ¤«¤é¤Î¾ø»¶¤¬¾¯¤Ê¤¤¡£Íդβ¹ÅÙ¤¬¹â¤¯¤Ê¤ê¡¢¥µ¡¼¥â¥°¥é¥Õ¥£¡¼¤Ç²èÁü¤È¤·¤Æ¸¡½Ð¤µ¤ì¤Æ¤¤¤ë¡£

ABA ¤Ë´¶¼õÀ­¤¬¹â¤¤Ê̤ÎÊÑ°ÛÂΤȤ·¤Æ¡¢ABA ¤Ë´Ø·¸¤¹¤ë PP2C °äÅÁ»Ò¤Î¿½ÅÊÑ°ÛÂΡ¡double hab1-1 abi1-2, triple pp2ca-1 hab1-1 abi1-2, and quadruple hai1-1 pp2ca-1 hab1-1 abi1-2 (Qpp2c) mutant plants¡¡¤òÍÑ°Õ¤·¤¿¡£¤³¤ì¤é¤â ABA ´¶¼õÀ­¤¬¹â¤¤¤³¤È¤¬¸¶°ø¤ÇÍդβ¹ÅÙ¤¬¹â¤¯¤Ê¤Ã¤Æ¤¤¤¿¡£

Cytochrome ¥·¥È¥¯¥í¥à c biogenesis¡¡¤Ë´ØÍ¿¤¹¤ë¡¡cytochrome c maturation FN2 (ccmFN2) gene ¤Î editing ¤Ë°Û¾ï¤¬À¸¤¸¤Æ¤¤¤ë¡£

¤³¤ÎÏÀʸ¤Ç¤ÏÅÅ»ÒÅÁã·ÏÊ£¹çÂΤˤÏÊѲ½¤¬¸«¤é¤ì¤Ê¤«¤Ã¤¿¡£¤·¤«¤· loi1 ¤ÎÏÀʸ¤Ç¤Ï¡¢COX (cytochrome c oxidase, Ê£¹çÂÎ IV) ¤Î³èÀ­¤¬È¾Ê¬°Ê²¼¤ËÄã²¼¤·¤Æ¤¤¤ë¤³¤È¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£

ȯ²ê»þ¤Ë¤ª¤±¤ë²á»À²½¿åÁÇ¡¢°ì»À²½ÃâÁǤÎÀ¸À®¤ËÊѲ½¤¬µ¯¤­¤Æ¤¤¤ë¡ÊFigure 8¡Ë¡£²á»À²½¿åÁǤϾ¯¤Ê¤¤¡£°ì»À²½ÃâÁǤÏ¿¤¤¡£¤½¤Î¤»¤¤¤Ç ABA ´¶¼õÀ­¤¬¹â¤¤È¯²ê¤Ë¤Ê¤Ã¤Æ¤¤¤ë¤Î¤Ç¤Ï¤Ê¤¤¤«¤È¹Í»¡¤µ¤ì¤Æ¤¤¤ë¡£

slo1

¿¢Êª¼ï
A.thaliana
:¸«¤Ä¤±¤é¤ì¤¿ÊýË¡:
ÊÑ°Û°äÅÁ»Ò--slo1
PPR ¥¿¥ó¥Ñ¥¯¼Á¤Î°ì¼ï

References

The SLO1 PPR protein is required for RNA editing at multiple sites with similar upstream sequences in Arabidopsis mitochondria.¡¡¡¡¡¡Sung TY, Tseng CC, Hsieh MH.¡¡¡¡¡¡Plant J. 2010 May 20.

Slow growth 3 (slo3)

¿¢Êª¼ï
A.thaliana
:¸«¤Ä¤±¤é¤ì¤¿ÊýË¡:
ÊÑ°Û°äÅÁ»Ò--slow growth 3
PPR ¥¿¥ó¥Ñ¥¯¼Á¤Î°ì¼ï

The SLOW GROWTH 3 pentatricopeptide repeat protein is required for the splicing of mitochondrial nad7 intron 2 in Arabidopsis.¡¡¡¡¡¡Hsieh WY, Liao JC, Chang C, Harrison T, Boucher C, Hsieh MH.¡¡¡¡¡¡Plant Physiol. 2015 Apr 17. pii: pp.00354.2015. [Epub ahead of print]¡¡¡¡¡¡PMID: 25888618

Transformation of nad7 into the nuclear genome rescues the slow growth3 mutant in Arabidopsis.¡¡¡¡¡¡Hsieh WY, Lin SC, Hsieh MH.¡¡¡¡¡¡RNA Biol. 2018 Nov 13. doi: 10.1080/15476286.2018.1546528. PMID: 30422048

Slow growth 4 (slo4)

The PPR protein SLOW GROWTH 4 is involved in editing of nad4 and affects the splicing of nad2 intron 1.¡¡¡¡¡¡Weisenberger S, Soll J, Carrie C.¡¡¡¡¡¡Plant Mol Biol. 2017 Mar;93(4-5):355-368. doi: 10.1007/s11103-016-0566-4. Epub 2016 Dec 9.¡¡¡¡¡¡PMID: 27942959

OGR1¡Ê¥¤¥Í¤Î PPR-DYW protein¡Ë

¿¢Êª¼ï
Rice
:ÊÑ°Û°äÅÁ»Ò--PPR protein

Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria.¡¡¡¡¡¡Kim SR, Yang JI, Moon S, Ryu CH, An K, Kim KM, Yim J, An G.¡¡¡¡¡¡Plant J. 2009 Sep;59(5):738-49. PMID: 19453459

DYW deaminase domain ¤Î¸¦µæ

DYW deaminase domain has a distinct preference for neighboring nucleotides of the target RNA editing sites¡¡¡¡¡¡Ayako Maeda, Sachi Takenaka, Tenghua Wang, Brody Frink, Toshiharu Shikanai, Mizuki Takenaka¡¡First Published:02 June 2022

Mitochondrial gamma carbonic anhydrase

Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I + III2 levels and alters mitochondrial physiology in Arabidopsis.¡¡¡¡¡¡Perales M, Eubel H, Heinemeyer J, Colaneri A, Zabaleta E, Braun HP.¡¡¡¡¡¡J Mol Biol. 2005 Jul 8;350(2):263-77.

Mitochondrial gamma carbonic anhydrases are required for complex I assembly and plant reproductive development.¡¡¡¡¡¡Fromm S, Braun HP, Peterhansel C.¡¡¡¡¡¡New Phytol. 2016 Jul;211(1):194-207. doi: 10.1111/nph.13886. Epub 2016 Feb 18.¡¡¡¡¡¡PMID: 26889912

Functional characterization of mutants affected in the carbonic anhydrase domain of the respiratory complex I in Arabidopsis thaliana.¡¡¡¡¡¡Soto D, Córdoba JP, Villarreal F, Bartoli C, Schmitz J, Maurino VG, Braun HP, Pagnussat GC, Zabaleta E.¡¡¡¡¡¡Plant J. 2015 Jul 3. doi: 10.1111/tpj.12930. [Epub ahead of print]¡¡¡¡¡¡PMID: 26148112

ahg11

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
ABA hypersensitive germination
ÊÑ°Û°äÅÁ»Ò--At2g44880
PPR ¥¿¥ó¥Ñ¥¯¼Á¤Î°ì¼ï¡¡¡¡¡¡http://atted.jp/data/locus/At2g44880.shtml

¥ß¥È¥³¥ó¥É¥ê¥¢ NAD4 °äÅÁ»Ò¤Î editing ¤ËƯ¤¯°äÅÁ»Ò¡£

Isolation of Arabidopsis ahg11, a weak ABA hypersensitive mutant defective in nad4 RNA editing.¡¡¡¡¡¡Murayama M, Hayashi S, Nishimura N, Ishide M, Kobayashi K, Yagi Y, Asami T, Nakamura T, Shinozaki K, Hirayama T.¡¡¡¡¡¡J Exp Bot. 2012 Sep;63(14):5301-10. Epub 2012 Jul 21.¡¡¡¡¡¡PMID: 22821940

txr1

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
Thaxtomin A ¤ËÂФ¹¤ë´¶¼õÀ­¤ÎÊѲ½¡£Thaxtomin A¡¡¤Ï¥¸¥ã¥¬¥¤¥â¤½¤¦¤«É¶ݤ¬¹çÀ®¤¹¤ë¡¢¥»¥ë¥í¡¼¥¹¹çÀ®Á˳²ºîÍѤò¼¨¤¹Äãʬ»ÒÀ¸Íý³èÀ­Êª¼Á¤Ç¤¢¤ë¡£
ÊÑ°Û°äÅÁ»Ò--At3g59280
Pam16 superfamily domain ¤òÊÝ»ý¤·¤Æ¤¤¤ë¡£Pam16 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Ø¤ÎÃÁÇò¼Á°ÜÆþÁõÃÖ¤ò¹½À®¤·¤Æ¤¤¤ë¡£http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?ascbin=8&maxaln=10&seltype=2&uid=112471&querygi=18411133&aln=5,0,0,33,36,33,8,44,42,8,52,54,32,84,88,26

 Peter Rehling¡ÊUniv. Freiburg¡Ë¤«¤é¡¤¹ÚÊì¥ß¥È¥³¥ó¥É¥ê¥¢ÆâËì¤ÎÁ°¶îÂÎÍ¢Á÷ÁõÃ֤ˤĤ¤¤ÆÊó¹ð¤µ¤ì¤¿¡£ÆâËìÁ°¶îÂÎÍ¢Á÷¥Á¥ã
 ¥Í¥ëTim23 ¤ÎProtein A Í»¹ç¥¿¥ó¥Ñ¥¯¼Á¤ò¹âÅÙ¤ËÀºÀ½¤·¡¤Tim¥Á¥ã¥ó¥Í¥ë¡ÊTim17, Tim23, Tim50¡Ë¡¤¥¤¥ó¥Ý¡¼¥È¥â¡¼¥¿¡¼
 ¡ÊTim44, mhsp70¡Ë¤Ë²Ã¤¨¤Æ¤¤¤¯¤Ä¤«¤Î¥¿¥ó¥Ñ¥¯¼Á¤òƱÄꤷ¤¿¡£
 Pam¡Êpresequence translocase associated motor¡Ë16¡Ê=Tim16¡Ë¤ÈPam18¡Ê=Tim14¡Ë¤Ï¤É¤Á¤é¤âÀ¸Â¸¤Ëɬ¿Ü¤Ç¤¢¤ê¡¤mhsp70 ¤Î
 ATPase ³èÀ­¤ÎÄ´Àá°ø»Ò¤Ç¤¢¤Ã¤¿¡£Pam18 ¤ÏJ ¥É¥á¥¤¥ó¤ò»ý¤ÁATPase ¤ò³èÀ­²½¤·¡¤mhsp70 ¤ÈTim44 ¤Î·ë¹ç¤ò°ÂÄê²½¤¹¤ë¡£
 °ìÊýPam16 ¤ÏPam18 ¤Ë¤è¤ëATPase ³èÀ­²½¤òÍÞÀ©¤·¡¤Pam18¤ÈTim ¥Á¥ã¥Í¥ë¤È¤Î·ë¹ç¤Ë´ØÍ¿¤·¤Æ¤¤¤¿¡£Pam18 ¤ÎÊÑ°Û³ô¤Ç
 ¤ÏÆâË쥿¥ó¥Ñ¥¯¼Á¤ÎÁÞÆþ¤Ë¤Ï¸ú²Ì¤¬¸«¤é¤ì¤Ê¤«¤Ã¤¿¤¬Á°¶îÂΤΥޥȥꥯ¥¹¤Ø¤ÎÍ¢Á÷¤¬Á˳²¤µ¤ì¤¿¡£¤³¤ì¤é¤Î¤³¤È¤«¤é¡¤Pam16
 ¤ÈPam18 ¤ÏÁ°¶îÂΤΥޥȥꥯ¥¹¤Ø¤ÎÍ¢Á÷¤Ëµ¡Ç½¤¹¤ë¥â¡¼¥¿¡¼¤ÎÀ®Ê¬¤Ç¤¢¤ë¤³¤È¤¬¼¨¤µ¤ì¤¿¡£

References

An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species.¡¡¡¡¡¡Scheible WR, Fry B, Kochevenko A, Schindelasch D, Zimmerli L, Somerville S, Loria R, Somerville CR.¡¡¡¡¡¡Plant Cell. 2003 Aug;15(8):1781-94.

TIM21 (SD3), TIM50

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¥¨¥ó¥É¥ê¥Ç¥å¥×¥ê¥±¡¼¥·¥ç¥ó¡¡endoreduplication¡¡¤¬ÍÞÀ©¤µ¤ì¤ë
ÊÑ°Û°äÅÁ»Ò--TIM21, TIM50
¥ß¥È¥³¥ó¥É¥ê¥¢¤Ø¤ÎÃÁÇò¼Á°ÜÆþÁõÃÖ¤ò¹½À®¤·¤Æ¤¤¤ë¡£2010ǯ3·î¿¢ÊªÀ¸Íý³Ø²ñ 4pE01 ßÀºêÀèÀ¸¡¡4pE02 Kumar Çî»Î¡¡
¡¡¡¡

Arabidopsis mitochondrial protein TIM50 affects hypocotyl cell elongation through intracellular ATP level.¡¡¡¡¡¡Kumar S, Yoshizumi T, Hongo H, Yoneda A, Hara H, Hamasaki H, Takahashi N, Nagata N, Shimada H, Matsui M.¡¡¡¡¡¡Plant Sci. 2012 Feb;183:212-7. Epub 2011 Sep 6.¡¡¡¡¡¡PMID: 22195596

SD3, an Arabidopsis thaliana homolog of TIM21, affects intracellular ATP levels and seedling development.¡¡¡¡¡¡Hamasaki H, Yoshizumi T, Takahashi N, Higuchi M, Kuromori T, Imura Y, Shimada H, Matsui M.¡¡¡¡¡¡Mol Plant. 2012 Mar;5(2):461-71. Epub 2011 Nov 29.¡¡¡¡¡¡PMID: 22131050

SD3 ¤Ë´Ø¤·¤Æ¡¢¤µ¤é¤ËȯŸ¤·¤¿¤¹¤Ð¤é¤·¤¤¸¦µæÀ®²Ì¤¬ 2019 ǯ¤ËÊó¹ð¤µ¤ì¤Æ¤¤¤ë¡£ ¡¡¡¡¡¡SnRK1 Kinase and the NAC Transcription Factor SOG1 Are Components of a Novel Signaling Pathway Mediating the Low Energy Response Triggered by ATP Depletion.¡¡¡¡¡¡Hamasaki H, Kurihara Y, Kuromori T, Kusano H, Nagata N, Yamamoto YY, Shimada H, Matsui M.¡¡¡¡¡¡Front Plant Sci. 2019 May 10;10:503. doi: 10.3389/fpls.2019.00503. eCollection 2019. PMID: 31134102¡¡¡¡¡¡ATP ·ç˳¤ËÂбþ¤¹¤ëÆȼ«¤Î»ÅÁȤߤ¬¿¢ÊªºÙ˦¤Ë¸ºß¤¹¤ë¤³¤È¤¬ÌÀ¤é¤«¤Ë¤µ¤ì¤¿¡£

¾å¤ÎÏÀʸ¤Ë½Ð¤Æ¤¯¤ë SOG1 ¤Ï DNA damage response ¤È´Ø·¸¤¬¤¢¤ë¤³¤È¤ÇÃΤé¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡ ATM-mediated phosphorylation of SOG1 is essential for the DNA damage response in Arabidopsis.¡¡¡¡¡¡Yoshiyama KO, Kobayashi J, Ogita N, Ueda M, Kimura S, Maki H, Umeda M.¡¡¡¡¡¡EMBO Rep. 2013 Sep;14(9):817-22. doi: 10.1038/embor.2013.112. Epub 2013 Aug 2.¡¡¡¡¡¡PMID: 23907539

DNA damage response ¤Ï¥¨¥ó¥É¥ê¥Ç¥å¥×¥ê¥±¡¼¥·¥ç¥ó¤ò°ú¤­µ¯¤³¤¹¤³¤È¤¬ÃΤé¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis.¡¡¡¡¡¡Adachi S, Minamisawa K, Okushima Y, Inagaki S, Yoshiyama K, Kondou Y, Kaminuma E, Kawashima M, Toyoda T, Matsui M, Kurihara D, Matsunaga S, Umeda M.¡¡¡¡¡¡Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):10004-9. doi: 10.1073/pnas.1103584108. Epub 2011 May 25.¡¡¡¡¡¡PMID: 21613568

BMB2010 ¤Ç¡¢¼¡¤Î¤è¤¦¤Ê¹Ö±é¤¬¤¢¤Ã¤¿¤é¤·¤¤¡£

2T3-8(2P-0316)¡¡¥·¥ç¥¦¥¸¥ç¥¦¥Ð¥¨ TIM50 ¤Ë¤è¤ë¥ß¥È¥³¥ó¥É¥ê¥¢¤Î³èÀ­¾å¾º¤ÎͶƳ¤ÈÀº»Ò·ÁÀ®¤Ë¤ª¤±¤ëȯÀ¸µ¡Ç½¤Î²òÀÏ¡¡Analysis of the induction of changes in mitochondrial activity by Drosophila TIM50 and its role in spermatogenesis¡¡¡û¿ù»³ ¿­¡¤¼ÆÅÄ Å¯»Ö¡¤À¾ÅÄ °é¹ª¡¡Ì¾¸Å²°Âç³Ø¡¡Íý³Ø¸¦µæ²Ê¡¡À¸Ì¿Íý³ØÀ칶

TIM50 ¤Ë²¿¤«ÊѲ½¤¬µ¯¤­¤ë¤³¤È¤Ç¥ß¥È¥³¥ó¥É¥ê¥¢³èÀ­¤¬¾å¾º¤·¤¿¤È¸À¤¦¤³¤È¤é¤·¤¤¡£¡Ö¥ß¥È¥³¥ó¥É¥ê¥¢³èÀ­¤ò¾å¾º¤µ¤»¤ë¡×¤È¤¤¤¦¤Î¤ÏÄÁ¤·¤¤¡£¤½¤ì¤Ë¤è¤Ã¤Æ¥·¥ç¥¦¥¸¥ç¥¦¥Ð¥¨¤¬Á᤯ȯ°é¤·¤¿¤êÈô¤Ö®¤µ¤¬ÊѤï¤Ã¤¿¤ê¤¹¤ë¤Î¤À¤í¤¦¤«¡£¤·¤«¤·¤½¤ó¤Ê¤³¤È¤Ï¤Ê¤¤¤é¤·¤¤¡£

¤³¤Î¤³¤È¤Ë¤Ä¤¤¤Æ¤Ï¡¢²Ê³Ø¸¦µæÈñ¥Ç¡¼¥¿¥Ù¡¼¥¹¤Ë´û¤ËÊó¹ð¤µ¤ì¤Æ¤¤¤¿¡£¡¡¡¡¡¡http://kaken.nii.ac.jp/ja/p/13043019¡¡¡¡¡¡¡Ö¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤é¤ÎATP»ºÀ¸¤Î¥·¥°¥Ê¥ë¤òÅÁ㤷¤ÆÀ®Ä¹¤òÀ©¸æ¤¹¤ë¥·¥°¥Ê¥ëÅÁã·ÐÏ©¡×¤¬¡¢ÁÛÄꤵ¤ì¤Æ¤¤¤ë¡£ÏÀʸ¤â½Ð¤Æ¤¤¤Æ¡¢¤ï¤«¤ê¤ä¤¹¤¯¾Ò²ð¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡http://www.bio.nagoya-u.ac.jp/thesis/2007-10/07-10_01.html¡¡¡¡¡¡¡Ö¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤é¤ÎATP¡×¤È¡¢¡Ö²òÅü·Ï¤«¤é¤ÎATP¡×¤ÏȯÀ¸¤¹¤ë¾ì½ê¤¬°Û¤Ê¤ë¡£¥°¥ë¥³¡¼¥¹¤«¤é¤ÎÀ¸À®¸úΨ¤¬Â礭¤¯°Û¤Ê¤ë¡£

¥ß¥È¥³¥ó¥É¥ê¥¢³èÀ­¤¬¾å¾º¤·¤¹¤®¤ë¤È¥¢¥Ý¥È¡¼¥·¥¹¤¬µ¯¤­¤Æ¤·¤Þ¤¦¤é¤·¤¤¡£¤½¤ì¤Ç¤«¤¨¤Ã¤ÆºÙ˦¿ô¤¬¸º¤Ã¤¿¤ê¤¹¤ë¤é¤·¤¤¡£¤¬¤óºÙ˦¡ÊɬÍפâ¤Ê¤¤¤Î¤ËÁý¿£¤·¤Æ¤·¤Þ¤¦¡¦¥¢¥Ý¥È¡¼¥·¥¹¤·¤Ë¤¯¤¤¡Ë¤Ç¤ÏµÕ¤Ë²òÅü·Ï¤¬³èÀ­²½¤·¤Æ¤¤¤Æ¥ï¡¼¥ë¥Ö¥ë¥°¸ú²Ì¤È¸Æ¤Ð¤ì¤ë¡£ÂоÈŪ¤Ç¤¢¤ë¡£²òÅü·Ï¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Ï¡¢¤â¤Ã¤È¸¦µæ¤·¤Ê¤¤¤È¤¤¤±¤Ê¤¤¤³¤È¤¬Â¿¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

TIM50 ¤¬È¯¸½¤·¤¹¤®¤ë¤ÈÀ¸°é¤Ë°­¤¤±Æ¶Á¤¬¤¢¤ë¡£¤¬¤óºÙ˦¤ËTIM50¤ò²¡¤·¹þ¤à¤È¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤¬³èÀ­²½¤·¤Æ¥¢¥Ý¥È¡¼¥·¥¹¤¬¤ª¤­¤Æ¼£ÎŤǤ­¤ë¤È¤¤¤¦²ÄǽÀ­¤â¹Í¤¨¤é¤ì¤Ê¤¯¤Ï¤Ê¤¤¡£¤·¤«¤·¤½¤ó¤Ê¤Ë¤¦¤Þ¤¯¤¤¤¯ÊݾڤÏÁ´Á³¤Ê¤¤¡£TIM50 ¤ÎŬÀÚ¤Êȯ¸½¥ì¥Ù¥ë¤¬¡¢Àµ¾ï¤ÊºÙ˦¤ÈÉÂŪ¤ÊºÙ˦¤Ç°ã¤Ã¤Æ¤¤¤¿¤ê¤¹¤ì¤Ð²¿¤«¤ÎÌò¤ËΩ¤Æ¤é¤ì¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

¥µ¥ê¥Á¥ë»À¤¬¡¢¥¨¥ó¥É¥ê¥Ç¥ê¥å¥×¥ê¥±¡¼¥·¥ç¥ó¤Ë´Ø¤ï¤Ã¤Æ¤¤¤ë¤È¤¤¤¦ÏÀʸ¤¬¤¢¤Ã¤¿¡£

A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis.¡¡¡¡¡¡Vanacker H, Lu H, Rate DN, Greenberg JT.¡¡¡¡¡¡Plant J. 2001 Oct;28(2):209-16.¡¡¡¡¡¡PMID: 11722764¡¡¥µ¥ê¥Á¥ë»À¤¬¥¨¥ó¥É¥ê¥Ç¥ê¥å¥×¥ê¥±¡¼¥·¥ç¥ó¤òÍÞ¤¨¤ë¡£npr1 ÊÑ°ÛÂΤǤϡ¢16C ¤ÎºÙ˦¤¬Áý¤¨¤Æ¤¤¤¿¡£ºÙ˦¤Î¿ô¤¬¸º¤Ã¤Æ¤¤¤¿¡£Æ±¤¸¾ò·ï¡¢ÁÈ¿¥¤Ç¤ÏÌîÀ¸·¿¤Ç¤Ï16C ¤ÎºÙ˦¤Ï¤Û¤È¤ó¤É¤Ê¤¤ (Fig. 4)¡£

ºÙ˦Æâ¤Ë¤Ï ATP ¤¬´ØÍ¿¤¹¤ëµ¡¹½¤¬Â¿¿ô¸ºß¤¹¤ë¡£¥×¥í¥Æ¥¢¥½¡¼¥à¤Ï¤½¤Î°ì¤Ä¤Ç¤¢¤ê¶Ë¤á¤Æ½ÅÍפǤ¢¤ë¡£¡¡¡¡¡¡http://www.sci.hokudai.ac.jp/~jjyama/keitai2/project/H18project1r.html¡¡¡¡¡¡»³¸ý¶µ¼ø¤é¤Î¾ì¹ç¤Ï¡¢ÍÕ¤ÎɽÈéºÙ˦¤Ç¥¨¥ó¥É¥ê¥Ç¥å¥×¥ê¥±¡¼¥·¥ç¥ó¤¬µ¯¤­¤Æ¤¤¤ë¡£ºÙ˦¼þ´üÀ©¸æ¥¿¥ó¥Ñ¥¯¼Á¤Î°Û¾ïÃßÀѤ¬¸¶°ø¤Ç¤¢¤ë¤È¹Í¤¨¤é¤ì¤Æ¤¤¤ë¡£°Å½ê²¼æõ¼´ºÙ˦¤Ç¤Ï¼«Á³¤Ë¥¨¥ó¥É¥ê¥Ç¥å¥×¥ê¥±¡¼¥·¥ç¥ó¤¬µ¯¤­¤ë¡£²¼æõ¼´¤Î¿­Ä¹Éôʬ¤ÎºÙ˦¤Ï¡¢ºÙ˦ʬÎö¤Ï¤·¤Ê¤¤¤¬¡¢¤½¤¦¤Ç¤Ê¤¤Éôʬ¤ÎºÙ˦¤È¥¨¥ó¥É¥ê¥Ç¥å¥×¥ê¥±¡¼¥·¥ç¥ó°Ê³°¤Ë¤â¥Û¥ë¥â¥ó´¶¼õÀ­¤Ê¤É¤ÇÍÍ¡¹¤Ê°ã¤¤¤¬¤¢¤ë¡£tim21 ¤Ç¤Ï¥¨¥ó¥É¥ê¥Ç¥å¥×¥ê¥±¡¼¥·¥ç¥ó¤¬µ¯¤­¤Ë¤¯¤¤¡£ATP¤¬¸º¤ë¤»¤¤¤ÇATP°Í¸À­¤Î¥¿¥ó¥Ñ¥¯Ê¬²ò¤¬µ¯¤­¤Ë¤¯¤¤¤È¤¤¤¦²ÄǽÀ­¤â¤¢¤ë¡£¤·¤«¤·¤½¤ó¤Ê¤Ëñ½ã¤Ê¤³¤È¤«¤É¤¦¤«¤Ï¤ï¤«¤é¤Ê¤¤¡£ATP ¤Î¸º¾¯¤Î¤»¤¤¤ÇËÝÌõ¤ÎÊý¤¬¤â¤Ã¤ÈÄã²¼¤¹¤ë¤«¤â¤·¤ì¤Ê¤¤¡£¤½¤¦¤Ê¤éÃÁÇò¼Á¤ÏÃßÀѤ·¤Ê¤¤¡£

¥ß¥È¥³¥ó¥É¥ê¥¢¡¢ATP ¤ÈËÝÌõ¤Î´Ø·¸¤Ë´Ø¤·¤Æ¤Ï¡¢´û¤ËÃÞÇÈÂç³ØÂç³Ø±¡À¸Ì¿´Ä¶­²Ê³Ø¸¦µæ²Ê¤ÎÌøß· ½ã ¶µ¼ø¤ÈÀèü³ØºÝÎΰ踦µæ¥»¥ó¥¿¡¼¡Ê£Ô£Á£Ò£Á¡Ë¤Î¼»³ ÌÀ»Ò ¹Ö»Õ¤é¤Ë¤è¤Ã¤Æ¤¹¤Ð¤é¤·¤¤¸¦µæ¤¬¹Ô¤ï¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡http://www.jst.go.jp/pr/announce/20080517/index.html¡¡¡¡¡¡ATP ¤¬ºî¤é¤ì¤Ë¤¯¤¤¾ò·ï¤Ç¤Ï¡¢¥Ì¥¯¥ì¥ª¥á¥Á¥ê¥ó¤È¤¤¤¦ÃÁÇò¼Á¤¬Æ¯¤¤¤Æ¥ê¥Ü¥½¡¼¥à¹çÀ®¤Ë¤è¤ë¥¨¥Í¥ë¥®¡¼¾ÃÈñ¤òÍÞ¤¨¤ë¡£¤½¤ì¤Ë¤è¤Ã¤ÆÄã±ÉÍܾõÂÖ¤ËÂѤ¨¤ëǽÎϤ¬¹â¤Þ¤ë¡£

ÆÃÄêÎΰè¡ÖÃÁÇò¼Á¤Î°ìÀ¸¡×¥Ë¥å¡¼¥¹¥ì¥¿¡¼No.14 ¤Ë²¬¡¢Àи¶Î¾Çî»Î¤Ë¤è¤ë°Ê²¼¤Î¤è¤¦¤ÊÀâÌÀ¤¬¤¢¤Ã¤¿¡£¡¡¡¡¡¡http://protein.k.u-tokyo.ac.jp/pdf/No14.pdf¡¡¡¡¡¡

 ¤µ¤é¤Ë¡¤¿·µ¬¤Î°ø»ÒTim21 ¤¬¾Ò²ð¤µ¤ì¤¿¡£Tim23-Protein A¤È¶¦ÀºÀ½¤µ¤ì¤ë¥¿¥ó¥Ñ¥¯¼Á¤È¤·¤ÆƱÄꤵ¤ì¤¿Tim21 ¤Ï¥ß¥È¥³
 ¥ó¥É¥ê¥¢¤ÎÆâË쥿¥ó¥Ñ¥¯¼Á¤Ç¤¢¤Ã¤¿¡£Tim23 ¤ÏBlueNativePAGE ¤Çcore ¤ÎÊ£¹çÂΤ˲䨤Ƥµ¤é¤ËÂ礭¤Ê¥µ¥¤¥º¤ÎÊ£¿ô¤Î
 ¥Ð¥ó¥É¤¬´Ñ»¡¤µ¤ì¤ë¡Ê¤³¤ì¤òTim23* ¤È̾ÉÕ¤±¤¿¡Ë¡£Tim21 ¤Îµ¡Ç½ÍÞÀ©¤ÇTim23* ¤Ï¸º¾¯¤·¡¤°ìÊýTim21 ¤Î²á¾êȯ¸½¤Ç
 Tim23* ¤¬Áý²Ã¤·¤¿¡£¤³¤ì¤é¤Î¤³¤È¤«¤éTim21 ¤ÏTim23 Ê£¹çÂΤηÁÀ®¤Ë´ØÍ¿¤·¤Æ¤¤¤ë¤È¹Í¤¨¤é¤ì¤¿¡£

drp3a, drp3b

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--DRP3
(DYNAMIN-RELATED PROTEIN 3A); GTP binding / GTPase/ phosphoinositide binding

References

An Arabidopsis dynamin-related protein, DRP3A, controls both peroxisomal and mitochondrial division.¡¡¡¡¡¡Mano S, Nakamori C, Kondo M, Hayashi M, Nishimura M.¡¡¡¡¡¡Plant J. 2004 May;38(3):487-98.

ACRS

¿¢Êª¼ï
¥é¥Õ¥ì¥â¥ó
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
½É¼çÆðÛŪÆÇÁÇ´¶¼õÀ­·èÄê°ø»Ò
ÊÑ°Û°äÅÁ»Ò--ACRS
¥é¥Õ¥ì¥â¥ó¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤ËºÂ¾è¤¹¤ë°äÅÁ»Ò

-

References

http://www.ag.kagawa-u.ac.jp/plantpathology/index.html¡¡¡¡¡¡¹áÀîÂç³ØÇÀ³ØÉô¿¢ÊªÉÂÍý³Ø¸¦µæ¼¼¡¡¡¡¡¡½©¸÷ ÏÂÌ鶵¼ø

ATSUV3

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--ATSUV3
ATP-dependent RNA helicase At4g14790¡¡¡¡¥ß¥È¥³¥ó¥É¥ê¥¢¶ÉºßÀ­¡¡¡¡¡¡¤¤¤¯¤Ä¤«¤Î PPR ¥¿¥ó¥Ñ¥¯¼Á¤Èȯ¸½Áê´Ø¤¬¤¢¤ë¡Ê¥Ç¡¼¥¿¥Ù¡¼¥¹ ATTED-II ¤Ë¤è¤ë)¡¡¡¡¡¡

References

ABA regulates root development¡¡¡¡¡¡ICAR2010 C301¡¡ Prof. Gong ZZ

ABO5

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡ABA overly sensitive
ÊÑ°Û°äÅÁ»Ò--PPR protein AT1g51965
¡¡

ABA overly-sensitive 5 (ABO5), encoding a pentatricopeptide repeat protein required for cis-splicing of mitochondrial nad2 intron 3, is involved in the abscisic acid response in Arabidopsis.¡¡¡¡¡¡Liu Y, He J, Chen Z, Ren X, Hong X, Gong Z.¡¡¡¡¡¡Plant J. 2010 Jun 17. PMID: 20561255

ABO6

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡ABA overly sensitive
ÊÑ°Û°äÅÁ»Ò--ABO6
DEXH Box RNA helicase¡¡¡¡¡¡

References

DEXH Box RNA Helicase-Mediated Mitochondrial Reactive Oxygen Species Production in Arabidopsis Mediates Crosstalk between Abscisic Acid and Auxin Signaling.¡¡¡¡¡¡He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, Chen Z, Han L, Qu LJ, Gong Z.¡¡¡¡¡¡Plant Cell. 2012 May 31. [Epub ahead of print]¡¡¡¡¡¡PMID: 22652060

Èà¤é¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤éȯÀ¸¤¹¤ë³èÀ­»ÀÁǤÎÌò³ä¤ò½Å»ë¤·¤Æ¤¤¤ë¡£Èà¤é¤ÏÆä˺¬¤ÎÀ®Ä¹¡¢º¬Ã¼Éôʬ¤ËÃíÌܤ·¤ÆʬÀϤ·¤Æ¤¤¤ë¡£Î㤨¤Ð GSH ¤ÎÄêÎ̤Ϻ¬Ã¼¤À¤±¤ò½¸¤á¤Æ¬Äꤷ¤Æ¤¤¤ë¡£º¬Ã¼¤Ç¤ÏÆÃ¤Ë ROS ¤¬½ÅÍפʤΤ«¤â¤·¤ì¤Ê¤¤¡£¤½¤¦¤¤¤¦ÏÀʸ¤¬Â¾¤Ë¤â¤¢¤ë¡£º¬Ã¼ºÙ˦¤Îʬ²½¤Ë¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤é¤Î³èÀ­»ÀÁÇ¡¢PHB¥¿¥ó¥Ñ¥¯¼Á¤¬½ÅÍפȤ¤¤¦ÏÀʸ¤¬¤¢¤ë¡£RbohF ¤â´ØÍ¿¤·¤Æ¤¤¤ë¤³¤È¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£Auxin ´¶¼õÀ­¤âÊѲ½¤¹¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

ABO8

ABA-mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in Arabidopsis.¡¡¡¡¡¡Yang L, Zhang J, He J, Qin Y, Hua D, Duan Y, Chen Z, Gong Z.¡¡¡¡¡¡PLoS Genet. 2014 Dec 18;10(12):e1004791. doi: 10.1371/journal.pgen.1004791. eCollection 2014 Dec.¡¡¡¡¡¡PMID: 25522358

L-galactono-1,4-lactone dehydrogenase

Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato.¡¡¡¡¡¡Alhagdow M, Mounet F, Gilbert L, Nunes Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P.¡¡¡¡¡¡Plant Physiol. 2007 Dec;145(4):1408-22. Epub 2007 Oct 5.¡¡¡¡¡¡PMID: 17921340

¥¢¥¹¥³¥ë¥Ó¥ó»ÀÀ¸¹çÀ®¤ÎºÇ¸å¤ÎÃʳ¬¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤·¤ÆƯ¤¯¡£

rol5 (for repressor of lrx1)

¿¢Êª¼ï
A.thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
LRR-extensin1 (LRX1)·ç»ÂΡÊroot hair ¤¬¤ª¤«¤·¤¯¤Ê¤ë¡Ë¤Î¥ê¥×¥ì¥Ã¥µ¡¼¥¹¥¯¥ê¡¼¥Ë¥ó¥°
ÊÑ°Û°äÅÁ»Ò--rol5
¡¡The functionally similar ROL5 homolog in yeast, Ncs6p (needs Cla4 to survive 6), was previously found to affect TOR signaling. The ROL5 protein accumulates in mitochondria, a target of the TOR pathway.¡¡¡¡¡¡¥ß¥È¥³¥ó¥É¥ê¥¢¶ÉºßÀ­ At2g44270¡¡¡¡¡¡tRNA 2-thiolation¡¡¤ò¹Ô¤¦°ø»Ò¤ÈÁêƱÀ­¤¬¤¢¤ë¡¡¡¡¡¡

Direct control of mitochondrial function by mTOR.¡¡¡¡¡¡Ramanathan A, Schreiber SL.¡¡¡¡¡¡Proc Natl Acad Sci U S A. 106(52) 22229-32, 2009

A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells.¡¡¡¡¡¡Gonzalez N, De Bodt S, Sulpice R, Jikumaru Y, Chae E, Dhondt S, Van Daele T, De Milde L, Weigel D, Kamiya Y, Stitt M, Beemster GT, Inze D.¡¡¡¡¡¡Proc Natl Acad Sci U S A. 107(4) 1571-5, 2010

¿¢Êª¤Ç¥»¥ë¥í¡¼¥¹¤Ê¤É¤Î¿ÅüÎà¡Ê¥Ð¥¤¥ª¥Þ¥¹¡Ë¤ò¹çÀ®¤¹¤ë¹ÚÁǤϡ¢¥µ¥¤¥º¤¬Â礭¤¤¤â¤Î¡Ê1000¥¢¥ß¥Î»À°Ê¾å¡Ë¤¬Â¿¤¤¡£Â礭¤ÊORF¤ÎËÝÌõ¤¬¸úΨ¤è¤¯¿Ê¤à¤è¤¦¤Ë¤¹¤ë¤³¤È¤Ï¥Ð¥¤¥ª¥Þ¥¹¤ÎÁý»º¤Ë¹×¸¥¤¹¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

References

The TOR Pathway Modulates the Structure of Cell Walls in Arabidopsis.¡¡¡¡¡¡Leiber RM, John F, Verhertbruggen Y, Diet A, Knox JP, Ringli C.¡¡¡¡¡¡Plant Cell. 2010 Jun 8. [Epub ahead of print]

MSC16

¿¢Êª¼ï
Cucumis sativa
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡ÍºÀ­ÉÔÌ­
ÊÑ°Û°äÅÁ»Ò--Â絬ÌϤÊÁÈ´¹¤¨
¡¡

Chilling stress and mitochondrial genome rearrangement in the MSC16 cucumber mutant affect the alternative oxidase and antioxidant defense system to a similar extent.¡¡¡¡¡¡Szal B, Lukawska K, ZdoliDska I, Rychter AM.¡¡¡¡¡¡Physiol Plant. 2009 Dec;137(4):435-45. Epub 2009 May 21.

Influence of mitochondrial genome rearrangement on cucumber leaf carbon and nitrogen metabolism.¡¡¡¡¡¡Szal B, Jastrzbska A, Kulka M, Le[niak K, Podgorska A, Parnik T, Ivanova H, Keerberg O, Gardestrom P, Rychter AM.¡¡¡¡¡¡Planta. 2010 Nov;232(6):1371-82. Epub 2010 Sep 10.

