2019 年前期 幾何学 A 演習 第 4 回 (6/21 配布)

キーワード: C^{∞} -級写像と全微分

以下, $n_1, n_2 \in \mathbb{Z}_{>0}$ を固定し、各 i = 1, 2 について、 \mathbb{R}^{n_i} の空でない開集合 U_i を固定しておく.

問 14. (重要) 写像 $\varphi: U_1 \to U_2$ を固定する. このとき,

$$\varphi^* : \operatorname{Map}(U_2; \mathbb{R}) \to \operatorname{Map}(U_1; \mathbb{R}), \ f \mapsto (f \circ \varphi)$$

が ℝ-代数準同型であることを示せ (講義: Proposition 5.2).

問 **15.** 写像 $\varphi: U_1 \to U_2$ について考える.

$$\varphi: U_1 \to U_2, \ x \mapsto (\varphi_1(x), \dots, \varphi_{n_2}(x))$$

と書くことにする. ここで $\varphi_1, \ldots, \varphi_{n_2}$ は U_1 上の関数とみなす.

(1) $\varphi_1,\ldots,\varphi_{n_2}$ が U_1 上 C^∞ -級であるとする. また $f:U_2\to\mathbb{R}$ を U_2 上の C^∞ -級関数とする. このとき, 合成関数 $f\circ\varphi:U_1\to\mathbb{R}$ の偏導関数

$$\frac{\partial}{\partial x_1}(f \circ \varphi), \dots, \frac{\partial}{\partial x_{n_1}}(f \circ \varphi) : U_1 \to \mathbb{R}$$

をそれぞれ、f の導関数、 $\varphi_1, \ldots, \varphi_{n_2}$ の偏導関数などを用いて表せ (連鎖律). また合成関数 $f \circ \varphi: U_1 \to \mathbb{R}$ が $U_1 \perp C^{\infty}$ -級であることを示せ.

(2) 写像 $\varphi: U_1 \to U_2$ について, 以下の二条件が同値であることを示せ:

条件 (i): $\varphi: U_1 \to U_2$ は講義 Definition 5.3 の意味で C^{∞} -級写像.

条件 (ii): $\varphi_1,\ldots,\varphi_{n_2}:U_1\to\mathbb{R}$ がすべて U_1 上の C^∞ -級関数.

(Hint: 各 $i=1,\ldots,n_2$ について, $\xi_i:U_2\to\mathbb{R},\ y\mapsto y_i$ とおくと, $\varphi_i=\xi_i\circ\varphi$).

問 16. (重要) $\varphi:U_1\to U_2$ を講義 Definition 5.3 の意味で C^∞ -級写像であるとする. また $p\in U_1$ とする. こ こで各 $\eta\in T_p(U_1)$ について,

$$(d\varphi)_n(\eta): C^{\infty}(U_2) \to \mathbb{R}, \ f \mapsto \eta(\varphi^*(f))$$

と定める.

- (1) 任意の $\eta \in T_p(U_1)$ について, $(d\varphi)_p(\eta) \in T_{\varphi(p)}(U_2)$ となることを示せ.
- (2) 写像

$$(d\varphi)_p: T_p(U_1) \to T_{\varphi(p)}(U_2), \ \eta \mapsto (d\varphi)_p(\eta)$$

は線型写像であることを示せ.