REME1

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡Natural variation¡¢ RNA editing ¤Î°ã¤¤
ÊÑ°Û°äÅÁ»Ò--PPR protein
¡¡

Natural variation in Arabidopsis leads to the identification of REME1, a pentatricopeptide repeat-DYW protein controlling the editing of mitochondrial transcripts.¡¡¡¡¡¡Bentolila S, Knight W, Hanson M.¡¡¡¡¡¡Plant Physiol. 2010 Oct 25. [Epub ahead of print]

Expression of the unedited form of the ATP synthase subunit 9

¿¢Êª¼ï
Arabidopsis thaliana
ºîÀ®ÊýË¡
¡¡¿Í°ÙŪ¤Ê¡¡unedited form of the ATP synthase subunit 9¡¡¤Î¶¯À©È¯¸½
ÊÑ°Û°äÅÁ»Ò--ATP synthase subunit 9
¡¡

Effect of Mitochondrial Dysfunction on Carbon Metabolism and Gene Expression in Flower Tissues of Arabidopsis thaliana.¡¡¡¡¡¡Busi MV, Gomez-Lobato ME, Rius SP, Turowski VR, Casati P, Zabaleta EJ, Gomez-Casati DF, Araya A.¡¡¡¡¡¡Mol Plant. 2010 Oct 26. [Epub ahead of print]

E-GEOD-14240¡¡¤È¤¤¤¦¥Þ¥¤¥¯¥í¥¢¥ì¥¤¥Ç¡¼¥¿¤ò¸ø³«¤·¤Æ¤¤¤ë¡£ArrayExpress¡¡¤Ç¸«¤ë¤³¤È¤¬¤Ç¤­¤ë¡£

Busi ¤é¤Ï¡¢Æ±»þ´ü¤Ë°Ê²¼¤Î¤è¤¦¤Ê²òÀâ¤òȯɽ¤·¤Æ¤¤¤ë¡£

Mitochondrial dysfunction affects chloroplast functions.¡¡¡¡¡¡Busi MV, Gomez-Lobato ME, Araya A, Gomez-Casati DF.¡¡¡¡¡¡Plant Signal Behav. 2011 Dec;6(12):1904-7.¡¡¡¡¡¡PMID: 22101346

ATP Synthase Subunit d

Mitochondrial ATP Synthase Subunit d, a Component of the Peripheral Stalk, is Essential for Growth and Heat Stress Tolerance in Arabidopsis thaliana. ¡¡¡¡¡¡Liu T, Arsenault J, Vierling E, Kim M.¡¡¡¡¡¡Plant J. 2021 May 11. doi: 10.1111/tpj.15317. Online ahead of print.¡¡¡¡¡¡PMID: 33974298

ATP synthase ¦Ä-subunit

Downregulation of the ¦Ä-subunit reduces mitochondrial ATP synthase levels, alters respiration, and restricts growth and gametophyte development in Arabidopsis.¡¡¡¡¡¡Geisler DA, Papke C, Obata T, Nunes-Nesi A, Matthes A, Schneitz K, Maximova E, Araujo WL, Fernie AR, Persson S.¡¡¡¡¡¡Plant Cell. 2012 Jul;24(7):2792-811. doi: 10.1105/tpc.112.099424. Epub 2012 Jul 17.¡¡¡¡¡¡PMID: 22805435

¥ß¥È¥³¥ó¥É¥ê¥¢ ATP ¹çÀ®¹ÚÁÇ FAd subunit ¤ÎÊÑ°Û

Phosphite-Mediated Suppression of Anthocyanin Accumulation Regulated by Mitochondrial ATP Synthesis and Sugar in Arabidopsis.¡¡¡¡¡¡Leong SJ, Lu WC, Chiou TJ.¡¡¡¡¡¡Plant Cell Physiol. 2018 Mar 5. doi: 10.1093/pcp/pcy051.¡¡¡¡¡¡PMID: 29514351

Åü¤¬Â¿Î̤ËÃßÀѤ¹¤ë¡£Åü¤È¥ê¥ó¤ÎÈæΨ¤Î½ÅÍ×À­¤ËÃíÌܤ·¤Æ¤¤¤ë¡£Åü¤ÏÂå¼Õ¤ÎºÝ¤Ë¥ê¥ó»À²½¤ò¼õ¤±¤ë¤Î¤Ç¡¢Â¿Î̤˸ºß¤¹¤ëÅü¤ò¸úΨ¤è¤¯Âå¼Õ¤¹¤ë¤Ë¤Ï¥ê¥ó»À¤â¿Î̤ËɬÍפˤʤ롣¤½¤ì°Ê³°¤ÎÍÍ¡¹¤Ê¤³¤È¤â½ÅÍפ«¤â¤·¤ì¤Ê¤¤¤È½ñ¤¤¤Æ¤¢¤ë¡£

ATP synthase ¤òÍÞ¤¨¤¿¿¢Êª

Antisense expression of mitochondrial ATP synthase subunits OSCP (ATP5) and gamma (ATP3) alters leaf morphology, metabolism and gene expression in Arabidopsis¡¡¡¡¡¡Plant Cell Physiol. 2009 Oct;50(10):1840-50.¡¡¡¡¡¡doi: 10.1093/pcp/pcp125. Epub 2009 Sep 11.¡¡¡¡¡¡Mary M Robison 1 , Xingyuan Ling, Matthew P L Smid, Adel Zarei, David J Wolyn PMID: 19748911

Äã²¹¤È PPR ¥¿¥ó¥Ñ¥¯¼Á¡¢¥ß¥È¥³¥ó¥É¥ê¥¢ ATP ¹çÀ®¹ÚÁÇ

¤³¤ì¤ÏÊÑ°ÛÂΤ覵æ¤Ç¤Ï¤Ê¤¤¤¬¡¢PPR¥¿¥ó¥Ñ¥¯¼Á¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Î ATP ¹çÀ®¤È´Ø·¸¤¢¤ë¶½Ì£¿¼¤¤¸¦µæ¤Ê¤Î¤Ç¤³¤³¤Ë½ñ¤¤¤Æ¤ª¤¯¡£

Changes in mRNA stability associated with cold stress in Arabidopsis cells.¡¡¡¡¡¡Chiba Y, Mineta K, Hirai MY, Suzuki Y, Kanaya S, Takahashi H, Onouchi H, Yamaguchi J, Naito S.¡¡¡¡¡¡Plant Cell Physiol. 2013 Feb;54(2):180-94. doi: 10.1093/pcp/pcs164. Epub 2012 Dec 4.¡¡¡¡¡¡PMID: 23220693

Äã²¹´Ä¶­¾ò·ï¤Ç¤Ï¤Û¤È¤ó¤É¤Î°äÅÁ»Ò¤Î mRNA ¤Ï°ÂÄê²½¤·¡¢Ê¬²ò¤¹¤ë¤Þ¤Ç¤Î»þ´Ö¤¬Ä¹¤¯¤Ê¤ë¡£Å¾¼ÌÁ˳²ºÞ¤È¥Þ¥¤¥¯¥í¥¢¥ì¥¤Ê¬ÀϤòÁȤ߹ç¤ï¤»¤Æ¬Äꤵ¤ì¤Æ¤¤¤ë¡£ ¤·¤«¤·°ìÉô¤Î°äÅÁ»Ò¤Î mRNA ¤Ï°ÂÄê²½¤·¤Ê¤¤¡£¤½¤Î°ÂÄê²½¤·¤Ê¤¤¥°¥ë¡¼¥×¤Ë¡¢PPR¥¿¥ó¥Ñ¥¯¼Á¤¬´Þ¤Þ¤ì¤Æ¤¤¤¿¡£

Organellar Gene Expression and Acclimation of Plants to Environmental Stress.¡¡¡¡¡¡Leister D, Wang L, Kleine T.¡¡¡¡¡¡Front Plant Sci. 2017 Mar 21;8:387. doi: 10.3389/fpls.2017.00387. eCollection 2017. Review.¡¡¡¡¡¡PMID: 28377785 ¡¡¡¡¡¡¤È¤¤¤¦¥ì¥Ó¥å¡¼¤Ë°úÍѤµ¤ì¤Æ¤¤¤ë¡£

Äã²¹¤È¥ß¥È¥³¥ó¥É¥ê¥¢´ØÏ¢ÊÑ°ÛÂΤǤϡ¢fro1 ¤¬°ÊÁ°¤«¤é¸«¤¤¤À¤µ¤ì¤Æ¤¤¤ë¡£Ê£¹çÂÎI ¤Î¥µ¥Ö¥æ¥Ë¥Ã¥È NDUFS4 ¤ÎÊѰۤǡ¢Äã²¹¤Ë¤è¤ë¥Þ¡¼¥«¡¼°äÅÁ»Ò¤Îȯ¸½Áý²Ã¤¬¼å¤¤¡£ ¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Î¸ÆµÛ®Å٤Ȳ¹Å٤ˤϴط¸¤¬¤¢¤ë¤³¤È¤Ï¤è¤¯ÃΤé¤ì¤Æ¤¤¤ë¡£ Äã²¹¤Ç PPR ¥¿¥ó¥Ñ¥¯¼Á¤Î mRNA Î̤¬ÁêÂÐŪ¤Ëʬ²ò¤µ¤ì¤ä¤¹¤¯¤Ê¤ë¤È¤É¤¦¤Ê¤ë¤«¡£Äã²¹¤Ç¤ÏËÝÌõ¤â¤ª¤­¤Ë¤¯¤¤¤À¤í¤¦¤«¤é¡¢ ¥¿¥ó¥Ñ¥¯¼Á¤ÎÎ̤⸺¾¯¤¹¤ë¤À¤í¤¦¡£¤½¤¦¤Ê¤ë¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Î editing ¤ä¥¹¥×¥é¥¤¥·¥ó¥°¤â¤ª¤­¤Ë¤¯¤¯¤Ê¤ë¤À¤í¤¦¡£ ¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Î ATP ¹çÀ®¤âÄã²¼¤¹¤ë¤À¤í¤¦¡£Äã²¹´Ä¶­¾ò·ï¤Ç¤Ï ATP ¤ÎɬÍ×Î̤¬¸º¤ë¤È¤¹¤ì¤Ð¡¢¤³¤ì¤ÏÍý¤Ë¤«¤Ê¤Ã¤¿ rational ¤ÊÊѲ½¤Ç¤¢¤ë¡£ ¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤é¤Î³èÀ­»ÀÁǤÎÀ¸À®¤â¸º¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

°Ê²¼¤ÎÏÀʸ¤âȯɽ¤µ¤ì¤¿¡£

Cold sensitivity of mitochondrial ATP synthase restricts oxidative phosphorylation in Arabidopsis thaliana.¡¡¡¡¡¡Kerbler SM, Taylor NL, Millar AH.¡¡¡¡¡¡New Phytol. 2018 Oct 3. doi: 10.1111/nph.15509. PMID: 30281799

¸ÆµÛÎ̤Ȳ¹Å٤˴ط¸¤¬¤¢¤ë¤³¤È¤Ï¤è¤¯ÃΤé¤ì¤Æ¤¤¤ë¡£ºÙ˦¤Î²¹ÅÙ¥»¥ó¥µ¡¼¤â¥ß¥È¥³¥ó¥É¥ê¥¢¤È´Ø·¸¤¬¤¢¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

CIB22

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡Tag line
ÊÑ°Û°äÅÁ»Ò--CIB22
¡¡ At4g34700

A nuclear-encoded mitochondrial gene AtCIB22 is essential for plant development in Arabidopsis.¡¡¡¡¡¡Han L, Qin G, Kang D, Chen Z, Gu H, Qu LJ.¡¡¡¡¡¡J Genet Genomics. 2010 Oct;37(10):667-83.¡¡¡¡¡¡¥Þ¥¤¥¯¥í¥¢¥ì¥¤¼Â¸³¤Î¥Ç¡¼¥¿¡Ê°ìÉôʬ¤À¤±¡Ë¤â¤¢¤ë¡£

ATTED-II ¤Ø¤Î¥ê¥ó¥¯¡¡http://atted.jp/cgi-bin/locus.cgi?loc=At4g34700¡¡¡¡¡¡LYR family of Fe/S cluster biogenesis protein¡¡¤ÈÃí¼á¤µ¤ì¤Æ¤¤¤ë¡£¤·¤«¤·¡¢AtCIB22 ¤¬ Fe/S ¥¯¥é¥¹¥¿¡¼¤È´Ø·¸¤·¤Æ¤¤¤ë¤³¤È¤ò¼¨¤¹¾Úµò¤Ï¤Ê¤¤¤È Han ¤é¤ÎÏÀʸ¤Ë½ñ¤«¤ì¤Æ¤¤¤ë¡£AtCIB22 ¤ÈÁêƱ¤Ê¥¿¥ó¥Ñ¥¯¼Á¤Ïưʪ¤Ê¤É¤ÎÊ£¹çÂÎ I ¤Ë¤â´Þ¤Þ¤ì¤Æ¤¤¤ë¡£¤½¤ì¤é¤ÎÏÀʸ¤ò¸«¤ë¤È¡¢Fe/S ¥¯¥é¥¹¥¿¡¼¤È¤Î´ØÏ¢¤ò¼¨¤·¤¿¤â¤Î¤ÏÁ´¤¯¸«Åö¤¿¤é¤Ê¤«¤Ã¤¿¡£

LYR protein (CIAF1 = EMB1793 = At1g76060)

A Mitochondrial LYR Protein is Required for Complex I Assembly.¡¡¡¡¡¡Ivanova A, Gill-Hille M, Huang S, Branca R, Kmiec B, Teixeira PF, Lehtiö J, Whelan J, Murcha MW.¡¡¡¡¡¡Plant Physiol. 2019 Oct 10. pii: pp.00822.2019. doi: 10.1104/pp.19.00822.¡¡¡¡¡¡PMID: 31601645

¡Öa mitochondrial matrix protein (EMB1793, At1g76060), which we term COMPLEX I ASSEMBLY FACTOR 1 (CIAF1), contains a LYR domain and is required for Complex I assembly.¡×¡¡¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

ciaf1 ÊÑ°ÛÂΤÏÀ¸°é¤¬ÃÙ¤¯¤Ê¤ë¡£¤½¤ÎÀ­¼Á¤òÉôʬŪ¤Ë²óÉü¤µ¤»¤ëÊÑ°Û¤¬¸«¤Ä¤±¤é¤ì¤¿¡£FTSH3 °äÅÁ»Ò¤ÎÊÑ°Û¤¬¸¶°ø¤À¤Ã¤¿¡£

The mitochondrial AAA protease FTSH3 regulates Complex I abundance by promoting its disassembly¡¡¡¡¡¡Plant Physiol. 2021 May 27;186(1):599-610.¡¡¡¡¡¡doi: 10.1093/plphys/kiab074.¡¡¡¡¡¡Aneta Ivanova ¤Ê¤É¡¡¡¡¡¡PMID: 33616659 PMCID: PMC8154063

¤³¤ÎÏÀʸ¤Ë¤â ciaf1 ÊѰۤˤè¤ë±Æ¶Á¤òÄ´¤Ù¤¿¥Ç¡¼¥¿¤¬¤¢¤ë¡£

LYR family protein ¤Ë´Ø¤¹¤ë¾¤ÎÏÀʸ¡§

The mitochondrial LYR protein, SDHAF1 is required for succinate dehydrogenase activity in Arabidopsis. ¡¡¡¡¡¡Li Y, Belt K, Alqahtani SF, Saha S, Fenske R, Van Aken O, Whelan J, Millar AH, Murcha MW, Huang S.¡¡¡¡¡¡Plant J. 2022 Jan 26. doi: 10.1111/tpj.15684. ¡¡¡¡¡¡PMID: 35080330

Human ISD11 is essential for both iron-sulfur cluster assembly and maintenance of normal cellular iron homeostasis.¡¡¡¡¡¡Shi Y, Ghosh MC, Tong WH, Rouault TA.¡¡¡¡¡¡Hum Mol Genet. 2009 Aug 15;18(16):3014-25. doi: 10.1093/hmg/ddp239. Epub 2009 May 18.¡¡¡¡¡¡PMID: 19454487¡¡¡¡¡¡ISD11 ¤Ï LYR family protein ¤Î°ì¤Ä¤Ç¤¢¤ë¡£

¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Ë¾À¸Êª¤Î ISD11 ¤ÈÁêƱÀ­¤ò»ý¤Ä¥¿¥ó¥Ñ¥¯¼Á¤ò¥³¡¼¥É¤¹¤ë°äÅÁ»Ò¤¬Â¸ºß¤¹¤ë¡£ AT5G61220 ATTED-II ¤Î¥ê¥ó¥¯¡¡http://atted.jp/data/locus/836243.shtml ¤³¤Î°äÅÁ»Ò¤ÎÃí¼á¤Ï¡ÖLYR family of Fe/S cluster biogenesis protein¡× ¤Ç¡¢¤³¤ì¤ÏÀµ¤·¤¤¡£

LYR ¥Õ¥¡¥ß¥ê¡¼¥¿¥ó¥Ñ¥¯¼Á¤ÏÊ£¿ô¤¢¤ë¡Êưʪ¤Ç¤Ï£´¼ïÎà¡Ë¡£ISD11 °Ê³°¤Î¥á¥ó¥Ð¡¼¤Ë¡¢AtCIB22 ¤Î¤è¤¦¤ÊÊ£¹çÂÎI ¤Î¥µ¥Ö¥æ¥Ë¥Ã¥È¤¬Â¸ºß¤¹¤ë¡£¡¡Ê¸¸¥¡§¡¡The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria.¡¡¡¡¡¡Adam AC, Bornhovd C, Prokisch H, Neupert W, Hell K.¡¡¡¡¡¡EMBO J. 2006 Jan 11;25(1):174-83. Epub 2005 Dec 8.¡¡¡¡¡¡PMID: 16341090

ISD11 ¤¬¡¢Ê£¹çÂÎI ¤È·ë¹ç¤¹¤ë¤«¤Ï¡¢ÉÔÌÀ¤Ç¤¢¤ë¤é¤·¤¤¡£ISD11 ¤Ï Fe/S ¥¯¥é¥¹¥¿¡¼¹çÀ®·Ï¥¿¥ó¥Ñ¥¯¼Á¤ÈÊ£¹çÂΤò·ÁÀ®¤¹¤ë¤Î¤¬ËÜÍè¤ÎƯ¤­¤Ç¤¢¤ë¡£Ê£¹çÂÎI ¤Ï Fe/S ¥¯¥é¥¹¥¿¡¼¤ò´Þ¤à¤Î¤Ç¡¢´ÖÀÜŪ¤Ë´ØÏ¢¤¬¤¢¤ë¤³¤È¤Ï´Ö°ã¤¤¤Ê¤¤¡£¡¡

¥ß¥È¥³¥ó¥É¥ê¥¢Å´Î²²«¥¯¥é¥¹¥¿¡¼ FeS Iron-sulfur cluster ¤Ë´ØÏ¢¤¹¤ëÏÀʸ¡§

Conserved functions of Arabidopsis mitochondrial late-acting maturation factors in the trafficking of iron-sulfur clusters.¡¡¡¡¡¡Uzarska MA, Przybyla-Toscano J, Spangar F, Zannini F, Lill R, Mühlenhoff U, Rouhier N.¡¡¡¡¡¡Biochim Biophys Acta. 2018 Jun 11. pii: S0167-4889(18)30131-9. doi: 10.1016/j.bbamcr.2018.06.003.¡¡¡¡¡¡PMID: 29902489

A RESTORER OF FERTILITY-like PPR gene

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--PPR protein ¤Î°ì¼ï
¡¡

A RESTORER OF FERTILITY-like PPR gene is required for 5¡Ç end processing of the nad4 mRNA in mitochondria of Arabidopsis thaliana¡¡¡¡¡¡Angela Holzle, Christian Jonietz, Otto Torjek, Thomas Altmann, Stefan Binder and Joachim Forner¡¡¡¡¡¡Accepted manuscript online: 9 DEC 2010 10:28AM EST | DOI: 10.1111/j.1365-313X.2010.04460.x

BIR6

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡BSO¡¡buthionine sulfoximine¡¡´¶¼õÀ­Äã²¼¡¡º¬¤Î¿­Ä¹Á˳²¤¬µ¯¤­¤Ë¤¯¤¯¤Ê¤ë
ÊÑ°Û°äÅÁ»Ò--PPR protein ¤Î°ì¼ï
¡¡

Identification of a pentatricopeptide repeat protein implicated in splicing of intron 1 of mitochondrial nad7 transcripts.¡¡¡¡¡¡Koprivova A, des Francs-Small CC, Calder G, Mugford ST, Tanz S, Lee BR, Zechmann B, Small I, Kopriva S.¡¡¡¡¡¡J Biol Chem. 2010 Oct 15;285(42):32192-9. Epub 2010 Aug 3. PMID: 20682769

RNA PROCESSING FACTOR 1 (RPF1)

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡Based on natural genetic variation we have used linkage mapping and complementation studies
ÊÑ°Û°äÅÁ»Ò--PPR protein ¤Î°ì¼ï
¡¡AT1G12700

A RESTORER OF FERTILITY-like PPR gene is required for 5¡Ç-end processing of the nad4 mRNA in mitochondria of Arabidopsis thaliana.¡¡¡¡¡¡Holzle A, Jonietz C, Torjek O, Altmann T, Binder S, Forner J.¡¡¡¡¡¡Plant J. 2010 Dec 9. doi: 10.1111/j.1365-313X.2010.04460.x.

¤³¤Î°äÅÁ»Ò¤Ë¤Ä¤¤¤Æ¤Ï¡¢·ÏÅý´Ö¤Ç¤Î°ã¤¤¤¬¤¢¤ë¤³¤È¤¬¸«¤Ä¤«¤Ã¤Æ¤¤¤ë¡£TAIR ¤Î¥Ú¡¼¥¸¤Î description ¤Ë½ñ¤«¤ì¤Æ¤¤¤ë¡£¡ÖLer and other accessions impaired in processing of the nad4 mRNA 5¡ì-end, contain a single nucleotide polymorphism (SNP) 807 nucleotides downstream of the predicted translation start codon (G807A). The resulting premature translation termination codon abolishes the function of the RPF1 gene in Ler.¡×

RPF8 ¤È¤¤¤¦°äÅÁ»Ò¤â¤¢¤ë¡£

''In Arabidopsis thaliana mitochondria 5' end polymorphisms of nad4L-atp4 and nad3-rps12 transcripts are linked to RNA PROCESSING FACTORs 1 and 8. ''¡¡¡¡¡¡Schleicher S, Binder S.¡¡¡¡¡¡Plant Mol Biol. 2021 Apr 28. doi: 10.1007/s11103-021-01153-9. ¡¡¡¡¡¡PMID: 33909186

E-class PPR-proteins

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡Reverse genetics
ÊÑ°Û°äÅÁ»Ò--E-class PPR-proteins
¡¡

Reverse genetic screening identifies five E-class PPR-proteins involved in RNA editing in mitochondria of Arabidopsis Thaliana.¡¡¡¡¡¡Takenaka M, Verbitskiy D, Zehrmann A, Brennicke A.¡¡¡¡¡¡J Biol Chem. 2010 Jun 21. [Epub ahead of print]

PPR2263(MEF29)

¿¢Êª¼ï
Zea mays, Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡Reverse genetics
ÊÑ°Û°äÅÁ»Ò--DYW domain-containing PPR-protein
¡¡

PPR2263, a DYW-Subgroup Pentatricopeptide Repeat Protein, Is Required for Mitochondrial nad5 and cob Transcript Editing, Mitochondrion Biogenesis, and Maize Growth.¡¡¡¡¡¡Sosso D, Mbelo S, Vernoud V, Gendrot G, Dedieu A, Chambrier P, Dauzat M, Heurtevin L, Guyon V, Takenaka M, Rogowsky PM.¡¡¡¡¡¡Plant Cell. 2012 Feb 7. [Epub ahead of print]¡¡¡¡¡¡PMID: 22319053

MEF13

Mol Plant. 2015 Jun 2. pii: S1674-2052(15)00259-2. doi: 10.1016/j.molp.2015.05.008. [Epub ahead of print]

MEF13 requires MORF3 and MORF8 for RNA editing at eight targets in mitochondrial mRNAs in Arabidopsis thaliana.

Glass F1, Härtel B2, Zehrmann A3, Verbitskiy D4, Takenaka M5.

MEF14

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--E-class PPR protein ¤Î°ì¼ï
¡¡

The DYW-E-PPR protein MEF14 is required for RNA editing at site matR-1895 in mitochondria of Arabidopsis thaliana.¡¡¡¡¡¡Verbitskiy D, Hartel B, Zehrmann A, Brennicke A, Takenaka M.¡¡¡¡¡¡FEBS Lett. 2011 Jan 28. [Epub ahead of print]

MEF3

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--E-class PPR protein ¤Î°ì¼ï
¡¡

The E-class PPR Protein MEF3 of Arabidopsis thaliana can Function in Mitochondrial RNA editing also with an Additional DYW Domain.¡¡¡¡¡¡Verbitskiy D, van der Merwe JA, Zehrmann A, Hartel B, Takenaka M.¡¡¡¡¡¡Plant Cell Physiol. 2011 Dec 19.¡¡¡¡¡¡PMID: 22186180

MEF7

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--E-class PPR protein ¤Î°ì¼ï
¡¡

The DYW-class PPR protein MEF7 is required for RNA editing at four sites in mitochondria of Arabidopsis thaliana.Zehrmann A, van der Merwe J, Verbitskiy D, Hartel B, Brennicke A, Takenaka M.¡¡¡¡¡¡RNA Biol. 2012 Feb 1;9(2). [Epub ahead of print]¡¡¡¡¡¡PMID: 22258224

MEF8

A protein with an unusually short PPR domain, MEF8, affects editing at over 60 Arabidopsis mitochondrial C targets of RNA editing.¡¡¡¡¡¡Diaz MF, Bentolila S, Hayes ML, Hanson MR, Mulligan RM.¡¡¡¡¡¡Plant J. 2017 Sep 5. doi: 10.1111/tpj.13709. ¡¡¡¡¡¡PMID: 29035004

MEF10

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--PPR protein ¤Î°ì¼ï
¡¡

MEF10 is required for RNA editing at nad2-842 in mitochondria of Arabidopsis thaliana and interacts with MORF8.¡¡¡¡¡¡Härtel B, Zehrmann A, Verbitskiy D, van der Merwe JA, Brennicke A, Takenaka M.¡¡¡¡¡¡Plant Mol Biol. 2013 Jan 4. [Epub ahead of print]¡¡¡¡¡¡PMID: 23288601''

MEF25

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--PPR protein ¤Î°ì¼ï
¡¡

FEBS Lett. 2013 Feb 14. pii: S0014-5793(13)00127-0. doi: 10.1016/j.febslet.2013.02.009. [Epub ahead of print] Contiguous RNA editing sites in the mitochondrial nad1 transcript of Arabidopsis thaliana are recognized by different proteins.¡¡¡¡¡¡Arenas-M A, Takenaka M, Moreno S, Gómez I, Jordana X.

MEF31

The Pentatricopeptide Repeat Protein MEF31 is Required for Editing at Site 581 of the tatC Transcript and Indirectly Influences Editing at Site 586 of the Same Transcript.¡¡¡¡¡¡Arenas-M A, Gonzalez-Duran E, Gomez I, Burger M, Brennicke A, Takenaka M, Jordana X.¡¡¡¡¡¡Plant Cell Physiol. 2017 Dec 4. doi: 10.1093/pcp/pcx190. [Epub ahead of print]¡¡¡¡¡¡PMID: 29216369

MEF35

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--PPR protein ¤Î°ì¼ï
¡¡

The DYW Subgroup PPR Protein MEF35 Targets RNA Editing Sites in the Mitochondrial rpl16, nad4 and cob mRNAs in Arabidopsis thaliana.¡¡¡¡¡¡Brehme N, Bayer-Csaszar E, Glass F, Takenaka M.¡¡¡¡¡¡PLoS One. 2015 Oct 15;10(10):e0140680. doi: 10.1371/journal.pone.0140680. eCollection 2015.¡¡¡¡¡¡PMID: 26470017

MEF100

The Pentatricopeptide Repeat Protein MEF100 Is Required for the Editing of Four Mitochondrial Editing Sites in Arabidopsis¡¡¡¡¡¡February 2021¡¡Cells 10(2):468 ¡¡¡¡¡¡DOI: 10.3390/cells10020468

PMH2

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--DEAD-box protein ¤Î°ì¼ï
¡¡

The DEAD-box protein PMH2 is required for efficient group II intron splicing in mitochondria of Arabidopsis thaliana.¡¡¡¡¡¡Kohler D, Schmidt-Gattung S, Binder S.¡¡¡¡¡¡Plant Mol Biol. 2010 Mar;72(4-5):459-67.¡¡PMID: 19960362

Analysis of the Roles of the Arabidopsis nMAT2 and PMH2 Proteins Provided with New Insights into the Regulation of Group II Intron Splicing in Land-Plant Mitochondria.¡¡¡¡¡¡Zmudjak M, Shevtsov S, Sultan LD, Keren I, Ostersetzer-Biran O.¡¡¡¡¡¡Int J Mol Sci. 2017 Nov 17;18(11). pii: E2428. doi: 10.3390/ijms18112428.¡¡¡¡¡¡PMID: 29149092

OTP87

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--PPR protein ¤Î°ì¼ï
¡¡

The pentatricopeptide repeat protein OTP87 is essential for RNA editing of nad7 and atp1 transcripts in Arabidopsis mitochondria.¡¡¡¡¡¡Hammani K, Colas des Francs-Small C, Takenaka M, Tanz SK, Okuda K, Shikanai T, Brennicke A, Small I.¡¡¡¡¡¡J Biol Chem. 2011 Apr 19. [Epub ahead of print]¡¡¡¡¡¡PMID: 21504904

RUG3

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡Mitochondria from Arabidopsis plants lacking a functional RUG3 gene showed greatly reduced complex I abundance and activity.
ÊÑ°Û°äÅÁ»Ò--RUG3, related to human REGULATOR OF CHROMOSOME CONDENSATION 1 (RCC1) and Arabidopsis UV-B RESISTANCE 8 (UVR8)
¡¡

RUG3 ¤Ï AT5G60870¡¢UVR8 ¤Ï AT5G63860¡¡¤Ç¡¢ÁêƱÀ­¤¬¹â¤¤¡£UVR8 ¤Ï»ç³°Àþ¤Î¼õÍÆÂΤǤ¢¤ê¡¢HY5 ž¼Ì°ø»Ò¤ò³èÀ­²½¤¹¤ë¡£HY5 ¤Ï¤È¤Æ¤â½ÅÍפÊž¼Ì°ø»Ò¤Ç¡¢¥Õ¥£¥È¥¯¥í¥à¡¢¥¹¥È¥ê¥´¥é¥¯¥È¥ó¡¢¥ê¥ó·ç˳¡¢ÃâÁÇ·ç˳¡¢³èÀ­»ÀÁÇ¡¢Åü¡¢¶¯¸÷¥¹¥È¥ì¥¹¡¢¥µ¥¤¥È¥«¥¤¥Ë¥ó¤Ê¤É¤Ç³èÀ­²½¤µ¤ì¤ë¡£¤½¤ì¤Ë¤è¤ê¥¢¥ó¥È¥·¥¢¥Ë¥óÀ¸À®¡¢¥¯¥í¥í¥Õ¥£¥ë¤ÎÀ¸¹çÀ®¡¢È¯²ê¤Ê¤É¤¬³èÀ­²½¤µ¤ì¤ë¡£HY5 ¤Ï¹â²¹¡¢¾®Ë¦ÂÎ¥¹¥È¥ì¥¹¡¢¥¨¥Á¥ì¥ó¤Ê¤É¤ÇÉÔ³èÀ­²½¤µ¤ì¡¢¹â²¹¤Ë¤è¤ëȯ²êÁ˳²¤ËƯ¤¤¤Æ¤¤¤ë¡£

The RCC1 family protein RUG3 is required for splicing of nad2 and complex I biogenesis in mitochondria of Arabidopsis thaliana¡¡¡¡¡¡Kuhn K, Carrie C, Giraud E, Wang Y, Meyer EH, Narsai R, des Francs-Small CC, Zhang B, Murcha MW, Whelan J.¡¡¡¡¡¡Plant J. 2011 Sep;67(6):1067-80. doi: 10.1111/j.1365-313X.2011.04658.x. Epub 2011 Jul 6.¡¡¡¡¡¡PMID: 21623974

ABA ¤È¤Î´ØÏ¢¤âÌÀ¤é¤«¤Ë¤µ¤ì¤¿¡£RUG3 ¤¬Æ¯¤¯¤È ABA ¤¬¸ú¤­¤Ë¤¯¤¤¡£¤À¤«¤é rug3 ÊÑ°ÛÂÎ¤Ï ABA ¤¬¸ú¤­¤ä¤¹¤¤¡£

RUG3 is a negative regulator of plant responses to ABA in Arabidopsis thaliana.¡¡¡¡¡¡Su C, Yuan J, Zhao H, Zhao Y, Ji H, Wang Y, Li X.¡¡¡¡¡¡Plant Signal Behav. 2017 Jun 14:0. doi: 10.1080/15592324.2017.1333217. PMID: 28613105

RUG3 and ATM synergistically regulate the alternative splicing of mitochondrial nad2 and the DNA damage response in Arabidopsis thaliana.¡¡¡¡¡¡Su C, Zhao H, Zhao Y, Ji H, Wang Y, Zhi L, Li X.¡¡¡¡¡¡Sci Rep. 2017 Mar 6;7:43897. doi: 10.1038/srep43897.¡¡¡¡¡¡PMID: 28262819

PGN

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡BOTRYTIS-INDUCED KINASE1 (BIK1) ¤È¤¤¤¦°ø»Ò¤òÃø¼Ô¤é¤Ï¸«¤Ä¤±¤Æ¤¤¤¿¡£¤½¤Î°ø»Ò¤¬·ç»¤·¤¿ÊÑ°ÛÂÎ bik1 ¤Çȯ¸½¥ì¥Ù¥ë¤¬ÁýÂ礷¤Æ¤¤¤ë¡¢¤Þ¤¿ÌîÀ¸·¿¿¢Êª¤Ë B.cinerea ¤¬´¶À÷¤·¤¿ºÝ¤Ë¤âȯ¸½¥ì¥Ù¥ë¤¬ÁýÂ礷¤Æ¤¤¤ë¤È¤¤¤¦¤³¤È¤Ç¤³¤Î°äÅÁ»Ò¤ËÃíÌܤ·¤¿¡£Salt sensitive germination, ABA sensitivity Åù¤ÎÀ­¼Á¤ò¼¨¤·¤¿¡£
ÊÑ°Û°äÅÁ»Ò--PPR protein ¤Î°ì¼ï
¡¡At1g56570

The Arabidopsis mitochondrial localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance.¡¡¡¡¡¡Laluk K, Abuqamar S, Mengiste T.¡¡¡¡¡¡Plant Physiol. 2011 Jun 8. [Epub ahead of print]¡¡¡¡¡¡PMID: 21653783

bik1 ÊÑ°ÛÂΤϥµ¥ê¥Á¥ë»À¤ÎÎ̤¬Áý²Ã¤¹¤ë¡£¤·¤«¤· PGN ¤Îȯ¸½¥ì¥Ù¥ë¤Ï¥µ¥ê¥Á¥ë»À½èÍý¤ÇÁý²Ã¤·¤Ê¤«¤Ã¤¿¡£Âå¤ï¤ê¤Ë¥¸¥ã¥¹¥â¥ó»À½èÍý¤ÇÁý²Ã¤·¤¿¡£ pgn ÊÑ°ÛÂΤϡ¢Botrytis ¤Î´¶À÷¤Ë¼å¤¯¤Ê¤Ã¤Æ¤¤¤¿ (Fig. 1D)¡£ ¥°¥ë¥³¡¼¥¹¡¢ABA ¤ËÂФ¹¤ë´¶¼õÀ­¤¬¹â¤¤ (Fig. 3)¡£ ABA ¤ÎÎ̤¬Áý¤¨¤Æ¤¤¤ë¡£(Fig. 5B) ¤·¤«¤·¡¢¤½¤Îº¹¤Ï¤«¤Ê¤ê¾®¤µ¤¤¡£°ì±þÍ­°Õ¤Êº¹¤¬ºÆ¸½À­¤è¤¯¤¢¤ë¤é¤·¤¤¡£ ABI4 ¤Î mRNAÎ̤¬¡¢ABA ½èÍý¤·¤Æ6»þ´Ö¸å¡Êhours post treatment¡ËWT ¤è¤ê¤âÂ礭¤¯Áý¤¨¤Æ¤¤¤ë¡ÊFig.£·C¡Ë¡£WT ¤Ç¤ÏABA½èÍý¤ÇÈ¿±þ¤·¤Ê¤¤ABI4 ¤¬¡¢È¿±þ¤¹¤ë¤è¤¦¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£¤·¤«¤·ABA½èÍý¤¹¤ëÁ°¤Ï¡¢¤«¤¨¤Ã¤ÆWT¤è¤ê¤â¸º¤Ã¤Æ¤¤¤ë¤è¤¦¤Ë¸«¤¨¤ë¡£ LHCB1 ¤Ë¤Ä¤¤¤Æ¤âÄ´¤Ù¤Æ¤¤¤ë¡£Norflurazon ½èÍý¤ÇÄã²¼¤¹¤ë¡£¤½¤ì¤Ï pgn ¤Ç¤â¤ª¤Ê¤¸¤À¤Ã¤¿¡£

Fig. 9G ¤Ç³èÀ­»ÀÁǤÎÀ¸À®¤òÄ´¤Ù¤Æ¤¤¤ë¡£DAB À÷¿§¤ÎÊýË¡¤ò»È¤Ã¤Æ¤¤¤ë¡£ÌîÀ¸·¿¿¢Êª¤ÎÃϾåÉô¤Ç¤Ï 200mM ¤Î NaCl ¥¹¥È¥ì¥¹¤Ç¡¢À÷¿§¤¬Æä˺ǽé¤ÎÆó¤Ä¤ÎËÜÍդǤä¤äÁý¤¨¤Æ¤¤¤ë¡£pgn ÊÑ°ÛÂΤǤϻÒÍÕ¤ÈËÜÍÕ¤¬ 200mM NaCl ¤Î¾ò·ï¤Ç¤â¤Ã¤ÈÇ»¤¯À÷¿§¤µ¤ì¡¢²á»À²½¿åÁǤ¬ÁýÂ礷¤Æ¤¤¤ë¤³¤È¤ò¼¨¤·¤Æ¤¤¤ë¡£

NDB4¤Î¥¿¥°¥é¥¤¥ó

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡NDB4¤Î¥¿¥°¥é¥¤¥ó
ÊÑ°Û°äÅÁ»Ò--NDB4
¡¡

Alterations in The Mitochondrial Alternative NAD(P)H Dehydrogenase NDB4 Lead To Changes In Mitochondrial Electron Transport Chain Composition, Plant Growth and Response to Oxidative Stress.¡¡¡¡¡¡Smith C, Barthet M, Melino V, Smith P, Day D, Soole K.¡¡¡¡¡¡Plant Cell Physiol. 2011 Jul;52(7):1222-37. Epub 2011 Jun 9.¡¡¡¡¡¡PMID: 21659327

disrupted in stress responses 1 (dsr1)

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡through a screen for mutants lacking GSTF8 gene expression in response to salicylic acid (SA). GSTF8 is an early stress-responsive gene whose transcription is induced by biotic and abiotic stresses, Altered SA-mediated gene expression
ÊÑ°Û°äÅÁ»Ò--Mutation in the Complex II subunit, SDH1-1
¡¡¥³¥Ï¥¯»Àæ¿åÁǹÚÁǤγèÀ­¤¬²¼¤¬¤ë¡£º¬¤ÎºÙ˦¤Ç¤Ï¡¢¥µ¥ê¥Á¥ë»À¤Ç½èÍý¤¹¤ë¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤é³èÀ­»ÀÁǤ¬À¸À®¤¹¤ë¡£¤³¤ÎÊÑ°ÛÂΤǤϡ¢¤½¤ì¤¬µ¯¤­¤Ë¤¯¤¤¡£ÍդǤ⡢ɸ¶¶Ý´¶À÷¤ÇƱ¤¸¤è¤¦¤Ê³èÀ­»ÀÁǤÎÊѲ½¤¬¸«¤é¤ì¤¿¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë´Ø¤ï¤ëÊÑ°ÛÂΤǤϳèÀ­»ÀÁǤ¬Áý¤¨¤ë¤È¸À¤¦¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¤³¤È¤¬¤Û¤È¤ó¤É¤À¤¬¡¢µÕ¤Ë¸º¤ë¾ì¹ç¤â¤¢¤ë¤È¸À¤¦¤³¤È¤Ç¥æ¥Ë¡¼¥¯¤Ç¤¢¤ë¡£

Ê£¹çÂÎI ¤Ë´Ø¤¹¤ë¡¢¤¢¤ë²òÀâ¤ò¸«¤¿¤é¡¢¡ÖÊ£¹çÂÎI ¤Ï¡¢ËÜÍè¤Î¸þ¤­¤È¤ÏµÕ¸þ¤­¤Ë¡¢´Ô¸µ¤µ¤ì¤¿¥æ¥Ó¥­¥Î¥ó¤«¤éÅŻҤ¬Ê£¹çÂÎI ¤ÎÊý¸þ¤Ëή¤ì¡¢NADH ¤òÀ¸À®¤¹¤ë¤³¤È¤¬¤¢¤ë¡ÊµÕÅŻҰÜÆ°¡Ë¡£¡×¤È¡¢µ­ºÜ¤µ¤ì¤Æ¤¤¤¿¡£À¸²½³Ø¤Î¶µ²Ê½ñ¤Ë¤â¡¢¤è¤¯¸«¤ë¤È¤½¤Î¤³¤È¤¬½ñ¤¤¤Æ¤¢¤Ã¤¿¡£¤½¤Î¤È¤­³èÀ­»ÀÁǤ¬È¯À¸¤·¤ä¤¹¤¤¤È¸À¤¦¤³¤È¤â½ñ¤¤¤Æ¤¢¤Ã¤¿¡£¡Öreverse electron induced ¤Ê ROS¡×¤È¸À¤ï¤ì¤Æ¤¤¤ë¤é¤·¤¤¡£¥³¥Ï¥¯»À¤ò´ð¼Á¤È¤¹¤ë¤³¤È¤Çµ¯¤³¤ê¤ä¤¹¤¯¤Ê¤ë¡£

»²¹Íʸ¸¥¡¡¡¡¡¡High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates¡¡¡¡¡¡Muller FL, Liu Y, Abdul-Ghani MA, Lustgarten MS, Bhattacharya A, Jang YC, Van Remmen H¡¡¡¡¡¡(2008).¡¡¡¡¡¡. Biochem. J. 409 (2): 491 9. doi:10.1042/BJ20071162. PMID 17916065.

¥³¥Ï¥¯»À¤Ï¿´Â¡¤òÇ˲õ¤¹¤ë¡¡Nature 515, 7527¡¡2014ǯ11·î20Æü¡¡¡¡¡¡ µõ·ì¡ÊÄã»ÀÁǤˤʤë¡Ë¤ÎºÝ¤Ë¤Ï¡¢¥³¥Ï¥¯»À¥Ç¥Ò¥É¥í¥²¥Ê¡¼¥¼¡Êcomplex II¡Ë¤¬µÕÊý¸þ¤ËƯ¤¤¤Æ¥³¥Ï¥¯»À¤¬ÃßÀѤ¹¤ë¡£ºÆÞõή¡Ê»ÀÁǤ¬¶¡µë¤µ¤ì¤ë¡Ë¤ò¹Ô¤¦¤È¡¢ÃßÀѤ·¤¿¥³¥Ï¥¯»À¤¬µÞ®¤Ë»À²½¤µ¤ì¡¢¥ß¥È¥³¥ó¥É¥ê¥¢Ê£¹çÂÎI¤Çµ¯¤³¤ëµÕÊý¸þ¤ÎÅÅ»ÒÅÁã¤ò²ð¤·¤Æ³èÀ­»ÀÁǼﻺÀ¸¤òÂ¥¿Ê¤¹¤ë¡£¥³¥Ï¥¯»ÀÃßÀѤòÌôÍý³ØŪ¤ËÁ˳²¤·¤Æ¤ä¤ë¤È¡¢µõ·ìºÆÞõή½ý³²¤¬·Ú¸º¤µ¤ì¤ë¡£

Complex II ¤¬Æ¯¤«¤Ê¤¯¤Ê¤ë¤È¡¢µÕ¸þ¤­¤ËÊ£¹çÂÎ I ¤¬Æ¯¤¯¤³¤È¤¬¸º¤ê³èÀ­»ÀÁǤ¬¸º¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¥æ¥Ó¥­¥Î¥ó¤¬²á´Ô¸µ¾õÂ֤ˤʤ뤳¤È¤Ï¡¢¥¹¥È¥ì¥¹¤Ë¤è¤Ã¤Æ¤âµ¯¤­¤ë¤À¤í¤¦¡£¤½¤ì¤¬Ê£¹çÂÎ I ¤Ø¤ÎµÕ¸þ¤­ÅŻҰÜÆ°¤òµ¯¤³¤·¡¢³èÀ­»ÀÁǤòȯÀ¸¤µ¤»¤ë¤³¤È¤¬¤¢¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£ÅÅ»ÒÅÁã·Ï¤¬¥¹¥È¥ì¥¹¥»¥ó¥µ¡¼¤Î°ì¤Ä¤È¤·¤ÆƯ¤¤¤Æ¤¤¤ë¤³¤È¤Ï¡¢²ÄǽÀ­¤È¤·¤Æ°ÊÁ°¤«¤é¹Í¤¨¤é¤ì¤Æ¤¤¤ë¡£¤·¤«¤·¤½¤ì¤òÌÀ³Î¤Ë¼¨¤¹¾Úµò¤òÆÀ¤ë¤Î¤ÏÆñ¤·¤¤¡£Ê£¹çÂÎ I¤Î³èÀ­°Û¾ï¤â¡¢µÕ¸þ¤­ÅŻҰÜÆ°¤Ë¤è¤ë ROS À¸À®¤Ë±Æ¶Á¤òÍ¿¤¨¤ë¤«¤â¤·¤ì¤Ê¤¤¡£

Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense.¡¡¡¡¡¡Gleason C, Huang S, Thatcher LF, Foley RC, Anderson CR, Carroll AJ, Millar AH, Singh KB.¡¡¡¡¡¡Proc Natl Acad Sci U S A. 2011 Jun 13. [Epub ahead of print]¡¡¡¡¡¡PMID: 21670306

¥³¥Ï¥¯»À¥Ç¥Ò¥É¥í¥²¥Ê¡¼¥¼¤Ë´Ø¤·¤Æ¤Ï¡¢°Ê²¼¤Î¤è¤¦¤Ê¸¦µæÀ®²Ì¤â¤¢¤ë¡£

Succinate dehydrogenase assembly factor 2

Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in Arabidopsis¡¡¡¡¡¡ Shaobai Huang, Nicolas L. Taylor, Elke Ströher, Ricarda Fenske, A. Harvey Millar*

¥µ¥ê¥Á¥ë»À¤È¥³¥Ï¥¯»À¥Ç¥Ò¥É¥í¥²¥Ê¡¼¥¼¡ÊÊ£¹çÂÎ II¡Ë

SA ¥µ¥ê¥Á¥ë»À¤Î¥·¥°¥Ê¥ëÅÁã¤Ë¤Ï NPR1 ¤È¤¤¤¦½ÅÍפʰø»Ò¤¬Æ¯¤¤¤Æ¤¤¤ë¡£¤·¤«¤·¡¢¿¢Êª¤Ë¤Ï NPR1 ¤È´Ø·¸¤Ê¤¯¥µ¥ê¥Á¥ë»À¤¬Æ¯¤¯»ÅÁȤߤ⤢¤ë¡£¤½¤ì¤Ë¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤¬´ØÍ¿¤·¤Æ¤¤¤ë¤³¤È¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£

Salicylic Acid-Dependent Plant Stress Signaling via Mitochondrial Succinate Dehydrogenase.¡¡¡¡¡¡Belt K, Huang S, Thatcher LF, Casarotto H, Singh KB, Van Aken O, Millar AH.¡¡¡¡¡¡Plant Physiol. 2017 Apr;173(4):2029-2040. doi: 10.1104/pp.16.00060.¡¡¡¡¡¡PMID: 28209841

¥µ¥ê¥Á¥ë»À¤Ï SDH¤È¥æ¥Ó¥­¥Î¥ó¤Î·ë¹çÉô°Ì¤Þ¤¿¤Ï¤½¤Î¶á˵¤ËºîÍѤ·¤Æ¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤é¤Î³èÀ­»ÀÁÇ H2O2 ¤ÎÀ¸À®¤òÂ¥¿Ê¤¹¤ë¤³¤È¤Ç¡¢¤½¤ÎºîÍѤΰìÉô¤ò npr1 ¤È´Ø·¸¤Ê¤¯¤â¤¿¤é¤¹¡£

¤º¤Ã¤È°ÊÁ°¤«¤é¥µ¥ê¥Á¥ë»À¤ÏÅÅ»ÒÅÁã·Ï¤òÁ˳²¤¹¤ë¤È¤¤¤¦¥Ç¡¼¥¿¤¬½Ð¤µ¤ì¤Æ¤¤¤¿¡£¤½¤ì¤Ï¤«¤Ê¤ê¹â¤¤Ç»ÅÙ¡Ê100 ¦ÌM°Ê¾å¡Ë¤ÇºîÍѤ¬½Ð¤ë¤â¤Î¤À¤Ã¤¿¡£Belt ¤é¤ÎÏÀʸ¤Ç¤Ï¡¢¡ÖSA ¤Ï complex II ¤Îµ¡Ç½¤Ë 10 ¦ÌM ¤Ç±Æ¶Á¤òÍ¿¤¨¤ë (Fig. 5B)¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£Ã±Î¥¤·¤¿¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë SA ¤ò²Ã¤¨¤Æ¡¢SQR activity (Succinate : quinone reductase) ¤È¤¤¤¦³èÀ­¤ò¬Äꤷ¤Æ¤¤¤ë¡£¤Þ¤¿Ã±Î¥¤·¤¿¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤é¤Î³èÀ­»ÀÁÇÀ¸À®¤òÄãÇ»Å٤ΠSA ¤¬Â¥¿Ê¤¹¤ë¤³¤È¤ò¼¨¤·¤Æ¤¤¤ë (Fig. 6)¡£ ¤·¤«¤·¡¢À¸¤­¤¿¿¢ÊªÂÎ¤Ë SA ¤òÍ¿¤¨¤ë¼Â¸³¤Ç¤Ï¡¢7 mM ¤È¤¤¤¦¹âÇ»Å٤ΠSA ¤òû»þ´Ö (40 ʬ¡ËÍ¿¤¨¡¢ ¤½¤Î¸å 20 »þ´Ö¥ì¥Ý¡¼¥¿¡¼¤Îȯ¸÷¤ò´Ñ¬¤¹¤ë¤È¤¤¤¦ÊýË¡¤ò¤È¤Ã¤Æ¤¤¤ë¡£¤³¤Á¤é¤âÄãÇ»Å٤Ǹú¤¯¤Ê¤é´°àú¤Ê¤Î¤À¤í¤¦¤¬¡¢¤½¤¦¤Ï½ñ¤¤¤Æ¤Ê¤¤¡£¤³¤ì¤Ï 1 mM ¤Î½ñ¤­´Ö°ã¤¤¤«¤â¤·¤ì¤Ê¤¤¡£Gleason et al. 10.1073/pnas.1016060108¡¡¤Î Supporting information ¤Ç¤Ï 1 mM ¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£Gleason et al. 10.1073/pnas.1016060108¡¡¤ò¸«¤ë¤È benzoic acid ¤Ç¤â¶¯¤¤¥×¥í¥â¡¼¥¿¡¼³èÀ­²½¸ú²Ì¤¬¤¢¤ë¡£

Belt ¤é¤ÎÏÀʸ¤Ë¡¢¡ÖSA ¤ÏÊ£¹çÂÎ III ¤È·ë¹ç¤¹¤ë¡×¤È¤¤¤¦ÏÀʸ¤¬°úÍѤµ¤ì¤Æ¤¤¤ë¡£

Mitochondrial-derived reactive oxygen species play a vital role in the salicylic acid signaling pathway in Arabidopsis thaliana.¡¡¡¡¡¡Nie S, Yue H, Zhou J, Xing D.¡¡¡¡¡¡PLoS One. 2015 Mar 26;10(3):e0119853. doi: 10.1371/journal.pone.0119853. eCollection 2015.¡¡¡¡¡¡PMID: 25811367

Ʊ¤¸Ãø¼Ô¤Ç¤³¤¦¤¤¤¦ÏÀʸ¤â¤¢¤ë¤¬¡¢Retract ¤µ¤ì¤Æ¤¤¤ë¡£

A Potential Role for Mitochondrial Produced Reactive Oxygen Species in Salicylic Acid-Mediated Plant Acquired Thermotolerance.¡¡¡¡¡¡Nie S, Yue H, Xing D.¡¡¡¡¡¡Plant Physiol. 2015 Oct 15. pii: pp.00719.2015. doi: 10.1104/pp.15.00719. Epub 2015 Oct 15. Retraction in: Plant Physiol. 2016 Mar;170(3):1895.¡¡¡¡¡¡PMID: 26099269

salicylic acid uncoupler¡¡¤Ç¸¡º÷

Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells Xie Z, Chen Z.¡¡¡¡¡¡Plant Physiol. 1999 May;120(1):217-26.¡¡¡¡¡¡PMID: 10318699

Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport.¡¡¡¡¡¡Norman C, Howell KA, Millar AH, Whelan JM, Day DA.¡¡¡¡¡¡Plant Physiol. 2004 Jan;134(1):492-501. Epub 2003 Dec 18.¡¡¡¡¡¡PMID: 14684840¡¡¡¡¡¡ ¤³¤ÎÏÀʸ¤Î Fig. 1 ¤Ë¥µ¥ê¥Á¥ë»À¤¬»ÀÁǾÃÈñ¤òÄãÇ»Å٤ǤÏÂ¥¿Ê¤·¡¢¹âÇ»Å٤ǤÏÁ˳²¤¹¤ë¥°¥é¥Õ¤¬¤¢¤ë¡£1 mM °Ê²¼¤Ç¤Ï¾ò·ï¤Ë¤è¤Ã¤Æ»ÀÁǾÃÈñ¤òÂ¥¿Ê¤¹¤ë¡£¤½¤ì°Ê¾å¤Ç¤ÏÁ˳²Åª¤Ë¤Ê¤ê 5 mM ¤Ç´°Á´¤ËÁ˳²¤¹¤ë¡£ ¤³¤Î¤³¤È¤ò¡ÖÄãÇ»Å٤Ǥϥ¢¥ó¥«¥×¥é¡¼¡ÊÅŻҤÎή¤ì¤¬Â®¤¯¤Ê¤Ã¤Æ»ÀÁǾÃÈñ¤òÂ¥¿Ê¡Ë¡¢¹âÇ»Å٤Ǥϥ¤¥ó¥Ò¥Ó¥¿¡¼¤È¤·¤ÆƯ¤¯¡×¤Èɽ¸½¤·¤Æ¤¤¤ë¡£

Table III ¤Ë¡¢Effect of SA analogs on mitochondrial respiration¡¡¤È¤¤¤¦É½¤¬¤¢¤ë¡£ ¥¢¥»¥Á¥ë¥µ¥ê¥Á¥ë»À¡¢Benzoic acid ¤Ï¤½¤ì¤¾¤ì 5 mM ¤Ç¥ß¥È¥³¥ó¥É¥ê¥¢¤Î»ÀÁǾÃÈñ¤ò´°Á´¤ËÁ˳²¤¹¤ë¡£¥Ñ¥é¥Ò¥É¥í¥­¥· benzoic acid ¤Ï¡¢¤Û¤È¤ó¤ÉÁ˳²¤·¤Ê¤¤¡£

°ìÊý Fig. 3, 4 ¤Ç¤Ï¡¢¥µ¥ê¥Á¥ë»À 0.01 mM °Ê¾å¤Ç 4 »þ´Ö¡Á24 »þ´Ö½èÍý¤¹¤ë¤È¡¢AOX ¤Î¥¿¥ó¥Ñ¥¯¼ÁÎ̤¬Â礭¤¯Áý²Ã¤·¤Æ¤¤¤ë¡£Fig. 5 ¤Ç¤Ï 100 ¦ÌM ¤Ç SA ͶƳÀ­°äÅÁ»Ò¤ÎͶƳ¤ò´Ñ»¡¤·¤Æ¤¤¤ë¡£ Fig. 1 ¤Ç¸ú²Ì¤¬¤¢¤ëÇ»ÅÙ¤è¤ê¤â¤º¤Ã¤ÈÄãÇ»Å٤Ǥ⡢ȯ¸½Í¶Æ³¸ú²Ì¤¬¤¢¤ë¡£ ¤½¤Î¤³¤È¤Ë¤Ä¤¤¤Æ²ò·è¤¹¤ë¤¿¤á¤Ë¡¢Table 1 ¤Ç¤Ï¡ÖInternal SA concentration¡×¤ò¬Äꤷ¤Æ¤¤¤ë¡£ÇÝÃϤ˲䨤¿Ç»ÅÙ¤è¤ê¤â¡¢Ç½Æ°Åª¤ÊµÛ¼ý¤Ë¤è¤Ã¤ÆºÙ˦Æâ¤Î SA ¤ÎÇ»Å٤Ϥº¤Ã¤È¹â¤¤¤È¤¤¤¦¥Ç¡¼¥¿¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£


¤Þ¤¿¡¢¤³¤Î¥ê¥¹¥È¤Ç¤â¥ß¥È¥³¥ó¥É¥ê¥¢¤È¥µ¥ê¥Á¥ë»À¤È¤Î´ØÏ¢¤ò¼¨¤¹ÏÀʸ¤¬Ê£¿ô¸ºß¤·¤Æ¤¤¤ë¡£ dsr1, FtsH4, ahg2, nadC ȯ¸½¿¢Êª ¡¡¡¡¡¡phb3 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¡¢ÍÕÎÐÂΡ¢¤½¤ì°Ê³°¤Î¾ì½ê¤ÇƯ¤¤¤Æ¤¤¤ë¡£noa1 ¤ÏÍÕÎÐÂΤÇƯ¤¤¤Æ¤¤¤ë¡£

SA ¥µ¥ê¥Á¥ë»À¤Î NPR1 ¤È´Ø·¸¤Ê¤¤ºîÍѵ¡¹½¤Ë´Ø¤¹¤ëÏÀʸ¤¬¡¢Â¾¤Ë¤âȯɽ¤µ¤ì¤Æ¤¤¤ë¡£

AtOZF1 ¤È¤¤¤¦°ø»Ò¤ÏºÙ˦Ëì¤Ë¶Éºß¤¹¤ë NHL3, ¥ß¥È¥³¥ó¥É¥ê¥¢³°Ëì¤Ë¶Éºß¤¹¤ë VDAC2 ¡ÊÅṴ̋͸À­±¢¥¤¥ª¥ó¥Á¥ã¥Í¥ë¡Ë¤È·ë¹ç¤¹¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤È´Ø·¸¤¹¤ë¤³¤È¤Ë¤Ê¤ë¡£

AtOZF1 Positively Regulates Defense Against Bacterial Pathogens and NPR1-Independent Salicylic Acid Signaling.¡¡¡¡¡¡Singh N, Swain S, Singh A, Nandi AK.¡¡¡¡¡¡Mol Plant Microbe Interact. 2018 Jan 12:MPMI08170208R. doi: 10.1094/MPMI-08-17-0208-R.¡¡¡¡¡¡PMID: 29327969

Hypoxia response protein HRM1 (HUP39, AT3G23170)

Hypoxia response protein HRM1 modulates the activity of mitochondrial electron transport chain in Arabidopsis under hypoxic stress.¡¡¡¡¡¡Tsai KJ, Suen DF, Shih MC.¡¡¡¡¡¡New Phytol. 2023 Jun 10. doi: 10.1111/nph.19006. Online ahead of print.¡¡¡¡¡¡PMID: 37301985

Äã»ÀÁǤǤϥߥȥ³¥ó¥É¥ê¥¢¤Ç¤ÎÀµ¾ï¤ÊÅÅ»ÒÅÁ㤬˸¤²¤é¤ì¤ë¡£HRM1 (= HUP39, AT3G23170) ¤ÏÄã»ÀÁǤÇȯ¸½¤¬¶¯¤¯Í¶Æ³¤µ¤ì¤ë¡£Å´·ç˳¤Ç¤ÏµÕ¤ËÄã²¼¤¹¤ë¡£EIN3 and RAP2.2 ¤ÇÀ©¸æ¤µ¤ì¤Æ¤¤¤ë¡£HRM1 ¥¿¥ó¥Ñ¥¯¼Á¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤­¡¢¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¤Î¸úΨ¤òÄã²¼¤µ¤»¤ëƯ¤­¤¬¤¢¤ë¡£¥×¥í¥ê¥ó¤Ê¤É¤ÎÎ̤ËÊѲ½¤¬¤¢¤Ã¤¿¡£

AtNOA1

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡Nitric oxide À¸¹çÀ®¤Ë´Ø¤ï¤ë°äÅÁ»Ò¤È¤·¤ÆñΥ¤µ¤ì¤¿¡£¤·¤«¤·¤½¤Î¸å¤¤¤í¤¤¤í¤Ê·Ð°Þ¤¬¤¢¤ë¡£
ÊÑ°Û°äÅÁ»Ò--AtNOA1
¡¡At3g47450

¤³¤Î°äÅÁ»Ò¤Ë´Ø¤·¤Æ¤ÏÍÍ¡¹¤ÊÏÀʸ¤¬¤¢¤ë¡£

hNOA1 interacts with complex I and DAP3 and regulates mitochondrial respiration and apoptosis.¡¡¡¡¡¡Tang T, Zheng B, Chen SH, Murphy AN, Kudlicka K, Zhou H, Farquhar MG.¡¡¡¡¡¡J Biol Chem. 2009 Feb 20;284(8):5414-24. Epub 2008 Dec 22.¡¡¡¡¡¡Æ°Êª¤Ë¡¢¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Î AtNOA1 (NO-associated) ¤È»÷¤¿¤â¤Î¤¬¤¢¤ë¡£¤½¤ì¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤·¤Æ¤¤¤ë¤³¤È¤¬Êó¹ð¤µ¤ì¤¿¡£

¤·¤«¤·¿¢Êª¤Ç¤Ï¥×¥é¥¹¥Á¥É¤ÇNOA1 ¤¬Æ¯¤¤¤Æ¤¤¤ë¤ÈÊó¹ð¤µ¤ì¤Æ¤¤¤ë¡£

Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism.¡¡¡¡¡¡Gas E, Flores-Perez U, Sauret-Gueto S, Rodriguez-Concepcion M.¡¡¡¡¡¡Plant Cell. 2009 Jan;21(1):18-23. Epub 2009 Jan 23. ¡¡¡¡¡¡PMID: 19168714

¿¢Êª¤Î NO ¤Ë¤Ä¤¤¤Æ¤ÏÍÍ¡¹¤ÊÀ⤬¤¢¤ë¡£NO ¤Îʬ²ò¤Ë¥ß¥È¥³¥ó¥É¥ê¥¢¤¬´Ø·¸¤·¤Æ¤¤¤ë¤È¤¤¤¦Êó¹ð¤â¤¢¤Ã¤¿¡£¡¡¡¡¡¡

Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels.¡¡¡¡¡¡Wulff A, Oliveira HC, Saviani EE, Salgado I.¡¡¡¡¡¡Nitric Oxide. 2009 Sep;21(2):132-9. Epub 2009 Jul 1.¡¡¡¡¡¡PMID: 19576290

Nitric oxide degradation by potato tuber mitochondria: evidence for the involvement of external NAD(P)H dehydrogenases.¡¡¡¡¡¡de Oliveira HC, Wulff A, Saviani EE, Salgado I.¡¡¡¡¡¡Biochim Biophys Acta. 2008 May;1777(5):470-6. Epub 2008 Mar 6.¡¡¡¡¡¡PMID: 18371295

¿¢Êª¤Ç¤Ï¥×¥é¥¹¥Á¥É¤ÇNO¤¬ºî¤é¤ì¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Çʬ²ò¤µ¤ì¤ë¤È¤¹¤ì¤Ð¤â¤Ã¤È¤â¤é¤·¤¤¡¢¿¢Êª¤é¤·¤¤¤è¤¦¤Êµ¤¤â¤¹¤ë¡£Ê¬²ò¤È¸À¤Ã¤Æ¤â¡¢superoxide¡¡¤ÈÈ¿±þ¤¹¤ë¤Î¤À¤«¤é¡¢¤«¤¨¤Ã¤ÆÈ¿±þÀ­¤¬¹â¤¤³èÀ­ÃâÁÇ (peroxynitrite ¤Ê¤É) ¤ËÊѲ½¤¹¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¤Þ¤¿¡¢»ÀÁǤ¬¤¢¤ë¹¥µ¤Åª¤Ê¾ò·ï¤Çµ¯¤­¤ë¤Î¤Ç¡¢À¸ÍýŪ°ÕµÁ¤âÂ礭¤¤¤À¤í¤¦¡£°ÊÁ°¤«¤é¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇNO¤¬À¸À®¤¹¤ë¤È¤¤¤¦Êó¹ð¤¬¤¢¤Ã¤¿¤¬¡¢¤½¤ì¤Ï hypoxia, anoxia ¾ò·ï¤Ç¤Î¤³¤È¤À¤Ã¤¿¡£

Nitric oxide accumulation in Arabidopsis is independent of NOA1 in the presence of sucrose.¡¡¡¡¡¡Van Ree K, Gehl B, Wassim Chehab E, Tsai YC, Braam J.¡¡¡¡¡¡Plant J. 2011 Oct;68(2):225-33. doi: 10.1111/j.1365-313X.2011.04680.x. Epub 2011 Jul 26.¡¡¡¡¡¡PMID: 21689173

º¬¤Ë¹âÇ»Å٤Υµ¥ê¥Á¥ë»À(1mM)¤òÍ¿¤¨¤ë¤È¡¢NO¤ÎÀ¸À®¤¬Â礭¤¯Â¥¿Ê¤µ¤ì¤ë (Fig.2a)¡£noa1 ÊÑ°ÛÂΤǤϡ¢¤½¤ÎÎ̤¬¤Û¤È¤ó¤É¤Ê¤¤¡Ê¥·¥çÅü¤¬´Þ¤Þ¤ì¤Ê¤¤ÇÝÃÏ¡Ë¡¢¤Þ¤¿¤Ï¤º¤Ã¤È¼å¤¤¡Ê¥·¥çÅü¤ò´Þ¤àÇÝÃÏ¡Ë¡£

Atnoa1 mutant Arabidopsis plants induce compensation mechanisms to reduce the negative effects of the mutation.¡¡¡¡¡¡Majláth I, Szalai G, Papp I, Vanková R, Janda T.¡¡¡¡¡¡J Plant Physiol. 2011 Jul 15;168(11):1184-90. Epub 2011 Mar 9.¡¡¡¡¡¡PMID: 21392840¡¡¡¡¡¡¥Ý¥ê¥¢¥ß¥ó¤È¥µ¥ê¥Á¥ë»À¤¬½Ð¤Æ¤¯¤ë¡£

AtNOA1 modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis.¡¡¡¡¡¡Sun LR, Hao FS, Lu BS, Ma LY.¡¡¡¡¡¡Plant Signal Behav. 2010 Aug;5(8):1022-4. Epub 2010 Aug 1.¡¡¡¡¡¡PMID: 20657186

NO ¤È¥µ¥ê¥Á¥ë»À¤¬½Ð¤Æ¤¯¤ë¡£¥µ¥ê¥Á¥ë»À¤ÏNOÀ¸À®¤òÂ¥¿Ê¤¹¤ë¤é¤·¤¤ (Van Ree K ¤é¤ÎÏÀʸ¤Ë¤â½Ð¤Æ¤¯¤ë¡Ë¡£

RNA PROCESSINGFACTOR 3

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--
¡¡RNA PROCESSINGFACTOR 3

RNA PROCESSINGFACTOR 3 is crucial for the accumulation of mature ccmC transcripts in mitochondria of Arabidopsis thaliana accession Columbia.¡¡¡¡¡¡Jonietz C, Forner J, Hildebrandt T, Binder S.¡¡¡¡¡¡Plant Physiol. 2011 Aug 29. [Epub ahead of print]¡¡¡¡¡¡PMID: 21875896

CTP:3-deoxy-D-manno-2-octulosonate cytidylyltransferase (CMP-KDO synthetase, CKS)

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡3-Deoxy-D-manno-2-octulosonic acid (KDO) À¸¹çÀ®¤Ë½ÅÍפʹÚÁǤȤ·¤Æ¡¢µþÅÔÂç¤Î¾®ÎÓÀèÀ¸¤é¤Ë¤è¤Ã¤Æ¸¦µæ¤µ¤ì¤Æ¤¤¤ë¡£KDO¤Ï¡¢rhamnogalacturonan II (RG-II) ¤ò¹½À®¤¹¤ë´õ¾¯Åü¤Ç¡¢¿¢Êª¤ÎºÙ˦Êɹ½ÃÛ¤Ëɬ¿Ü¤ÎÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë¡£
ÊÑ°Û°äÅÁ»Ò--
¡¡CMP-KDO synthetase; CKS

Characterization of Arabidopsis CTP:3-deoxy-D-manno-2-octulosonate cytidylyltransferase (CMP-KDO synthetase), the enzyme that activates KDO during rhamnogalacturonan II biosynthesis.¡¡¡¡¡¡Kobayashi M, Kouzu N, Inami A, Toyooka K, Konishi Y, Matsuoka K, Matoh T.¡¡¡¡¡¡Plant Cell Physiol. 2011 Sep 4. [Epub ahead of print]¡¡¡¡¡¡PMID: 21893514

ÃíÌܤ¹¤Ù¤­¤³¤È¤È¤·¤Æ¡¢¤³¤Î¹ÚÁÇ CKS ¤¬¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤¹¤ë¤³¤È¤¬¸«¤¤¤À¤µ¤ì¤¿¡£CMP-KDO synthetase ¤Ë T-DNA ¤¬ÁÞÆþ¤µ¤ì¤¿¿¢Êª¸ÄÂΤòÆÀ¤ë¤³¤È¤Ï¤Ç¤­¤Ê¤«¤Ã¤¿¡£

RETARDED ROOT GROWTH

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--
¡¡

The Arabidopsis RETARDED ROOT GROWTH gene encodes a mitochondria-localized protein that is required for cell division in the root meristem.¡¡¡¡¡¡Zhou X, Li Q, Chen X, Liu J, Zhang Q, Liu Y, Xu J, Liu K.¡¡¡¡¡¡Plant Physiol. 2011 Oct 7. [Epub ahead of print]¡¡¡¡¡¡PMID: 21984726

COG0354 proteins

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--
¡¡

Mitochondrial and plastidial COG0354 proteins have folate-dependent functions in iron-sulfur cluster metabolism.¡¡¡¡¡¡Waller JC, Ellens KW, Alvarez S, Loizeau K, Ravanel S, Hanson AD.¡¡¡¡¡¡J Exp Bot. 2011 Oct 6. PMID: 21984653

PORR domain protein (WTF9 ¤Ê¤É)

WTF9 is encoded by Arabidopsis locus At2g39120.

PORR ¤Ï Plant Organelle RNA Recognition ¤Îά¾Î¤Ç¤¢¤ë¡£NCBI ¤Î¥Ç¡¼¥¿¥Ù¡¼¥¹¤Ç¡¢°Ê²¼¤Î¤è¤¦¤Ë²òÀ⤵¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?RID=6RC3NK5J013&mode=all



PORR ¥É¥á¥¤¥ó¤ò¤â¤Ä¥¿¥ó¥Ñ¥¯¼Á¤Ï¿¿ô¸ºß¤¹¤ë¡£

A PORR domain protein required for rpl2 and ccmF(C) intron splicing and for the biogenesis of c-type cytochromes in Arabidopsis mitochondria.¡¡¡¡¡¡Colas des Francs-Small C, Kroeger T, Zmudjak M, Ostersetzer-Biran O, Rahimi N, Small I, Barkan A.¡¡¡¡¡¡Plant J. 2011 Nov 7. doi: 10.1111/j.1365-313X.2011.04849.x. [Epub ahead of print]¡¡¡¡¡¡PMID: 22060106¡¡C ·¿¥·¥È¥¯¥í¥àÀ¸¹çÀ®¤ËɬÍ×

	
Root Primordium Defective 1 Encodes an Essential PORR Protein Required for the Splicing of Mitochondria Encoded Group II Introns and for Respiratory Complex I Biogenesis.¡¡¡¡¡¡Edris R, Sultan LD, Best C, Mizrahi R, Weinstein O, Chen S, Kamennaya NA, Keren N, Zer H, Zhu H, Ostersetzer-Biran O.¡¡¡¡¡¡Plant Cell Physiol. 2023 Sep 13:pcad101. doi: 10.1093/pcp/pcad101. Online ahead of print. PMID: 37702436

Lon1 protease

Changes in specific protein degradation rates in Arabidopsis thaliana reveal multiple roles of Lon1 in mitochondrial protein homeostasis.¡¡¡¡¡¡Li L, Nelson C, Fenske R, Trosch J, Pru?inska A, Millar AH, Huang S.¡¡¡¡¡¡Plant J. 2017 Feb;89(3):458-471. doi: 10.1111/tpj.13392. Epub 2017 Jan 7.¡¡¡¡¡¡PMID: 27726214

Loss of Lon1 in Arabidopsis changes the mitochondrial proteome leading to altered metabolite profiles and growth retardation without an accumulation of oxidative damage.¡¡¡¡¡¡Solheim C, Li L, Hatzopoulos P, Millar AH.¡¡¡¡¡¡Plant Physiol. 2012 Nov;160(3):1187-203. doi: 10.1104/pp.112.203711. ¡¡¡¡¡¡PMID: 22968828

Mitochondrial Lon1 has a role in homeostasis of the mitochondrial ribosome and pentatricopeptide repeat proteins in plants.¡¡¡¡¡¡Li L, Millar AH, Huang S.¡¡¡¡¡¡Plant Signal Behav. 2017 Feb;12(2):e1276686. doi: 10.1080/15592324.2016.1276686.¡¡¡¡¡¡PMID: 28045582

Role of Lon1 protease in post-germinative growth and maintenance of mitochondrial function in Arabidopsis thaliana.¡¡¡¡¡¡Rigas S, Daras G, Laxa M, Marathias N, Fasseas C, Sweetlove LJ, Hatzopoulos P.¡¡¡¡¡¡New Phytol. 2009;181(3):588-600. doi: 10.1111/j.1469-8137.2008.02701.x. ¡¡¡¡¡¡PMID: 19076295

AtOMA1 ¤³¤ì¤â¥×¥í¥Æ¥¢¡¼¥¼

AtOMA1 Affects the OXPHOS System and Plant Growth in Contrast to Other Newly Identified ATP-Independent Proteases in Arabidopsis Mitochondria.¡¡¡¡¡¡Migdal I, Skibior-Blaszczyk R, Heidorn-Czarna M, Kolodziejczak M, Garbiec A, Janska H.¡¡¡¡¡¡Front Plant Sci. 2017 Sep 7;8:1543. doi: 10.3389/fpls.2017.01543. eCollection 2017.¡¡¡¡¡¡PMID: 28936218

FtsH3/FtsH10 (m-AAA protease)

m-AAA Complexes are not Crucial for the Survival of Arabidopsis under Optimal Growth Conditions Despite their Importance for Mitochondrial Translation.¡¡¡¡¡¡Kolodziejczak M, Skibior-Blaszczyk R, Janska H.¡¡¡¡¡¡Plant Cell Physiol. 2018 Feb 15. doi: 10.1093/pcp/pcy041. [Epub ahead of print]¡¡¡¡¡¡PMID: 29462458

AAA protease ¤Ë¤Ï¤¤¤¯¤Ä¤«¤Î¼ïÎब¤¢¤ë¡£FtsH ¥¿¥ó¥Ñ¥¯¼Á¤Ï¤½¤Î°ì¤Ä¤Ç¤¢¤ë¡£AtFTSH3 and/or AtFTSH10 ¤Ï proteolytic maturation of ribosomal subunit L32 ¤ËɬÍפʰø»Ò¤À¤Ã¤¿¡£ftsh3/ftsh10 double mutant ¤Ç¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Î rRNA ¤ÎÎ̤¬¸º¾¯¤¹¤ë (Fig. 2C)¡£²êÀ¸¤¨¤Î»þ´ü¤ÏÀ¸°é¤¬¾¯¤·ÃÙ¤¤ (Fig. 6A) ¤¬¤½¤Î¸åÌîÀ¸·¿¤È¤Îº¹¤Ï¾®¤µ¤¯¤Ê¤ë¡£²êÀ¸¤¨¤Î»þ´ü¤Ë30Å٤ǰéÀ®¤¹¤ë¤Èº¬¤Î¿­Ä¹¤¬°­¤¤ (Fig. 6B)¡£ftsh3/ftsh10 ¤Î·ç»¤ËŬ±þ¤¹¤ë±þÅú¤È¤·¤Æ lon protease, FtsH4 protease ¤Î mRNA ÃßÀÑÎ̤¬2Çܤ¯¤é¤¤¤ËÁý²Ã¤·¤Æ¤¤¤ë (Fig. 7)¡£

The mitochondrial AAA protease FTSH3 regulates Complex I abundance by promoting its disassembly.¡¡¡¡¡¡Ivanova A, Ghifari AS, Berkowitz O, Whelan J, Murcha MW. Plant Physiol. 2021 May 27;186(1):599-610. doi: 10.1093/plphys/kiab074. PMID: 33616659

AtFtsH4

FtsH4 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¯¥×¥í¥Æ¥¢¡¼¥¼¤ò¥³¡¼¥É¤¹¤ë°äÅÁ»Ò¤Ç¤¢¤ë¡£ ¤³¤Î°äÅÁ»Ò¤¬ÊÑ°Û¤¹¤ë¤³¤È¤Ë¤è¤ëÍÍ¡¹¤Ê¥Õ¥§¥Î¥¿¥¤¥×¤ò¸µ¤Ë¤·¤Æ¡¢Â¿¿ô¤Î¥°¥ë¡¼¥×¤¬ÆÈΩ¤ËÊÑ°ÛÂΤò¸«¤¤¤À¤·¤Æ¤¤¤ë¡£¤Ê¤¼Â¿Íͤʥե§¥Î¥¿¥¤¥×¤¬½Ð¤ë¤Î¤«¤Ï¤ï¤«¤é¤Ê¤¤¡£¼Ò²ñŪ¤Ë°ÕÌ£¤¬¤¢¤ë¡¢Ìò¤ËΩ¤Ä¤³¤È¤ÏÆäˤʤ¤¤Î¤Ç¤¢¤Þ¤ê²ÁÃͤϤʤ¤¡£

FTSH4 ¤Î°ì¼¡Åª¡¢Ä¾ÀܤÎƯ¤­¤Ë´Ø¤¹¤ëÏÀʸ¤¬½ÐÈǤµ¤ì¤¿¡£

FTSH4 and OMA1 mitochondrial proteases reduce moderate heat stress-induced protein aggregation.¡¡¡¡¡¡Maziak A, Heidorn-Czarna M, Weremczuk A, Janska H. Plant Physiol. 2021 Oct 5;187(2):769-786. doi: 10.1093/plphys/kiab296. PMID: 34608962

FTSH4 ¤Ï¡¢Ç®¥¹¥È¥ì¥¹¤ÇÊÑÀ­¡¢ÉÔÍϲ½¤·¤¿¥ß¥È¥³¥ó¥É¥ê¥¢¥¿¥ó¥Ñ¥¯¼Á¡Ê¼ç¤Ë HSP23.6 ¤È¤¤¤¦Äãʬ»ÒÎÌÇ®¥·¥ç¥Ã¥¯¥¿¥ó¥Ñ¥¯¼Á¡¦Ê£¹çÂÎ I ¤Î¥µ¥Ö¥æ¥Ë¥Ã¥È¤â´Þ¤à¡Ë¤òʬ²ò¤¹¤ë¤³¤È¤Ç¡¢Ä¹´ü¤Î²¹Ï¤ʹⲹ¥¹¥È¥ì¥¹¤ËÂФ¹¤ëŬ±þ¤ËÌòΩ¤Ã¤Æ¤¤¤ë¡£HSP23.6 ¤Ï¡¡¡¡Mitochondrial small heat shock protein mediates seed germination via thermal sensing.¡¡¡¡¡¡Ma W¡¡¤Ê¤É¡¡¡¡¡¡Proc Natl Acad Sci U S A. 2019 Feb 14. pii: 201815790. doi: 10.1073/pnas.1815790116. [Epub ahead of print]¡¡¡¡¡¡PMID: 30765516¡¡¡¡¤È¤¤¤¦ÏÀʸ¤Ë¤â½Ð¤Æ¤¯¤ë¡£

¤³¤ÎÏÀʸ¤Ë¤Ï¡Öcomplex I is the most heat-sensitive among the OXPHOS complexes (Downs and Heckathorn, 1998)¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£Supplemental Figure S1.¡¡¤Ë WT ¤ä ftsh4 ÊÑ°ÛÂΤò30¡î¤È22¡î¤Ç°éÀ®¤·¡¢²¹Å٤ˤè¤ë°äÅÁ»Òȯ¸½¤ÎÊѲ½¤òÄ´¤Ù¤¿¥Ç¡¼¥¿¤¬¤¢¤ë¡£Ä´¤Ù¤¿°äÅÁ»Ò¤Î¼ïÎà¤Ï¾¯¤Ê¤¤¡£

Fig. 3 ¤ò¸«¤ë¤È ftsh4 ¤Ç¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢²èʬ¤Ë´Þ¤Þ¤ì¤ë CytC ¥¿¥ó¥Ñ¥¯¼Á¤ÎÃßÀÑÎ̤¬ÌîÀ¸·¿¤è¤ê¤â¾¯¤Ê¤¤¡£¤³¤ì¤Ï22¡î¤Ç¤â30¡î¤Ç¤âƱ¤¸¤Ç¡¢30¡î¤ÎÊý¤¬¤â¤Ã¤È¾¯¤Ê¤¯¤Ê¤Ã¤Æ¤¤¤ë¡£Hsp23.5, 23.6 ¤Î¥¿¥ó¥Ñ¥¯¼ÁÃßÀÑÎ̤Ï30¡î¤ÇÂ礭¤¯Áý²Ã¤·¤Æ¤¤¤ë¡£

¾å¤Ë½ñ¤¤¤¿ÏÀʸ¤È°ìÃפ¹¤ëÊó¹ð¤¬°ÊÁ°¤«¤é½Ð¤Æ¤¤¤ë¡£

Lack of FTSH4 Protease Affects Protein Carbonylation, Mitochondrial Morphology, and Phospholipid Content in Mitochondria of Arabidopsis: New Insights into a Complex Interplay.¡¡¡¡¡¡Smakowska E, Skibior-Blaszczyk R, Czarna M, Kolodziejczak M, Kwasniak-Owczarek M, Parys K, Funk C, Janska H.¡¡¡¡¡¡Plant Physiol. 2016 Aug;171(4):2516-35. doi: 10.1104/pp.16.00370. Epub 2016 Jun 13.¡¡¡¡¡¡PMID: 27297677 ¡¡¡¡¡¡ftsh4 ÊÑ°ÛÂΤβêÀ¸¤¨¤Ï¡¢Ä¹Æü¡¢£²£²Å٤Ȥ¤¤¦¾ò·ï¤Ç°éÀ®¤¹¤ë¤ÈÌîÀ¸·¿¤È¤Î°ã¤¤¤Ï¸«¤é¤ì¤º¤ËÀµ¾ï¤ËÀ¸°é¤¹¤ë¡£¤·¤«¤·£³£°Å٤ˤ¹¤ë¤ÈÀ¸°é¤¬°­¤¯¤Ê¤ë¡£¤½¤Î¤È¤­¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·ÏÊ£¹çÂÎ I ¤Î³èÀ­¤¬Äã²¼¤·¤Æ¤¤¤ë¡£¤½¤ì¤ÈƱ»þ¤Ë³èÀ­»ÀÁǤ¬À¸À®¤·¤Æ¥¿¥ó¥Ñ¥¯¼Á¤Î¥«¥ë¥Ü¥Ë¥ë²½¡Ê»À²½¡Ë¤¬µ¯¤­¤ë¡£

¸å¤Ï¡¢Æó¼¡Åª¡¦´ÖÀÜŪ¤Ê¸ú²Ì¤Ê¤Î¤ÇʬÀϤä²ò¼á¤¬¤·¤Ë¤¯¤¤¡£¤¿¤È¤¨¶½Ì£¿¼¤¯¤Æ¤â¸¦µæ¥Æ¡¼¥Þ¤Ë¤Ï¤·¤Ê¤¤Êý¤¬¤è¤¤¤é¤·¤¤¡£

ʬÎöÁÈ¿¥¤ÎÀµ¾ï¤ÊÁý¿£¤Ëɬ¿Ü¡¡¡¡¡¡Impairment of Meristem Proliferation in Plants Lacking the Mitochondrial Protease AtFTSH4.¡¡¡¡¡¡Dolzblasz A, Gola EM, Sokołowska K, Smakowska-Luzan E, Twardawska A, Janska H.¡¡¡¡¡¡ Int J Mol Sci. 2018 Mar 14;19(3). pii: E853. doi: 10.3390/ijms19030853.¡¡¡¡¡¡PMID: 29538317

°ÊÁ°¤«¤é¡¢FtsH4 ¤È¥ª¡¼¥­¥·¥ó¤Î´Ø·¸¤¬»ØŦ¤µ¤ì¤Æ¤¤¤¿¡£

Perturbation of auxin homeostasis caused by mitochondrial FtSH4 gene-mediated peroxidase accumulation regulates arabidopsis architecture.¡¡¡¡¡¡Zhang S, Wu J, Yuan D, Zhang D, Huang Z, Xiao L, Yang C.¡¡¡¡¡¡Mol Plant. 2014 May;7(5):856-73. doi: 10.1093/mp/ssu006. Epub 2014 Jan 30.¡¡¡¡¡¡PMID: 24482432¡¡¡¡¡¡ Ãø¼Ô¤é¤Ï mas (More Axillary Shoots) ¤È¤¤¤¦¥Õ¥§¥Î¥¿¥¤¥×¤ò¸µ¤Ë¡¢¤³¤ÎÊÑ°ÛÂΤòñΥ¤·¤¿¡£²êÀ¸¤¨¤Ç¤ÏÀµ¾ï¤À¤¬¡¢¥í¥¼¥Ã¥ÈÍÕ¤ÏÀ®Ä¹¤¬»ß¤Þ¤ê¡¢began to become curly ¥«¡¼¥ë¤¹¤ë¤è¤¦¤Ë¤Ê¤Ã¤¿¡£ÍդηÁÂÖ¤ÎÊѲ½¤¬´Ñ¬¤µ¤ì¤Æ¤¤¤ë¡£¤³¤Î¥«¡¼¥ë¤Ï¾¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½ÊÑ°ÛÂΤǤ⸫¤é¤ì¤ë¡£

AtFtsH4 perturbs the mitochondrial respiratory chain complexes and auxin homeostasis in Arabidopsis.¡¡¡¡¡¡Zhang S, ZHang D, Yang C.¡¡¡¡¡¡Plant Signal Behav. 2014 Jul 25;9. pii: e29709. [Epub ahead of print]¡¡¡¡¡¡PMID: 25061946¡¡¡¡¡¡¤³¤ì¤é¤ÎÏÀʸ¤â¥ß¥È¥³¥ó¥É¥ê¥¢¤È¥ª¡¼¥­¥·¥ó¤Î´Ø·¸¤ò¼¨¤·¤Æ¤¤¤ë¤¬¡¢¥¿¥¤¥×¤¬°Û¤Ê¤ë¡£ ¤³¤ÎÊÑ°ÛÂΤǤϡ¢²êÀ¸¤¨¤ÎÃʳ¬¤Ç¤ÏÀµ¾ï¤Ç¡¢¥í¥¼¥Ã¥È¡¢ÃêÂݤ·¤¿¸å¤ÎÀ®Ä¹¤¬°­¤¤¡£¤½¤ÎÃʳ¬¤Ç¡¢IAA ¤ÎÎ̤¬È¾Ê¬°Ê²¼¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£Æ±»þ¤Ë¥Ú¥ë¥ª¥­¥·¥À¡¼¥¼¤Î³èÀ­¤¬¹â¤¯¤Ê¤Ã¤Æ¤¤¤ë¡£ ¥Ú¥ë¥ª¥­¥·¥À¡¼¥¼¤Ï IAA ¤òÉÔ³èÀ­²½¤¹¤ë¤³¤È¤¬ÃΤé¤ì¤Æ¤¤¤ë¡£¤½¤Î¤È¤­¤ËɬÍפʲá»À²½¿åÁǤ¬¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤é¶¡µë¤µ¤ì¤ë¤ÈÃø¼Ô¤¿¤Á¤Ï¹Í¤¨¤Æ¤¤¤ë¡£ FtsH4 ÊѰۤˤè¤Ã¤Æ¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤é¤Î²á»À²½¿åÁǤÎÎ̤¬Áý²Ã¤·¤Æ¤¤¤ë¤È¿äÄꤷ¤Æ¤¤¤ë¡£Â¬Äê¤â¤·¤Æ¤¤¤Æ (Fig. 7C)¡¢À¸°é¸å´ü¤Ë¤Ê¤ë¤Û¤ÉÊÑ°ÛÂΤÎÊý¤¬Â¿¤¤¡£

Right Place Right Time: Heterogeneity-Driven Organ Geometry.¡¡¡¡¡¡Scorza LC, Nakayama N.¡¡¡¡¡¡Dev Cell. 2016 Jul 11;38(1):5-7. doi: 10.1016/j.devcel.2016.06.026.¡¡¡¡¡¡PMID: 27404352¡¡¡¡¡¡Scorza ¤é¤Î²òÀâ¤Ç¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢Ê£¹çÂÎIµ¡Ç½ÊÑ°ÛÂΤǤϥª¡¼¥­¥·¥óÀ¸¹çÀ®°äÅÁ»Ò¤Ç¤¢¤ë YUCCA ¤Îȯ¸½Î̤¬¸º¤ë¡¢¤Þ¤¿³èÀ­»ÀÁǤˤè¤Ã¤Æ¤âƱ¤¸¤¯ YUCCA ¤Îȯ¸½Î̤¬¸º¤ë¤³¤È¤¬¾Ò²ð¤µ¤ì¤Æ¤¤¤ë¡£

The J-protein AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling.¡¡¡¡¡¡Jia N, Lv TT, Li MX, Wei SS, Li YY, Zhao CL, Li B.¡¡¡¡¡¡J Exp Bot. 2016 Apr 25. pii: erw171. [Epub ahead of print]¡¡¡¡¡¡PMID: 27117341¡¡¡¡¡¡³èÀ­»ÀÁǤ¬Ä¾ÀÜƯ¤¯»ÅÁȤߤȤ·¤ÆºÙ˦ÊɤΥ¯¥í¥¹¥ê¥ó¥¯¤òÂ¥¿Ê¤·¤ÆÀ®Ä¹¤òÁ˳²¤¹¤ë²ÄǽÀ­¤¬µó¤²¤é¤ì¤Æ¤¤¤ë¡£¤Þ¤¿Ä¾ÀÜƯ¤¯¤À¤±¤Ç¤Ê¤¯¡¢¥ª¡¼¥­¥·¥ó¤Ê¤É¤Î¥Û¥ë¥â¥ó¤òÄ̤¸¤Æ´ÖÀÜŪ¤ËºîÍѤ·¤Æ¤¤¤ë¤È¿ä¬¤µ¤ì¤Æ¤¤¤ë¡£

¥ª¡¼¥­¥·¥ó¤È´Ø·¸¤Ê¤¤ FTSH4 ¤ÎÏÀʸ¤â¤¢¤ë¡£¡¡The lack of mitochondrial AtFtsH4 protease alters Arabidopsis leaf morphology at the late stage of rosette development under short-day photoperiod.¡¡¡¡¡¡Gibala M, Kicia M, Sakamoto W, Gola EM, Kubrakiewicz J, Smakowska E, Janska H.¡¡¡¡¡¡Plant J. 2009 Sep;59(5):685-99. doi: 10.1111/j.1365-313X.2009.03907.x.¡¡¡¡¡¡PMID: 19453455¡¡¡¡¡¡¤³¤ÎÏÀʸ¤Ï¡¢ÍդηÁÂÖ¤ÎÊѲ½¤È FTSH4 ¤Î´Ø·¸¤ò¼¨¤·¤Æ¤¤¤ë¡£

ftsh4-1 ¤¬¡¢SALK_035107¡¡¡¡¡¡ftsh4-2 ¤¬¡¢GABI_103H09¡¡¡¡¡¡ftsh4-3 ¤¬¡¢SAIL_1283_F10

The plant i-AAA protease controls the turnover of an essential mitochondrial protein import component.¡¡¡¡¡¡Opalinska M, Parys K, Murcha MW, Janska H.¡¡¡¡¡¡J Cell Sci. 2017 Mar 6. pii: jcs.200733. doi: 10.1242/jcs.200733.¡¡¡¡¡¡PMID:¡¡28264925¡¡¡¡¡¡FtSH4 ¥×¥í¥Æ¥¢¡¼¥¼¤¬·ç¼º¤¹¤ë¤³¤È¤Ç¡¢TIM 17 ¤È¤¤¤¦¥¿¥ó¥Ñ¥¯¼ÁÍ¢ÆþÁõÃÖ¤¬°ÂÄê²½¤·¡¢Æ¯¤­¤ä¤¹¤¯¤Ê¤ë¡£¤½¤ì¤Ë¤è¤Ã¤Æ´ÖÀÜŪ¤Ë¤¤¤¯¤Ä¤«¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¥Þ¥È¥ê¥Ã¥¯¥¹¤Ë¸ºß¤¹¤ë¥¿¥ó¥Ñ¥¯¼Á¤ÎÍ¢Æþ¤¬µ¯¤­¤ä¤¹¤¯¤Ê¤ë¡£

¥µ¥ê¥Á¥ë»À¤È¤Î´Ø·¸¤â¼¨¤µ¤ì¤¿¡£ÍդΥ»¥Í¥Ã¥»¥ó¥¹¤È¤Î´Ø·¸¤ò¼¨¤·¤Æ¤¤¤ë¤³¤È¤Ç¡¢¡Öɵ¤¤Î¿¢Êª¤Î¸¦µæ¤Ê¤ó¤«°ÕÌ£¤¬¤Ê¤¤¡×¤Èɾ¤µ¤ì¤º¤ËºÑ¤ó¤À¤Î¤À¤í¤¦¡£¡¡¡¡¡¡The mitochondrial protease FtSH4 regulates leaf senescence via WRKY-dependent salicylic acid signal.¡¡¡¡¡¡Zhang S, Li C, Wang R, Chen Y, Shu S, Huang R, Zhang D, Xiao S, Yao N, Li J, Yang C.¡¡¡¡¡¡Plant Physiol. 2017 Mar 1. pii: pp.00008.2017. doi: 10.1104/pp.16.00008.¡¡¡¡¡¡PMID: 28250067

Table 1, 2 ¤ËSA Î̤ò¬Äꤷ¤¿·ë²Ì¤¬¤¢¤ë¡£Í·Î¥·¿ SA ¤ÏÌóÆóÇÜ¡¢ÇÛÅüÂ⽤·¤¿¤â¤Î¤ò¹ç¤ï¤»¤¿ Total SA ¤Ï5ÇܤËÁý¤¨¤Æ¤¤¤ë¡£WRKY75 ¤È¤¤¤¦Å¾¼Ì°ø»Ò¤¬Æ¯¤«¤Ê¤¯¤Ê¤ë¤È¡¢SA ¤ÏÁý²Ã¤·¤Ê¤¯¤Ê¤ë¡£PR1 °äÅÁ»Ò¡¢sid2 °äÅÁ»Ò¤Ê¤É¤Î mRNA Î̤¬Áý²Ã¤·¤Æ¤¤¤ë¡£ Fig. 10 ¤Ë¥á¥«¥Ë¥º¥à¤ò¿äÍý¤·¤¿¿Þ¤¬¤¢¤ë¡£FTSH4 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢Ëì¤Ë¸ºß¤¹¤ë²¿¤é¤«¤ÎÊ£¹çÂΤ˺îÍѤ¹¤ë¡£ºîÍÑ¡Ê¥×¥í¥Æ¥¢¡¼¥¼¡Ë¤¬¤Ê¤¯¤Ê¤ë¤È³èÀ­»ÀÁǤ¬ÂçÎ̤ËȯÀ¸¤·¤Æ¡¢WRKY ž¼Ì°ø»Ò¤¬Æ¯¤¤¤Æ¥µ¥ê¥Á¥ë»À¤¬Â¿¤¯¹çÀ®¤µ¤ì¤ë¡£

Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach.¡¡¡¡¡¡Opalińska M, Parys K, Jańska H.¡¡¡¡¡¡Int J Mol Sci. 2017 Nov 18;18(11). pii: E2455. doi: 10.3390/ijms18112455.¡¡¡¡¡¡PMID: 29156584 ¡¡¡¡¡¡¤³¤ÎÏÀʸ¤Ç¤Ï FTSH4 ¤Î¥¿¡¼¥²¥Ã¥È¤Ë¤Ê¤ë¥¿¥ó¥Ñ¥¯¼Á¤òƱÄꤷ¤Æ¤¤¤ë¡£proteolytically inactive FTSH4¡¡¤Ë¡¡TRAPFLAG¡¡¤ò¤Ä¤±¤Æ¡¢copurify ¤µ¤ì¤ë¥¿¥ó¥Ñ¥¯¼Á¤òÇ»½Ì¤·¤Æ¤¤¤ë¡£ Âå¼Õ¹ÚÁǤǤ¢¤ë SDH ¡ÊÊ£¹çÂÎ II¡Ë¡¢¥¿¥ó¥Ñ¥¯¼ÁÍ¢Á÷°ø»Ò¤Ê¤É¤¬Ç»½Ì¤µ¤ì¤Æ¤¤¤ë¡£CytC ¥¿¥ó¥Ñ¥¯¼Á¤Ï ftsh4 ¤Ç±Æ¶Á¤ò¼õ¤±¤Ê¤¤¡£ÅÅ»ÒÅÁã·ÏÊ£¹çÂΤϽФƤ­¤Æ¤¤¤Ê¤¤¡£Ë쥿¥ó¥Ñ¥¯¼Á¤ÏÉÔÍϲ½¤·¤ä¤¹¤¤¤Î¤ÇʬÀϤ¬Æñ¤·¤¤¡£

Targeted Proteomics Approach Toward Understanding the Role of the Mitochondrial Protease FTSH4 in the Biogenesis of OXPHOS During Arabidopsis Seed Germination.¡¡¡¡¡¡Heidorn-Czarna M, Domanski D, Kwasniak-Owczarek M, Janska H.¡¡¡¡¡¡Front Plant Sci. 2018 Jun 15;9:821. doi: 10.3389/fpls.2018.00821. eCollection 2018.¡¡¡¡¡¡PMID: 29963070 ¡¡¡¡¡¡¤Ç¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎÊ£¹çÂΤΥץí¥Æ¥ª¡¼¥à²òÀϤò¹Ô¤Ã¤Æ¤¤¤ë¡£ÉáÄÌ¥µ¥ó¥×¥ë¤«¤é¥ß¥È¥³¥ó¥É¥ê¥¢¤òñΥ¤·¤Æ¥×¥í¥Æ¥ª¡¼¥à²òÀϤò¹Ô¤¦¤¬¡¢¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤ÇÍÍ¡¹¤ÊÊÑ°ÛÂΤ«¤é¥ß¥È¥³¥ó¥É¥ê¥¢¤òñΥ¤¹¤ë¤Î¤Ï¤È¤Æ¤âÆñ¤·¤¤¡£¤³¤Î¸¦µæ¤Ç¤Ïȯ²êÃæ¤Î¼ï»Ò¤òÍѤ¤¤Æ Multiple reaction monitoring (MRM) ¤È¤¤¤¦ÊýË¡¤ÇʬÀϤ·¤Æ¤¤¤ë¡£¤³¤ÎÊýË¡¤òÍѤ¤¤ë¤³¤È¤Ç¡¢ftsh4 ÊÑ°ÛÂΤÈÌîÀ¸·¿¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¥¿¥ó¥Ñ¥¯¼Á¤ÎÎ̤òÈæ³Ó¤¹¤ë¤³¤È¤ËÀ®¸ù¤·¤Æ¤¤¤ë¡£

¸ÆµÛº¿Ê£¹çÂÎ¥¿¥ó¥Ñ¥¯¼Á¤ÎÎÌ¤Ï ftsh4 ÊѰۤˤè¤Ã¤Æ¤¢¤Þ¤êÊѲ½¤·¤Æ¤¤¤Ê¤¤¡¦¤ä¤ä¸º¤ë·¹¸þ¤¬¤¢¤ë (Fig. 8)¡£AOX ¥¿¥ó¥Ñ¥¯¼Á¤ÏͽÁÛ¤µ¤ì¤ë¤è¤¦¤Ë ftsh4 ÊÑ°ÛÂΤÇÂ礭¤¯Áý²Ã¤·¤Æ¤¤¤ë (Fig. 8, 9)¡£¸ÆµÛÎ̤â Cytochrome ¥·¥È¥¯¥í¥à C ¤òÍѤ¤¤ë·ÐÏ©¤Ï¸º¾¯¤·¡¢AOX ·ÐÏ©¤ÏÁý²Ã¤·¤Æ¤¤¤ë (Fig. 11)¡£FTSH4 ¤Ï SDH ¡ÊÊ£¹çÂÎ II¡Ë¤ËºîÍѤ·¤Æ¤¤¤ë¤È¿äÄꤷ¤Æ¤¤¤ë (Fig. 12)¡£SDH ¤Ï¥µ¥ê¥Á¥ë»À¤È´Ø·¸¤¬¤¢¤ë¤ÈÊó¹ð¤µ¤ì¤Æ¤¤¤ë¡£


2016ǯ¤Ë¡¢FTSH4 ¤¬ mutants with irregular sepal geometry (vos1) ¤Î¸¶°ø°äÅÁ»Ò¤Ç¤¢¤ë¤³¤È¤¬ÏÀʸ¤È¤·¤Æȯɽ¤µ¤ì¤¿¡£Sepal èÕÊÒ¡¡¤¬ÉԶѰì¤ÊÀ®Ä¹¤ò¤¹¤ë¡£¡¡¡¡¡¡

Variable Cell Growth Yields Reproducible OrganDevelopment through Spatiotemporal Averaging.¡¡¡¡¡¡Hong L, Dumond M, Tsugawa S, Sapala A, Routier-Kierzkowska AL, Zhou Y, Chen C, Kiss A, Zhu M, Hamant O, Smith RS, Komatsuzaki T, Li CB, Boudaoud A, Roeder AH.¡¡¡¡¡¡Dev Cell. 2016 Jul 11;38(1):15-32. doi: 10.1016/j.devcel.2016.06.016.¡¡¡¡¡¡PMID: 27404356¡¡¡¡¡¡³èÀ­»ÀÁǤÎÀ¸À®Î̤λþ´Ö¡¢¶õ´ÖŪ spatiotemporal ¤ÊÀ©¸æ¤¬¤¦¤Þ¤¯¤¤¤«¤Ê¤¤¤è¤¦¤Ë¤Ê¤ë¤³¤È¤¬¸¶°ø¤é¤·¤¤¡£

Fig.6 D, E ¤Ë³èÀ­»ÀÁÇ¡Êsuperoxide¡Ë¤ò NBT À÷¿§¤·¤¿¼Ì¿¿¤¬¤¢¤ë¡£Àµ¾ï¤Ê¾õÂ֤ǤϳèÀ­»ÀÁǤÏèÕÊÒ¤Îĺü¤ÎÊý¤Çºî¤é¤ì¡¢º¬¸µ¤ÎÊý¤Ø³È»¶¤·¤Æ¤¤¤¯¤è¤¦¤Ë¸«¤¨¤ë¡£ftsh4 ÊÑ°ÛÂΤǤϡ¢èÕÊÒÁ´ÂΤdzèÀ­»ÀÁǤ¬ºî¤é¤ì¤Æ¶Ñ°ì¤Ë¶á¤¯¤Ê¤Ã¤Æ¤¤¤ë¡£¤½¤Î¤»¤¤¤ÇèÕÊҤηÁ¾õ¤¬ÉÔµ¬Â§¤Ë¤Ê¤ë¡£ ¤³¤Î·ë²Ì¤Ï¡¢èÕÊÒ¤ÎÀèü tip ¤ÏÆÃÊ̤ÊÉôʬ¤Ç¡¢¤³¤³¤Ç¤Ï³èÀ­»ÀÁÇ ROS ¤¬Â¾¤ÎÉô°Ì¤È°Û¤Ê¤êÂçÎ̤˺î¤é¤ì¤Æ¤¤¤ë¤³¤È¤ò¼¨º¶¤·¤Æ¤¤¤ë¡£

¤³¤ÎÏÀʸ¤Ç¤Ï¡¢¡Ö»þ¶õ´ÖŪ¥é¥ó¥À¥à¥â¥Ç¥ë¡×¤òºÎÍѤ¹¤ë¤³¤È¤Ç¡¢¥ß¥¯¥í¤ÊºÙ˦¥ì¥Ù¥ë¤Î»þ´ÖŪ¡¦¶õ´ÖŪ¤Ê¥é¥ó¥À¥àÀ­¤¬¥Þ¥¯¥í¤Ê´ï´±¤Î·ÁÂÖ¤ÎÊ¿¶Ñ²½¤Ë¤Ä¤Ê¤¬¤ë¤³¤È¤òÌÀ¤é¤«¤Ë¤·¤Æ¤¤¤ë¡£ÙøÍ𡢥Υ¤¥º¤¬¶õ´ÖŪ¤Ë°ìÍ͡ʥΥ¤¥º¤¬Æþ¤ë¾ì½ê¤¬»þ´ÖŪ¤Ë¥·¥ã¥Ã¥Õ¥ë¤µ¤ì¤ë¤³¤È¤Ç¤É¤Î¾ì½ê¤Ë¤â¸øÊ¿¤Ë¥Î¥¤¥º¤¬Æþ¤ë¡Ë¤ËÆþ¤ë¤³¤È¤Ç¡¢Ê¿¶Ñ¤ò¼è¤ë¤È¥­¥ã¥ó¥»¥ë¤µ¤ì¤Æ¤·¤Þ¤¦¡£ÙøÍð¤Î¸¶°ø¤È¤·¤Æ¤ÏÀ®Ä¹¤Î»þ´ÖÊÑÆ°¡¢Î٤κÙ˦¤È¤Î¾×Æͤ¬¹Í¤¨¤é¤ì¤Æ¤¤¤ë¡£https://www.hokudai.ac.jp/news/160712_es_pr.pdf¡¡¡¡¡¡http://first.lifesciencedb.jp/archives/12797¡¡¡¡¡¡ ¸µ¤ÎÏÀʸ¤Î Fig. S1 ¤ò¸«¤ë¤È¡¢cauline leaves ¡Ê·Ô¤Ë¤Ä¤¯Íաˤâ·Á¤¬¤æ¤¬¤ß¤ä¤¹¤¤¤È¤¤¤¦¼Ì¿¿¤¬¤¢¤ë¡£

The lack of mitochondrial AtFtsH4 protease alters Arabidopsis leaf morphology at the late stage of rosette development under short-day photoperiod.¡¡¡¡¡¡Gibala M, Kicia M, Sakamoto W, Gola EM, Kubrakiewicz J, Smakowska E, Janska H.¡¡¡¡¡¡Plant J. 2009 Sep;59(5):685-99. doi: 10.1111/j.1365-313X.2009.03907.x.¡¡¡¡¡¡PMID: 19453455¡¡¡¡¡¡¤Ç¤â¡¢FTSH4 ¤ÈÍդηÁÂÖ¤ÎÊѲ½¤Î´Ø·¸¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£¤³¤Á¤é¤ÎÊý¤¬½ÐÈǤ¬Áᤤ¡£ftsh4 (vos1) ÊÑ°ÛÂΤβִﴱ¤Î¼Ì¿¿¤¬¤¢¤ë¡£´ï´±È¯Ã£¡Ê¥Þ¥¯¥í¤Ê¥ì¥Ù¥ë¡Ë¤Î¤Ð¤é¤Ä¤­¡¦Ê¬»¶¤¬¤È¤Æ¤âÂ礭¤¤¡£ftsh4 (vos1) ÊÑ°ÛÂΤÎÊý¤¬ºÙ˦°ì¤Ä¡Ê¥ß¥¯¥í¤Ê¥ì¥Ù¥ë¡Ë¤ÎÀ®Ä¹¤ÎÉԶѰìÀ­¤¬¾®¤µ¤¤¤³¤È¤ò¼¨¤·¤¿¥°¥é¥Õ¤¬¤¢¤ë¡£ ÂçÀڤʤ³¤È¤Ï¡¢¡Ö¥ß¥¯¥í¤Ê¥ì¥Ù¥ë¤Ç¤Ð¤é¤Ä¤­¤¬Â礭¤¤¤³¤È¤¬¡¢¥Þ¥¯¥í¤Ê¥ì¥Ù¥ë¤Ç¤ÏµÕ¤Ë¶Ñ°ìÀ­¤Ë¤Ä¤Ê¤¬¤ë¤³¤È¤¬¤¢¤ë¡×¤È¤¤¤¦¤³¤È¤À¤½¤¦¤Ç¤¢¤ë¡£ »þ´ÖŪ¡¦¶õ´ÖŪ¤ÎξÊý¤Ç¥é¥ó¥À¥à¤Ç¤¢¤ë¤³¤È¤¬É¬ÍפÀ¡Ê»þ¶õ´Ö¥é¥ó¥À¥à¥â¥Ç¥ë¡Ë¤È¤¤¤¦¤³¤È¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£

ÍդȤ¤¤¦¶ñÂÎŪ¤Ê¤â¤Î¤ò¾¯¤·°ìÈ̲½¤·¤Æ¡¢ÅŸ÷·Ç¼¨ÈĤÀ¤È¹Í¤¨¤Æ¤ß¤ë¡£Æüì¤Ê¥é¥ó¥×¤ò»È¤Ã¤Æ¤¤¤Æ¡¢¥é¥ó¥×¤Ï¾¯¤·¤º¤Ä³ÈÂ礷¤Æ¤¤¤¯¡£ÅÀÅô¤·¤Æ¤¤¤ë¤È¤½¤Î´Ö¥é¥ó¥×¤Î³ÈÂ礹¤ë®ÅÙ¤¬Â礭¤¯¤Ê¤ë¡£¤½¤¦¤¹¤ë¤È¡¢¶õ´Ö¥é¥ó¥À¥à¥â¥Ç¥ë¤Ï¡¢ÅŸ÷·Ç¼¨ÈĤΤ¤¤¯¤Ä¤«¤Î¥é¥ó¥×¡Ê¤½¤ì¤é¤Ï¥é¥ó¥À¥à¤ËÁª¤Ð¤ì¤ë¡Ë¤¬ÅÀÅô¤·¤Æ¤¤¤Æ¡¢¤½¤ì¤é¤Ï¤Ä¤­¤Ã¤Ñ¤Ê¤·¤ÇÊѲ½¤¬¤Ê¤¤¡£¤½¤ì¤Ç¤Ï¥é¥ó¥×¤ÎÉôʬ¤À¤±¤¬¤É¤ó¤É¤ó³ÈÂ礷¤Æº¸±¦ÂоΤʤɤε¬Â§Àµ¤·¤¤·Á¾õ¤ò¼è¤ê¤Ë¤¯¤¤¡£»þ¶õ´Ö¥é¥ó¥À¥à¥â¥Ç¥ë¤Ç¤Ï¡¢¥é¥ó¥×¤Ï¥é¥ó¥À¥à¤ËÁª¤Ð¤ì¤ë¤À¤±¤Ç¤Ê¤¯¥é¥ó¥À¥à¤Ë¤Ä¤¤¤¿¤ê¾Ã¤¨¤¿¤ê¤¹¤ë¤Î¤Ç¡¢»þ´ÖŪ¤ÊÊ¿¶Ñ¤ò¼è¤ë¤È¡¢ÅŸ÷·Ç¼¨ÈĤΤ½¤ì¤¾¤ì¤Î¥é¥ó¥×¤¬ÅÀÅô¤¹¤ë»þ´Ö¤¬°ìÍͤˤʤ롣¶õ´ÖŪ¤Ë¤â¡¢¤É¤Î¾ì½ê¤Ë¤ª¤¤¤Æ¤âÅÀÅô¤¹¤ë»þ´Ö¤Î´üÂÔÃͤ¬°ìÍͤˤʤ롣¤³¤ì¤Ïµ¤ÂÎʬ»Ò¤¬È¢¤ÎÆâÉô¤ò±¿Æ°¤·¤Æ¤¤¤ë¤Î¤È»÷¤Æ¤¤¤Æ¡¢È¢¤Î¤É¤Î¾ì½ê¤âƱ¤¸³ÎΨ¤Çʬ»Ò¤ÏÄ̲᤹¤ë¤Î¤ÇÈ¢¤ÎÆâÉô¤Ëµ¤ÂÎʬ»Ò¤ÎÊФê¤Ï¤Ê¤¤¡£

¥é¥ó¥×¡á¥ß¥È¥³¥ó¥É¥ê¥¢¡¡¤Ç¡¢ÅÀÅô¤·¤¿¥é¥ó¥×¡á³èÀ­²½¤·¤¿¥ß¥È¥³¥ó¥É¥ê¥¢¡§¡¡³èÀ­²½¤¹¤ë¤È¤½¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤ò´Þ¤àºÙ˦¤ÏµÞ®¤Ë³ÈÂ礹¤ë¡£ ¤·¤«¤·Æ±»þ¤Ë¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤é¤Î³èÀ­»ÀÁǤÎÀ¸À®¤âÁýÂ礷¤Æ¡¢¤½¤ì¤Ï³ÈÂçÀ®Ä¹¤òÍÞ¤¨¤ë¡¦»ß¤á¤ë¤è¤¦¤ËƯ¤¯¡£ ftsh4 ¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¤Ï¤¤¤Ä¤âƱ¤¸³èÀ­¤Ç¡¢Ê¿¶Ñ²½¤Ë¤è¤Ã¤Æ½¤Àµ¤Ç¤­¤Ê¤¤¤Î¤ÇÁ´ÂΤǸ«¤ë¤È·ÁÂÖ¤¬°ìÄê¤Ë¤Ê¤é¤Ê¤¤¡©

°ìËç¤ÎÍդǤ⡢¸÷¹çÀ®¤ÏÍÕÁ´ÂΤ˶Ѱì¤Ëµ¯¤­¤ë¤Î¤Ç¤Ï¤Ê¤¯¡¢Æä˥¹¥È¥ì¥¹¤¬¤«¤«¤Ã¤¿ºÝ¤Ë¤ÏÉԶѰì¤Ë¤Ê¤ë¤³¤È¤¬¡¢ÅìÂç¤Î»ûÅçÀèÀ¸¤Î¸¦µæ¤Ë¤è¤Ã¤ÆÌÀ¤é¤«¤Ë¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡http://www.biol.s.u-tokyo.ac.jp/users/seitaipl/personal/terashima/terashima_j.html¡¡¡¡¡¡¤Î¿Þ£¸¡¡¡¡¡¡¥¢¥Ö¥·¥¸¥ó»À½èÍý¤ò¤¹¤ë¤Èµ¤¹¦¤¬Êĺ¿¤¹¤ë¤¬¡¢Á´Éô°ìÍͤËÊĤޤë¤ï¤±¤Ç¤Ï¤Ê¤¤¤é¤·¤¤¡£ ¤½¤Î¤»¤¤¤Ç¡¢ÍÕÌ®¤Ë°Ï¤Þ¤ì¤¿¶è²è¤´¤È¤Ë¸÷¹çÀ®¤Ë¤è¤ë¥Ç¥ó¥×¥ó¹çÀ®Â®Å٤ˤФé¤Ä¤­¤¬À¸¤¸¤ë¡£ ¤½¤Î¤³¤È¤¬¥è¥¦Áǥǥó¥×¥óÈ¿±þ¤Ç¼¨¤µ¤ì¤Æ¤¤¤ë¡£ÉԶѰ줵¤ò¹Í¤¨¤ËÆþ¤ì¤Ê¤¤¤È¡¢¸÷¹çÀ®¤Ë´Ø¤·¤Æ´Ö°ã¤Ã¤¿Â¬Äê¤ò¤·¤Æ¤·¤Þ¤¦¤³¤È¤¬»ØŦ¤µ¤ì¤Æ¤¤¤ë¡£ µ¤¹¦¤Î³«ÊĤÏÉáÄÌ¡ÖÌÀ¤ë¤¤¤È³«¤¤¤Æ°Å¤¤¤ÈÊĤ¸¤ë¡×¤È¤«¡¢¡Ö¥¹¥È¥ì¥¹¤ò¼õ¤±¤ë¤ÈÊĤ¸¤ë¡×¤È¤«¡¢ÉԶѰìÀ­¤ò¹Í¤¨¤Ê¤¤¤³¤È¤¬Â¿¤¤¡£ µ¤¹¦¤Î¾ì¹ç¤â¡¢ÊĤ¸¤ë¾ì½ê¤¬ÉԶѰì¤Ç¤â¥é¥ó¥À¥à¤ËÊѲ½¤¹¤ë¤³¤È¤ÇÉԶѰ줵¤¬¶Ñ¤µ¤ì¤Æ¤¤¤­ÍÕÁ´ÂΤǸ«¤ë¤È¾õÂÖ¤¬Ê¿¶Ñ²½¤µ¤ì¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£µ¤¹¦¤ÎÆ°¤­¤Î¥é¥ó¥À¥à¤µ¤¬¤¦¤Þ¤¯Â¬Äê¤Ç¤­¤ì¤ÐÌÌÇò¤¤¤«¤â¤·¤ì¤Ê¤¤¡£µ¤¹¦¤È¤¤¤¦¤â¤Î¤Ï¥Ð¥ë¥Ö¤Ë¤¿¤È¤¨¤ë¤³¤È¤¬¤Ç¤­¤ë¡£¤·¤«¤·¤½¤ì¤Û¤ÉÀ­Ç½¤Ï¤è¤¯¤Ê¤¯°ìÍͤ˥ԥ¿¥ê¤ÈÊĤ¸¤ë¤ï¤±¤Ç¤Ï¤Ê¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¶õ´ÖŪ¤Ë¥é¥ó¥À¥à¤ËÊĤ¸¤ëµ¤¹¦¤¬Áª¤Ð¤ì¡¢»þ´ÖŪ¤Ë¥é¥ó¥À¥à¤Ë¤½¤ì¤¬¸µ¤ËÌá¤ë¤³¤È¤ÇÁ´ÂΤǸ«¤ì¤Ðµ¤¹¦¤ÎÀ­Ç½¤¬¤è¤¯¤Ê¤¯¤Æ¤â¶Ñ°ì¤Ë¶á¤¯¤Ê¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¤·¤«¤·¡Öµ¤¹¦¤ÎÆ°¤­¤Ë¤Ï¹â¤¤¥é¥ó¥À¥à¤µ¤¬¤¢¤ë¡×¤È¤¤¤¦¤³¤È¤ò¼¨¤·¤¿Êó¹ð¤Ï»ûÅçÀèÀ¸¤ò½ü¤±¤Ð¸«¤¿¤³¤È¤¬¤Ê¤¤¡£

Íդ˸ºß¤¹¤ëµ¤¹¦¤Î¥Ð¥ë¥Ö¤È¤·¤Æ¤ÎÀ­Ç½¤ò¾å¤²¤ë¤Ë¤Ï¡¢¤½¤ì¤À¤±Â¿¤¯¤Î»ñ¸»¤òµ¤¹¦·ÁÀ®¤È³«ÊĤÎÀ©¸æ¤Ë³ä¤êÅö¤Æ¤Ê¤¤¤È¤¤¤±¤Ê¤¤¡£¤½¤ì¤Ë¤è¤ë¸«Ê֤꤬¤Ê¤¤¤Î¤Ê¤éÅêÆþ¤·¤¿»ñ¸»¤¬ÌµÂ̤ˤʤäƤ·¤Þ¤¦¡£°ì¤Ä°ì¤Ä¤Îµ¤¹¦¤ÎÀ­Ç½¤Ï;¤ê¤è¤¯¤Ê¤¯¤Æ¤â¡¢»þ´ÖŪ¡¦¶õ´ÖŪ¤Ë¥é¥ó¥À¥à¤ËÆ°¤¯À­¼Á¤ò»ý¤¿¤»¤ë¤³¤È¤ÇÍÕÁ´ÂΤȤ·¤Æ¤Ï½½Ê¬¤ÊÀ­Ç½¤ò»ý¤¿¤»¤é¤ì¤ë¤Î¤Ê¤é¡¢¤½¤ÎÊý¤¬Í­Íø¤À¤í¤¦¡£¥â¥Ç¥ë¤ò¹Í¤¨¤ë¤³¤È¤Ë¤è¤Ã¤Æ¤³¤¦¤¤¤¦¤³¤È¤ò¼Â¾Ú¤Ç¤­¤ë¤Î¤Ê¤é¡¢¼Ò²ñŪ¤Ë°ÕÌ£¤¬¤¢¤ë¤À¤í¤¦¡£

·ÐºÑ³Ø¼Ô¤Î²ÃÆ£ÁÏÂÀÀèÀ¸¤¬¡ÖÇ濳°÷ÄêÍý¡×¤È¤¤¤¦¡¢¥³¥ó¥É¥ë¥»¤È¤¤¤¦³Ø¼Ô¡¦À¯¼£²È¤¬¹Í¤¨¤¿ÄêÍý¤Ë¤Ä¤¤¤Æ¾Ò²ð¤µ¤ì¤Æ¤¤¤¿¡£Æó¤Ä¤¢¤ëÁªÂò»è¤ÎÆâ¡¢°ìÊý¤À¤±¤¬Àµ²ò¤È¤¹¤ë¡£µ¤¹¦¤Ï¡Ö³«¤¯¡×¤È¡ÖÊĤ¸¤ë¡×¤ÎÆó¤Ä¤ÎÁªÂò»è¤¬¤¢¤ë¡Ê¾¯¤·¤À¤±³«¤¤¤Æ¤¤¤ë¤Î¤Ï¹Í¤¨¤Ê¤¤¤³¤È¤Ë¤¹¤ë¡Ë¡£Á°Äó¾ò·ï¤È¤·¤Æ¡¡¡¦³ÆÅêɼ¼Ô¡Êµ¤¹¦¡Ë¤¬Àµ²ò¤Ç¤¢¤ëÁªÂò»è¤òÁª¤Ö³ÎΨ¤¬50¡ó°Ê¾å¤¢¤ë¡¡¡¦³ÆÅêɼ¼Ô¡Êµ¤¹¦¡Ë¤¬¤ª¸ß¤¤¤ËÆÈΩ¤·¤ÆÀµ²ò¤ÎÊý¤òÁª¤Ü¤¦¤È¤¹¤ë¾ì¹ç¡¢Åêɼ¼Ô¡Êµ¤¹¦¡Ë¤Î¿ô¤¬Áý¤¨¤ì¤ÐÁý¤¨¤ë¤Û¤É¡¢Â¿¿ô·è¤Î·ë²Ì¤¬ 100% Àµ²ò¤Ë¶á¤Å¤¯¤³¤È¤ò¿ôÍýŪ¤Ë¼¨¤»¤ë¤½¤¦¤Ç¤¢¤ë¡£¡ÖÂç³Ø±¡¤ÇºÇ½é¤Ë¾ÚÌÀ¤µ¤»¤é¤ì¤ë´ðËÜÄêÍý¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£°ì¤Ä¤º¤Ä¤Îµ¤¹¦¤Ï¤«¤Ê¤ê¤¤¤¤²Ã¸º¤Ç¤â¡¢¤½¤ì¤¾¤ì¤¬ÆÈΩ¤·¤ÆÀµ²ò¤òÁª¤Ü¤¦¤È¤·¤Æ¤¤¤ì¤Ð¡¢À­Ç½¤ò¾å¤²¤ë¤³¤È¤¬¤Ç¤­¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£¤·¤«¤·µ¤¹¦¤«¤é¤Î¾ø»¶Î̤Ï¿¿ô·è¡Ê¤·¤­¤¤ÃͤȤÎÈæ³Ó¡Ë¤Ç·è¤Þ¤ë¤ï¤±¤Ç¤Ï¤Ê¤¤¤Î¤Ç´Ø·¸¤Ê¤¤¤«¤â¤·¤ì¤Ê¤¤¡£

³èÀ­»ÀÁǤÏÍÕÎÐÂÎÆâ¤Ç¤âºî¤é¤ì¤ë¤·¡¢¤½¤ÎÊý¤¬¤º¤Ã¤È¿¤¤¤Î¤Ç¤Ï¤Ê¤¤¤«¡£ ¤Ê¤¼ ftsh4 ¤Ï vos1 ¤È¤·¤ÆñΥ¤Ç¤­¤ë¤Û¤É¡¢·Áºî¤ê¤Ë´Ø¤¹¤ëɽ¸½·¿¤¬¶¯¤¯¤Ê¤Ã¤¿¤Î¤«¡£

¿¢Êª¤ÎÍդˤª¤¤¤Æ¡¢³È»¶ÊýÄø¼°¤òÍѤ¤¤¿¸¦µæÀ®²Ì¤¬¤¢¤ë¡£ ¡¡¡¡¡¡The mechanism of cell cycle arrest front progression explained by a KLUH/CYP78A5-dependent mobile growth factor in developing leaves of Arabidopsis thaliana.¡¡¡¡¡¡Kazama T, Ichihashi Y, Murata S, Tsukaya H.¡¡¡¡¡¡Plant Cell Physiol. 2010 Jun;51(6):1046-54. ¡¡¡¡¡¡PMID: 20395288¡¡¡¡¡¡ ¿¢Êª¤ÎÍÕ¤ÎȯÀ¸»þ¤ËÀ¸¤¸¤ë arrest front ¤Ë´Ø¤·¤Æ¼Â¸³Åª¡¢¿ôÍýŪ¤Ê²òÀϤòÁȤ߹ç¤ï¤»¤Æ¸¦µæ¤·¤¿¡¢É÷´ÖÇî»Î¤Î¤¹¤Ð¤é¤·¤¤¸¦µæ¡¡¡¡ °äÅÁ»ÒÁÈ´¹¤¨¤È»þ·ÏÎó¤Î²èÁü½èÍý¤òÁȤ߹ç¤ï¤»¤ë¤³¤È¤Ç¡¢³È»¶ÊýÄø¼°¤Î¥Ñ¥é¥á¡¼¥¿¡¼¤òµá¤á¤ë¤³¤È¤ò²Äǽ¤Ë¤·¤Æ¤¤¤ë¡£ É÷´ÖÇî»Î¤é¤Î¸¦µæ¤Ç¤ÏÍդκ¬¸µ¤Ç̤ƱÄê¤Î°ø»Ò¤¬¹çÀ®¤µ¤ìÍÕ¤ÎÀèüÊý¸þ¤Ø³È»¶¤¹¤ë¡£

KLU/CYP78A5 °äÅÁ»Ò¤ÏÁÈ¿¥É½Ì̤Υ¯¥Á¥¯¥éÀ¸¹çÀ®¤ËƯ¤¤¤Æ¤¤¤ë¤³¤È¤¬²òÌÀ¤µ¤ì¤¿¡£¡¡¡¡¡¡ Front. Plant Sci., 23 June 2022 https://doi.org/10.3389/fpls.2022.904121¡¡¡¡¡¡ KLU/CYP78A5, a Cytochrome P450 Monooxygenase Identified via Fox Hunting, Contributes to Cuticle Biosynthesis and Improves Various Abiotic Stress Tolerances¡¡¡¡¡¡Takuma Kajino, Masahiro Yamaguchi, Yoshimi Oshim2, Akiyoshi Nakamura, Jumpei Narushima, Yukio Yaguchi, Izumi Yotsui, Yoici Yotsui, Yoichi Sakata and Teruaki Taji*¡¡¡¡

¤³¤ì¤â¥ß¥È¥³¥ó¥É¥ê¥¢ FtsH ¥×¥í¥Æ¥¢¡¼¥¼

NEEDLE1 encodes a mitochondria localized ATP-dependent metalloprotease required for thermotolerant maize growth.¡¡¡¡¡¡Liu Q, Galli M, Liu X, Federici S, Buck A, Cody J, Labra M, Gallavotti A.¡¡¡¡¡¡Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19736-19742. doi: 10.1073/pnas.1907071116. Epub 2019 Sep 9.¡¡¡¡¡¡PMID: 31501327

¿¢Êª¤Ë¤ÏÊ£¿ô¤Î FtsH ·¿¥×¥í¥Æ¥¢¡¼¥¼¤¬¤¢¤ë¡£NEEDLE1 ¤Ï¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Î FtsH10, FtsH3 ¤ÈÁêƱÀ­¤¬¹â¤¤¡£¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Î Atftsh3;Atftsh10 double mutant ¤Ï¹â²¹¥¹¥È¥ì¥¹¤Çº¬¤Î¿­Ä¹¤¬¶¯¤¯Á˳²¤µ¤ì¤ë¤¬¡¢²Ö½ø¤Î·ÁÂ֤ʤɤˤÏÁ´¤¯ÊѲ½¤¬¤Ê¤¤¤³¤È¤¬µ­ºÜ¤µ¤ì¤Æ¤¤¤ë¡£

SSR1¡¡¥ª¡¼¥­¥·¥ó¶ËÀ­°ÜÆ°¤È´Ø·¸¤¢¤ë¥ß¥È¥³¥ó¥É¥ê¥¢¶Éºß¥¿¥ó¥Ñ¥¯¼Á

A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis.¡¡¡¡¡¡Zhang M, Wang C, Lin Q, Liu A, Wang T, Feng X, Liu J, Han H, Ma Y, Bonea D, Zhao R, Hua X.¡¡¡¡¡¡Plant J. 2015 Aug;83(4):582-99. doi: 10.1111/tpj.12911. Epub 2015 Jul 4.¡¡¡¡¡¡PMID: 26072661

¥ß¥È¥³¥ó¥É¥ê¥¢¤È¥ª¡¼¥­¥·¥ó¤Î´ØÏ¢¤ò¿ä¬¤·¤Æ¤¤¤ë¡£Â¿¤¯¤ÎÏÀʸ¤ÈƱ¤¸¤è¤¦¤Ë³èÀ­»ÀÁǤ¬´ØÍ¿¤·¤Æ¤¤¤ë¤³¤È¤Ë¤·¤Æ¤¤¤ë¡£

¤³¤ÎÏÀʸ¤Ç¡¢¤³¤¦¤¤¤¦ÏÀʸ¤¬°úÍѤµ¤ì¤Æ¤¤¤¿¡£AOX1a ¤Ïͭ̾¤Ê¥ß¥È¥³¥ó¥É¥ê¥¢ Alternative oxidase ¤ò¥³¡¼¥É¤¹¤ë°äÅÁ»Ò¤Ç¡¢ÍÍ¡¹¤Ê¥¹¥È¥ì¥¹¤Çȯ¸½¡¢¥¿¥ó¥Ñ¥¯Î̤¬¾å¾º¤¹¤ë¡£ ¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½ÊÑ°ÛÂΤǤâȯ¸½¡¢¥¿¥ó¥Ñ¥¯Î̤¬¾å¾º¤¹¤ë¤³¤È¤¬Â¿¤¤¡£

A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling Regulates Alternative Oxidase1a Expression in Arabidopsis.¡¡¡¡¡¡Ivanova A, Law SR, Narsai R, Duncan O, Lee JH, Zhang B, Van Aken O, Radomiljac JD, van der Merwe M, Yi K, Whelan J.¡¡¡¡¡¡Plant Physiol. 2014 May 12;165(3):1233-1254. ¡¡PMID: 24820025

SSR1 ¤ÎÊ̤ε¡Ç½¤ò¼¨¤¹ÏÀʸ¤â¤¢¤Ã¤¿¡£¡¡¡¡¡¡SSR1 is involved in maintaining the function of mitochondria electron transport chain and iron homeostasis upon proline treatment in Arabidopsis. ¡¡¡¡¡¡Han HL, Liu J, Feng XJ, Zhang M, Lin QF, Wang T, Qi SL, Xu T, Hua XJ.¡¡¡¡¡¡J Plant Physiol. 2020 Nov 24;256:153325. doi: 10.1016/j.jplph.2020.153325. ¡¡¡¡¡¡PMID: 33271443

AtDjB1 (AtJ1)

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡
ÊÑ°Û°äÅÁ»Ò--
¡¡J-protein ¤Î°ì¼ï¡¡¿¢ÊªÆÃÍ­¤Î¥¿¥ó¥Ñ¥¯¼Á¡¡¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤¹¤ë¡¡¡Ödirectly interact with a mitochondrial heat-shock protein 70 (mtHSC70-1), and stimulate ATPase activity ¡×¤Èµ­ºÜ¤µ¤ì¤Æ¤¤¤ë¡£

The Arabidopsis J-protein AtDjB1 facilitates thermotolerance by protecting cells against heat-induced oxidative damage.¡¡¡¡¡¡Zhou W, Zhou T, Li MX, Zhao CL, Jia N, Wang XX, Sun YZ, Li GL, Xu M, Zhou RG, Li B.¡¡¡¡¡¡New Phytol. 2012 Feb 22. doi: 10.1111/j.1469-8137.2012.04070.x. [Epub ahead of print]¡¡¡¡¡¡PMID: 22356282

atj1-1 ¤¬ SALK_049553¡¡¶¯¤¤ÊѰۡʥΥ寥¢¥¦¥È¡Ë¡¡atj1-4 ¤¬ SALK_065970¡Ê¾¯¤·¼å¤¤¡Ë

The Arabidopsis J protein AtJ1 is essential for seedling growth, flowering time control and ABA response¡¡¡¡¡¡Plant Cell Physiol. 2014 Dec;55(12):2152-63.¡¡¡¡¡¡doi: 10.1093/pcp/pcu145. Epub 2014 Oct 13.¡¡¡¡¡¡Min Young Park, Soo Young Kim¡¡¡¡¡¡PMID: 25311198

ABA ´¶¼õÀ­¤¬¹â¤¯¤Ê¤ë¤À¤±¤Ç¤Ê¤¯¡¢²ÖÀ®¤Î¥¿¥¤¥ß¥ó¥°¤¬ÃÙ¤¯¤Ê¤ë¡£FLC °äÅÁ»Ò¤Îȯ¸½Î̤Ï2Çܰʾå¤Ë¹â¤¯¤Ê¤Ã¤Æ¤¤¤¿¡£FT °äÅÁ»Ò¤Îȯ¸½Î̤ÏÂ礭¤¯¸º¾¯¤·¤Æ¤¤¤¿ (Fig. 7)¡£È¯²ê¸å¤ÎÀ¸°é¤¬ÃÙ¤¯¤Ê¤ë¤¬ºÇ½ªÅª¤ÊÀ¸½ÅÎ̤ÏÊѤï¤é¤Ê¤¤¡£¤·¤«¤·¼ï»Ò¤ÎÎ̤ϸº¤ë¡£

Knockout of AtDjB1, a J-domain protein from Arabidopsis thaliana, alters plant responses to osmotic stress and abscisic acid.¡¡¡¡¡¡Wang X, Jia N, Zhao C, Fang Y, Lv T, Zhou W, Sun Y, Li B.¡¡¡¡¡¡Physiol Plant. 2014 Oct;152(2):286-300. doi: 10.1111/ppl.12169. Epub 2014 Mar 11.¡¡¡¡¡¡PMID: 24521401

¤³¤Î°äÅÁ»Ò¤â¡¢¥ª¡¼¥­¥·¥ó¤È¤Î´ØÏ¢¤¬Êó¹ð¤µ¤ì¤Æ¤¤¤ë¡£

The J-protein AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling.¡¡¡¡¡¡Jia N, Lv TT, Li MX, Wei SS, Li YY, Zhao CL, Li B.¡¡¡¡¡¡J Exp Bot. 2016 May;67(11):3481-96. doi: 10.1093/jxb/erw171. Epub 2016 Apr 25.¡¡¡¡¡¡PMID: 27117341

PpPPR_43

¿¢Êª¼ï
Physcomitrella patens
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¡¡We constructed and characterized knockout mutants of the PpPPR_43 gene.
ÊÑ°Û°äÅÁ»Ò--
¡¡PpPPR_43¡¢a mitochondrial localized PPR protein with a C-terminal DYW domain

A PPR-DYW protein is required for splicing of a group II intron of cox1 pre-mRNA in Physcomitrella patens Mizuho Ichinose, Eiji Tasaki, Chieko Sugita, Mamoru Sugita*¡¡¡¡¡¡Article first published online: 10 JAN 2012¡¡DOI: 10.1111/j.1365-313X.2011.04869.x

Physcomitrella patens ¤Î PPR ¥¿¥ó¥Ñ¥¯¼Á·²¤Ë¤Ä¤¤¤Æ¤Ï¡¢Ì¾¸Å²°Âç³Ø¤Î¿ùÅÄÀèÀ¸¤Î¥°¥ë¡¼¥×¤Ç¸¦µæ¤¬¿Ê¤á¤é¤ì¤Æ¤¤¤ë¡£

Two DYW Subclass PPR Proteins are Involved in RNA Editing of ccmFc and atp9 Transcripts in the Moss Physcomitrella patens: First Complete Set of PPR Editing Factors in Plant Mitochondria.¡¡¡¡¡¡Ichinose M, Sugita C, Yagi Y, Nakamura T, Sugita M.¡¡¡¡¡¡Plant Cell Physiol. 2013 Oct 27. [Epub ahead of print]¡¡¡¡¡¡PMID: 24058147

Multiple organellar RNA editing factor (MORF)

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡EMS ÊÑ°Û¼ï»Ò¥é¥¤¥Ö¥é¥ê¡¼¤òÇż°éÀ®¤¹¤ë¡£¤½¤ì¤¾¤ì¤Î²êÀ¸¤¨¤«¤é RNA ¤òÃê½Ð¤·¤ÆDNA ¤ËÊÑ´¹¤·¡¢editing ¤ò¼õ¤±¤ëÉôʬ¤ÈÎÙÀܤ¹¤ë¥×¥é¥¤¥Þ¡¼¤òÍѤ¤¤Æ°ì±ö´ð¡Êedit ¤µ¤ì¤ëÉô°Ì¡Ë¤Î¿­Ä¹È¿±þ¤ò¹Ô¤¦¡£Åŵ¤±ËÆ°¤·¤Æ¼è¤ê¹þ¤Þ¤ì¤¿±ö´ð¤Î¼ïÎà¤ò·Ö¸÷¤Ç¸¡½Ð¤¹¤ë¡£°ì¤Ä¤ÎÈ¿±þ¥Á¥å¡¼¥Ö¤Ë¿¿ô¤Î¥×¥é¥¤¥Þ¡¼¤ò¶¦Â¸¤µ¤»Æ±»þ¤ËÈ¿±þ¡¢Ê¬ÀϤǤ­¤ë¤Î¤Ç¡¢Â¿¿ô¤Î editing sites ¤ò¸úΨ¤è¤¯¥¹¥¯¥ê¡¼¥Ë¥ó¥°¤Ç¤­¤ë¡£¡¡Screening with a multiplexed single-nucleotide extension protocol yielded a number of mutant plants that have lost detectable editing at specific sites.

ÊÑ°Û°äÅÁ»Ò--
¡¡MORF¡¡At4g20020 ¤È¤½¤Î¥Õ¥¡¥ß¥ê¡¼¡¡¤³¤ì¤Þ¤Çµ¡Ç½¤¬Á´¤¯¤ï¤«¤Ã¤Æ¤¤¤Ê¤«¤Ã¤¿¤¬¡¢¤³¤Î¸¦µæ¤Ë¤è¤Ã¤ÆÌÀ³Î¤Ë¤Ê¤Ã¤¿¡£

Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants.¡¡¡¡¡¡Takenaka M, Zehrmann A, Verbitskiy D, Kugelmann M, Härtel B, Brennicke A.¡¡¡¡¡¡Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):5104-9. Epub 2012 Mar 12.¡¡¡¡¡¡PMID: 22411807

MORF9 Functions in Plastid RNA Editing with Tissue Specificity.¡¡¡¡¡¡Tian F, Yu J, Zhang Y, Xie Y, Wu B, Miao Y.¡¡¡¡¡¡Int J Mol Sci. 2019 Sep 19;20(18). pii: E4635. doi: 10.3390/ijms20184635.¡¡¡¡¡¡PMID: 31546885

MORF ¤¬¿¢Êª¤ÎÌȱֵ¡Ç½(¥µ¥ê¥Á¥ë»À´ØÏ¢¡©¡Ë¤Ë±Æ¶Á¤òÍ¿¤¨¤Æ¤¤¤ë¤³¤È¤¬¼¨¤µ¤ì¤¿¡£¡ÖNbMORF8, a negative regulator of plant immunity¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤ÈÍÕÎÐÂΤΤɤÁ¤é¤Ë¤â¶Éºß¤¹¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¸ºß¤·¤ä¤¹¤¤¤è¤¦¤Ë¤¹¤ë¤ÈÌȱֵ¡Ç½¤¬Äã²¼¤¹¤ë¡£ÍÕÎÐÂΤ˸ºß¤·¤ä¤¹¤¤¤è¤¦¤Ë¤¹¤ë¤ÈÌȱֵ¡Ç½¤¬¹â¤Þ¤ë¡£

Cytidine-to-Uridine RNA Editing Factor NbMORF8 Negatively Regulates Plant Immunity to Phytophthora Pathogens¡¡¡¡¡¡Yang Yang, Guangjin Fan, Yan Zhao, Qujiang Wen, Peng Wu, Yuling Meng, Weixing Shan¡¡¡¡¡¡¡¡¡¡¡¡Plant Physiol. 2020 Dec; 184(4): 2182–2198. Published online 2020 Sep 24. doi: 10.1104/pp.20.00458¡¡¡¡¡¡¡¡¡¡¡¡PMCID: PMC7723075

¥Ø¥à¡¢¥¯¥í¥í¥Õ¥£¥ë¡Ê¥Æ¥È¥é¥Ô¥í¡¼¥ëÎà¡Ë¤ÎÀ¸¹çÀ®¤ÏºÙ˦µ¡Ç½¤Î´ðÈפΰì¤Ä¤Ç¤¢¤ë¡£¿¢Êª¤Ç¤ÏÍÕÎÐÂΤǹԤï¤ì¤Æ¤¤¤ë¡£¤½¤ì¤Ë MORF ¤¬Æ¯¤¤¤Æ¤¤¤ë¤³¤È¤¬²òÌÀ¤µ¤ì¤¿¡£

Two chloroplast-localized MORF proteins act as chaperones to maintain tetrapyrrole biosynthesis.¡¡¡¡¡¡Yuan J, Ma T, Ji S, Hedtke B, Grimm B, Lin R. New Phytol. 2022 May 26. doi: 10.1111/nph.18273. Online ahead of print. PMID: 35615903

MORFs ¤Ï¥Á¥ª¥ì¥É¥­¥·¥ó¤ÇÀ©¸æ¤µ¤ì¤Æ¤¤¤ë

Current Insights into the Redox Regulation Network in Plant Chloroplasts¡¡¡¡¡¡Keisuke Yoshida, Toru Hisabori

¤³¤ÎÏÀʸ¤Î Fig. 3 ¤Ë¡¢¥Á¥ª¥ì¥É¥­¥·¥ó¤Ë¤è¤Ã¤ÆÀ©¸æ¤µ¤ì¤ë°ø»Ò¤Î°ì¤Ä¤È¤·¤Æ MORFs ¤¬µ­ºÜ¤µ¤ì¤Æ¤¤¤ë¡£

¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Ë¥³¡¼¥É¤µ¤ì¤¿ ND4 ¤òÇ˲õ¤·¤¿¥¯¥é¥ß¥É¥â¥Ê¥¹

¿¢Êª¼ï
Chlamydomonas
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡¿Í°ÙŪ¤Ê¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à°äÅÁ»Ò¤ÎÃÖ¤­´¹¤¨¡¡¡¡¡¡¹âÅù¿¢Êª¡¢Æ°Êª¤Ç¤Ï¤Ç¤­¤Ê¤¤¤¬¡¢¥¯¥é¥ß¥É¥â¥Ê¥¹¤Ç¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Î¿Í°ÙŪ¤ÊÀß·×Ä̤ê¤Î²þÊѤ¬¤Ç¤­¤ë¡£
ÍÞÀ©¤·¤¿°äÅÁ»Ò--
¡¡ND4¡¡¡Ê¿¢Êª¤ÎNAD4¡Ë

Reconstruction of a human mitochondrial complex I mutation in the unicellular green alga Chlamydomonas.¡¡¡¡¡¡Larosa V, Coosemans N, Motte P, Bonnefoy N, Remacle C.¡¡¡¡¡¡Plant J. 2012 Jun;70(5):759-68. doi: 10.1111/j.1365-313X.2012.04912.x. Epub 2012 Mar 8.¡¡¡¡¡¡PMID: 22268373

¥¯¥é¥ß¥É¥â¥Ê¥¹¤Î¥ß¥È¥³¥ó¥É¥ê¥¢´ØÏ¢ÊÑ°ÛÂΤÎÁíÀâ

Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.¡¡¡¡¡¡Salinas T, Larosa V, Cardol P, Marechal-Drouard L, Remacle C.¡¡¡¡¡¡Biochimie. 2014 May;100:207-18. doi: 10.1016/j.biochi.2013.10.006. Epub 2013 Oct 15. Review.¡¡¡¡¡¡PMID: 24139906

SIZ1

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡SIZ1 ¤Ï¡¢¹ÚÊì¤Ë¤ª¤¤¤Æ SUMO °ø»Ò¤ËÂФ¹¤ë E3 ligase¡¡¤È¤·¤Æ¸«¤¤¤À¤µ¤ì¤¿¡£¤½¤Î¸å¡¢¿¢Êª¤Ç¤â¥ê¥ó·ç˳¡¢Äã²¹±þÅú¡¢¥µ¥ê¥Á¥ë»À±þÅú¡¢²ÖÀ®»þ´ü¡¢ABI5 ¤ÎÀ©¸æ¡¢²á¾ê¤ÊƼ¤Ø¤Î±þÅú¤Ê¤É¤Î¿ÍͤʱþÅú¤Ë´Ø¤ï¤Ã¤Æ¤¤¤ë¤³¤È¤¬¼¡¡¹¤È¸«¤¤¤À¤µ¤ì¤Ä¤Ä¤¢¤ë¡£AtSIZ1 ¤òÉԳ貽¤µ¤»¤ë¤È¡¢¥¢¥ó¥È¥·¥¢¥Ë¥ó¤ÎÃßÀѤä¼çº¬¤ÎÀ®Ä¹ÍÞÀ©¤Ê¤É¤Î¥ê¥ó»Àµ²²î¾õÂÖ¤Îɽ¸½·¿¤ò¼¨¤¹¤³¤È¤¬Êó¹ð¤µ¤ì¤Æ¤¤¤ë¡£

¥µ¥ê¥Á¥ë»À¤È¤Î´ØÏ¢¡§¡¡SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced ROS accumulation in Arabidopsis.¡¡¡¡¡¡Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y.¡¡¡¡¡¡Plant J. 2012 Sep 11. doi: 10.1111/tpj.12014. [Epub ahead of print]¡¡¡¡¡¡PMID: 2296367

ÊÑ°Û°äÅÁ»Ò--
¡¡SIZ1¡¡

Arabidopsis SIZ1 positively regulates alternative respiratory bypass pathways.¡¡¡¡¡¡Park BS, Kim SI, Song JT, Seo HS.¡¡¡¡¡¡BMB Rep. 2012 Jun;45(6):342-7.¡¡¡¡¡¡PMID: 2273221

SIZ1 ¤Î¿·¤·¤¤µ¡Ç½¤È¤·¤Æ¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎÂåÂØ¥ª¥­¥·¥À¡¼¥¼°äÅÁ»Ò¤Îȯ¸½Ä´À᤬¸«¤¤¤À¤µ¤ì¤¿¡£¤½¤ì¤ÏSIZ1 ¤Ë¤è¤ëúÁÇ¡¢ÃâÁÇÂå¼Õ¤ÎÊѲ½¤ò¼ç¤Ê¸¶°ø¤È¤·¤¿´ÖÀÜŪ¤Ê¤â¤Î¤é¤·¤¤¡£C/N ¥Ð¥é¥ó¥¹¤ÏÈó¾ï¤Ë½ÅÍפǡ¢ÂåÂØ¥ª¥­¥·¥À¡¼¥¼°äÅÁ»Ò¤Ï¤½¤ì¤Î¥¢¥ó¥Ð¥é¥ó¥¹¤Ë¤è¤êµ¯¤­¤ë¾õÂÖÊѲ½¤Ë¤è¤ë¥À¥á¡¼¥¸¤ò²óÈò¤¹¤ë¤¿¤á¤ËƯ¤¤¤Æ¤¤¤ë¤é¤·¤¤¡£

Alternative Oxidase Is Positive for Plant Performance.¡¡¡¡¡¡Selinski J, Scheibe R, Day DA, Whelan J.¡¡¡¡¡¡Trends Plant Sci. 2018 Apr 14. pii: S1360-1385(18)30080-3. doi: 10.1016/j.tplants.2018.03.012. [Epub ahead of print] Review.¡¡¡¡¡¡PMID: 29665989

¥ß¥È¥³¥ó¥É¥ê¥¢´ØÏ¢ÊÑ°ÛÂΤǤϥߥȥ³¥ó¥É¥ê¥¢¤ÎÂåÂØ¥ª¥­¥·¥À¡¼¥¼°äÅÁ»Ò¤Îȯ¸½¤¬ÊѲ½¤¹¤ë¤³¤È¤¬¤È¤Æ¤â¿¤¤¡£¤â¤·¤«¤·¤¿¤é¤½¤ì¤é¤â¡¢ÃºÁÇ¡¢ÃâÁÇÂå¼Õ¤ÎÊѲ½¤ò¼ç¤Ê¸¶°ø¤È¤·¤¿´ÖÀÜŪ¤Ê»ÅÁȤߤÇÊѲ½¤¬µ¯¤­¤Æ¤¤¤ë¤³¤È¤¬¤¢¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

¿¢Êª¤Î¾ì¹ç¡¢ÃºÁÇ/ÃâÁǡʾ˻À¥¤¥ª¥ó¤Î¾ì¹ç¡ËÈæΨ¤Ï¡¢NADH/NAD+¡¡¤ÎÈæΨ¤È¤·¤Æɽ¸½¤µ¤ì¤¦¤ë²ÄǽÀ­¤¬¤¢¤ë¡£Åü¤¬²òÅü·Ï¤ÇÂå¼Õ¤µ¤ì¤ë¤ÈNADH ¤¬Áý¤¨¤ë¡£¾Ë»À¥¤¥ª¥ó¤¬ NR ¤ÇƱ²½¤µ¤ì¤ëºÝ¤ËNADH ¤¬¾ÃÈñ¤µ¤ì¤ë¡£¤·¤«¤·¤½¤ì¤¬ºÙ˦Æâ¤Ç½ÅÍפʰø»Ò¤È¤·¤ÆƯ¤¤¤Æ¤¤¤ë¤³¤È¤ò³Î¤«¤Ê¾Úµò¤Ç¼¨¤¹¤Î¤ÏÆñ¤·¤¤¡£

Alternative oxidase ¤Îȯ¸½À©¸æ¤Ë¤Ä¤¤¤Æ¤Ï¡¢°Ê²¼¤Î¤è¤¦¤ÊÏÀʸ¤¬¤¢¤ë¡£¡¡¡¡¡¡The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of ALTERNATIVE OXIDASE1a.¡¡¡¡¡¡Giraud E, Van Aken O, Ho LH, Whelan J.¡¡¡¡¡¡Plant Physiol. 2009 Jul;150(3):1286-96. Epub 2009 May 29.¡¡¡¡¡¡PMID: 19482916¡¡¡¡¡¡Fig.6 ¤Ç¤Ï¡¢ABI4 ¤¬ AOX1a ¤Îȯ¸½¤ò¡¢LHCB ¤ÈƱ»þ¤ËÍÞ¤¨¤ë¤è¤¦¤Ë½ñ¤¤¤Æ¤¢¤ë¡£¤·¤«¤·¸ø³«¤µ¤ì¤Æ¤¤¤ë¥Þ¥¤¥¯¥í¥¢¥ì¥¤¼Â¸³¥Ç¡¼¥¿¤Ç¤Ï¡¢¥×¥é¥¹¥Á¥É¥·¥°¥Ê¥ë¤òÍ¿¤¨¤ë½èÍý¤ò¤¹¤ë¤È¡ÊGUN1, ABI4 ¤¬Æ¯¤¯¡ËLHCB ¤Ï¤è¤¯ÃΤé¤ì¤Æ¤¤¤ë¤è¤¦¤Ëȯ¸½ÍÞÀ©¤µ¤ì¤ë¡Ê¤³¤Î¾ì¹ç ABI4 ¤Ï¥ê¥×¥ì¥Ã¥µ¡¼¡Ë¤¬¡¢AOX1a ¤ÏµÕ¤Ëȯ¸½Í¶Æ³¤µ¤ì¤Æ¤¤¤ë¡£¥×¥é¥¹¥Á¥É¥·¥°¥Ê¥ë¤Ç¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢°Û¾ï¥·¥°¥Ê¥ë¤È°Û¤Ê¤ëÀ©¸æ¤ò¼õ¤±¤ë¤³¤È¤Ë¤Ê¤ë¡£

ÃâÁÇ·ç˳¤Ë¤è¤ëÃâÁÇÂå¼Õ¤ÎÊѲ½¤È¡¢ABI4 ¤Ë´Ø·¸¤¬¤¢¤ë¤³¤È¤Ï¾¤ÎÏÀʸ¤Ç¤â¼¨¤µ¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency.¡¡¡¡¡¡Yang Y, Yu X, Song L, An C.¡¡¡¡¡¡Plant Physiol. 2011 Jun;156(2):873-83. Epub 2011 Apr 22.¡¡¡¡¡¡PMID: 21515696¡¡¡¡¡¡

ÃâÁÇ·ç˳¤Ï¡¢C/N ¥Ð¥é¥ó¥¹¤È¤¤¤¦´ÑÅÀ¤«¤é¸«¤ë¤È¡ÖúÁDzá¾ê¡×¤È¹Í¤¨¤ë¤³¤È¤¬¤Ç¤­¤ë¡£ÃºÁDzá¾ê¤Ï¡¢Åü¥·¥°¥Ê¥ë¤òͶȯ¤¹¤ë¡£Åü¥·¥°¥Ê¥ë¤È ABI4 ¤Ë¿¼¤¤´Ø·¸¤¬¤¢¤ë¤³¤È¤Ï³ÎΩ¤µ¤ì¤Æ¤¤¤ë¡£

Ammonium-mediated reduction in salicylic acid content and recovery of plant growth in Arabidopsis siz1 mutants is modulated by NDR1 and NPR1. ¡¡¡¡¡¡Kim JY, Song JT, Seo HS.¡¡¡¡¡¡Plant Signal Behav. 2021 May 14:1928819. ¡¡¡¡doi:10.1080/15592324.2021.1928819. ¡¡¡¡¡¡PMID: 33989128

RAD52-like single-stranded DNA binding protein

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡
ÊÑ°Û°äÅÁ»Ò--
¡¡¡¡

A RAD52-like single-stranded DNA binding protein affects mitochondrial DNA repair by recombination.¡¡¡¡¡¡Janicka S, Kühn K, Le Ret M, Bonnard G, Imbault P, Augustyniak H, Gualberto JM.¡¡¡¡¡¡Plant J. 2012 Jul 4. doi: 10.1111/j.1365-313X.2012.05097.x. ¡¡¡¡¡¡PMID: 22762281

¤³¤ì¤â PPR ¥¿¥ó¥Ñ¥¯¼Á

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡
ÊÑ°Û°äÅÁ»Ò--
¡¡¡¡

An Essential Pentatricopeptide Repeat Protein Facilitates 5¡Ç Maturation and Translation Initiation of rps3 mRNA in Maize Mitochondria.¡¡¡¡¡¡Manavski N, Guyon V, Meurer J, Wienand U, Brettschneider R.¡¡¡¡¡¡Plant Cell. 2012 Jul 6. ¡¡¡¡¡¡PMID: 22773745

MPR25

¿¢Êª¼ï
Oryza sativa
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡Tos17 ¤Ë¤è¤ëÁÞÆþÊÑ°ÛÂΡ¡
ÊÑ°Û°äÅÁ»Ò--PPR protein ¤Î°ì¼ï MPR25
¡¡Íդ理¬Çö¤¯¤Ê¤ë¡¡À¸°é¤¬°­¤¯¤Ê¤ë¡¡NAD5 mRNA ¤Î editing ¤¬ÊѲ½

Âè52²ó¿¢ÊªÀ¸Íý³Ø²ñÍ׻ݽ¸¡¡3pH03 ¸ÍÅÄÇî»Î¤é¤Î¥°¥ë¡¼¥×

Rice MPR25 encodes a pentatricopeptide repeat protein and is essential for RNA editing of nad5 transcripts in mitochondria.¡¡¡¡¡¡Toda T, Fujii S, Noguchi K, Kazama T, Toriyama K.¡¡¡¡¡¡Plant J. 2012 Jul 2. doi: 10.1111/j.1365-313X.2012.05091.x. ¡¡¡¡¡¡PMID: 22747551

¥ß¥È¥³¥ó¥É¥ê¥¢¶Éºß·¿ alkaline/neutral invertase isoform (A/N-InvC)

ÊÑ°Û°äÅÁ»Ò--At g¡¡¡¡¡¡
¡¡

A mitochondrial alkaline/neutral invertase isoform (A/N-InvC) functions in developmental energy-demanding processes in Arabidopsis.¡¡¡¡¡¡Martin ML, Lechner L, Zabaleta EJ, Salerno GL.¡¡¡¡¡¡Planta. 2012 Nov 8.¡¡¡¡¡¡PMID: 23135328

The riddle of mitochondrial alkaline/neutral invertases: A novel Arabidopsis isoform mainly present in reproductive tissues and involved in root ROS production.¡¡¡¡¡¡Battaglia ME, Martin MV, Lechner L, Martinez-Noel GMA, Salerno GL.¡¡¡¡¡¡PLoS One. 2017 Sep 25;12(9):e0185286. doi: 10.1371/journal.pone.0185286¡¡¡¡¡¡PMID: 28945799

PNM1

ÊÑ°Û°äÅÁ»Ò--At g¡¡¡¡¡¡
¡¡

An Arabidopsis dual-localized pentatricopeptide repeat protein interacts with nuclear proteins involved in gene expression regulation.¡¡¡¡¡¡Hammani K, Gobert A, Hleibieh K, Choulier L, Small I, Giegé P.¡¡¡¡¡¡Plant Cell. 2011 Feb;23(2):730-40. Epub 2011 Feb 4.¡¡¡¡¡¡PMID: 21297037

¤³¤Î°ø»Ò¤Ï¡¢³Ë¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎξÊý¤Ë¶Éºß¤¹¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¥·¥°¥Ê¥ë¤ò³Ë¤ËÅÁ¤¨¤ë°ø»Ò¤Î°ì¤Ä¤È¤·¤ÆÃíÌܤµ¤ì¤Æ¤¤¤ë¡£¾å¤ÎÏÀʸ¤ÎÃø¼Ô¤é¤Ë¤è¤ë²òÀ⤬¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¥¿¥ó¥Ñ¥¯¼Á¤ò¥³¡¼¥É¤¹¤ë°äÅÁ»Ò¤Î¥×¥í¥â¡¼¥¿¡¼Éôʬ¤Ë¤Ï site II elements ¤È¤¤¤¦ÇÛÎ󤬹âÉÑÅ٤Ǹºß¤¹¤ë¡£¤½¤³¤Ë¤Ï TCP transcription factor ¤È¤¤¤¦¥¿¥¤¥×¤Îž¼Ì°ø»Ò¤¬ºîÍѤ¹¤ë¡£PNM1 ¤È TCP8 ¤¬·ë¹ç¤¹¤ë¤³¤È¤ÇÀ©¸æ¤µ¤ì¤ë¤È¤¤¤¦ÁÛÁü¿Þ¤¬ÉÁ¤«¤ì¤Æ¤¤¤ë¡£site II elements ¤ò¤â¤Ä¥ß¥È¥³¥ó¥É¥ê¥¢´ØÏ¢°äÅÁ»Ò¤Ë´Ø¤·¤Æ¤Ï¡¢PNM1 ¤¬½ÅÍפÊƯ¤­¤ò¤·¤Æ¤¤¤ë¤Î¤À¤í¤¦¡£

A PPR protein involved in regulating nuclear genes encoding mitochondrial proteins?¡¡¡¡¡¡Hammani K, Gobert A, Small I, Giegé P.¡¡¡¡¡¡Plant Signal Behav. 2011 May;6(5):748-50. Epub 2011 May 1.¡¡¡¡¡¡PMID: 21455023

Íý²½³Ø¸¦µæ½ê¤ÎßÀºê¡¢Kumar Çî»Î¤é¤Ë¤è¤Ã¤Æ TIM21, TIM50 ¤Î¸¦µæ¤¬¹Ô¤ï¤ì¤Æ¤¤¤ë¡£¤½¤ì¤é¤ÎÊÑ°Û¤¬ PMN1¥¿¥ó¥Ñ¥¯¼Á¤ÎÍ¢Á÷¤Ë±Æ¶Á¤òÍ¿¤¨¤ë²ÄǽÀ­¤â¹Í¤¨¤é¤ì¤ë¡£

¾¤Î PPR¥¿¥ó¥Ñ¥¯¼Á¤ä nuclear-encoded maturase ¤Ë¤â dual-localized ¤Ê¤â¤Î¤¬¤¢¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¤¬¡¢È¯¸½Î̤¬Ä㤫¤Ã¤¿¤ê¤·¤Æ¤½¤Î¤³¤È¤ò¼¨¤¹¤Î¤¬Æñ¤·¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

Organellar DNA polymerase IB mutants

ÊÑ°Û°äÅÁ»Ò--Organellar DNA polymerase IB
¡¡¡¡¡¡

Arabidopsis thaliana organellar DNA polymerase IB mutants exhibit reduced mtDNA levels with a decrease in mitochondrial area density.¡¡¡¡¡¡Cupp JD, Nielsen BL.¡¡¡¡¡¡Physiol Plant. 2012 Nov 21. doi: 10.1111/ppl.12009. [Epub ahead of print]¡¡¡¡¡¡PMID: 23167278

nonresponding to oxylipins (noxy) mutants

Defense Activated by 9-Lipoxygenase-Derived Oxylipins Requires Specific Mitochondrial Proteins.¡¡¡¡¡¡Vellosillo T, Aguilera V, Marcos R, Bartsch M, Vicente J, Cascón T, Hamberg M, Castresana C.¡¡¡¡¡¡Plant Physiol. 2013 Feb;161(2):617-627. Epub 2012 Dec 12.¡¡¡¡¡¡PMID: 23370715

¥ª¥­¥·¥ê¥Ô¥ó¡Ê»é¼Áʬ²òʪ¤Ç¡¢¥¨¥ê¥·¥¿¡¼Åª¤ÊƯ¤­¤ò¤¹¤ëʬ»Ò·²¡Ë¤Î¸¦µæ¤Î°ì´Ä¤È¤·¤Æ¡¢¡¡insensitive to the 9-LOX product 9-hydroxy-10,12,15-octadecatrienoic acid (9-HOT)¡¡ÊÑ°ÛÂΤò¿¿ôñΥ¤·¤Æ¤¤¤ë¡£ ¤½¤ì¤é¤Î¿¤¯¤Ï¡¢¥»¥ë¥í¡¼¥¹¹çÀ®Á˳²ºîÍѤò¼¨¤¹½üÁðºÞ¤Ç¤¢¤ë¥¤¥½¥­¥µ¥Ù¥ó´¶¼õÀ­¤¬Äã²¼¤·¤Æ¤¤¤¿¡£ noxy ÊÑ°ÛÂΤΤ¤¤¯¤Ä¤«¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤È´ØÏ¢¤¹¤ëÊÑ°Û¤òÊÝ»ý¤·¤Æ¤¤¤¿¡£ 9-HOT ¼«ÂΤ⡢¥ß¥È¥³¥ó¥É¥ê¥¢¤Î¶Å½¸¤ÈËìÅṲ̋ÎÄã²¼¤ò°ú¤­µ¯¤³¤·¤¿¡£

¥¤¥½¥­¥µ¥Ù¥ó´¶¼õÀ­¤ÎÄã²¼¤Ï¡¢»ä¤¬Ä´¤Ù¤Æ¤¤¤ë css1 ÊÑ°ÛÂΡ¡¡¡¤Ç¤â¸«¤é¤ì¤ë¡£

2021 ǯ¤Ë¤Ê¤Ã¤Æ¡¢noxy mutant ¤òÍѤ¤¤¿ÏÀʸ¤¬È¯É½¤µ¤ì¤¿¡£¤³¤ì¤Þ¤Ç¤è¤¯ÃΤé¤ì¤Æ¤¤¤ë¥ª¥­¥·¥ê¥Ô¥ó¤ÎºîÍѤȤϰۤʤ롢¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎÊ£¹çÂÎ III ¤¬´ØÍ¿¤¹¤ë¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤é¤Î³èÀ­»ÀÁÇ ROS À¸À®¤òÁý²Ã¤µ¤»¤ëºîÍѤ¬¼¨¤µ¤ì¤¿¡£

Front. Plant Sci., 29 July 2021 | https://doi.org/10.3389/fpls.2021.705373¡¡¡¡¡¡ Oxylipins From Different Pathways Trigger Mitochondrial Stress Signaling Through Respiratory Complex III

noxy38 = Clustered mitochondria protein homolog = FRIENDLY MITOCHONDRIA

non responding to oxylipins 38 At3g52140

Autophagy Contributes to the Quality Control of Leaf Mitochondria¡¡¡¡¡¡Plant Cell Physiol. 2021 May 11;62(2):229-247. doi: 10.1093/pcp/pcaa162.¡¡¡¡¡¡Sakuya Nakamura ¤Ê¤É¡¡¡¡¡¡PMID: 33355344 PMCID: PMC8112837

WRKY15

AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis.¡¡¡¡¡¡Vanderauwera S, Vandenbroucke K, Inzé A, van de Cotte B, Mühlenbock P, De Rycke R, Naouar N, Van Gaever T, Van Montagu MC, Van Breusegem F.¡¡¡¡¡¡Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20113-8. doi: 10.1073/pnas.1217516109. Epub 2012 Nov 19.¡¡¡¡¡¡PMID: 23169634

WRKY °ø»Ò¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Î´ØÏ¢¤ò¼¨¤·¤¿ÏÀʸ¤Ï¡¢Â¾¤Ë¤â¤¢¤ë¡£

AtWRKY40 and AtWRKY63 modulate the expression of stress responsive nuclear genes encoding mitochondrial and chloroplast proteins.¡¡¡¡¡¡Van Aken O, Zhang B, Law S, Narsai R, Whelan J.¡¡¡¡¡¡Plant Physiol. 2013 Mar 18. PMID: 23509177

RNA PROCESSING FACTOR 5

RNA PROCESSING FACTOR 5 is required for efficient 5¡ì cleavage at a processing site conserved in RNAs of three different mitochondrial genes in Arabidopsis thaliana¡¡¡¡¡¡Aron Hauler, Christian Jonietz, Birgit Stoll, Katrin Stoll, Hans¡¾Peter Braun and Stefan Binder¡¡¡¡¡¡Accepted manuscript online: 8 FEB 2013 07:41AM EST | DOI: 10.1111/tpj.12143

LETM proteins

LETM proteins play a role in the accumulation of mitochondrially encoded proteins in Arabidopsis thaliana and AtLETM2 displays parent of origin effects.¡¡¡¡¡¡Zhang B, Carrie C, Ivanova A, Narsai R, Murcha MW, Duncan O, Wang Y, Law SR, Albrecht V, Pogson B, Giraud E, Van Aken O, Whelan J.¡¡¡¡¡¡J Biol Chem. 2012 Dec 7;287(50):41757-73. doi: 10.1074/jbc.M112.383836. Epub 2012 Oct 5.¡¡¡¡¡¡PMID: 23043101

Mitochondrial transporter

Arabidopsis A BOUT DE SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient CO2 levels Marion Eisenhut, Severine Planchais, Cecile Cabassa, Anne Guivarc'h, Anne¡¾Marie Justin, Ludivine Taconnat, Jean¡¾Pierre Renou, Marc Linka, David Gagneul, Stefan Timm, Hermann Bauwe, Pierre Carol and Andreas P.M. Weber Article first published online: 12 FEB 2013 | DOI: 10.1111/tpj.12082

PPR protein

The E domains of pentatricopeptide repeat proteins from different organelles are not functionally equivalent for RNA editing¡¡¡¡¡¡Anne¡¾Laure Chateigner¡¾Boutin, Catherine Colas des Francs¡¾Small, Sota Fujii, Kenji Okuda, Sandra K. Tanz and Ian Small¡¡¡¡¡¡Accepted manuscript online: 23 MAR 2013 03:07AM EST | DOI: 10.1111/tpj.12180 (http://onlinelibrary.wiley.com/doi/10.1111/tpj.12180/abstract)

mCSF1

mCSF1, a nucleus-encoded CRM protein required for the processing of many mitochondrial introns, is involved in the biogenesis of respiratory complexes I and IV in Arabidopsis.¡¡¡¡¡¡Zmudjak M, Colas des Francs-Small C, Keren I, Shaya F, Belausov E, Small I, Ostersetzer-Biran O.¡¡¡¡¡¡New Phytol. 2013 May 7. doi: 10.1111/nph.12282. [Epub ahead of print]¡¡¡¡¡¡PMID: 23646912

MTSF1, 2, 3, 4

The MITOCHONDRIAL TRANSCRIPT STABILITY FACTOR 4 (MTSF4) is essential for the accumulation of dicistronic rpl5-cob mRNAs in Arabidopsis thaliana.¡¡¡¡¡¡Jung L, Schleicher S, Alsaied Taha F, Takenaka M, Binder S.¡¡¡¡¡¡Plant J. 2022 Dec 5. doi: 10.1111/tpj.16053. Online ahead of print.¡¡¡¡¡¡PMID: 36468791

The pentatricopeptide repeat MTSF1 protein stabilizes the nad4 mRNA in Arabidopsis mitochondria.¡¡¡¡¡¡Haili N, Arnal N, Quadrado M, Amiar S, Tcherkez G, Dahan J, Briozzo P, Colas des Francs-Small C, Vrielynck N, Mireau H.¡¡¡¡¡¡Nucleic Acids Res. 2013 May 8. [Epub ahead of print]¡¡¡¡¡¡PMID: 23658225

''The pentatricopeptide repeat protein MTSF2 stabilizes a nad1 precursor transcript and defines the 3' end of its 5'-half intron.''¡¡¡¡¡¡Wang C, Aube F, Planchard N, Quadrado M, Dargel-Graffin C, Nogue F, Mireau H.¡¡¡¡¡¡Nucleic Acids Res. 2017 Mar 8. doi: 10.1093/nar/gkx162. [Epub ahead of print]¡¡¡¡¡¡PMID: 28334831

Pentatricopeptide repeat protein MTSF3 ensures mitochondrial RNA stability and embryogenesis.¡¡¡¡¡¡Wang C¡¡¤Ê¤É¡¡¡¡¡¡Plant Physiol. 2022 Jun 25:kiac309. doi: 10.1093/plphys/kiac309. Online ahead of print.¡¡PMID: 35751603

RPS9M, RPS10¡¡¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¤ª¤±¤ë¥¿¥ó¥Ñ¥¯¼Á¹çÀ®

RPS9M, a Mitochondrial Ribosomal Protein, Is Essential for Central Cell Maturation and Endosperm Development in Arabidopsis.¡¡¡¡¡¡Lu C, Yu F, Tian L, Huang X, Tan H, Xie Z, Hao X, Li D, Luan S, Chen L.¡¡¡¡¡¡Front Plant Sci. 2017 Dec 22;8:2171. doi: 10.3389/fpls.2017.02171. eCollection 2017.¡¡¡¡¡¡PMID: 29312411

Silencing of the Nuclear RPS10 Gene Encoding Mitochondrial Ribosomal Protein Alters Translation in Arabidopsis Mitochondria.¡¡¡¡¡¡Kwasniak M, Majewski P, Skibior R, Adamowicz A, Czarna M, Sliwinska E, Janska H.¡¡¡¡¡¡Plant Cell. 2013 May 30. ¡¡¡¡¡¡PMID: 23723321

Deficiency of mitoribosomal S10 protein affects translation and splicing in Arabidopsis mitochondria.¡¡¡¡¡¡Kwasniak-Owczarek M, Kazmierczak U, Tomal A, Mackiewicz P, Janska H.¡¡¡¡¡¡Nucleic Acids Res. 2019 Nov 16. pii: gkz1069. doi: 10.1093/nar/gkz1069.¡¡¡¡¡¡PMID: 31732734

¥ß¥È¥³¥ó¥É¥ê¥¢¡¢¥×¥é¥¹¥Á¥É¤Ë¤ÏÆȼ«¤Îž¼Ì¡¢ËÝÌõ·Ï¤¬¤¢¤ë¡£¤½¤ì¤é¤ò¹½À®¤¹¤ëʬ»Ò¤ò¥³¡¼¥É¤¹¤ë°äÅÁ»Ò¤Î¿¤¯¤Ï³Æ¥²¥Î¥à¤Ë¥³¡¼¥É¤µ¤ì¤Æ¤¤¤ë¡£ ¥ª¥ë¥¬¥Í¥é¤Ë¤ª¤±¤ë¥¿¥ó¥Ñ¥¯¼Á¹çÀ®¤Î½ÅÍ×À­¤¬ÌÀ¤é¤«¤Ë¤µ¤ì¤Æ¤­¤Æ¤¤¤ë¡£¡¡¡¡¡¡

Emerging Roles of Mitochondrial Ribosomal Proteins in Plant Development.¡¡¡¡¡¡Robles P, Quesada V.¡¡¡¡¡¡Int J Mol Sci. 2017 Dec 2;18(12). pii: E2595. doi: 10.3390/ijms18122595. Review.¡¡¡¡¡¡PMID: 29207474

ProRS1

¿¢Êª¼ï
Arabidopsis thaliana
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¡¡photosynthesis altered mutant ¡¡ÎÐÍդǡ¢¸÷²½³Ø·ÏII¤Î effective quantum yield ¤¬ÊѲ½¤¹¤ë¤³¤È¤Ç¸«¤Ä¤±¤é¤ì¤¿
ÊÑ°Û°äÅÁ»Ò--At5g52520 prolyl-tRNA synthetase
¡¡¤³¤Î¥¿¥ó¥Ñ¥¯¼Á¤Ï¡¢¥¯¥í¥í¥×¥é¥¹¥È¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎξÊý¤ÇƯ¤¯¡£

¥×¥é¥¹¥Á¥É¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Î¥¿¥ó¥Ñ¥¯¼Á¹çÀ®Á˳²¤Ë¤è¤Ã¤Æ¡¢LHCB1 Åù¤Îȯ¸½Î̤¬Äã²¼¤¹¤ë¡£¤³¤Î¸ú²Ì¤Ï¥×¥é¥¹¥Á¥É¥·¥°¥Ê¥ë¤È¸Æ¤Ð¤ì¡¢Norflurazon ¤ä Lincomycin Åù¤ÎÅêÍ¿¤Çµ¯¤­¤ë¤â¤Î¤¬¤è¤¯¸¦µæ¤µ¤ì¤Æ¤¤¤ë¡£

MRPL11¡¢PRPL11

ÊÑ°Û°äÅÁ»Ò--At4g35490¡¢At1g32990
¡¡¤½¤ì¤¾¤ì¤Î¥ª¥ë¥¬¥Í¥é¤Î¥ê¥Ü¥½¡¼¥à¥¿¥ó¥Ñ¥¯¼Á¡¡L11

ProRS1 ¤ò¸«¤Ä¤±¤¿¥°¥ë¡¼¥×¤Ï¡¢¤µ¤é¤Ë¤½¤Î·ë²Ì¤«¤é¥ª¥ë¥¬¥Í¥é¤Ç¤Î¥¿¥ó¥Ñ¥¯¼Á¹çÀ®Á˳²¤ËÃíÌܤ·¤¿¡£T-DNA INSERTION¡¡ÊÑ°ÛÂΥ饤¥Ö¥é¥ê¡¼¤«¤é¡¢mrpl11 ¤òÁª¤Ó½Ð¤·¤¿¡£¤³¤ÎÊÑ°ÛÂΤǤϡ¢¸÷¹çÀ®¤Ë´Ø¤¹¤ëÊѲ½¤Ïµ¯¤­¤Æ¤¤¤Ê¤«¤Ã¤¿¡£¥×¥é¥¹¥Á¥É¶Éºß¤Î counterpart ¤Ç¤¢¤ë prpl11 ¤âÁª¤Ó½Ð¤·¤¿¡£

¤³¤ì¤é¤ÎÊÑ°ÛÂΤǡ¢LHCB1Åù¤Îȯ¸½¤òÄ´¤Ù¤¿¡£mprl11 ¤Ç¤â¡¢°ìÉô¤Î¸÷¹çÀ®°äÅÁ»Ò¡ÊLHCB1.2¡Ë¤Îȯ¸½¤¬Äã²¼¤·¤Æ¤¤¤¿¤¬¡¢±Æ¶Á¤¬¤Ê¤¤¤â¤Î¤ÎÊý¤¬Â¿¤«¤Ã¤¿¡£prpl11 ñÆȤǤ⡢mrpl11 ¤è¤ê¸ú¤¯¤¬¡¢±Æ¶Á¤¬¤Ê¤¤¤â¤Î¤¬¤¤¤¯¤Ä¤«¤¢¤Ã¤¿¡£Æó½ÅÊѰۤǤϡ¢¤Û¤È¤ó¤É¤Î¸÷¹çÀ®°äÅÁ»Ò¤Îȯ¸½¤¬Â礭¤¯Äã²¼¤·¤¿¡£¤³¤ì¤é¤ÎÊѲ½¤Ï¡¢³èÀ­»ÀÁDZþÅúÀ­°äÅÁ»Ò¤ÎÊѲ½¤ÈÁê´Ø¤¬¤Ê¤«¤Ã¤¿¡£

Nuclear photosynthetic gene expression is synergistically modulated by rates of protein synthesis in chloroplasts and mitochondria.¡¡¡¡¡¡Pesaresi P, Masiero S, Eubel H, Braun HP, Bhushan S, Glaser E, Salamini F, Leister D.¡¡¡¡¡¡Plant Cell. 2006 Apr;18(4):970-91. Epub 2006 Mar 3.¡¡¡¡¡¡PMID: 16517761

mprl1

Mol Cell. 2017 Nov 2;68(3):540-551.e5. doi: 10.1016/j.molcel.2017.10.006.¡¡¡¡¡¡Systems Phytohormone Responses to Mitochondrial Proteotoxic Stress¡¡¡¡¡¡Xu Wang, Johan Auwerx¡¡¡¡¡¡PMID: 29100054 DOI: 10.1016/j.molcel.2017.10.006

¤³¤ÎÏÀʸ¤Ç¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Î¥¿¥ó¥Ñ¥¯¼Á¹çÀ®¤òÁ˳²¤¹¤ë¤³¤È¤Ë¤è¤ëÍÍ¡¹¤ÊÊѲ½¤òʬÀϤ·¤Æ¤¤¤ë¡£Á˳²ºÞ¤È¤·¤Æ Doxycycline (Dox) ¤òÍѤ¤¤Æ¤¤¤ë¡£ÊÑ°ÛÂΤȤ·¤Æ mprl1 (AT2g42710)¡¡¤òÍѤ¤¤Æ¤¤¤ë¡£RNA-seq ¥Ç¡¼¥¿¤¬ GSE78862 ¤È¤·¤Æ¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£

DYW-protein

A DYW¡¾protein knockout in Physcomitrella affects two closely spaced mitochondrial editing sites and causes a severe developmental phenotype Mareike Rüdinger, Peter Kindgren, Anja Zehrmann, Ian Small and Volker Knoop Accepted manuscript online: 5 AUG 2013 01:23AM EST | DOI: 10.1111/tpj.12304 (http://onlinelibrary.wiley.com/doi/10.1111/tpj.12304/abstract)

AtPAM16

Mitochondrial AtPAM16 is required for plant survival and the negative regulation of plant immunity.¡¡¡¡¡¡Huang Y, Chen X, Liu Y, Roth C, Copeland C, Mcarlane HE, Huang S, Lipka V, Wiermer M, Li X.¡¡¡¡¡¡Nat Commun. 2013 Oct 24;4:2558. doi: 10.1038/ncomms3558.¡¡¡¡¡¡PMID: 24153405

INDH1

The Evolutionarily Conserved Iron-Sulfur Protein INDH1 Is Required for Complex I Assembly and Mitochondrial Translation in Arabidopsis.¡¡¡¡¡¡Wydro MM, Sharma P, Foster JM, Bych K, Meyer EH, Balk J.¡¡¡¡¡¡Plant Cell. 2013 Oct 31. PMID: 24179128

Mitochondrial DnaJ/Hsp40 family protein BIL2 ( At2g42080 )

A novel mitochondrial DnaJ/Hsp40 family protein BIL2 promotes plant growth and resistance against environmental stress in brassinosteroid signaling.¡¡¡¡¡¡Bekh-Ochir D, Shimada S, Yamagami A, Kanda S, Ogawa K, Nakazawa M, Matsui M, Sakuta M, Osada H, Asami T, Nakano T.¡¡¡¡¡¡Planta. 2013 Jun;237(6):1509-25.¡¡¡¡¡¡PMID: 23494613

¥Ö¥é¥·¥Î¥é¥¤¥É¡¡BR ¤ÏºÙ˦ɽÌ̤Υ쥻¥×¥¿¡¼ BRI1 ¤Ç¼õÍƤµ¤ì¤ë¡£¤½¤Î¸å¤¤¤¯¤Ä¤«¤Î¥¿¥ó¥Ñ¥¯¼Á¥ê¥ó»À²½¡¦Ã¦¥ê¥ó»À²½¹ÚÁǤò²ð¤·¤Æž¼Ì°ø»Ò¤ÎƯ¤­¤òÀ©¸æ¤¹¤ë¡£ ºÙ˦ɽÌÌ¡¢ºÙ˦¼Á¡¢³Ë¤È¤¤¤¦·ÐÏ©¤Ï¤è¤¯²òÌÀ¤µ¤ì¤¿¤¬¡¢Â¾¤Î¥ª¥ë¥¬¥Í¥é¤Î´ØÍ¿¤ÏÄ´¤Ù¤é¤ì¤Æ¤¤¤Ê¤«¤Ã¤¿¡£

BIL2 ¥¿¥ó¥Ñ¥¯¼Á (At2g42080) ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤¹¤ë DnaJ/Hsp40 ¥Õ¥¡¥ß¥ê¡¼¤Î¥¿¥ó¥Ñ¥¯¼Á¤Ç¡¢¤³¤Î¥¿¥ó¥Ñ¥¯¼Á¤Î²á¾êȯ¸½ÂΤϡ¢BR À¸¹çÀ®Á˳²ºÞ¤Ç¤¢¤ë¥Ö¥é¥·¥Ê¥¾¡¼¥ë¤Ë¤è¤ë°Å½ê²êÀ¸¤¨¤Î¿­Ä¹ÍÞÀ©¤òÂǤÁ¾Ã¤¹¡ÊFig 1a, Fig 3a, b¡Ë¡£½½Ê¬À®Ä¹¤·¤¿Ãʳ¬¤Ç¤â¡¢ÌîÀ¸·¿¤è¤ê¤â¼ç·Ô¤¬Ä¹¤¯Â¦»Þ¤â¿¤¯¤Ê¤ë (Fig 3d,e)¡£RNAi ¤Çȯ¸½¤òÍÞ¤¨¤ë¤ÈµÕ¤Î¸ú²Ì¤Ë¤Ê¤ë (Fig 4)¡£bri1 ÊÑ°ÛÂΤϾ®¤µ¤¯¤Ê¤ë¤¬¡¢bri1 ¤Ë BIL2 ¤ò²á¾êȯ¸½¤µ¤»¤ë¤È¤«¤Ê¤ê²óÉü¤¹¤ë (Fig 6)¡£

BIL2 ¥¿¥ó¥Ñ¥¯¼Á ¤¬¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤¹¤ë¤³¤È¤«¤é¡¢Ãø¼Ô¤é¤Ï ATP ¤ËÃíÌܤ·¤¿¡£BIL2 ²á¾êȯ¸½ÂΤǤÏÀ¸½ÅÎ̤¢¤¿¤ê¤Î ATP Î̤¬Áý²Ã¤·¤Æ¤¤¤¿ ¡ÊFig 9c)¡£BR ¤ÇÀ©¸æ¤µ¤ì¤ë°äÅÁ»Ò¤Ç¤¢¤ë TCH4, CPD ¤Î mRNAÎ̤ϡ¢²êÀ¸¤¨¤ò 250¦ÌM¤ÎATP¤Ç3»þ´Ö½èÍý¤¹¤ë¤³¤È¤Ç BR¥·¥°¥Ê¥ë¤ÈƱ¤¸Êý¸þ¤ØÊѲ½¤·¤¿ (Fig 9d, e)¡£ BIL2 ²á¾êȯ¸½ÂΤϡ¢±ö¥¹¥È¥ì¥¹¡¢¶¯¸÷¥¹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤Ã¤¿ (Fig. 10, 11)¡£

BAR ¤Î¥Ç¡¼¥¿¤Ë¤è¤ë¤È¡¢BIL2 °äÅÁ»Ò¤Îȯ¸½Î̤ϤĤͤ˰ìÄê¤Ë¶á¤¯¡¢BR ¤Ê¤É¤Î¥Û¥ë¥â¥ó¤ä¥¹¥È¥ì¥¹¤Ë¤è¤ëÊÑÆ°¤Ï¾®¤µ¤¤¡£

BR ¤ÏÍÕÎÐÂΤËÂФ·¤Æ¤âºîÍѤò¤·¤Æ¤¤¤ë¡£BR À¸¹çÀ®Á˳²ºÞ¤Ç¤¢¤ë¥Ö¥é¥·¥Ê¥¾¡¼¥ë¤Ï¡¢°Å½ê²êÀ¸¤¨¤ÎÍÕÎÐÂΤξõÂÖ¤òÌÀ½ê¤Ë¶á¤Å¤±¤ë¤³¤È¤¬ÃΤé¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡http://www.riken.jp/~/media/riken/outreach/ip/backissues/patent23.pdf

ÍÕÎÐÂΤ¬¸÷¹çÀ®¤òÀ¹¤ó¤Ë¹Ô¤¦¾ì¹ç¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Ï¸÷¸ÆµÛ¤ò¹Ô¤¦¤è¤¦¤ËÀÚ¤êÂؤï¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç ATP ¹çÀ®¤ò¹Ô¤¦É¬ÍפϤʤ¯¤Ê¤ë¡£¸÷¹çÀ®¤ò¹Ô¤ï¤Ê¤¤¾ì¹ç¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Ï TCA²óÏ©¤ÈÅÅ»ÒÅÁã·Ï¤Ë¤è¤ë ATP¹çÀ®¤ò¹Ô¤¦¤³¤È¤¬É¬Íפˤʤ롣

¥Ö¥é¥·¥Î¥é¥¤¥É ¤È¥ª¥ë¥¬¥Í¥é¤Îµ¡Ç½

	
Brassinolide promotes interaction between chloroplasts and mitochondria during the optimization of photosynthesis by the mitochondrial electron transport chain in mesophyll cell protoplasts of Arabidopsis thaliana.¡¡¡¡¡¡Mahati K, Padmasree K.¡¡¡¡¡¡Front Plant Sci. 2023 Apr 11;14:1099474. doi: 10.3389/fpls.2023.1099474. eCollection 2023.¡¡¡¡¡¡PMID: 37113597

¥ª¥ë¥¬¥Í¥é¤ÏñÆȤÇƯ¤¯¤À¤±¤Ç¤Ê¤¯¡¢Â¾¤Î¥ª¥ë¥¬¥Í¥é¤È¶¨ÎϤ·¤ÆƯ¤­¹âÅ٤ʵ¡Ç½¤òȯ´ø¤¹¤ë¤³¤È¤¬ÃíÌܤµ¤ì¤Æ¤¤¤ë¡£¥Ö¥é¥·¥Î¥é¥¤¥É¤¬ÍÕÎÐÂΤȥߥȥ³¥ó¥É¥ê¥¢¤ÎÁê¸ßºîÍѤòÂ¥¿Ê¤¹¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

Mitochondrial Mn-SOD ¤ÎÊÑ°Û

oiwa, a female gametophytic mutant impaired in a mitochondrial manganese-superoxide dismutase, reveals crucial roles for reactive oxygen species during embryo sac development and fertilization in Arabidopsis.¡¡¡¡¡¡Martin MV, Fiol DF, Sundaresan V, Zabaleta EJ, Pagnussat GC.¡¡¡¡¡¡Plant Cell. 2013 May;25(5):1573-91. doi: 10.1105/tpc.113.109306. Epub 2013 May 7.¡¡PMID: 23653473

¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇȯÀ¸¤¹¤ë³èÀ­»ÀÁǤνÅÍ×À­¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£

Decrease in Manganese Superoxide Dismutase Leads to Reduced Root Growth and Affects Tricarboxylic Acid Cycle Flux and Mitochondrial Redox Homeostasis¡¡¡¡¡¡Megan J. Morgan, Martin Lehmann, Markus Schwarzländer, Charles J. Baxter, Agata Sienkiewicz-Porzucek, Thomas C.R. Williams, Nicolas Schauer, Alisdair R. Fernie, Mark D. Fricker, R. George Ratcliffe, Lee J. Sweetlove, Iris Finkemeier¡¡¡¡¡¡ Plant Physiol. 2008 May; 147(1): 101–114. doi: 10.1104/pp.107.113613¡¡¡¡¡¡PMCID:¡¡PMC2330298

¥Þ¥ó¥¬¥ó·¿ Superoxide Dismutase (MnSOD) ¤Îȯ¸½¤òÍÞ¤¨¤Æ¤¤¤ë¡£

nMAT2

Analysis of the Roles of the Arabidopsis nMAT2 and PMH2 Proteins Provided with New Insights into the Regulation of Group II Intron Splicing in Land-Plant Mitochondria.¡¡¡¡¡¡Zmudjak M, Shevtsov S, Sultan LD, Keren I, Ostersetzer-Biran O.¡¡¡¡¡¡Int J Mol Sci. 2017 Nov 17;18(11). pii: E2428. doi: 10.3390/ijms18112428.¡¡¡¡¡¡PMID: 29149092

nMAT3(Arabidopsis)

nMAT3 is an essential maturase splicing factor required for holo-complex I biogenesis and embryo-development in Arabidopsis thaliana plants.¡¡¡¡¡¡Shevtsov-Tal S, Best C, Matan R, Aldrin Chandran S, Brown GG, Ostersetzer-Biran O. Plant J. 2021 Mar 8. doi: 10.1111/tpj.15225. Online ahead of print. PMID: 33683754

nMAT3 (Maize)

Nuclear-Encoded Maturase Protein 3 is Required for the Splicing of Various Group II Introns in Mitochondria during Maize (Zea mays L.) Seed Development.¡¡¡¡¡¡Chen W, Cui Y, Wang Z, Chen R, He C, Liu Y, Du X, Liu Y, Fu J, Wang G, Wang J, Gu R.¡¡¡¡¡¡Plant Cell Physiol. 2020 Dec 30:pcaa161. doi: 10.1093/pcp/pcaa161. ¡¡¡¡¡¡PMID: 33377894

nMAT4

nMAT4, a maturase factor required for nad1 pre-mRNA processing and maturation, is essential for holocomplex I biogenesis in Arabidopsis mitochondria.¡¡¡¡¡¡Cohen S, Zmudjak M, Colas des Francs-Small C, Malik S, Shaya F, Keren I, Belausov E, Many Y, Brown GG, Small I, Ostersetzer-Biran O.¡¡¡¡¡¡Plant J. 2014 Feb 8. doi: 10.1111/tpj.12466. PMID: 24506473

A restorer-of-fertility like pentatricopeptide repeat gene

A restorer-of-fertility like pentatricopeptide repeat gene directs ribonucleolytic processing within the coding sequence of rps3-rpl16 and orf240a mitochondrial transcripts in Arabidopsis thaliana.¡¡¡¡¡¡Arnal N, Quadrado M, Simon M, Mireau H.¡¡¡¡¡¡Plant J. 2014 Feb 7. doi: 10.1111/tpj.12463.¡¡¡¡¡¡PMID: 24506331

¤³¤ì¤â PPR °äÅÁ»Ò¤Î°ì¤Ä

FRIENDLY

FRIENDLY regulates mitochondrial distribution, fusion, and quality control in Arabidopsis.¡¡¡¡¡¡El Zawily AM, Schwarzlander M, Finkemeier I, Johnston IG, Benamar A, Cao Y, Gissot C, Meyer AJ, Wilson K, Datla R, Macherel D, Jones NS, Logan DC.¡¡¡¡¡¡Plant Physiol. 2014 Aug 27. pii: pp.114.243824. [Epub ahead of print]¡¡¡¡¡¡PMID: 25165398

FRIENDLY (FMT) is an RNA binding protein associated with cytosolic ribosomes at the mitochondrial surface¡¡Plant J. 2022

RNA Processing Factor 7 and Polynucleotide Phosphorylase

RNA Processing Factor 7 and Polynucleotide Phosphorylase Are Necessary for Processing and Stability of nad2 mRNA in Arabidopsis Mitochondria.¡¡¡¡¡¡Stoll B, Zendler D, Binder S.¡¡¡¡¡¡RNA Biol. 2014 Jul 29;11(7). [Epub ahead of print] ¡¡¡¡¡¡PMID: 25181358

MicroRNA400 ¤È PPR °äÅÁ»Ò

MicroRNA400-Guided Cleavage of Pentatricopeptide Repeat Protein mRNAs Renders Arabidopsis thaliana More Susceptible to Pathogenic Bacteria and Fungi¡¡¡¡¡¡Young Ju Park, Hwa Jung Lee, Kyung Jin Kwak, Kwanuk Lee, Suk Whan Hong and Hunseung Kang¡¡¡¡¡¡ Plant Cell Physiol. 2014 55: 1660-1668¡¡¡¡¡¡ http://pcp.oxfordjournals.org/content/55/9/1660.abstract?etoc¡¡¡¡¡¡

MicroRNA400 ¤Ï PPR °äÅÁ»Ò¡¡At1g62720, At1g06580 ¤òÀ©¸æ¤¹¤ë¡£¤³¤ì¤é¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Þ¤¿¤Ï¥×¥é¥¹¥Á¥É¤Î RNA ¤òÀ©¸æ¤¹¤ë¡£¤½¤ì¤Ë¤è¤Ã¤ÆËɸæÈ¿±þ¤¬À©¸æ¤µ¤ì¤ë¡£¤È¤Æ¤â¤ä¤ä¤³¤·¤¤¡£¥Ð¥¯¥Æ¥ê¥¢¤Ê¤É¤¬ºî¤ë²¿¤é¤«¤Îʬ»Ò¤¬ MicroRNA, PPR °äÅÁ»Ò¤Î RNA ¤ËƯ¤­¤«¤±¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

¤¹¤Ð¤é¤·¤¤¥Ç¡¼¥¿¥Ù¡¼¥¹ ATTED-II ¤ò¸«¤ë¤È¡¢Â¿¤¯¤ÎPPR °äÅÁ»Ò¤Ïȯ¸½Î̤¬Ä㤤ÃͤǰìÄê¤Ë¤Ê¤Ã¤Æ¤¤¤ë¤³¤È¤¬Â¿¤¤¡£¥×¥í¥â¡¼¥¿¡¼¤«¤é¤Îž¼Ì¤Î¥ì¥Ù¥ë¤ÇÀ©¸æ¤µ¤ì¤Æ¤¤¤ë¤Î¤Ç¤Ï¤Ê¤¯¡¢microRNA ¤ÇÀ©¸æ¤µ¤ì¤Æ¤¤¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£Â¾¤Î PPR °äÅÁ»Ò¤ä¥ª¥ë¥¬¥Í¥éRNAÀ©¸æ°ø»Ò¤ËÂФ·¤Æ¤â¡¢microRNA ¤¬Æ¯¤¤¤Æ¤¤¤ë¤³¤È¤Ï¤¢¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

cod1

Disruption of the CYTOCHROME C OXIDASE DEFICIENT 1 gene leads to cytochrome c oxidase depletion and reorchestrated respiratory metabolism in Arabidopsis thaliana.¡¡¡¡¡¡Dahan J, Tcherkez G, Macherel D, Benamar A, Belcram K, Quadrado M, Arnal N, Mireau H.¡¡¡¡¡¡Plant Physiol. 2014 Oct 9. pii: pp.114.248526. [Epub ahead of print]¡¡¡¡¡¡PMID: 25301889

¥·¥È¥¯¥í¥à C ¥ª¥­¥·¥À¡¼¥¼¤Î¹½ÃÛ

RAD52-like protein ODB1

Nucleic Acids Res. 2015 Jun 5. pii: gkv540. [Epub ahead of print]

The RAD52-like protein ODB1 is required for the efficient excision of two mitochondrial introns spliced via first-step hydrolysis.

Gualberto JM1, Le Ret M2, Beator B3, Kühn K4.

PrmA ¡Ê¥ª¥ë¥¬¥Í¥é¤ÇƯ¤¯ protein Methyltransferase¡Ë

Dual Targeting of the Protein Methyltransferase PrmA Contributes to Both Chloroplastic and Mitochondrial Ribosomal Protein L11 Methylation in Arabidopsis¡¡¡¡¡¡Meryl Mazzoleni, Sylvie Figuet, Jacqueline Martin-Laffon, Morgane Mininno, Annabelle Gilgen, Melanie Leroux, Sabine Brugiere, Marianne Tardif, Claude Alban, and Stephane Ravanel¡¡¡¡¡¡Plant Cell Physiol. 2015 56: 1697-1710

N6-Adenosine methylation (m6A)

The topologies of N6¡¾Adenosine methylation (m6A) in land plant mitochondria and their putative effects on organellar gene¡¾expression¡¡¡¡¡¡Omer Murik, Sam Aldrin Chandran, Keren Nevo¡¾Dinur, Laure D. Sultan, Corinne Best, Yuval Stein, Carina Hazan, Oren Ostersetzer¡¾Biran¡¡¡¡¡¡First Published: 28 October 2019

MTL1

The MTL1 Pentatricopeptide Repeat Protein is Required for Both Translation and Splicing of the mitochondrial NADH Dehydrogenase Subunit 7 mRNA in Arabidopsis.¡¡¡¡¡¡Nawel H, Nadège A, Martine Q, Planchard N, Nathalie V, Jennifer D, Colas des Francs-Small C, Mireau H.¡¡¡¡¡¡Plant Physiol. 2015 Nov 4. pii: pp.01591.2015. ¡¡PMID: 26537562

NYN domain containing nuclease¡¢mitochondrial endonuclease M20

Two NYN domain containing putative nucleases are involved in transcript maturation in Arabidopsis mitochondria.¡¡¡¡¡¡Stoll B, Binder S.¡¡¡¡¡¡Plant J. 2015 Dec 29. doi: 10.1111/tpj.13111.¡¡¡¡¡¡PMID: ¡¡¡¡¡¡26711866

¥Ì¥¯¥ì¥¢¡¼¥¼¤Ë´Ø¤¹¤ëÊÑ°ÛÂΤ¬¤â¤¦°ì¤ÄÊó¹ð¤µ¤ì¤¿¡£

The Mitochondrial Endonuclease M20 Participates in the Down-regulation of Mitochondrial DNA in Pollen Cells.¡¡¡¡¡¡Ma F, Qi H, Hu Y, Jiang Q, Zhang LG, Xue P, Yang FQ, Wang R, Ju Y, Uchida H, Zhang Q, Sodmergen S.¡¡¡¡¡¡Plant Physiol. 2018 Oct 9. pii: pp.00754.2018. doi: 10.1104/pp.18.00754.¡¡¡¡¡¡PMID: 30301773

P-type pentatricopeptide repeat protein-modulating editing protein, PPME

Distinct role of Arabidopsis mitochondrial P-type pentatricopeptide repeat protein-modulating editing protein, PPME, in nad1 RNA editing.¡¡¡¡¡¡Leu KC, Hsieh MH, Wang HJ, Hsieh HL, Jauh GY.¡¡¡¡¡¡RNA Biol. 2016 May 5:0. [Epub ahead of print]¡¡¡¡¡¡PMID: 27149614

An Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex.

Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex.¡¡¡¡¡¡Fromm S, Senkler J, Eubel H, Peterhansel C, Braun HP.¡¡¡¡¡¡J Exp Bot. 2016 Apr 27. pii: erw165. [Epub ahead of print]¡¡¡¡¡¡PMID: 27122571

Restorer-of-fertility-like 2 pentatricopeptide repeat protein and RNase P

The Restorer-of-fertility-like 2 pentatricopeptide repeat protein and RNase P are required for the processing of mitochondrial orf291 RNA in Arabidopsis.¡¡¡¡¡¡Fujii S, Suzuki T, Giege P, Higashiyama T, Koizuka N, Shikanai T.¡¡¡¡¡¡Plant J. 2016 Apr 28. doi: 10.1111/tpj.13185. [Epub ahead of print]¡¡¡¡¡¡PMID: 27122350

Slow embryo development1

Arabidopsis mitochondrial protein slow embryo development1 is essential for embryo development.¡¡¡¡¡¡Ju Y, Liu C, Lu W, Zhang Q, Sodmergen.¡¡¡¡¡¡Biochem Biophys Res Commun. 2016 Apr 21. pii: S0006-291X(16)30619-2. doi: 10.1016/j.bbrc.2016.04.114. [Epub ahead of print]¡¡¡¡¡¡PMID: 27109472

Cysteine ʬ²ò¤È¥ß¥È¥³¥ó¥É¥ê¥¢¡¢ETHE1 ÊÑ°ÛÂÎ

ETHE1 ÊÑ°ÛÂΤΤ³¤È¤Ë¤Ä¤¤¤Æ°·¤Ã¤Æ¤¤¤ë¡£¡¡Dealing with the sulfur part of cysteine: four enzymatic steps degrade L-cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria.¡¡¡¡¡¡Hofler S, Lorenz C, Busch T, Brinkkotter M, Tohge T, Fernie AR, Braun HP, Hildebrandt TM.¡¡¡¡¡¡Physiol Plant. 2016 Apr 23. doi: 10.1111/ppl.12454. [Epub ahead of print]¡¡¡¡¡¡PMID: 27105581

Arabidopsis ETHE1 encodes a sulfur dioxygenase that is essential for embryo and endosperm development.¡¡¡¡¡¡Holdorf MM, Owen HA, Lieber SR, Yuan L, Adams N, Dabney-Smith C, Makaroff CA.¡¡¡¡¡¡Plant Physiol. 2012 Sep;160(1):226-36. doi: 10.1104/pp.112.201855. Epub 2012 Jul 10.¡¡¡¡¡¡PMID: 22786886

Cysteine ¤¬Ê¬²ò¤ò¼õ¤±¤ë¤Èⲫ¸¶»Ò¤ÎÉôʬ¤¬¤µ¤é¤Ë½èÍý¤µ¤ìºÇ½ªÅª¤Ë°¡Î²»À¥¤¥ª¥ó¡¢Î²»À¥¤¥ª¥ó¤Ë¤Ê¤ë¡£ETHE1 ¤Ï¤½¤Î·ÐÏ©¤ÎÅÓÃæ¤ÇƯ¤¤¤Æ¤¤¤ë¡£¤³¤ì¤Îµ¡Ç½¤¬Äã²¼¤¹¤ë¤È¡¢Cysteine °Ê³°¤Î¥¢¥ß¥Î»À¤ÎÎ̤ˤâ±Æ¶Á¤¬¤¢¤ë¡£Æäˡ¢Ï¢Â³¤·¤Æ°Å½ê¤ËÃÖ¤¤¤Æ¸÷¹çÀ®¤ò¤Ç¤­¤Ê¤¯¤·¤ÆÃù¢¥Ç¥ó¥×¥ó¤ò»È¤¤ÀڤäÆÅü¤¬¸º¤Ã¤¿ºÝ¤Ë¡¢¥¢¥ß¥Î»À¤Îʬ²ò¤¬¤Ç¤­¤Ë¤¯¤¤¤»¤¤¤À¤í¤¦¤¬¡¢Cys ¤ä Val ¤ÎÎ̤¬Â礭¤¯Áý²Ã¤·¤Æ¤¤¤ë (Fig. 5)¡£ ¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Ï Cysteine ¤À¤±¤Ç¤Ê¤¯¡¢Ê¬´ôº¿¥¢¥ß¥Î»À (BCAA) ¤Ê¤É¤Îʬ²ò¤â¡¢±ÉÍܸ»¤¬·ç˳¤·¤¿ºÝ¤Ëµ¯¤­¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

A PPR protein in the PLS subfamily

''A PPR protein in the PLS subfamily stabilizes the 5'-end of processed rpl16 mRNAs in maize chloroplasts.''¡¡¡¡¡¡Hammani K, Takenaka M, Miranda R, Barkan A.¡¡¡¡¡¡Nucleic Acids Res. 2016 Apr 19. pii: gkw270. [Epub ahead of print]¡¡¡¡¡¡PMID: 27095196

MSL1 µ¡³£»É·ã´¶¼õÀ­¥¤¥ª¥ó¥Á¥ã¥Í¥ë

MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress.¡¡¡¡¡¡Lee CP, Maksaev G, Jensen GS, Murcha MW, Wilson ME, Fricker M, Hell R, Haswell ES, Millar AH, Sweetlove L.¡¡¡¡¡¡Plant J. 2016 Aug 9. doi: 10.1111/tpj.13301. ¡¡¡¡¡¡PMID: 27505616

¿¢Êª¤Ïµ¡³£»É·ã¤ËÂФ¹¤ëÍÍ¡¹¤Ê±þÅú¤ò¹Ô¤¦¡£µ¡³£»É·ã¤Î¼õÍƵ¡¹½¤Ï¿¢Êª¤Ë¤ª¤¤¤Æ¤âĹǯ¸¦µæ¤µ¤ì¤Æ¤¤¤ë¡£Í¥¤ì¤¿²òÀâ¤òÆüËܸì¤ÇÆɤळ¤È¤¬¤Ç¤­¤ë¡£ ¡¡¡¡¡¡https://www.google.co.jp/search?q=%E6%A9%9F%E6%A2%B0%E5%88%BA%E6%BF%80%E3%81%AE%E5%8F%97%E5%AE%B9%E6%A9%9F%E6%A7%8B%E3%81%AF%E6%A4%8D%E7%89%A9

¥Ð¥¯¥Æ¥ê¥¢¤Ç¤Ïµ¡³£»É·ã´¶¼õÀ­¥¤¥ª¥ó¥Á¥ã¥Í¥ë¤È¤·¤Æ MscS ¤È¤¤¤¦°äÅÁ»Ò¤¬ ¸«¤Ä¤«¤Ã¤Æ¤¤¤¿¡£¤½¤ì¤ÈÁêƱÀ­¤¬¤¢¤ë°äÅÁ»Ò¤¬¿¢Êª¤Ë¤â¸ºß¤·¤Æ¤¤¤ë¡£ ¤è¤¯»÷¤¿¤â¤Î¤¬ 10 ¼ïÎढ¤ê¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¤¤Æ¤¤¤ë¤é¤·¤¤¤â¤Î¤¬ MSL1 ¤È¤·¤ÆÃΤé¤ì¤Æ¤¤¤¿¡£

ÂçIJ¶Ý¤Ç¤Ï¡¢MscL, MscS, MscK ¤Î»°¼ï¤¬Ä㿻Ʃ°µ±þÅú¤Ë´Ø¤ï¤Ã¤Æ¤¤¤ë¡£ºÙ˦Æâ¤Î¿»Æ©°µ¤¬¹â¤¹¤®¤ë¡ÊºÙ˦Æâ³°¤Î¿»Æ©°µ¤Îº¹¤¬Â礭²á¤®¤ë¡Ë¾õÂ֤ˤʤ俤顢¤³¤ì¤é¤Î¥Á¥ã¥Í¥ë¤¬³«¸ý¤·¤Æ¥¤¥ª¥ó¤òÊü½Ð¤¹¤ë¤³¤È¤Ç¿»Æ©°µ¤Îº¹¤ò¾®¤µ¤¯¤¹¤ë¡£

Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance.¡¡¡¡¡¡Droillard MJ, Boudsocq M, Barbier-Brygoo H, Lauriere C.¡¡¡¡¡¡FEBS Lett. 2004 Sep 10;574(1-3):42-8.¡¡¡¡¡¡ ¤È¤¤¤¦ÏÀʸ¤Ç¤Ï¡¢Ä㿻Ʃ°µ¥¹¥È¥ì¥¹¤È MPK4 ¤Î´ØÏ¢¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£

A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis.¡¡¡¡¡¡Satoh R, Fujita Y, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K.¡¡¡¡¡¡Plant Cell Physiol. 2004 Mar;45(3):309-17.¡¡¡¡¡¡PMID: 15047879

Ä㿻Ʃ°µ¥¹¥È¥ì¥¹¤Ç¤Ï Proline dehydrogenase ¤Îȯ¸½¤¬Í¶Æ³¤µ¤ì¤ë¡£Proline dehydrogenase ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤·¤ÆƯ¤­¡¢¥×¥í¥ê¥ó¤«¤é¼õ¤±¼è¤Ã¤¿ÅŻҤòÆâËì¤Î¥æ¥Ó¥­¥Î¥ó¤ØÅÁ㤹¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤È¤Î´ØÏ¢¤¬¤¢¤ë¤³¤È¤Ë¤Ê¤ë¡£

µ¡³£»É·ã´¶¼õÀ­¥¤¥ª¥ó¥Á¥ã¥Í¥ë¤¬¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¤¤Æ¤¤¤ë¤È¤¤¤¦¤³¤È¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½¤¬µ¡³£»É·ã¡Ê¤³¤ì¤Ïᤤ¤¿¤êÍɤ餷¤¿¤ê¤À¤±¤Ç¤Ê¤¯¿»Æ©°µ¤Ê¤É¤â´Ø·¸¤·¤Æ¤¯¤ë¡Ë¤Ë¤è¤Ã¤ÆľÀܱƶÁ¤ò¼õ¤±¤ë¤³¤È¤¬¤¢¤ë²ÄǽÀ­¤ò¼¨º¶¤¹¤ë¡£ ¤·¤«¤·ÏÀʸ¤ò¸«¤ë¤È¡¢¼ÂºÝ¤ÎºÙ˦¤Ë¤ª¤¤¤Æ¤Ïµ¡³£»É·ã¤È¤Ï¤¢¤Þ¤ê´Ø·¸¤Ê¤µ¤½¤¦¤Ê¡¢»À²½¥¹¥È¥ì¥¹¤ËÂФ¹¤ë±þÅú¤ÎƯ¤­¤ò¤·¤Æ¤¤¤ë¤È¤¤¤¦¥Ç¡¼¥¿¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£ ¥ß¥È¥³¥ó¥É¥ê¥¢ÆâËì¤Ë¶Éºß¤·¤Æ¡¢²¿¤é¤«¤Î¥¹¥È¥ì¥¹¤Ç¥×¥í¥È¥ó¤ÎÇ»ÅÙº¹¤¬Â礭¤¯¤Ê¤ê¤¹¤®¤¿ºÝ¡Ê¤½¤ì¤Ï³èÀ­»ÀÁǤÎÀ¸À®¡¢»À²½¥¹¥È¥ì¥¹¤Ë¤Ä¤Ê¤¬¤ë¡Ë¤Ë¡¢UCP ¤Î¤è¤¦¤ËÇ»ÅÙº¹¤ò¾®¤µ¤¯¤¹¤ëƯ¤­¤ò¤·¤Æ¤¤¤ë¤È½ñ¤¤¤Æ¤¢¤ë¡£ µ¡³£»É·ã´¶¼õÀ­¥¤¥ª¥ó¥Á¥ã¥Í¥ë¤Ê¤Î¤Ëµ¡³£»É·ã¤È¤Î´Ø¤ï¤ê¤¬¸«¤¤¤À¤»¤Ê¤¤¤é¤·¤¤¤Î¤Ï¤Ê¤¼¤«¡¢¤½¤ì¤Ïº£¸å¤Î²ÝÂê¤Ç¤¢¤ë¡£¿åÁÇ¥¤¥ª¥ó°Ê³°¤Ë¤â²¿¤«¤òÍ¢Á÷¤¹¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£°ì¤Ä¤ÎºÙ˦¤Ëµ¡³£»É·ã¤ò¼õÍƤ¹¤ë»ÅÁȤߤ¬²¿½½¼ïÎà¤â¤¢¤Ã¤Æ¡¢¤½¤Î°ì¤Ä¤¬Ää»ß¤·¤¿¤À¤±¤Ç¤ÏÊÑ°Û·Á¼Á¤È¤·¤Æ¤Ï¸«¤¨¤Ë¤¯¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

À¸Êª³Ø¤ÎÆþÌç½ñ¤Ë½ñ¤«¤ì¤Æ¤¤¤ë¤è¤¦¤Ë¡¢¥ß¥È¥³¥ó¥É¥ê¥¢ÆâËìÆâ³°¤Î¿åÁÇ¥¤¥ª¥óÇ»ÅÙº¹¤Ï¡¢ATP ¹çÀ®¹ÚÁǤòÆ°¤«¤¹¥¨¥Í¥ë¥®¡¼¡ÊATP ¹çÀ®¤È¤¤¤¦²ÄµÕ»Å»ö¤ËÊÑ´¹¤µ¤ì¤ë¼«Í³¥¨¥Í¥ë¥®¡¼¡Ë¤È¤·¤Æ»È¤ï¤ì¤ë¡£¤·¤«¤·Ã±½ã¤ËÇ»ÅÙº¹¤¬Â礭¤±¤ì¤ÐÂ礭¤¤¤Û¤É¤è¤¤¤È¤¤¤¦¤ï¤±¤Ç¤Ï¤Ê¤¤¤é¤·¤¤¡£ AOX ¤ä UCP ¤Î¤è¤¦¤Ê¡¢¼«¤é¿åÁÇ¥¤¥ª¥óÇ»ÅÙº¹¤òÉԲĵդËÇ®¤ËÊѤ¨¤ë»ÅÁȤߤ¬¤¢¤ë¡£ ¹±²¹Æ°Êª¤Ï¤½¤ì¤Ë¤è¤Ã¤ÆÂβ¹¤ò¹â¤¯¤¹¤ë¡£¤Þ¤¿³èÀ­»ÀÁǤÎÀ¸À®¤òÍÞ¤¨¤ë¡£ ¿¢Êª¤Ç¤â³èÀ­»ÀÁǤÎÀ¸À®¤òÍÞ¤¨¤ëƯ¤­¤È´Ø·¸¤¬¤¢¤ë¤È¤¤¤ï¤ì¤Æ¤¤¤ë¡£

¿»Æ©°µ»É·ã¡¢¥»¥ë¥í¡¼¥¹¹çÀ®Á˳²ºÞ¤òÍѤ¤¤¿¸¦µæ¤ò¹Ô¤Ã¤Æ¤¤¤ë Hamann ¸¦µæ¼¼¤Î¥Û¡¼¥à¥Ú¡¼¥¸¡¡¡¡¡¡https://hamannlab.org/¡¡¡¡¡¡¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¤ÏÃíÌܤ·¤Æ¤¤¤Ê¤¤¤é¤·¤¤¡£

¹ÚÊì¤Ç¤ÏºÙ˦Ëì¤Ëµ¡³£»É·ã¤Ë±þÅú¤¹¤ë¥¤¥ª¥ó¥Á¥ã¥Í¥ë¤¬Â¸ºß¤¹¤ë¡£¿¢Êª¤Ç¤â¤½¤¦¤À¤í¤¦¤È¹Í¤¨¤ë¤Î¤¬Åö¤¿¤êÁ°¤Ç¤¢¤ë¡£¤·¤«¤·¤â¤·¤«¤·¤¿¤é¿¢Êª¤Ç¤ÏºÙ˦Ëì°Ê³°¤Î¾ì½ê¤Ë¤¢¤ë¥¤¥ª¥ó¥Á¥ã¥Í¥ë¤¬¼ç¤Ëµ¡³£»É·ã¤Ë±þÅú¤¹¤ë¤Î¤Ç¤Ï¤Ê¤¤¤«¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤âµ¡³£»É·ã¤Ë´¶Å٤褯±þÅú¤¹¤ë¤Î¤Ç¤Ï¤Ê¤¤¤«¡£¤½¤¦¹Í¤¨¤Æ¤â¤ª¤«¤·¤¯¤Ê¤¤¤è¤¦¤Êµ¤¤¬¤¹¤ë¡£

CWM1 and CWM2

Mitochondrial Defects Confer Tolerance against Cellulose Deficiency.¡¡¡¡¡¡Hu Z, Vanderhaeghen R, Cools T, Wang Y, De Clercq I, Leroux O, Nguyen L, Belt K, Millar AH, Audenaert D, Hilson P, Small ID, Mouille G, Vernhettes S, Van Breusegem F, Whelan J, Hofte H, De Veylder L.¡¡¡¡¡¡Plant Cell. 2016 Aug 19. pii: tpc.00540.2016. ¡¡¡¡¡¡PMID: 27543091

C17 ¤È¤¤¤¦¥»¥ë¥í¡¼¥¹¹çÀ®Á˳²ºÞ¤ËÂФ¹¤ë±þÅú¡Ê²êÀ¸¤¨¤Îº¬¤ÎÈîÂç¤Ê¤É¡Ë¤¬ÊѲ½¤¹¤ëÊÑ°ÛÂΤòñΥ¤¹¤ë¤³¤È¤Ç¸«¤¤¤À¤µ¤ì¤¿¡£ cwm1 ¤Ï AT1G17630, cwm2-1 ¤Ï AT1G32415 ¤¬¸¶°ø°äÅÁ»Ò¤Ç¡¢¤É¤Á¤é¤â PPR-like superfamily protein ¤ò¥³¡¼¥É¤·¤Æ¤¤¤¿¡£RNAseq ¤Ë¤è¤Ã¤Æ¡¢RNA editing ¤¬µ¯¤­¤Æ¤¤¤ë¤³¤È¤¬³Îǧ¤Ç¤­¤¿¡£cwm1, cwm2 ¤É¤Á¤é¤â cytochrome c ¥·¥È¥¯¥í¥à C ¤Î¥¿¥ó¥Ñ¥¯Î̤¬¸º¤Ã¤Æ¤¤¤¿¡£ ¥»¥ë¥í¡¼¥¹¹çÀ®Á˳²ºÞ¤ÏºÙ˦Êɤò¼åÂ⽤¹¤ë¤³¤È¤Ç¿¢ÊªºÙ˦¤ËºîÍѤò¤â¤¿¤é¤¹¤¬¡¢¤½¤ì¤À¤±¤Ç¤Ê¤¯ºÙ˦ÊÉÀ®Ê¬¤Îʬ²ò¤òÂ¥¿Ê¤·¥ª¥ê¥´Åü¤Ê¤É¤ÎÀ¸À®¤ò°ú¤­µ¯¤³¤¹ºîÍѤ⤢¤êÆÀ¤ë¤«¤â¤·¤ì¤Ê¤¤¡£¥¢¥é¥Ó¥Î¥¬¥é¥¯¥¿¥ó¥¿¥ó¥Ñ¥¯¼Á¤ÏÂå¼Õ²óž¤¬Áᤤ¤³¤È¤¬ÃΤé¤ì¤Æ¤¤¤ë¡£¡¡¡¡¡¡¿¢Êª¤Î¥×¥í¥Æ¥ª¥°¥ê¥«¥ó¡¤¥¢¥é¥Ó¥Î¥¬¥é¥¯¥¿¥ó-¥×¥í¥Æ¥¤¥ó¤Î¹½Â¤¤Èµ¡Ç½¡¡ ±ßë Í۰졤¾®ÃÝ ·Éµ×¡¡¡¡¡¡À¸²½³Ø 89(4): 498-507 (2017)¡¡https://seikagaku.jbsoc.or.jp/10.14952/SEIKAGAKU.2017.890498/index.html¡¡

At12Cys proteins

Inactivation of Mitochondrial Complex I Induces the Expression of a Twin Cysteine Protein that Targets and Affects Cytosolic, Chloroplastidic and Mitochondrial Function.¡¡¡¡¡¡Wang Y, Lyu W, Berkowitz O, Radomiljac JD, Law SR, Murcha MW, Carrie C, Teixeira PF, Kmiec B, Duncan O, Van Aken O, Narsai R, Glaser E, Huang S, Roessner U, Millar AH, Whelan J.¡¡¡¡¡¡Mol Plant. 2016 May 2;9(5):696-710. doi: 10.1016/j.molp.2016.01.009. Epub 2016 Jan 29.¡¡¡¡¡¡PMID: 26829715

At12Cys-1 (At5g64400) and At12Cys-2 (At5g09570) ¤Ï twin Cysteine protein ¤È¤¤¤¦¥¿¥ó¥Ñ¥¯¼Á¤ò¥³¡¼¥É¤·¤Æ¤¤¤ë¡£At12Cys-2 ¤Ï¿¤¯¤Î¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½ÊÑ°ÛÂΤÇȯ¸½¤¬¾å¾º¤¹¤ë¡£ ¤½¤ÎºÝ¡¢¤³¤Î¥¿¥ó¥Ñ¥¯¼Á¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢°Ê³°¤ÎºÙ˦¼Á¡¢¥×¥é¥¹¥Á¥É¤Ë¤â¶Éºß¤¹¤ë¡£ ¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎÊ£¹çÂÎI¡¢Ê£¹çÂÎIII ¤Î¹½À®À®Ê¬¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£ ¤³¤ÎÆó¤Ä¤Î°äÅÁ»Ò¤òƱ»þ¤Ë·ç¼º¤µ¤»¤ë¤È¡¢´¥Áç¤Ê¤É¤Î¥¹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤Ã¤¿¤È abstract ¤Ë¤Ï½ñ¤¤¤Æ¤¢¤ë¡£ ¥ß¥È¥³¥ó¥É¥ê¥¢¤Îµ¡Ç½ÊѲ½¤Ç´¥Á祹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤ë¤Î¤Ï¾¤Ë¤âÎ㤬¤¢¤ë¡£

SIWHY2 ´¥Á祹¥È¥ì¥¹¤È´Ø·¸¤¢¤ë¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¯¥¿¥ó¥Ñ¥¯¼Á¡Ê¥È¥Þ¥È¡Ë

 	
SlWHY2 interacts with SlRECA2 to maintain mitochondrial function under drought stress in tomato.¡¡¡¡¡¡Meng C, Yang M, Wang Y, Chen C, Sui N, Meng Q, Zhuang K, Lv W.¡¡¡¡¡¡Plant Sci. 2020 Dec;301:110674. doi: 10.1016/j.plantsci.2020.110674. Epub 2020 Sep 12.¡¡¡¡¡¡PMID: 33218640

SIWHY2 ¤Ï´¥Á祹¥È¥ì¥¹¤Çȯ¸½Í¶Æ³¤µ¤ì¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¤¤Æ¤¤¤ë¡£¤³¤Î°äÅÁ»Ò¤Îµ¡Ç½¤òÄã²¼¤µ¤»¤ë¤È¡¢´¥Á祹¥È¥ì¥¹¤Ë¼å¤¯¤Ê¤ë¡£´¥Áç¤Ë¶¯¤¯¤¹¤ë¤³¤È¤Ï¤Ç¤­¤Æ¤¤¤Ê¤¤¤Î¤Ç¼Ò²ñŪ°ÕÌ£¤Ï¤Ê¤¤¡£Fig. 5E ¤Ë¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Ë¥³¡¼¥É¤µ¤ì¤¿°äÅÁ»Ò¤Îȯ¸½Î̤òÁêÂÐÊѲ½¤Ç¼¨¤·¤¿¥Ç¡¼¥¿¤¬¤¢¤ë¡£ÌîÀ¸·¿¤Ç¤Ï´¥Á祹¥È¥ì¥¹¤Ë¤è¤ëÊѲ½¤Ï¾®¤µ¤¤¡Ê¾¯¤·²¼¤¬¤ë·¹¸þ¤¬¤¢¤ë¡Ë¡£¤·¤«¤· RNAi ¤Ç SIWHY2 ¤Îµ¡Ç½¤òÄã²¼¤µ¤»¤ë¤ÈÂ礭¤¯Äã²¼¤·¤Æ¤¤¤ë¡£

MDH ¤¬·ç»

Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis.¡¡¡¡¡¡Sew YS, Stroher E, Fenske R, Millar AH.¡¡¡¡¡¡Plant Physiol. 2016 Jun;171(2):849-63. doi: 10.1104/pp.16.01654. Epub 2016 Apr 12.¡¡¡¡¡¡PMID: 27208265

MDH ¤Î·ç»¤¬¡¢¼ï»Ò·ÁÀ®¤ËÍ¿¤¨¤ë±Æ¶Á¤ò¸«¤Æ¤¤¤ë¡£Í½´ü¤µ¤ì¤ë¤è¤¦¤Ë¡¢°­¤¤±Æ¶Á¤¬¤¢¤ë¡£¸ÆµÛ®Å٤Ͼ徺¤·¤Æ¤¤¤ë¡£²ÄÍÏÀ­¥¢¥ß¥Î»À¤ÎÃßÀÑÎ̤¬Áý¤¨¤Æ¤¤¤ë¡£

SSADH ¤ÎÊÑ°Û

Plant Cell Physiol. 2011 Aug;52(8):1340-53. doi: 10.1093/pcp/pcr079. Epub 2011 Jun 20. Succinic semialdehyde dehydrogenase is involved in the robust patterning of Arabidopsis leaves along the adaxial-abaxial axis.

ORRM4

RNA Recognition Motif-Containing Protein ORRM4 Broadly Affects Mitochondrial RNA Editing and Impacts Plant Development and Flowering.¡¡¡¡¡¡Shi X, Germain A, Hanson MR, Bentolila S.¡¡¡¡¡¡Plant Physiol. 2016 Jan;170(1):294-309. doi: 10.1104/pp.15.01280. Epub 2015 Nov 17.¡¡¡¡¡¡

ORRM5

ORRM5, an RNA recognition motif-containing protein, has a unique effect on mitochondrial RNA editing.¡¡¡¡¡¡Shi X, Castandet B, Germain A, Hanson MR, Bentolila S.¡¡¡¡¡¡J Exp Bot. 2017 May 17;68(11):2833-2847. doi: 10.1093/jxb/erx139.¡¡¡¡¡¡PMID: 28549172

matR ¤ò ribozyme ¤Ç¥Î¥Ã¥¯¥À¥¦¥ó

The Reverse Transcriptase/RNA Maturase Protein MatR Is Required for the Splicing of Various Group II Introns in Brassicaceae Mitochondria.¡¡¡¡¡¡Sultan LD, Mileshina D, Grewe F, Rolle K, Abudraham S, G?odowicz P, Niazi AK, Keren I, Shevtsov S, Klipcan L, Barciszewski J, Mower JP, Dietrich A, Ostersetzer-Biran O.¡¡¡¡¡¡Plant Cell. 2016 Nov;28(11):2805-2829.¡¡¡¡¡¡PMID: 27760804

Growing Slowly 1

Growing Slowly 1 locus encodes a PLS-type PPR protein required for RNA editing and plant development in Arabidopsis.¡¡¡¡¡¡Xie T, Chen D, Wu J, Huang X, Wang Y, Tang K, Li J, Sun M, Peng X.¡¡¡¡¡¡J Exp Bot. 2016 Oct;67(19):5687-5698.¡¡¡¡¡¡PMID: 27670716

PPR5, PPR10, PGR3

Unexpected functional versatility of the pentatricopeptide repeat proteins PGR3, PPR5 and PPR10.¡¡¡¡¡¡Rojas M, Ruwe H, Miranda RG, Zoschke R, Hase N, Schmitz-Linneweber C, Barkan A.¡¡¡¡¡¡Nucleic Acids Res. 2018 Aug 16. doi: 10.1093/nar/gky737.¡¡¡¡¡¡PMID: 30125002

PPR19

The mitochondrial pentatricopeptide repeat protein PPR19 is involved in the stabilization of NADH dehydrogenase 1 transcripts and is crucial for mitochondrial function and Arabidopsis thaliana development.¡¡¡¡¡¡Lee K, Han JH, Park YI, Colas des Francs-Small C, Small I, Kang H.¡¡¡¡¡¡New Phytol. 2017 Mar 23. doi: 10.1111/nph.14528. [Epub ahead of print]¡¡¡¡¡¡PMID: 28332713

SWIB5

The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination.¡¡¡¡¡¡Blomme J, Van Aken O, Van Leene J, Jegu T, De Rycke RM, De Bruyne M, Vercruysse J, Nolf J, Van Daele T, De Milde L, Vermeersch M, Colas des Francs-Small C, De Jaeger G, Benhamed M, Millar AH, Inze D, Gonzalez N.¡¡¡¡¡¡Plant Cell. 2017 Apr 18. pii: tpc.00899.2016. doi: 10.1105/tpc.16.00899.¡¡¡¡¡¡PMID: 28420746

ndufs8.1 and ndufs8.2

Photoperiod Affects the Phenotype of Mitochondrial Complex I Mutants.¡¡¡¡¡¡Petriacq P, de Bont L, Genestout L, Hao J, Laureau C, Florez-Sarasa I, Rzigui T, Queval G, Gilard F, Mauve C, Guerard F, Lamothe-Sibold M, Marion J, Fresneau C, Brown S, Danon A, Krieger-Liszkay A, Berthome R, Ribas-Carbo M, Tcherkez G, Cornic G, Pineau B, Gakiere B, De Paepe R.¡¡¡¡¡¡Plant Physiol. 2017 Jan;173(1):434-455. doi: 10.1104/pp.16.01484. Epub 2016 Nov 16.¡¡¡¡¡¡PMID: 27852950

ndufs4 ¤Ë´Ø¤¹¤ë¥Ç¡¼¥¿¤âƱ»þ¤Ë·ÇºÜ¤µ¤ì¤Æ¤¤¤ë¡£

AtNEET¡¡2Fe-2S protein¡¡¤Ç FeS ¤ÎÍ¢Á÷¡¢Ê¬Çۤ˴ØÍ¿¤¹¤ë¡¡¡¡

AGI code
At5g51720

Expression of a dominant¡¾negative AtNEET¡¾H89C protein disrupts iron¡¾sulfur metabolism and iron homeostasis in Arabidopsis¡¡¡¡¡¡Sara I. Zandalinas, Luhua Song, Soham Sengupta, Sam McInturf, DeAna G. Grant, Henri¡¾Baptiste Marjault, Norma A. Castro¡¾Guerrero, David Burks, Rajeev K. Azad, David G. Mendoza Cozatl, Rachel Nechushtai, Ron Mittler¡¡¡¡¡¡Plant J. 2019 Oct 23. doi: 10.1111/tpj.14581. ¡¡¡¡¡¡PMID: 31642128¡¡¡¡¡¡DOI: 10.1111/tpj.14581

NEET ¥¿¥ó¥Ñ¥¯¼Á¤ÏưʪºÙ˦¤Ç FeS ¤È´ØÏ¢¤¹¤ë 2Fe-2S protein ¤È¤·¤Æ¸«¤Ä¤«¤Ã¤¿¡£¡¡¡¡¡¡ The mitochondrial outer membrane protein mitoNEET is a redox enzyme catalyzing electron transfer from FMNH2 to oxygen or ubiquinone.¡¡¡¡¡¡Wang Y, Landry AP, Ding H.¡¡¡¡¡¡J Biol Chem. 2017 Jun 16;292(24):10061-10067. doi: 10.1074/jbc.M117.789800. Epub 2017 May 1.¡¡¡¡¡¡PMID: 28461337

¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤ËÁêÅö¤¹¤ë°äÅÁ»Ò¤¬°ì¤Ä¸ºß¤·¤¿¡£¤³¤Î°äÅÁ»Ò¤Îµ¡Ç½¤¬Äã²¼¤¹¤ë¤ÈÍÕÎÐÂΤÎÅ´¤Î¾õÂÖ¤¬°Û¾ï¤Ë¤Ê¤êÅ´·ç˳±þÅú¤¬µ¯¤­¤ë¤¬¡¢ÍÕÎÐÂΤ˴ޤޤì¤ëÅ´¤ÎÎ̤ϸº¤é¤Ê¤«¤Ã¤¿¡£

NEET ¥¿¥ó¥Ñ¥¯¼Á¤Ë¤Ï¡¢ DRE2 At5g18400 ¤È¤¤¤¦ cytosol ¤Ç FeS ¤ÎÍ¢Á÷¡¢ÇÛʬ¤Ë´Ø¤ï¤ë½ÅÍפʥ¿¥ó¥Ñ¥¯¼Á¤Ë¡¢ FeS ¤òÅϤ¹Æ¯¤­¤¬¤¢¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

FeS ¤ÏÅÅ»ÒÅÁã¤Ë´Ø¤ï¤ë¥¿¥ó¥Ñ¥¯¼Á¤À¤±¤Ç¤Ê¤¯¡¢DNA¹çÀ®¹ÚÁǤʤɤο´ô¤Ë¤ï¤¿¤ë½ÅÍפʥ¿¥ó¥Ñ¥¯¼Á¤Ë·ë¹ç¤·¤Æ¤¤¤ë¤³¤È¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£FeS ¤ÎÀ¸¹çÀ®¡¢Í¢Á÷¡¢Ê¬Çۤϥߥȥ³¥ó¥É¥ê¥¢¡¢ÍÕÎÐÂΡ¢ºÙ˦¼Á¤¬Ï¢·È¤·¤ÆÀ®¤êΩ¤Ã¤Æ¤ª¤ê¤È¤Æ¤âÊ£»¨¡¢¹ªÌ¯¤Ç¤¢¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¡ÊISC ·Ï¡Ë¤ÈÍÕÎÐÂΡÊSUF ·Ï¡Ë¤Ë¤Ï¤½¤ì¤¾¤ìÆÈΩ¤·¤¿ FeS À¸¹çÀ®·Ï¤¬Â¸ºß¤¹¤ë¡£ºÙ˦¼Á¤Ç¤Î FeS ¹çÀ®¡ÊCIA ·Ï¡Ë¤Ï¡¢ÍÕÎÐÂΡ¢¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤é¶¡µë¤µ¤ì¤¿Ê¬»Ò¡¢¸¶»Ò¤òÍѤ¤¡¢¶¨ÎϤ·¤Æ¹Ô¤ï¤ì¤Æ¤¤¤ë¡£

HER2

Forward genetic screens identify a role for the mitochondrial HER2 in E-2-hexenal responsiveness.¡¡¡¡¡¡Scala A, Mirabella R, Goedhart J, de Vries M, Haring MA, Schuurink RC. Plant Mol Biol. 2017 Sep 16. doi: 10.1007/s11103-017-0659-8.¡¡¡¡¡¡PMID:¡¡¡¡¡¡28918565

¤³¤ÎÏÀʸ¤Ç¤Ï¡¢¡ÖÎФιá¤ê¡×¿¢Êª¹áµ¤À®Ê¬¤È¤·¤Æ¡¢¤Þ¤¿¿¢Êª¤¬º«Ãî¤Ë¿©³²¤µ¤ì¤¿ºÝ¤Î¥·¥°¥Ê¥ëʬ»Ò¤È¤·¤ÆÃíÌܤµ¤ì¤Æ¤¤¤ëÀÄÍÕ¥¢¥ë¥Ç¥Ò¥É¤Î°ì¼ï¡¢E-2-hexenal ¤ËÂФ¹¤ë±þÅú¡Êº¬¤ÎÀ¸Ä¹¤òÁ˳²¡Ë¤¬¼å¤¯¤Ê¤ëÊÑ°ÛÂÎ (her) ¤òñΥ¤·¤¿¡£¡¡¡¡¡¡

¸¶°ø°äÅÁ»Ò¤Î°ì¤Ä¤Î HER2 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤¹¤ë oxidoreductase At5g63620 ¤Ç¤¢¤Ã¤¿¡£ E-2-hexenal ¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Î redox status ¤ò specifically ¤ËÊѲ½¤µ¤»¤¿¡£redox status ¤Ë±þ¤¸¤Æȯ¸÷¤¬ÊѲ½¤¹¤ë¥¿¥¤¥×¤Î GFP ¤ò»È¤Ã¤Æ¬Äꤷ¤Æ¤¤¤ë¡£ Z-3-hexenol ¤Ç¤Ï¤½¤Î¸ú²Ì¤Ï¤ß¤é¤ì¤Ê¤«¤Ã¤¿¡£ºÙ˦¼Á¤Î redox status ¤Ï¡¢ÊѲ½¤·¤Ê¤«¤Ã¤¿¡£

HER2 ¤Ë E-2-hexenal ¤òÂå¼Õ¤¹¤ë³èÀ­¤¬¤¢¤ë¤«¤É¤¦¤«Ä´¤Ù¤¿¤¬¡¢¸¡½Ð¤Ç¤­¤Ê¤«¤Ã¤¿ (Fig. S5)¡£ ¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç HER2 ¤¬¤É¤ó¤Ê¹ÚÁdzèÀ­¤ò»ý¤Ä¤Î¤«¤ÏÉÔÌÀ¤Ç¤¢¤ë¡£ ¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Ï¡¢¥³¥Ï¥¯»À¥»¥ß¥¢¥ë¥Ç¥Ò¥É (SSA) ¤Ê¤É¤Î¥¢¥ë¥Ç¥Ò¥É¤¬Âå¼Õ¤µ¤ì¤ë¡£SSA ¤Ï¦Ã¥¢¥ß¥Î¥Ö¥Á¥ë»À (GABA) ¤«¤éÀ¸À®¤¹¤ë¡£¤½¤¦¤¤¤¦Ê¬»Ò¤È¤Î´Ø¤ï¤ê¤¬¿ä¬¤µ¤ì¤Æ¤¤¤ë¡£ Ãø¼Ô¤é¤Ï°ÊÁ° her1 ÊÑ°ÛÂΤò¸«¤¤¤À¤·Ê¬ÀϤ·¤¿¡£¤½¤ì¤Ï GABA-transaminase ÊÑ°ÛÂΤǡ¢GABA ¤ÎÎ̤¬Â礭¤¯Áý¤¨¤Æ¤¤¤¿¡£GABA-transaminase ¤â¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¯¹ÚÁǤǤ¢¤ë¡£

http://atted.jp/cgi-bin/locus.cgi?loc=At5g63620¡¡¡¡¡¡¤¹¤Ð¤é¤·¤¤°äÅÁ»Òȯ¸½¥Ç¡¼¥¿¥Ù¡¼¥¹¤Ç¤¢¤ë ATTED-II ¤Ç¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¯¡¡isovaleryl-CoA-dehydrogenase Åù¤È¤Î¹â¤¤È¯¸½Áê´Ø¤¬»ØŦ¤µ¤ì¤Æ¤¤¤ë¡£

Âå¼Õ¥Ç¡¼¥¿¥Ù¡¼¥¹ KEGG ¤ò¸¡º÷¤¹¤ë¤È¡¢¡Á¥»¥ß¥¢¥ë¥Ç¥Ò¥É¤È̾Á°¤¬¤Ä¤¤¤¿Ê¬»Ò¤Ï 41 ¸Ä¸«¤Ä¤«¤ë¡£¥¢¥ß¥Î»À¤Îʬ²ò¤Ë´Ø¤ï¤ë¤â¤Î¤¬Â¿¤¤¡£Ã±½ã¤Ë¹Í¤¨¤ë¤È¡¢her2 ÊѰۤǤ½¤¦¤¤¤¦ÆâºßÀ­¤Î¥¢¥ë¥Ç¥Ò¥É¤¬Áý¤¨¤Æ¡¢ºÙ˦Æâ¤Ë¤Ä¤Í¤Ë¥¢¥ë¥Ç¥Ò¥É¤¬¹â¤¤¥ì¥Ù¥ë¤Ç¸ºß¤¹¤ë¥¹¥È¥ì¥¹¾õÂ֤ˤʤë¡Ê¿Í´Ö¤Ê¤éÆóÆü¿ì¤¤¡Ë¡£ ¤½¤Î¤»¤¤¤Ç³°Éô¤«¤é²Ã¤¨¤¿¥¢¥ë¥Ç¥Ò¥É¤ËÂФ¹¤ë±þÅú¤¬¼å¤¯¤Ê¤ë¡£¤½¤ó¤Ê¶ñ¹ç¤ËÁÛÁü¤¹¤ë¤³¤È¤â¤Ç¤­¤ë¡£¤¢¤Þ¤êȯŸÀ­¤¬¤¢¤ë¤â¤Î¤Ç¤Ï¤Ê¤¤¡£

¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Î»éËûÀ¹çÀ®

Discovery and Characterization of the 3-Hydroxyacyl-ACP Dehydratase Component of the Plant Mitochondrial Fatty Acid Synthase System.¡¡¡¡¡¡Guan X, Okazaki Y, Lithio A, Li L, Zhao X, Jin H, Nettleton D, Saito K, Nikolau BJ.¡¡¡¡¡¡Plant Physiol. 2017 Apr;173(4):2010-2028. doi: 10.1104/pp.16.01732.¡¡¡¡¡¡PMID: 28202596

¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Î»éËûÀ¹çÀ®¤Ë´Ø¤·¤Æ¤Ï¡¢°ÊÁ°¤«¤é¥ê¥Ý»À¤È¤Î´ØÏ¢¤ÇÍ¥¤ì¤¿¸¦µæÀ®²Ì¤¬¤¢¤ë¡£¡¡¡¡¡¡ttp://hajimewada.c.u-tokyo.ac.jp/Research/Research_LipoicAcid.html¡¡¡¡¡¡8:0-ACP ¤¬Ãæ´ÖÂΤȤ·¤Æ¹çÀ®¤µ¤ì¤ë¡£

¥ß¥È¥³¥ó¥É¥ê¥¢ adenine translocater

Identification and characterization of interactions between abscisic acid and mitochondrial adenine nucleotide translocators.¡¡¡¡¡¡Kharenko OA, Boyd J, Nelson KM, Abrams SR, Loewen MC.¡¡¡¡¡¡Biochem J. 2011;437:117–23. doi: 10.1042/BJ20101898¡¡¡¡¡¡PMID: 21473740

¦Â-barrel protein (AtOM47)

Characterization of a novel ¦Â-barrel protein (AtOM47) from the mitochondrial outer membrane of Arabidopsis thaliana¡¡¡¡¡¡Lu Li, Szymon Kubiszewski-Jakubiak, Jordan Radomiljac, Yan Wang, Simon R. Law, Olivier Keech, Reena Narsai, Oliver Berkowitz, Owen Duncan, Monika W. Murcha, James Whelan¡¡¡¡¡¡J Exp Bot. 2016 Nov; 67(21): 6061–6075. Published online 2016 Oct 6. doi: 10.1093/jxb/erw366¡¡¡¡¡¡PMCID: PMC5100019

GABA shunt

Mutations in Plastidial 5-Aminolevulinic Acid Biosynthesis Genes Suppress Pleiotropic Defect in Shoot Development of Mitochondrial GABA Shunt Mutant in Arabidopsis.¡¡¡¡¡¡Toyokura K, Yamaguchi K, Shigenobu S, Fukaki H, Tatematsu K, Okada K.¡¡¡¡¡¡Plant Cell Physiol. 2015 Apr 2. pii: pcv050. [Epub ahead of print] ¡¡¡¡¡¡PMID: 25840087

emp9

The pentatricopeptide repeat protein EMP9 is required for mitochondrial ccmB and rps4 transcript editing, mitochondrial complex biogenesis and seed development in maize.¡¡¡¡¡¡Yang YZ, Ding S, Wang HC, Sun F, Huang WL, Song S, Xu C, Tan BC.¡¡¡¡¡¡New Phytol. 2017 Apr;214(2):782-795. doi: 10.1111/nph.14424. Epub 2017 Jan 25.¡¡¡¡¡¡PMID: 28121385

BLX

Novel DYW-type pentatricopeptide repeat (PPR) protein BLX controls mitochondrial RNA editing and splicing essential for early seed development of Arabidopsis.¡¡¡¡¡¡Sun Y, Huang J, Zhong S, Gu H, He S, Qu LJ.¡¡¡¡¡¡J Genet Genomics. 2018 Feb 14. pii: S1673-8527(18)30023-7. doi: 0.1016/j.jgg.2018.01.006. [Epub ahead of print]¡¡¡¡¡¡PMID: 29580769

TSPO

The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism.¡¡¡¡¡¡Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H.¡¡¡¡¡¡Plant Cell. 2011 Feb;23(2):785-805. doi: 10.1105/tpc.110.081570. Epub 2011 Feb 11.¡¡¡¡¡¡PMID: 21317376

 
Involvement of a Class III Peroxidase and the Mitochondrial Protein TSPO in Oxidative Burst Upon Treatment of Moss Plants with a Fungal Elicitor¡¡¡¡¡¡Mikko T. Lehtonen,1 Motomu Akita,1,2 Wolfgang Frank,3 Ralf Reski,3,4,5 and Jari P. T. Valkonen¡¡¡¡¡¡ March 2012, Volume 25, Number 3¡¡¡¡¡¡Pages 363-371¡¡¡¡¡¡https://doi.org/10.1094/MPMI-10-11-0265

¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Ï¥Ø¥à¤ò´Þ¤à¥¿¥ó¥Ñ¥¯¼Á¤¬Æ¯¤¤¤Æ¤¤¤ë¡£¥Ú¥ë¥ª¥­¥·¥À¡¼¥¼¤â¡¢¥Ø¥à¤ò´Þ¤à¥¿¥ó¥Ñ¥¯¼Á¤Ç¤¢¤ë¡£Æ¯¤¯¾ì½ê¤Ï°Û¤Ê¤Ã¤Æ¤¤¤ë¤¬¡¢´ØÏ¢À­¤¬¤¢¤ë¡£ ¥Ø¥à¤Ïž¼Ì°ø»Ò¤Ê¤É¤È·ë¹ç¤¹¤ë¤³¤È¤â¤¢¤ê¡¢½ÅÍפÊÀ©¸æ°ø»Ò¤È¤·¤Æ¤âÃíÌܤµ¤ì¤Æ¤¤¤ë¡£

The multistress¡¾induced Translocator protein (TSPO) differentially modulates storage lipids metabolism in seeds and seedlings¡¡¡¡¡¡Pawel Jurkiewicz, Su Melser, Mickael Maucourt, Haitham Ayeb, Vasko Veljanovski, Lilly Maneta¡¾Peyret, Mark Hooks, Dominique Rolin, Patrick Moreau, Henri Batoko¡¡¡¡¡¡

TSPO ¤Ï¼ï»Ò¤ÇƯ¤¤¤Æ¤¤¤ë¤¬¡¢¤â¤Ã¤È¹âȯ¸½¤µ¤»¤ë¤È¼ï»Ò¤Î»é¼Á´ÞÎ̤¬Áý²Ã¤¹¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

Coenzyme Q

Coenzyme Q ¤Ï ubiquinone ¤È¤â¸Æ¤Ð¤ì¡¢¥ß¥È¥³¥ó¥É¥ê¥¢ÅÅ»ÒÅÁã·Ï¤Ë¤ª¤¤¤Æɬ¿Ü¤ÎÌò³ä¤ò²Ì¤¿¤·¤Æ¤¤¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢°Ê³°¤Î¾ì½ê¤Ç¤âÊä¹ÚÁǤȤ·¤ÆƯ¤¤¤Æ¤¤¤ë¡£ ¤Þ¤¿¥¹¥È¥ì¥¹ÂÑÀ­Åù¤ËÌòΩ¤Á¡¢¿Í´Ö¤Îɵ¤¤È¤Î´ØÏ¢¤âÃΤé¤ì¤Æ¤¤¤ëÍ­ÍÑʬ»Ò¤Ç¤¢¤ë¡£ ¤³¤Îʬ»Ò¤ÎÀ¸¹çÀ®¤ÏÊ£»¨¤Ê·ÐÏ©¤ò¤¿¤É¤ê¡¢ºÇ½ªÅª¤Ë¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¸ºß¤¹¤ë¹çÀ®¹ÚÁÇÊ£¹çÂΤˤè¤Ã¤Æ¹çÀ®¤¬¹Ô¤ï¤ì¤ë¡£

¥³¥¨¥ó¥¶¥¤¥àQ10 À¸»ºÈùÀ¸Êª¤Î³«È¯¡¡À¸Êª¹©³Ø²ñ»ï (2011) Âè6¹æ p.323-325¡¡¡¡¡¡Å纬Âç³Ø¡¡Àî¸þÀèÀ¸¤Ë¤è¤ë²òÀâ¡¡

¹ÚÊì¤Ç¤Î¸¦µæ¤¬¿Ê¤ó¤Ç¤¤¤ë¡£

Suppression of respiratory growth defect of mutant deficient in mitochondrial phospholipase A<sub>1</sub> by overexpression of genes involved in coenzyme Q synthesis in Saccharomyces cerevisiae.¡¡¡¡¡¡Morisada S, Nishida I, Kawamukai M, Horiuchi H, Fukuda R.¡¡¡¡¡¡Biosci Biotechnol Biochem. 2018 May 28:1-7. doi: 10.1080/09168451.2018.1476124. PMID: 29804512

¿¢Êª¤Ç¤Ï¾¤ÎÀ¸Êª¤È°Û¤Ê¤ëÀ¸¹çÀ®·ÐÏ©¤¬Â¸ºß¤¹¤ë¤³¤È¤¬²òÌÀ¤µ¤ì¤Æ¤¤¤ë¡£¥Õ¥§¥Ë¥ë¥¢¥é¥Ë¥ó¤È¥Á¥í¥·¥ó¤ÎξÊý¤¬Á°¶îÂΤˤʤ롣¥Õ¥§¥Ë¥ë¥¢¥é¥Ë¥ó¤«¤é¤Î·ÐÏ©¤¬²òÌÀ¤µ¤ì¤Æ¤¤¤ë¡£

The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in Arabidopsis.¡¡¡¡¡¡Block A, Widhalm JR, Fatihi A, Cahoon RE, Wamboldt Y, Elowsky C, Mackenzie SA, Cahoon EB, Chapple C, Dudareva N, Basset GJ.¡¡¡¡¡¡Plant Cell. 2014 May;26(5):1938-1948. Epub 2014 May 16.¡¡¡¡¡¡PMID: 24838974

Biosynthesis of ubiquinone and plastoquinone in the endoplasmic reticulum-Golgi membranes of spinach leaves.¡¡¡¡¡¡Swiezewska E, Dallner G, Andersson B, Ernster L.¡¡¡¡¡¡J Biol Chem. 1993 Jan 15;268(2):1494-9.¡¡¡¡¡¡PMID: 8419349

¤È¤Æ¤âÆÈÁÏŪ¤Ç¡Ö¤Ê¤ë¤Û¤É¡×¤È»×¤ï¤»¤ëÏÀʸ¡¡¡¡¡¡Mitochondria-targeted quinones suppress the generation of reactive oxygen species, programmed cell death and senescence in plants.¡¡¡¡¡¡Samuilov VD, Kiselevsky DB, Oleskin AV.¡¡¡¡¡¡Mitochondrion. 2018 Apr 30. pii: S1567-7249(18)30006-0. doi: 10.1016/j.mito.2018.04.008. [Epub ahead of print] Review.¡¡¡¡¡¡PMID: 29723685

CoQ ¤òÂçÎ̤ËÀ¸»º¤¹¤ë¥¿¥Ð¥³ÇÝÍܺÙ˦¤¬ÁªÂò¤µ¤ì¤Æ¤¤¤ë¡£CoQ ¤ÎÎ̤ϥߥȥ³¥ó¥É¥ê¥¢¤Î¸ÆµÛ¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¥¿¥ó¥Ñ¥¯¼Á¤ÎÎ̤ÈÈæÎ㤷¤ÆÊѲ½¤·¤Æ¤¤¤ë¡£

Isolation and Identification of Ubiquinone 10 from Cultured Cells of Tobacco¡¡¡¡¡¡Tsutomu IKEDA, Takashi MATSUMOTO, Kunio KATO, Masao NOGUCHI¡¡¡¡¡¡Agricultural and Biological Chemistry¡¡38 ´¬ (1974) 11 ¹æ p. 2297-2298¡¡¡¡¡¡DOI https://doi.org/10.1271/bbb1961.38.2297

Selection of High Ubiquinone 10-Producing Strain of Tobacco Cultured Cells by Cell Cloning Technique¡¡¡¡¡¡Takashi MATSUMOTO, Tsutomu IKEDA, Naomi KANNO, Takuro KISAKI, Masao NOGUCHI¡¡¡¡¡¡Agricultural and Biological Chemistry¡¡44 ´¬ (1980) 4 ¹æ p. 967-969¡¡DOI https://doi.org/10.1271/bbb1961.44.967

Selection of Cultured Tobacco Cell Strains Producing High Levels of Ubiquinone 10 by a Cell Cloning Technique¡¡¡¡¡¡Takashi MATSUMOTO, Naomi KANNO, Tsutomu IKEDA, Yukiteru OBI, Takuro KISAKI, Masao NOGUCHI¡¡¡¡¡¡Agricultural and Biological Chemistr 45 ´¬ (1981) 7 ¹æ p. 1627-1633¡¡https://doi.org/10.1271/bbb1961.45.1627

A mitochondrial lipoprotein complex called MTL (mitochondrial transmembrane lipoprotein complex)

AtMic60 Is Involved in Plant Mitochondria Lipid Trafficking and Is Part of a Large Complex.¡¡¡¡¡¡Michaud M, Gros V, Tardif M, Brugi&#232;re S, Ferro M, Prinz WA, Toulmay A, Mathur J, Wozny M, Falconet D, Mar&#233;chal E, Block MA, Jouhet J.¡¡¡¡¡¡Curr Biol. 2016 Mar 7;26(5):627-39. doi: 10.1016/j.cub.2016.01.011. Epub 2016 Feb 18.¡¡¡¡¡¡PMID: 26898467

Analysis of the MTL Supercomplex at Contact Sites Between Mitochondria and Plastids.¡¡¡¡¡¡Michaud M.¡¡¡¡¡¡Methods Mol Biol. 2018;1829:173-188. doi: 10.1007/978-1-4939-8654-5_12.¡¡¡¡¡¡PMID: 29987722 ¡¡¡¡¡¡¥ê¥ó·ç˳¤ÎºÝ¤Ë¥×¥é¥¹¥Á¥É¤«¤é¥ß¥È¥³¥ó¥É¥ê¥¢¤ËÅü»é¼Á¤¬Í¢Á÷¤µ¤ì¤ë¤È½ñ¤¤¤Æ¤¢¤ë¡£

Serine decarboxylase¡¡SDC1

Arabidopsis Serine Decarboxylase 1 (SDC1) in Phospholipid and Amino Acid Metabolism.¡¡¡¡¡¡Liu YC, Gunawan F, Yunus IS, Nakamura Y.¡¡¡¡¡¡Front Plant Sci. 2018 Jul 31;9:972. doi: 10.3389/fpls.2018.00972. eCollection 2018.¡¡¡¡¡¡PMID: 30108598

Serine decarboxylase ¤Ï¥»¥ê¥ó¤òæú»À¤·¤Æ¡¢¥ê¥ó»é¼Á¤Î¹½À®À®Ê¬¤Ç¤¢¤ë¥¨¥¿¥Î¡¼¥ë¥¢¥ß¥ó¤ò¹çÀ®¤¹¤ë¡£UniProt ¥Ç¡¼¥¿¥Ù¡¼¥¹¤Ç¤Ï¡¢ºÙ˦¼Á¤Ë¶Éºß¤·¤ÆƯ¤¯¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£https://www.uniprot.org/uniprot/Q9MA74¡¡¡¡¡¡AT1G43710

¤·¤«¤·¤³¤ÎÏÀʸ¤Ç¤Ï¡ÖSDC1 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤·¤ÆƯ¤¯¡×¤È¤¤¤¦¤³¤È¤òȯ¸«¤·¤Æ¤¤¤ë¡£À¸¤¸¤¿¥¨¥¿¥Î¡¼¥ë¥¢¥ß¥ó¤Ï¡¢¥ê¥ó»é¼Á¤Î¹çÀ®¤µ¤ì¤ë¾ì½ê¤Ç¤¢¤ë¾®Ë¦ÂÎ ER ¤Ç¾ÃÈñ¤µ¤ì¤ë¤é¤·¤¤¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤Î·ç´Ù¤Ï ER ¤Ë¶Éºß¤·¤ÆƯ¤¯Å¾¼Ì°ø»Ò¤ËÅÁ¤¨¤é¤ì¤ë¤È¤¤¤¦¤³¤È¤¬¤¹¤Ç¤Ë¼¨¤µ¤ì¤Æ¤¤¤ë¡£

Endoplasmic reticulum-localized transcription factors and mitochondrial retrograde regulation. Hofmann NR. Plant Cell, 2013 Sep. PMID 24045018

¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤¬Äã²¼¤¹¤ë¤È¡¢¥Û¥¹¥Õ¥¡¥Á¥¸¥ë¥¨¥¿¥Î¡¼¥ë¥¢¥ß¥ó¡¢¥Û¥¹¥Õ¥¡¥Á¥¸¥ë¥³¥ê¥ó¤Ê¤É¤Î¥ê¥ó»é¼Á¤Î¹çÀ®¤¬¤¦¤Þ¤¯¤Ç¤­¤Ê¤¯¤Ê¤Ã¤Æ¡¢¤½¤ì¤¬ÍÍ¡¹¤Ê¤³¤È¤Ë¤Ä¤Ê¤¬¤ë¤È¤¤¤¦¤³¤È¤¬ÁÛÄꤵ¤ì¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤ÏºÙ˦Æâ¤ÎÍÍ¡¹¤Ê½ÅÍפʵ¡Ç½¤ò´ÖÀÜŪ¤Ë¥µ¥Ý¡¼¥È¤·¤Æ¤¤¤ë¡£

¦Â-cyanoalanine synthase

Role of mitochondrial cyanide detoxification in Arabidopsis root hair development.¡¡¡¡¡¡Arenas-Alfonseca L, Gotor C, Romero LC, Garcia I.¡¡¡¡¡¡Plant Signal Behav. 2018 Oct 31:1-3. doi: 10.1080/15592324.2018.1537699. [Epub ahead of print]¡¡¡¡¡¡PMID: 30380363

Arabidopsis &#223;-cyanoalanine synthase mutation overcomes NADPH oxidase action in response to pathogens.¡¡¡¡¡¡Arenas-Alfonseca L, Gotor C, Romero LC, Garc&#237;a I.¡¡¡¡¡¡J Exp Bot. 2021 Mar 26:erab137. doi: 10.1093/jxb/erab137. PMID: 33770168

OXA proteins

OXA ¤È¤¤¤¦¤Î¤ÏOXdase Assembly ¤Îά¤Ç¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Ë¥³¡¼¥É¤µ¤ì¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¹çÀ®¤µ¤ì¤ë¥¿¥ó¥Ñ¥¯¼Á¤òÆâËì¤Ë¤¦¤Þ¤¯ÁÞÆþ¤¹¤ë insertase ¤È¤·¤ÆƯ¤¤¤Æ¤¤¤ë¡£¡¡¡¡¡¡Mechanism of membrane-tethered mitochondrial protein synthesis¡¡¡¡¡¡Science 19 Feb 2021:¡¡Vol. 371, Issue 6531, pp. 846-849¡¡DOI: 10.1126/science.abe0763

The OXA2a Insertase of Arabidopsis Is Required for Cytochrome c Maturation.¡¡¡¡¡¡Kolli R, Engstler C, Akbas S, Mower JP, Soll J, Carrie C.¡¡¡¡¡¡Plant Physiol. 2020 Aug 5:pp.01248.2019. doi: 10.1104/pp.19.01248.¡¡¡¡¡¡PMID: 32759271

OXA2b is crucial for proper membrane insertion of COX2 during biogenesis of complex IV in plant mitochondria.¡¡¡¡¡¡Kolli R, Soll J, Carrie C. Plant Physiol. 2018 Nov 28. pii: pp.01286.2018. doi: 10.1104/pp.18.01286. ¡¡¡¡¡¡PMID: 30487140

Arabidopsis thaliana Oxa proteins locate to mitochondria and fulfill essential roles during embryo development.¡¡¡¡¡¡Benz M, Soll J, Ankele E.¡¡¡¡¡¡Planta. 2013 Feb;237(2):573-88. doi: 10.1007/s00425-012-1793-9. Epub 2012 Nov 21.¡¡¡¡¡¡PMID: 23179441

¥«¥ë¥¸¥ª¥ê¥Ô¥ó

¥«¥ë¥¸¥ª¥ê¥Ô¥ó¤Ï¿¿³ËÀ¸Êª¤Ç¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¤Î¤ß¸ºß¤¹¤ë½ÅÍפʥê¥ó»é¼Á¤Ç¤¢¤ë¡£¥Û¥¹¥Õ¥¡¥Á¥¸¥ë¥°¥ê¥»¥í¡¼¥ë¤¬Æóʬ»Ò¤Ä¤Ê¤¬¤Ã¤¿¤è¤¦¤Ê¹½Â¤¤ò¤·¤Æ¤¤¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎÆâËì¤ËÆäË¿¤¯Â¸ºß¤¹¤ë¡£ÅÅ»ÒÅÁã·ÏÊ£¹çÂΤʤɤε¡Ç½¤Ï¥«¥ë¥¸¥ª¥ê¥Ô¥ó¤¬Â¸ºß¤·¤Ê¤¤¤ÈÂ礭¤¯Äã²¼¤¹¤ë¡£

The importance of cardiolipin synthase for mitochondrial ultrastructure, respiratory function, plant development, and stress responses in Arabidopsis.¡¡¡¡¡¡Pineau B, Bourge M, Marion J, Mauve C, Gilard F, Maneta-Peyret L, Moreau P, Satiat-Jeunema&#238;tre B, Brown SC, De Paepe R, Danon A.¡¡¡¡¡¡Plant Cell. 2013 Oct;25(10):4195-208. doi: 10.1105/tpc.113.118018. Epub 2013 Oct 22.¡¡¡¡¡¡PMID: 24151294

¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¯ D-Æý»À¥Ç¥Ò¥É¥í¥²¥Ê¡¼¥¼

d-Lactate Dehydrogenase Links Methylglyoxal Degradation and Electron Transport through Cytochrome c.¡¡¡¡¡¡Welchen E, Schmitz J, Fuchs P, Garc&#237;a L, Wagner S, Wienstroer J, Schertl P, Braun HP, Schwarzl&#228;nder M, Gonzalez DH, Maurino VG.¡¡¡¡¡¡Plant Physiol. 2016 Oct;172(2):901-912. Epub 2016 Aug 9.¡¡¡¡¡¡PMID: 27506242 ¡¡¡¡¡¡¥·¥È¥¯¥í¥à C ¤ò·Ðͳ¤·¤ÆÅŻҤ¬Î®¤ì¤ë¡£

´ØÏ¢¤¹¤ëÏÀʸ¤Ë¡¡Enhanced Formation of Methylglyoxal-Derived Advanced Glycation End Products in Arabidopsis Under Ammonium Nutrition.¡¡¡¡¡¡Borysiuk K, Ostaszewska-Bugajska M, Vaultier MN, Hasenfratz-Sauder MP, Szal B.¡¡¡¡¡¡Front Plant Sci. 2018 May 24;9:667. doi: 10.3389/fpls.2018.00667. eCollection 2018.¡¡¡¡¡¡PMID: 29881392 ¡¡¡¡¡¡¤¬¤¢¤ë¡£ÃâÁǸ»¤Î¼ïÎà¤È¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤Ë´Ø·¸¤¬¤¢¤ë¤È¤¤¤¦ÏÀʸ¤Ï¤¤¤¯¤Ä¤«½Ð¤Æ¤¤¤ë¡£

SCO proteins

Sco ¤È¤¤¤¦¤Î¤Ï¡¡Synthesis of Cytochrome c Oxidase ¤òά¤·¤¿¤â¤Î¤Ç¤¢¤ë¡£¥·¥È¥¯¥í¥à C ¥ª¥­¥·¥À¡¼¥¼À¸¹çÀ®¤Ë´Ø¤ï¤ë¡£

Divergent functions of the Arabidopsis mitochondrial SCO proteins: HCC1 is essential for COX activity while HCC2 is involved in the UV-B stress response.¡¡¡¡¡¡Steinebrunner I, Gey U, Andres M, Garcia L, Gonzalez DH. Front Plant Sci. 2014 Mar 25;5:87. doi: 10.3389/fpls.2014.00087. eCollection 2014. PMID: 24723925

Plants contain two SCO proteins that are differentially involved in cytochrome c oxidase function and copper and redox homeostasis.¡¡¡¡¡¡Attallah CV, Welchen E, Martin AP, Spinelli SV, Bonnard G, Palatnik JF, Gonzalez DH.¡¡¡¡¡¡J Exp Bot. 2011 Aug;62(12):4281-94. doi: 10.1093/jxb/err138. Epub 2011 May 4.¡¡¡¡¡¡PMID: 21543521

Mitochondrial Sco proteins are involved in oxidative stress defense.¡¡¡¡¡¡Ekim Kocabey A, Kost L, Gehlhar M, Rodel G, Gey U.¡¡¡¡¡¡Redox Biol. 2018 Dec 12;21:101079. doi: 10.1016/j.redox.2018.101079.¡¡¡¡¡¡PMID: 30593977

COX17¡¡ COX ¤ËƼ¤ò¶¡µë¤¹¤ëƼ¥·¥ã¥Ú¥í¥ó

Cytochrome c Oxidase ¥·¥È¥¯¥í¥à C ¥ª¥­¥·¥À¡¼¥¼ (COX) ¤ÎÀ¸¹çÀ®¤Ï¤È¤Æ¤âÊ£»¨¤Ç¿¿ô¤Î°ø»Ò¤¬´ØÍ¿¤·¤Æ¤¤¤ë¡£¥Ø¥àÅ´¤ÈƼ¤¬´Þ¤Þ¤ì¤Æ¤¤¤ë¡£COX17 ¤Ï COX ¤ËƼ¤ò¶¡µë¤¹¤ëƼ¥·¥ã¥Ú¥í¥ó¤È¤·¤ÆƯ¤¯¥¿¥ó¥Ñ¥¯¼Á¤Ç¤¢¤ë¡£¾å¤Ë½ñ¤¤¤¿ SCO1 ¤È¶¦Æ±¤·¤ÆƯ¤¯¡£

AtCOX17, an Arabidopsis homolog of the yeast copper chaperone COX17¡¡¡¡¡¡Plant Physiol. 2002 Aug;129(4):1852-7.¡¡doi: 10.1104/pp.010963.¡¡Teresa Balandin , Carmen Castresana¡¡¡¡¡¡PMID: 12177498 PMCID: PMC166773

Plant Cell Environ. 2016 Mar;39(3):628-44.¡¡doi: 10.1111/pce.12647. The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis¡¡¡¡¡¡Lucila Garcia, Elina Welchen, ¤Ê¤É¡¡¡¡¡¡PMID: 26436309

AtCOX17-1 (At3g15352) ¤È¡¢-2 (At1g53030) ¤¬Â¸ºß¤¹¤ë¡£amiCOX17-1/cox17-2 plants ¤òºî¤ë¤³¤È¤¬¤Ç¤­¤Æ¤¤¤ë¡£COX17 ¤ÎƯ¤­¤òÍÞ¤¨¤ë¤Èȯ²ê»þ¤Ë ABA ´¶¼õÀ­¤¬Äã²¼¤¹¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£±ö¥¹¥È¥ì¥¹»þ¤Î³èÀ­»ÀÁǤÎÎ̤¬Áý¤¨¤Æ¤¤¤ë¡£ À¸°é¤¬°­¤¯¤Ê¤ë¡£amiCOX17-1/cox17-2 plants ¤Ç¤Ï¡¢¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½ÊÑ°ÛÂΤÇȯ¸½Î̤¬Áý¤¨¤ë¤³¤È¤¬Â¿¤¤¡¢AOX ¤Ê¤É¤Î mRNA ¤¬¸º¤Ã¤Æ¤¤¤ë¡£

COX17 ¤ò¶¯¤¯Æ¯¤«¤»¤¿¿¢Êª¤Ï±ö¥¹¥È¥ì¥¹¤Ë¶¯¤¯¤Ê¤ë¤È¤¤¤¦¥Ç¡¼¥¿¤¬¤¢¤ë (Fig. 8)¡£

¤³¤ì¤â¥Þ¥¤¥¯¥í¥¢¥ì¥¤¥Ç¡¼¥¿¤¬¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£

GSE110439COX17 ¤Îȯ¸½¤ò¸º¾¯¤µ¤»¤¿ÁȤßÂؤ¨¿¢Êª¤ÈÂоȤÎÈæ³Ó¡¡¥¢¥¸¥ì¥ó¥È¤Î¥¢¥ì¥¤¡¡À¸¥Ç¡¼¥¿¤Ç¤Ï¤Ê¤¯ÇÜΨ¤ÎÂпô¤Ë½èÍý¤·¤¿¥Ç¡¼¥¿¤¬ÃÖ¤¤¤Æ¤¢¤ë¡¡

COX19

Cytochrome c Oxidase ¥·¥È¥¯¥í¥à C ¥ª¥­¥·¥À¡¼¥¼¤ÎÀ¸¹çÀ®¤Ï¤È¤Æ¤âÊ£»¨¤Ç¿¿ô¤Î°ø»Ò¤¬´ØÍ¿¤·¤Æ¤¤¤ë¡£¥Ø¥àÅ´¤ÈƼ¤¬´Þ¤Þ¤ì¤Æ¤¤¤ë¡£

The mitochondrial copper chaperone COX19 influences copper and iron homeostasis in arabidopsis.¡¡¡¡¡¡ Garcia L, Mansilla N, Ocampos N, Pagani MA, Welchen E, Gonzalez DH.¡¡¡¡¡¡Plant Mol Biol. 2019 Feb 18. doi: 10.1007/s11103-019-00840-y. PMID: 30778722

¤³¤ì¤â¥Þ¥¤¥¯¥í¥¢¥ì¥¤¥Ç¡¼¥¿¤¬¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£

GSE110461COX19 ¤Îȯ¸½¤ò¸º¾¯¤µ¤»¤¿ÁÈ´¹¤¨¿¢Êª¤ÈÂоȤÎÈæ³Ó¡¡¥¢¥¸¥ì¥ó¥È¤Î¥¢¥ì¥¤¡¡À¸¥Ç¡¼¥¿¤Ç¤Ï¤Ê¤¯ÇÜΨ¤ÎÂпô¤Ë½èÍý¤·¤¿¥Ç¡¼¥¿¤¬ÃÖ¤¤¤Æ¤¢¤ë

COX11¡¡¡ÊAt1g02410¡Ë¡¡¤³¤ì¤â COX ¤ËƼ¤ò¶¡µë¤¹¤ëƼ¥·¥ã¥Ú¥í¥ó

The Arabidopsis COX11 Homolog is Essential for Cytochrome c Oxidase Activity.¡¡¡¡¡¡Radin I, Mansilla N, R&#246;del G, Steinebrunner I.¡¡¡¡¡¡Front Plant Sci. 2015 Dec 18;6:1091. doi: 10.3389/fpls.2015.01091. ¡¡¡¡¡¡PMID: 26734017

¡Öinvolved in copper delivery to the COX complex. ¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£COX ¤Î³èÀ­À÷¿§¤ò¹Ô¤Ã¤Æ¤¤¤ë¡£

The mitochondrial copper chaperone COX11 has an additional role in cellular redox homeostasis.¡¡¡¡¡¡Radin I, Kost L, Gey U, Steinebrunner I, R&#246;del G.¡¡¡¡¡¡ PLoS One. 2021 Dec 17;16(12):e0261465. doi: 10.1371/journal.pone.0261465. eCollection 2021.¡¡¡¡¡¡PMID: 34919594

SPR1 (short postembryonic roots 1)¡¡¥¤¥Í¤Î¥ß¥È¥³¥ó¥É¥ê¥¢¥¿¥ó¥Ñ¥¯¼Á

Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in Oryza sativa.¡¡¡¡¡¡Jia L, Wu Z, Hao X, Carrie C, Zheng L, Whelan J, Wu Y, Wang S, Wu P, Mao C.¡¡¡¡¡¡New Phytol. 2011 Feb;189(3):843-55. doi: 10.1111/j.1469-8137.2010.03513.x. Epub 2010 Oct 29.¡¡¡¡¡¡PMID: 21039568

¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Î At1g05960 ¤È¤¤¤¦°äÅÁ»Ò¤ÈÁêƱÀ­¤¬¤¢¤ë¡£

Brittle1-1 (¥È¥¦¥â¥í¥³¥· maize)

Mitochondrial Zea mays Brittle1-1 Is a Major Determinant of the Metabolic Fate of Incoming Sucrose and Mitochondrial Function in Developing Maize Endosperms

cytochrome b-c1 complex subunit protein QCR7

A maize cytochrome b-c1 complex subunit protein ZmQCR7 controls variation in the hypersensitive response

Yijian He, Saet-Byul Kim & Peter Balint-Kurti

¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Ë¤Ï»÷¤¿¤â¤Î¤È¤·¤Æ AT4G32470 (AtQCR7-1) ¤È AT5G25450 (AtQCR7-2)¡¡¤¬¤¢¤ë¡£

DEG10

DEG10 contributes to mitochondrial proteostasis, root growth and seed yield in Arabidopsis.¡¡¡¡¡¡Huber CV, Jakobs BD, Mishra LS, Niedermaier S, Stift M, Winter G, Adamska I, Funk C, Huesgen PF, Funck D.¡¡¡¡¡¡J Exp Bot. 2019 Jun 20. pii: erz294. doi: 10.1093/jxb/erz294. [Epub ahead of print]¡¡¡¡¡¡PMID: 31225599

CFM6

CFM6 is an Essential CRM Protein Required for the Splicing of nad5 Transcript in Arabidopsis Mitochondria. ¡¡¡¡¡¡Lin WC, Chen YH, Gu SY, Shen HL, Huang KC, Lin WD, Chang MC, Chang IF, Hong CY, Cheng WH.¡¡¡¡¡¡Plant Cell Physiol. 2021 Nov 10:pcab161. doi: 10.1093/pcp/pcab161. ¡¡¡¡¡¡PMID: 34752612

CFM9

CFM9, a Mitochondrial CRM Protein, Is Crucial for Mitochondrial Intron Splicing, Mitochondria Function, and Arabidopsis Growth and Stress Responses.¡¡¡¡¡¡Lee K, Park SJ, Park YI, Kang H.¡¡¡¡¡¡Plant Cell Physiol. 2019 Jul 29. pii: pcz147. doi: 10.1093/pcp/pcz147. [Epub ahead of print]¡¡¡¡¡¡PMID: 31359042

MID1

Pentatricopeptide repeat protein MID1 modulates nad2 intron 1 splicing and Arabidopsis development.¡¡¡¡¡¡Zhao P, Wang F, Li N, Shi DQ, Yang WC.¡¡¡¡¡¡Sci Rep. 2020 Feb 6;10(1):2008. doi: 10.1038/s41598-020-58495-5.¡¡¡¡¡¡PMID: 32029763

¥ß¥È¥³¥ó¥É¥ê¥¢µ¡Ç½¤ÈÍÕÎÐÂΤÎÁê¸ßºîÍÑ

The Mitochondrial Respiratory Chain Maintains the Photosynthetic Electron Flow in Arabidopsis thaliana Leaves under High-Light Stress¡¡¡¡¡¡Plant Cell Physiol. 2020 Feb 1;61(2):283-295.¡¡doi: 10.1093/pcp/pcz193.¡¡¡¡¡¡Shoya Yamada, Hiroshi Ozaki, Ko Noguchi¡¡¡¡¡¡PMID: 31603217

Mitochondria Affect Photosynthetic Electron Transport and Photosensitivity in a Green Alga¡¡¡¡¡¡V&#233;ronique Larosa, Andrea Meneghesso, Nicoletta La Rocca, Janina Steinbeck, Michael Hippler, Ildik&#242; Szab&#242;, Tomas Morosinotto¡¡¡¡¡¡PMID: 29284743 PMCID: PMC5841685 DOI: 10.1104/pp.17.01249

Thioredoxin

The Lack of Mitochondrial Thioredoxin TRXo1 Affects In Vivo Alternative Oxidase Activity and Carbon Metabolism under Different Light Conditions.¡¡¡¡¡¡Florez-Sarasa I, Obata T, Del-Saz NSFN, Reichheld JP, Meyer EH, Rodriguez-Concepcion M, Ribas-Carbo M, Fernie AR.¡¡¡¡¡¡Plant Cell Physiol. 2019 Nov 1;60(11):2369-2381. doi: 10.1093/pcp/pcz123. PMID: 31318380

PPR20 (Maize)

PPR20 Is Required for the cis-Splicing of Mitochondrial nad2 Intron 3 and Seed Development in Maize.¡¡¡¡¡¡Yang YZ, Ding S, Wang Y, Wang HC, Liu XY, Sun F, Xu C, Liu B, Tan BC.¡¡¡¡¡¡Plant Cell Physiol. 2020 Feb 1;61(2):370-380. doi: 10.1093/pcp/pcz204.¡¡¡¡¡¡PMID: 31670803

SURFEIT1(SURF1)-like

Plant J. 2020 Apr 5. doi: 10.1111/tpj.14762. [Epub ahead of print]¡¡¡¡¡¡Arabidopsis thaliana SURFEIT1-like genes link mitochondrial function to early plant development and hormonal growth responses.

Uniprot https://www.uniprot.org/¡¡¤Ç SURFEIT1(SURF1) ¤ò¸¡º÷¤¹¤ë¤È¡¢¡ÖSurfeit locus protein 1¡×¤È¤¤¤¦ÀâÌÀ¤¬¤¢¤ë¡£¤³¤ì¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¯¥¿¥ó¥Ñ¥¯¼Á¤Ç¡¢Cytochrome C Oxidase (COX, Ê£¹çÂÎ IV)¡¡¤¬Àµ¾ï¤ËƯ¤¯¤¿¤á¤ËɬÍפʰø»Ò¤Ç¤¢¤ë¡£ ¤³¤ÎÏÀʸ¤Ç¤Ï SURF1-like genes ¤È¤·¤Æ At3g17910 and At1g48510¡¡¤ÎƯ¤­¤òʬÀϤ·¤Æ¤¤¤ë¡£COX ¤ÎÀµ¾ï¤ÊƯ¤­¤ËɬÍפÀ¤Ã¤¿¡£COX ¤ò´Þ¤à Mt ²èʬ¤òÅŵ¤±ËÆ°¤·¤Æ³èÀ­À÷¿§¤·¤Æ¤¤¤ë¡£

AOX (Alternative oxidase) ¥¿¥ó¥Ñ¥¯¼Á¤ÎÎ̤ϡ¢ÌîÀ¸·¿¤ò¸÷¤¬¶¯¤¤¾ò·ï¤Ç°éÀ®¤¹¤ë¤ÈÁý²Ã¤·¤Æ¡¢¤È¤Æ¤â¼å¤¤¸÷¾ò·ï¤Ç°éÀ®¤¹¤ë¤È¾¯¤Ê¤¯¤Ê¤ë (Fig. 4)¡£surf1b ÊÑ°ÛÂΤϡ¢¸÷¤¬¼å¤¤¾ò·ï¤Ç¤â AOX ¥¿¥ó¥Ñ¥¯¼Á¤ÎÎ̤¬Â¿¤«¤Ã¤¿¡£¸÷¤¬¶¯¤¤¾ò·ï¤Ç¤Ï¤½¤ì°Ê¾åÁý¤¨¤Ê¤«¤Ã¤¿¡£ ¿¢Êª¥Û¥ë¥â¥ó (auxin, GA) ¤äž¼Ì°ø»Ò PIF4 ¤Ë¤â±Æ¶Á¤¬¤¢¤Ã¤¿¡£

The gene expression profiles of mitochondrial respiratory components in Arabidopsis plants with differing amounts of ALTERNATIVE OXIDASE1a under high intensity light. ¡¡¡¡¡¡Garmash EV, Belykh ES, Velegzhaninov IO. Plant Signal Behav. 2021 Mar 4;16(3):1864962. doi: 10.1080/15592324.2020.1864962. Epub 2020 Dec 28.¡¡PMID: 33369529 ¡¡¡¡¡¡¤È¤¤¤¦ÏÀʸ¤â¤¢¤Ã¤¿¡£

¶¯¤¤¸÷¤Î²¼¤Ç¤Ï AOX ¤ÎƯ¤­¤¬¥¹¥È¥ì¥¹¤ò²óÈò¤¹¤ë¤¿¤á¤Ë½ÅÍפˤʤ롣AOX ¤ÈƱ»þ¤ËÊ£¿ô¤Î¥ß¥È¥³¥ó¥É¥ê¥¢´ØÏ¢°äÅÁ»Ò¤¬Æ¯¤¤¤Æ¤¤¤Æ¡¢AOX1a ¤ÈƱ´ü¤·¤¿È¯¸½ÊѲ½¤ò¼¨¤·¤¿¡£

CLPP2

Mitochondrial CLPP2 assists coordination and homeostasis of respiratory complexes.¡¡¡¡¡¡Petereit J, Duncan O, Murcha MW, Fenske R, Cincu E, Cahn J, Pruzinska A, Ivanova A, Kollipara L, Wortelkamp S, Sickmann A, Lee J, Lister R, Millar AH, Huang S.¡¡¡¡¡¡Plant Physiol. 2020 Jun 22. pii: pp.00136.2020. doi: 10.1104/pp.20.00136. ¡¡¡¡¡¡PMID: 32571844

MPV17

Arabidopsis AtMPV17, a homolog of mice MPV17, enhances osmotic stress tolerance.¡¡¡¡¡¡Wi J, Na Y, Yang E, Lee JH, Jeong WJ, Choi DW.Physiol Mol Biol Plants. 2020 Jul;26(7):1341-1348. doi: 10.1007/s12298-020-00834-x. Epub 2020 Jun 13.¡¡¡¡¡¡PMID: 32647452¡¡¡¡¡¡Â¾À¸Êª¤Ç MPV17 ¤¬·ç¼º¤¹¤ë¤È¥ß¥È¥³¥ó¥É¥ê¥¢ DNA ¤¬°Ý»ý¤Ç¤­¤Ê¤¯¤Ê¤ë¤³¤È¤¬¤ï¤«¤Ã¤Æ¤¤¤ë¡£¹ÚÊì¤Ç¤Ï¥¨¥¿¥Î¡¼¥ë¤ò̵ÆDz½¡¦Âå¼Õ¤Ç¤­¤Ê¤¯¤Ê¤êÀ¸°é¤¬¥¨¥¿¥Î¡¼¥ë´¶¼õÀ­¤Ë¤Ê¤ë¡£ ¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Ë¤âÁêÅö¤¹¤ë°äÅÁ»Ò¤¬¤¢¤ê¡¢·ç¼º¤¹¤ë¤È ABA ´¶¼õÀ­¤¬¹â¤Þ¤ê¥¹¥È¥ì¥¹¤Ë¼å¤¯¤Ê¤ë¡£²êÀ¸¤¨¤ËÅü¤òÂçÎ̤ËÍ¿¤¨¤ë¤ÈÀ¸°é¤¬ ABA ¤òÍ¿¤¨¤¿ºÝ¤Î¤è¤¦¤ËÎв½¤·¤Ë¤¯¤¯¤Ê¤ë¡£Åü¤«¤é¥¨¥¿¥Î¡¼¥ë¤¬À¸À®¤·¤Æ ABA ¤ò¶¯¤¯¸ú¤¯¤è¤¦¤Ë¤·¤Æ¤¤¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

¹ÚÊì¤Ç¤Ï¥¨¥¿¥Î¡¼¥ëÂÑÀ­¤Ï¼ò¤¡¢¥Ð¥¤¥ªÇ³ÎÁÀ½Â¤¤ÈÌ©Àܤʴط¸¤¬¤¢¤ê¸¦µæ¤¬¿Ê¤ó¤Ç¤¤¤ë¡£¿¢Êª¤Ç¤â¥¨¥¿¥Î¡¼¥ë¤¬¥¹¥È¥ì¥¹ÂÑÀ­¤ò¹â¤á¤ë¤È¤¤¤¦ÏÀʸ¤¬¤¢¤ë¡£¡¡¡¡¡¡ Front Plant Sci. 2017 Jul 3;8:1001.¡¡¡¡¡¡Ethanol Enhances High-Salinity Stress Tolerance by Detoxifying Reactive Oxygen Species in Arabidopsis thaliana and Rice¡¡¡¡¡¡Huong Mai Nguyen, Kaori Sako, Akihiro Matsui, Yuya Suzuki, Mohammad Golam Mostofa, Chien Van Ha, Maho Tanaka, Lam-Son Phan Tran, Yoshiki Habu, Motoaki Seki¡¡¡¡¡¡PMID: 28717360 PMCID: PMC5494288

EMB2794

Mitochondrial Pentatricopeptide Repeat Protein, EMB2794, Plays a Pivotal Role in NADH Dehydrogenase Subunit nad2 mRNA Maturation in Arabidopsis thaliana¡¡¡¡¡¡March 2020¡¡Plant and Cell Physiology 61(6)¡¡¡¡¡¡DOI: 10.1093/pcp/pcaa028

³Ë¤Ë¥³¡¼¥É¤µ¤ì¤¿¥ª¥ë¥¬¥Í¥é ribosomal protein ¤¬¥ª¥ë¥¬¥Í¥é¤Ç¤Î¥¹¥×¥é¥¤¥·¥ó¥°¤òÂ¥¿Ê¤¹¤ë

Rerouting of ribosomal proteins into splicing in plant organelles¡¡¡¡¡¡Proc Natl Acad Sci U S A. 2020 Nov 9;202004075.¡¡¡¡¡¡Chuande Wang 1 , Rachel Fourdin 1 , Martine Quadrado 1 , C&#233;line Dargel-Graffin 1 , Dimitri Tolleter 2 , David Macherel 2 , Hakim Mireau¡¡¡¡¡¡PMID: 33168708 DOI: 10.1073/pnas.2004075117

UV-B ¤Ç¥ß¥È¥³¥ó¥É¥ê¥¢¤¬ÃÇÊÒ²½¤·¤Æ¡¢¥ª¡¼¥È¥Õ¥¡¥¸¡¼¤Ç½èÍý¤µ¤ì¤ë

Autophagy-deficient Arabidopsis mutant atg5, which shows ultraviolet-B sensitivity, cannot remove ultraviolet-B-induced fragmented mitochondria. ¡¡¡¡¡¡Dundar G, Teranishi M, Hidema J.¡¡¡¡¡¡Photochem Photobiol Sci. 2020 Nov 25. doi: 10.1039/c9pp00479c.¡¡¡¡¡¡PMID: 33237047

Autophagy Contributes to the Quality Control of Leaf Mitochondria¡¡¡¡¡¡Sakuya Nakamura, Shinya Hagihara, Kohei Otomo, Hiroyuki Ishida, Jun Hidema, Tomomi Nemoto, Masanori Izumi¡¡¡¡¡¡Plant and Cell Physiology, Volume 62, Issue 2, February 2021, Pages 229&#8211;247, ¡¡¡¡¡¡https://doi.org/10.1093/pcp/pcaa162

UV-B ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¤È¤Æ¤â¶¯¤¤¥À¥á¡¼¥¸¤òÍ¿¤¨¤ë¤³¤È¤¬¤¢¤ë¤é¤·¤¤¡£ÍÕÎÐÂΤÎÊý¤¬¥À¥á¡¼¥¸¤ò¼õ¤±¤½¤¦¤Êµ¤¤â¤¹¤ë¤¬¡¢¤½¤¦¤Ç¤Ï¤Ê¤¤¤é¤·¤¤¡£ÍÕÎÐÂΤϳèÀ­»ÀÁǾõǽ¤Ê¤É¤¬¶¯¤¤¤Î¤Ç¥À¥á¡¼¥¸¤ò¼õ¤±¤Ë¤¯¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

dek55¡Êmaize ¤Î PPR¥¿¥ó¥Ñ¥¯¼Á¡Ë, dek47, dek43, dek56

dek ¤Ï defective kernel ¤Îά¤Ç¡¢Ìò¤ËΩ¤¿¤Ê¤¤¡£

The novel E-subgroup pentatricopeptide repeat protein DEK55 is responsible for RNA editing at multiple sites and for the splicing of nad1 and nad4 in maize.¡¡¡¡¡¡Ren RC, Yan XW, Zhao YJ, Wei YM, Lu X, Zang J, Wu JW, Zheng GM, Ding XH, Zhang XS, Zhao XY.¡¡¡¡¡¡BMC Plant Biol. 2020 Dec 9;20(1):553. doi: 10.1186/s12870-020-02765-x.¡¡¡¡¡¡PMID: 33297963

Regulator of Chromosome Condensation 1-Domain Protein DEK47 Functions on the Intron Splicing of Mitochondrial Nad2 and Seed Development in Maize¡¡¡¡¡¡Shi-Kai Cao¡¡¤Ê¤É¡¡¡¡¡¡Front Plant Sci. 2021; 12: 695249. Published online 2021 Aug 2. doi: 10.3389/fpls.2021.695249¡¡¡¡¡¡PMCID: PMC8365749

DEK43 is a P-type pentatricopeptide repeat (PPR) protein responsible for the Cis-splicing of nad4 in maize mitochondria¡¡¡¡¡¡J Integr Plant Biol. 2020 Mar;62(3):299-313. doi: 10.1111/jipb.12843. Epub 2019 Sep 9.¡¡¡¡Ru Chang Ren ¤Ê¤É¡¡¡¡¡¡PMID: 31119902 ¡¡¡¡¡¡¤³¤ÎÏÀʸ¤Ç¤Ï¡¡Plant mitochondria isolation kit (Biohao ¤ÎÀ½ÉÊ¡¡¥³¡¼¥É P0045¡Ë ¤¬»È¤ï¤ì¤Æ¤¤¤ë¡£ÍÕÎÐÂΤÎñΥ¤Ë¤Ï¡¡Chloroplast Isolation Kit (catalog number: CP-011; Invent Biotechnologies¡¡¥Õ¥Ê¥³¥·¤«¤éȯÇ䤵¤ì¤Æ¤¤¤ë)¤ò»È¤Ã¤Æ¤¤¤ë¡£

	
DEFECTIVE KERNEL 56 functions in mitochondrial RNA editing and maize seed development.¡¡¡¡Zang J, Zhang T, Zhang Z, Liu J, Chen H.¡¡¡¡Plant Physiol. 2023 Nov 13:kiad598. doi: 10.1093/plphys/kiad598. ¡¡¡¡PMID: 37956067

Defective Kernel 6

¿¢Êª¼ï
Z.mays¡¡
¸«¤Ä¤±¤é¤ì¤¿ÊýË¡
¼ï»Òȯã¤Î°Û¾ï
ÊÑ°Û°äÅÁ»Ò--
PPR protein ¤Î°ì¼ï

Defective Kernel 6 encodes a PPR protein required for seed development in maize.¡¡¡¡¡¡Li X, Gu W, Sun S, Chen Z, Chen J, Song W, Zhao H, Lai J.¡¡¡¡¡¡J Integr Plant Biol. 2017 Oct 5. doi: 10.1111/jipb.12602.¡¡¡¡¡¡PMID: 28981206

RNA editing ¤ÎÅٹ礤¤¬ÊѲ½¤¹¤ë

¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤Î RNA editing, splicing¡¡¤¬²¿¤«¤Î»É·ã¤Ê¤É¤ÇÄ´Àᤵ¤ì¤Æ¤¤¤ëÎã¤Ï¾¯¤Ê¤¤¡£¤·¤«¤·°Ê²¼¤ÎÏÀʸ¤Î¤è¤¦¤ÊÎ㤬Êó¹ð¤µ¤ì¤Æ¤¤¤ë¡£

RNA editing of cytochrome c maturation transcripts is responsive to the energy status of leaf cells in Arabidopsis thaliana.¡¡¡¡¡¡Sun Y, Law YS, Cheng S, Lim BL. ¡¡¡¡¡¡Mitochondrion. 2017 Jul;35:23-34. doi: 10.1016/j.mito.2017.04.006. Epub 2017 May 3. PMID: 28478183

AtPAP2 ¤È¤¤¤¦¥ª¥ë¥¬¥Í¥é¤Î³°Ëì¤ÇƯ¤¯ phosphatase ¤ò overexpress ¤¹¤ë¤È¡¢¥¯¥í¥í¥×¥é¥¹¥È¤È¥ß¥È¥³¥ó¥É¥ê¥¢¤Î¥¨¥Í¥ë¥®¡¼À¸»º¸úΨ¤¬¹â¤¯¤Ê¤ë¡£¤³¤Î¥ê¥¹¥È¤Ç¤â¾å¤ÎÊý¡ÊÌò¤ËΩ¤ÄÊѲ½¡Ë¤Ë½ñ¤¤¤Æ¤¢¤Ã¤¿¡£

A dual-targeted purple acid phosphatase in Arabidopsis thaliana moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield.¡¡¡¡¡¡Sun F, Suen PK, Zhang Y, Liang C, Carrie C, Whelan J, Ward JL, Hawkins ND, Jiang L, Lim BL.¡¡¡¡¡¡New Phytol. 2012 Apr;194(1):206-19. doi: 10.1111/j.1469-8137.2011.04026.x. Epub 2012 Jan 23.¡¡¡¡¡¡PMID: 22269069

¤³¤Î¤È¤­¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Ë¥³¡¼¥É¤µ¤ì¤Æ¤¤¤ë cytochrome c maturation (Ccm) genes ¤Î editing ¤µ¤ì¤ëÅٹ礤¤¬ÊѲ½¤¹¤ë¡£RNAseq ¤ò¹Ô¤¤¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Ë¥³¡¼¥É¤µ¤ì¤Æ¤¤¤ë mRNA ¤ÎÇÛÎó¤òÄ´¤Ù¤ë¤³¤È¤Ç¸¡½Ð¤·¤Æ¤¤¤ë¡£¥¿¥ó¥Ñ¥¯¼Á¤ÎÎ̤âÄ´¤Ù¤Æ¡¢ CcmFN1 ¤È¤¤¤¦°äÅÁ»Ò¤Î»ºÊª¤ÎÎ̤¬¾¯¤·Áý²Ã¤·¤Æ¤¤¤ë¤è¤¦¤Ë¤â¸«¤¨¤ë¡£AtPAP2 ¤Ï MORF ¤È¤¤¤¦°ø»Ò¤È¶¨ÎϤ·¤Æ editing ¤ËƯ¤¤¤Æ¤¤¤ë¡£

RNAseq ¥Ç¡¼¥¿¤¬ GSE57790 and GSE57791 ¤Ç¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£

º¬Î³¤È¥ß¥È¥³¥ó¥É¥ê¥¢RNA editing, splicing

Differential RNA Editing and Intron Splicing in Soybean Mitochondria during Nodulation.¡¡¡¡¡¡Sun Y, Xie M, Xu Z, Chan KC, Zhong JY, Fan K, Wong-Bajracharya J, Lam HM, Lim BL.¡¡¡¡Int J Mol Sci. 2020 Dec 9;21(24):E9378. doi: 10.3390/ijms21249378.¡¡¡¡¡¡PMID: 33317061

´Î¿´¤ÎÅÅ»ÒÅÁã·ÏÊ£¹çÂΤγèÀ­¤Ï¤¢¤Þ¤êÊѲ½¤¬¤Ê¤¤¡ÊÁÈ¿¥¤«¤é¥ß¥È¥³¥ó¥É¥ê¥¢¤òÃê½Ð¤·¤ÆÅŵ¤±ËÆ°¤Î¸å¡¢³èÀ­À÷¿§¤ÇÈæ³Ó¡Ë¤Î¤Ç¡¢editing, splicing ¤ÎÊѲ½¤Ë¤É¤Î¤è¤¦¤Ê°ÕÌ£¤¬¤¢¤ë¤Î¤«¤ï¤«¤é¤Ê¤¤¡£¤â¤·¤«¤¹¤ë¤ÈÀ¸¤­¤¿ºÙ˦¤Î¾õÂ֤ǤϳèÀ­»ÀÁÇÀ¸À®¤Ê¤É¤ËÊѲ½¤¬¤¢¤ë¤Î¤«¤â¤·¤ì¤Ê¤¤¤·¡¢²¿¤â°ÕÌ£¤Ï¤Ê¤¤¤Î¤«¤â¤·¤ì¤Ê¤¤¡£

AtFAHD1a

AtFAHD1a: A New Player Influencing Seed Longevity and Dormancy in Arabidopsis?¡¡¡¡¡¡Gerna D, Arc E, Holzknecht M, Roach T, Jansen-D&#252;rr P, Weiss AKH, Kranner I.¡¡¡¡Int J Mol Sci. 2021 Mar 15;22(6):2997. doi:¡¡10.3390/ijms22062997.¡¡¡¡¡¡PMID: 33804275

Fumarylacetoacetate hydrolase domain (FAHD)-containing proteins ¤È¤¤¤¦°ø»Ò¤¬·ç»¤·¤¿ÊÑ°ÛÂΤˤĤ¤¤ÆÄ´¤Ù¤Æ¤¤¤ë¡£ AT4G15940 and AT3G16700 ¤ò AtFAHD1a and AtFAHD1b¡¡¤È¸Æ¤ó¤Ç¤¤¤ë¡£AtFAHD1a ¤Ï¼ï»Ò¤ÎÀ®½Ï´ü¤Ëȯ¸½¤¹¤ë¤Î¤Ç¡¢¤³¤ì¤¬·ç»¤·¤¿ÊÑ°ÛÂΤ¬·ÁÀ®¤¹¤ë¼ï»Ò¤ÎÀ­¼Á¤òÄ´¤Ù¤¿¡£AtFAHD1a ¤¬·ç»¤·¤¿ÊÑ°ÛÂΤǤϸƵۤˤè¤ë»ÀÁǾÃÈñÎ̤¬ÊѲ½¤¹¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¤ÇƯ¤¯°ø»Ò¤À¤ÈÃø¼Ô¤é¤Ï¿äÄꤷ¤Æ¤¤¤ë¡£·ç»¤Ë¤è¤Ã¤Æ¼ï»Ò¤Î¼÷Ì¿ longevity ¤¬Ä¹¤¯¤Ê¤ê¹â²¹¤Ë¤è¤ëµÙ̲¡¡ thermo-dormancy¡¡¤¬Àõ¤¯¤Ê¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

WHIRLY2

Triple-localized WHIRLY2 Influences Leaf Senescence and Silique Development via Carbon Allocation.¡¡¡¡¡¡Huang C, Yu J, Cai Q, Chen Y, Li Y, Ren Y, Miao Y.¡¡¡¡¡¡Plant Physiol. 2020 Nov 2;184(3):1348-1362. doi: 10.1104/pp.20.00832.¡¡¡¡¡¡PMID: 33889981

Twin arginine translocation (TAT) pathways

Twin arginine translocation (TAT) pathways¡¡¤Ï¡¢¥Ð¥¯¥Æ¥ê¥¢¡¢ÍÕÎÐÂΡ¢¥ß¥È¥³¥ó¥É¥ê¥¢¤Ø¤Î¥¿¥ó¥Ñ¥¯¼ÁÍ¢Á÷¤ËƯ¤¯¡£Ê£¹çÂÎ III ¤ËÍ¥ÀèŪ¤ËƯ¤¯°ø»Ò¤Ï¤á¤º¤é¤·¤¤¡£

The Plant Mitochondrial TAT Pathway Is Essential for Complex III Biogenesis.¡¡¡¡¡¡Sch&#228;fer K, K&#252;nzler P, Schneider K, Klingl A, Eubel H, Carrie C.¡¡¡¡¡¡Curr Biol. 2020 Mar 9;30(5):840-853.e5. doi: 10.1016/j.cub.2020.01.001. ¡¡¡¡¡¡PMID: 32084398

RanBP2

A RanBP2-type zinc finger protein functions in intron splicing in Arabidopsis mitochondria and is involved in the biogenesis of respiratory complex I. ¡¡¡¡¡¡Bentolila S, Gipson AB, Kehl AJ, Hamm LN, Hayes ML, Mulligan RM, Hanson MR.¡¡¡¡¡¡Nucleic Acids Res. 2021 Apr 6;49(6):3490-3506. doi: 10.1093/nar/gkab066.¡¡¡¡¡¡PMID: 33660772

SSB1

Arabidopsis SSB1, a Mitochondrial Single-Stranded DNA-Binding Protein, is Involved in ABA Response And Mitochondrial RNA Splicing. ¡¡¡¡¡¡Qian J, Li M, Zheng M, Hsu YF.¡¡¡¡¡¡Plant Cell Physiol. 2021 Jun 29:pcab097. doi: 10.1093/pcp/pcab097. Online ahead of print.¡¡¡¡¡¡PMID: 34185867

Hypersensitivity toward ABA¡¡¤ò»Øɸ¤È¤·¤Æ ssb1 ÊÑ°ÛÂΤò¸«¤¤¤À¤·¤¿¡£SSB1 ¤Îȯ¸½¤Ï ABA ¤ÇÍÞ¤¨¤é¤ì¤¿¡£ABI4, ABI5 ¤¬´ØÏ¢¤·¤Æ¤¤¤ë¡£ssb1-1 ¤Ï NaCl ¤Ë¤â´¶¼õÀ­¤¬¹â¤¤¡£¤½¤ì¤Ï ABA À¸¹çÀ®¤¬²á¾ê¤Ë³èÀ­²½¤¹¤ë¤»¤¤¤Ç¤¢¤ë¡£È¯²ê»þ¤Ë²á»À²½¿åÁǤËÂФ¹¤ë´¶¼õÀ­¤¬¹â¤¯¤Ê¤ë¡£nad1 intron1 and nad2 intron1¡¡¤Î¥¹¥×¥é¥¤¥·¥ó¥°¤¬¤¦¤Þ¤¯¤¤¤«¤Ê¤¯¤Ê¤ë¡£

Arabidopsis mitochondrial SSB1 and SSB2 are essential regulators of mtDNA replication and homologous recombination.¡¡¡¡¡¡Qian J, Zheng M, Wang L, Song Y, Yan J, Hsu YF.¡¡¡¡¡¡J Integr Plant Biol. 2022 Aug 4. doi: 10.1111/jipb.13338. Online ahead of print.¡¡¡¡¡¡PMID: 35925893

ATMTM1, ATMTM2

Significance of AtMTM1 and AtMTM2 for Mitochondrial MnSOD Activation in Arabidopsis¡¡¡¡¡¡Front Plant Sci. 2021 Aug 6;12:690064.¡¡¡¡¡¡doi: 10.3389/fpls.2021.690064. Shu-Hsuan Hu ¤é¡¡¡¡¡¡PMID: 34434202 ¡¡¡¡¡¡PMCID: PMC8382117

VDAC3 ¤È CIPK9 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¡Ê³°¡ËËì¤Ë¶¦¶Éºß¤·¤Æ»À²½¥¹¥È¥ì¥¹±þÅú¤ËƯ¤¯

CIPK9 targets VDAC3 and modulates oxidative stress responses in Arabidopsis¡¡¡¡¡¡Poonam Kanwar, Sibaji K. ¤Ê¤É¡¡¡¡¡¡Plant J. First published: 08 November 2021¡¡¡¡¡¡https://doi.org/10.1111/tpj.15572

MISF2 (AT3G22670)

MISF2 Encodes an Essential Mitochondrial Splicing Co-factor Required for nad2 mRNA Processing and Embryo Development in Arabidopsis thaliana¡¡¡¡¡¡ DOI: 10.20944/preprints202201.0113.v1¡¡¡¡¡¡Tan-Trung Nguyen¡¡¤Ê¤É

¥È¥¦¥â¥í¥³¥· maize ¤Î EMP10 ¤ËÁêÅö¤¹¤ë PPR¥¿¥ó¥Ñ¥¯¼Á¤Ç¡¢NAD2 °äÅÁ»Ò¤Î¥¤¥ó¥È¥í¥ó¥¹¥×¥é¥¤¥·¥ó¥°¤ËƯ¤¯¡£

homocastasterone ¤ÎÀ¸¹çÀ®

A mitochondrial ADXR-ADX-P450 electron transport chain is essential for maternal gametophytic control of embryogenesis in Arabidopsis¡¡¡¡¡¡Proc Natl Acad Sci U S A. 2022 Jan 25;119(4):e2000482119.¡¡doi: 10.1073/pnas.2000482119. Andr&#233;s Martin Bellido ¤Ê¤É¡¡¡¡¡¡PMID: 35046016 PMCID: PMC8794853

DUF295

Neofunctionalization of Mitochondrial Proteins and Incorporation into Signaling Networks in Plants¡¡¡¡¡¡Mol Biol Evol. 2019 May; 36(5): 974&#8211;989.¡¡Published online 2019 Feb 19. doi: 10.1093/molbev/msz031¡¡PMCID: PMC6501883¡¡PMID: 30938771¡¡Sbatie Lama¡¡¤Ê¤É

NAC017 ¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¥¹¥È¥ì¥¹¥·¥°¥Ê¥ë¤òÅÁ㤷¤Æ°äÅÁ»Òȯ¸½¤òÄ´À᤹¤ëž¼Ì°ø»Ò¤Ç¤¢¤ë¡£¥ß¥È¥³¥ó¥É¥ê¥¢¥¹¥È¥ì¥¹¥·¥°¥Ê¥ë¤Çȯ¸½Î̤¬Â礭¤¯Áý²Ã¤¹¤ë°äÅÁ»Ò¤Ë¡¢DUF295 ¤È¸Æ¤Ð¤ì¤ëµ¡Ç½ÉÔÌÀ¤Î¥É¥á¥¤¥ó¤òÊÝ»ý¤¹¤ë°ì·²¤Î°äÅÁ»Ò¤¬Â¿¤¯´Þ¤Þ¤ì¤Æ¤¤¤¿¡£ DUF295 ¤Ï¿¢Êª¤Ë¤·¤«Â¸ºß¤»¤º¡¢¥¢¥Ö¥é¥Ê²Ê¤Ç°äÅÁ»Ò¿ô¤¬Â礭¤¯Áý²Ã¤·¤Æ¤¤¤ë¡£

AtOFP1

Transcription Factor AtOFP1 Involved in ABA-Mediated Seed Germination and Root Growth through Modulation of ROS Homeostasis in Arabidopsis¡¡¡¡¡¡Int J Mol Sci . 2022 Jul 4;23(13):7427. doi: 10.3390/ijms23137427.¡¡¡¡¡¡Hemeng Wang ¤Ê¤É¡¡PMID: 35806432

Ovate family proteins (OFPs) ¤È¤¤¤¦°ì·²¤Îž¼Ì°ø»Ò¤¬¸«¤Ä¤«¤Ã¤Æ¤¤¤¿¡£AtOFP1 ¤Ë¤Ä¤¤¤Æ¡¢CHIP-SEQ Ë¡¤Ç¥¿¡¼¥²¥Ã¥È¤Ë¤Ê¤ë°äÅÁ»Ò¤òÄ´¤Ù¤¿¤È¤³¤í¥ß¥È¥³¥ó¥É¥ê¥¢¤È´Ø·¸¤¹¤ë°äÅÁ»Ò¤¬Â¿¤¯¸«¤é¤ì¤¿¡£OFP1 ¤ò¶¯¤¯Æ¯¤«¤»¤¿¿¢Êª¤Ç¤Ïȯ²ê¤È¤½¤Î¸å¤Î½é´üÀ®Ä¹¤¬ ABA ¹â´¶¼õÀ­¤Ë¤Ê¤Ã¤¿¡£¥ß¥È¥³¥ó¥É¥ê¥¢ ¤Ë¥³¡¼¥É¤µ¤ì¤ë NAD4 and NAD7 ¤Î¥¹¥×¥é¥¤¥·¥ó¥°¸úΨ¤¬°­¤¯¤Ê¤Ã¤Æ¤¤¤¿¡£³èÀ­»ÀÁÇÀ¸À®¤¬¹â¤Þ¤Ã¤Æ¤¤¤¿¡£

DWEORG1

The P-type pentatricopeptide repeat protein DWEORG1 is a non-previously reported rPPR protein of Arabidopsis mitochondria.¡¡¡¡¡¡Gr&#252;ttner S, Nguyen TT, Bruhs A, Mireau H, Kempken F.¡¡¡¡¡¡Sci Rep. 2022 Jul 21;12(1):12492. doi: 10.1038/s41598-022-16812-0.¡¡¡¡¡¡PMID: 35864185

PPR ¥¿¥ó¥Ñ¥¯¼Á¤È RNA editing sites ¤Î¿Ê²½

Evolution of mitochondrial RNA editing in extant gymnosperms¡¡¡¡¡¡Chung-Shien Wu,Shu-Miaw Chaw¡¡¡¡¡¡Plant J.

First published: 25 July 2022 https://doi.org/10.1111/tpj.15916

ÁÈ¿¥¡¢È¯Ã£Ãʳ¬¤Ë¤è¤ë PPR ¥¿¥ó¥Ñ¥¯¼Á¼«¿È¤Î¥¹¥×¥é¥¤¥·¥ó¥°ÊѲ½

¡ÖArabidopsis thaliana¤Ë¤ª¤±¤ëRNAÊÔ½¸´ØÏ¢¥Õ¥¡¥ß¥ê¡¼¥¿¥ó¥Ñ¥¯¼Á¤ÎÁÈ¿¥ÆðÛŪÁªÂòŪ¥¹¥×¥é¥¤¥·¥ó¥°¤Î¸¦µæ¡×¡¡¡¡https://dspace.jaist.ac.jp/dspace/bitstream/10119/15800/1/summary.pdf

Tissue-specific alternative splicing of pentatricopeptide repeat (PPR) family genes in Arabidopsis thaliana.¡¡¡¡Qulsum U, Tsukahara T. Biosci Trends. 2019 Jan 22;12(6):569-579. doi: 10.5582/bst.2018.01178. Epub 2018 Dec 17. PMID: 30555111

GRP23

GRP23 plays a core role in E-type editosomes via interacting with MORFs and atypical PPR-DYWs in Arabidopsis mitochondria.¡¡¡¡¡¡Yang YZ, Liu XY, Tang JJ, Wang Y, Xu C, Tan BC.¡¡¡¡¡¡Proc Natl Acad Sci U S A. 2022 Sep 27;119(39):e2210978119. doi: 10.1073/pnas.2210978119. Epub 2022 Sep 19. PMID: 36122211

MCU1, MCU2, MCU3 ¥ß¥È¥³¥ó¥É¥ê¥¢¤Ø¤Î¥«¥ë¥·¥¦¥àÍ¢Á÷ÂÎ

MCU proteins dominate in vivo mitochondrial Ca2+ uptake in Arabidopsis roots.¡¡¡¡¡¡Ruberti C, ¤Ê¤É¡¡¡¡Plant Cell. 2022 Oct 27;34(11):4428-4452. doi: 10.1093/plcell/koac242.¡¡¡¡PMID: 35938694

ºÙ˦³° ATP ¤¬¥ß¥È¥³¥ó¥É¥ê¥¢¤Î¥«¥ë¥·¥¦¥à¥¤¥ª¥óÇ»ÅÙ¤ò¾å¾º¤µ¤»¤ë¤È¤¤¤¦¥Ç¡¼¥¿¤¬¼¨¤µ¤ì¤Æ¤¤¤ë¡£ºÙ˦¼Á¤Î¥«¥ë¥·¥¦¥àÇ»ÅÙ¤ÎÄ´Àá¤Ë¤Ï¤½¤ì¤é¤ÈÊ̤Τ·¤¯¤ß¤¬Æ¯¤¤¤Æ¤¤¤ë¡£ mcu1 2 3 ¤Î»°½ÅÊÑ°ÛÂΤϤۤȤó¤ÉÀ®Ä¹¤ËÊѲ½¤Ï¤Ê¤¤¡£¤·¤«¤·¡Ömcu1 2 3 seedlings show deregulated jasmonic acid homeostasis and impaired touch signaling¡×¡¡¥¸¥ã¥¹¥â¥ó»À¡¢ÀÜ¿¨»É·ã±þÅú¤ËÊѲ½¤¬¤¢¤Ã¤¿¡£

SRP2 (Small PPR protein)

The small PPR protein SPR2 interacts with PPR-SMR1 to facilitate the splicing of introns in maize mitochondria¡¡¡¡Plant Physiol. 2022 Oct 27;190(3):1763-1776.¡¡¡¡doi: 10.1093/plphys/kiac379.¡¡¡¡Shi-Kai Cao ¤Ê¤É¡¡¡¡PMID: 35976145

Mitochondrial ferredoxin-like

Mitochondrial ferredoxin-like is essential for forming complex I-containing supercomplexes in Arabidopsis¡¡¡¡¡¡Helene R&#246;hricht¡¡¤Ê¤É ¡¡¡¡Plant Physiology, kiad040, https://doi.org/10.1093/plphys/kiad040

MSP1

MSP1 encodes an essential RNA-binding PPR factor required for nad1 maturation and complex I biogenesis in Arabidopsis mitochondria¡¡¡¡New Phytol. 2023 Mar 15. doi: 10.1111/nph.18880. Online ahead of print.¡¡¡¡Corinne Best ¡¡¤Ê¤É¡¡¡¡PMID: 36922396

Delayed greening 409

DELAYED GREENING 409 encodes a dual-localized pentatricopeptide repeat protein required for chloroplast and mitochondrial development.¡¡¡¡¡¡Wang H, Liu J, Zhao W, Terzaghi W, Deng L, Liu H, Zheng Q, Fan S, Hua W, Zheng M.¡¡¡¡¡¡Plant Physiol. 2023 Apr 25:kiad258. doi: 10.1093/plphys/kiad258. Online ahead of print. PMID: 37096684

Mitochondria-localized RRL protein

An Arabidopsis mitochondria-localized RRL protein mediates abscisic acid signal transduction through mitochondrial retrograde regulation involving ABI4.¡¡¡¡¡¡Yao X, Li J, Liu J, Liu K.¡¡¡¡¡¡J Exp Bot. 2015 Oct;66(20):6431-45. doi: 10.1093/jxb/erv356. Epub 2015 Jul 10.¡¡¡¡¡¡PMID: 26163700

¤³¤ÎÏÀʸ¤Ç¤Ï RRL ¤È¤¤¤¦¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë¶Éºß¤¹¤ë¥¿¥ó¥Ñ¥¯¼Á¤¬ ABA ´¶¼õÀ­¤òÊѲ½¤µ¤»¤ë¤È¾Î¤·¤Æ¤¤¤ë¡£RRL ¤òÇ˲õ¤¹¤ë¤È ABA ´¶¼õÀ­¤¬Äã²¼¤¹¤ë¡¢ÂоÈŪ¤Ë²á¾ê¤Ëȯ¸½¤µ¤»¤ë¤È ABA ´¶¼õÀ­¤¬ÁýÂ礹¤ë¤È½ñ¤¤¤Æ¤¢¤ë¡£¸ú²Ì¤Ïȯ²ê¤È¡¢²êÀ¸¤¨¤ÎÀ®Ä¹¤ÎºÝ¤Ë¸«¤é¤ì¤ë¡£ ¼ÂºÝ¤Ëȯ²ê¤«¤é½é´ü¤ÎÀ®Ä¹¤Î´Ö¤Ë RRL ¤Î°äÅÁ»Ò¤Ï¶¯¤¯È¯¸½¤·¤Æ¤¤¤ë¡£

UniProt ¤Ë¤è¤ë¤È¤³¤Î°äÅÁ»Ò¤Ë¥³¡¼¥É¤µ¤ì¤ë¥¿¥ó¥Ñ¥¯¼Á¤Ï¡¡Belongs to the RMD1/sif2 family.¡¡¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£RMND1_HUMAN ¤È¤¤¤¦¥Ò¥È¤Î°äÅÁ»Ò¤¬¤¢¤ê¡¢¥³¡¼¥É¤µ¤ì¤ë¥¿¥ó¥Ñ¥¯¼Á¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¤ÎËÝÌõ³èÀ­¤ò¹â¤á¤ë¡£ÊÑ°Û¤¬Éµ¤¤Î¸¶°ø¤Ë¤Ê¤ë¤³¤È¤¬¤ï¤«¤Ã¤Æ¤¤¤ë¡£

ABA ´¶¼õÀ­¾å¾º¤È ³Ë¡¢¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Î¥á¥Á¥ë²½

¥·¥í¥¤¥Ì¥Ê¥º¥Ê¤Î¥ß¥È¥³¥ó¥É¥ê¥¢´ØÏ¢ÊÑ°ÛÂÎ¤Ï ABA ´¶¼õÀ­¤¬¾å¾º¤¹¤ë¤³¤È¤¬Â¿¤¤¡£

DEMETHYLATION REGULATOR 1 regulates DNA demethylation of the nuclear and mitochondrial genomes¡¡¡¡J Integr Plant Biol. 2022 Oct 12. doi: 10.1111/jipb.13386. Online ahead of print.¡¡¡¡Zhen Wang ¤Ê¤É¡¡¡¡PMID: 36223079

¤È¤¤¤¦ÏÀʸ¤Ç¤Ï¡¢ demethylation regulator 1 (demr1¡¡AT4G31880) mutant ¤Ïȯ²ê»þ¤Î ABA ´¶¼õÀ­¤¬¹â¤¯¤Ê¤ë¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£DNA ¥á¥Á¥ë²½¤Ë´Ø¤ï¤ë°ø»Ò ROS1 AT2G36490¡¡¤¬¼º³è¤·¤¿ÊÑ°ÛÂΤǤâ ABA ´¶¼õÀ­¤¬¹â¤¯¤Ê¤ë¡£¡ÖDEMR1 acts upstream of ROS1 and positively regulates ABA signaling during seed germination and seedling establishment stages¡×¤È½ñ¤«¤ì¤Æ¤¤¤ë¡£

demr1 ÊÑ°ÛÂÎ¤Ç¤Ï DNA hypermethylation of the mitochondrial genome¡¡¤¬µ¯¤­¤ë¡£demr1 mutant ¤Ç¤Ï¥ß¥È¥³¥ó¥É¥ê¥¢¥²¥Î¥à¤Ë¥³¡¼¥É¤µ¤ì¤ë ATP6 °äÅÁ»Ò¤Î mRNA Î̤¬¸º¾¯¤·¤Æ¤¤¤¿¡£ATP ¹çÀ®¹ÚÁdzèÀ­¤â¸º¾¯¤·¤Æ¤¤¤¿¡£demr1 ÊÑ°ÛÂΤǤϲá»À²½¿åÁǤÎÎ̤¬Áý²Ã¤·¤Æ¤¤¤¿¡£

µ¤¹¦¤Î ABA ±þÅú¡¢³èÀ­»ÀÁǤȥߥȥ³¥ó¥É¥ê¥¢

Abscisic Acid Increases Hydrogen Peroxide in Mitochondria to Facilitate Stomatal Closure.¡¡¡¡¡¡Postiglione AE, Muday GK.¡¡¡¡¡¡Plant Physiol. 2022 Dec 27:kiac601. doi: 10.1093/plphys/kiac601. Online ahead of print.¡¡¡¡¡¡PMID: 36573336

abo6 ÊÑ°ÛÂΤòÍѤ¤¤Æ¤¤¤ë¡£abo6 ÊÑ°ÛÂÎ¤Ç¤Ï ABA ¤Ë¤è¤ë¥ß¥È¥³¥ó¥É¥ê¥¢¤«¤é¤Î³èÀ­»ÀÁÇÀ¸À®¤¬¶¯¤¯¤Ê¤êµ¤¹¦¤¬ÊĤ¸¤ä¤¹¤¤¡£³èÀ­»ÀÁÇÀ¸À®¤ËƯ¤¯°äÅÁ»Ò¤È¤·¤Æͭ̾¤Ê RBOH ¤â´Ø·¸¤·¤Æ¤¤¤ë¡£

Mitochondrial VOLTAGE-DEPENDENT ANION CHANNEL 3 regulates stomatal closure by abscisic acid signaling.¡¡¡¡¡¡Qin H, Yang W, Liu Z, Ouyang Y, Wang X, Duan H, Zhao B, Wang S, Zhang J, Chang Y, Jiang K, Yu K, Zhang X.¡¡¡¡¡¡Plant Physiol. 2023 Sep 29:kiad516. doi: 10.1093/plphys/kiad516. ¡¡¡¡¡¡PMID: 37772952

VDAC ¤È¤Ï

Restorer-of-fertility proteins

A unique C-terminal domain contributes to the molecular function of Restorer-of-fertility proteins in plant mitochondria¡¡¡¡¡¡New Phytol. 2023 Aug 7. doi: 10.1111/nph.19166.¡¡¡¡¡¡Sang Dang Huynh ¤Ê¤É¡¡¡¡¡¡PMID: 37551058

mTRAN ¥ß¥È¥³¥ó¥É¥ê¥¢¤Ç¤ÎËÝÌõ¤ËɬÍפʰø»Ò

An mTRAN-mRNA interaction mediates mitochondrial translation initiation in plants¡¡¡¡¡¡Science. 2023 Sep;381(6661):eadg0995. doi: 10.1126/science.adg0995. Epub 2023 Sep 1.¡¡¡¡Huy Cuong Tran ¤Ê¤É¡¡¡¡¡¡PMID: 37651534

mTRAN1 ¤¬ At4g15640, mTRAN2 ¤¬ At3g21465¡¡¤Ç¡¢Î¾Êý·ç¼º¤¹¤ë¤ÈÀ¸°é¤¬¤È¤Æ¤â°­¤¯¤Ê¤ë¡£ÅÅ»ÒÅÁã·ÏÊ£¹çÂΤ¬Á´Éô¥À¥á¡¼¥¸¤ò¼õ¤±¤ë¡£

°äÅÁ»Ò¤Îȯ¸½¥Ç¡¼¥¿¤¬¡¡ GSE186586¡¢ Ribo-seq: ArrayExpress E-MTAB-13059; RIP-Seq: E-MTAB-13060¡¡¡¡¤Ç¸ø³«¤µ¤ì¤Æ¤¤¤ë¡£

ATAD3

ATAD3 Proteins: Unique Mitochondrial Proteins Essential for Life in Diverse Eukaryotic Lineages.¡¡¡¡¡¡Waters ER, Bezanilla M, Vierling E.¡¡¡¡¡¡Plant Cell Physiol. 2023 Oct 19:pcad122. doi: 10.1093/pcp/pcad122. ¡¡¡¡PMID: 37859594

¥ß¥È¥³¥ó¥É¥ê¥¢¤Ë³Ë»À¤¬¼è¤ê¹þ¤Þ¤ì¤ë

Inactivation of the TIM complex components leads to a decrease in the level of DNA import into Arabidopsis mitochondria.¡¡¡¡¡¡Tarasenko TA, Elizova KD, Tarasenko VI, Koulintchenko MV, Konstantinov YM. ¡¡¡¡¡¡Vavilovskii Zhurnal Genet Selektsii. 2023 Dec;27(8):971-979. doi: 10.18699/VJGB-23-112.¡¡¡¡¡¡PMID: 38239966

²¹ÅÙ´¶¼õÀ­¤Î¥¹¥×¥é¥¤¥·¥ó¥°°Û¾ï

Temperature-sensitive splicing defects in Arabidopsis mitochondria caused by mutations in the ROOT PRIMORDIUM DEFECTIVE 1 gene.¡¡¡¡¡¡Wang C, Quadrado M, Mireau H.¡¡¡¡¡¡Nucleic Acids Res. 2024 Feb 14:gkae072. doi: 10.1093/nar/gkae072. Online ahead of print.¡¡¡¡¡¡PMID: 38364869

Cytochrome c maturation

Recurrent evolutionary switches of mitochondrial cytochrome c maturation systems in Archaeplastida.¡¡¡¡¡¡Li H, Akella S, Engstler C, Omini JJ, Rodriguez M, Obata T, Carrie C, Cerutti H, Mower JP.¡¡¡¡¡¡Nat Commun. 2024 Feb 20;15(1):1548. doi: 10.1038/s41467-024-45813-y.¡¡¡¡¡¡PMID: 38378784

PPR596

PPR596 Is Required for nad2 Intron Splicing and Complex I Biogenesis in Arabidopsis.¡¡¡¡¡¡Sayyed A, Chen B, Wang Y, Cao SK, Tan BC.¡¡¡¡¡¡Int J Mol Sci. 2024 Mar 21;25(6):3542. doi: 10.3390/ijms25063542.¡¡¡¡¡¡PMID: 38542518