Report assignments and notes on the lectures "Group actions and integrations" in Mathematical Omnibus 2021

Takayuki Okuda (okudatak@hiroshima-u.ac.jp)

1 Report assignments

Condition 1: $\mu(\lambda v) = \lambda \mu(v)$. for any $\lambda \in \mathbb{R}$ and any $v \in \mathbb{R}^2$.

Condition 2: $\mu(v + w) = \mu(v) + \mu(w)$ for any $v, w \in \mathbb{R}^2$.

Condition 3: $\mu(v) \ge 0$ if $v_1, v_2 \ge 0$ for $v = (v_1, v_2) \in \mathbb{R}^2$.

Condition 4: $\mu(v) = \mu(\sigma v)$ for any $v = (v_1, v_2) \in \mathbb{R}^2$, where we put $\sigma v = (v_2, v_1) \in \mathbb{R}^2$.

Condition 5: $\mu((1,0)) = 1$.

Show that $\mu(v) = v_1 + v_2$ for any $v = (v_1, v_2) \in \mathbb{R}^2$.

Report assignment 2 (40/100) : For some claims appeared in our lectures, detailed arguments are omitted. Complete two of them $(20+20)$.

2 Introduction

"Integration" is one of the most important concepts in Mathematics. In our lectures, we give a characterization of the integration on $\mathbb R$ as an invariant strictly-positive linear functional on the space of all continuous functions on R with compact supports.

For a continuous function f on \mathbb{R} , the support of f is defined by the closure of

$$
\{x \in \mathbb{R} \mid f(x) \neq 0\}
$$

in R. Note that the support of *f* is compact if and only if there exists $a, b \in \mathbb{R}$ with $a < b$ such that

$$
\{x \in \mathbb{R} \mid f(x) \neq 0\} \subset [a, b].
$$

The vector space of continuous functions on $\mathbb R$ with compact support is denoted by $C_c(\mathbb{R})$.

Definition 2.1. *Let* μ : $C_c(\mathbb{R}) \to \mathbb{R}$ *be a map:*

• µ is called a linear functional if

$$
\mu(\lambda_1 f + \lambda_2 h) = \lambda_1 \mu(f) + \lambda_2 \mu(h)
$$

for any $f, h \in C_c(\mathbb{R})$ *and any* $\lambda_1, \lambda_2 \in \mathbb{R}$ *.*

• µ is called strictly-posiive if

$$
\mu(f) > 0
$$

for any $f \in C_c(\mathbb{R}) \setminus \{0\}$ *with* $f \geq 0$ *, where* $f \geq 0$ *means that* $f(x) \geq 0$ *for any* $x \in \mathbb{R}$ *.*

• µ is called invariant if

$$
\mu(f) = \mu(\sigma_s f)
$$

for any $f \in C_c(\mathbb{R})$ *and any* $s \in \mathbb{R}$ *, where* $\sigma_s f \in C_c(\mathbb{R})$ *is defined by*

$$
\sigma_s f : \mathbb{R} \to \mathbb{R}, x \mapsto f(x - s).
$$

Main theorem of the lectures is the following:

Theorem 2.2 (Main theorem). Let $\mu_1, \mu_2 : C_c(\mathbb{R}) \to \mathbb{R}$ be both invariant *strictly-positive linear functionals. Then there exists* $c \in \mathbb{R}_{>0}$ *such that* $c \cdot \mu_1 =$ μ_2 *.*

For a continuous function f with compact support, we have some definitions of the integral " $\int_{\mathbb{R}} f(x) dx$ " of *f* on \mathbb{R} :

By differential equations:

$$
\int_{\mathbb{R}} f(x)dx := F(b) - F(a)
$$

for a function *F* with $F' = f$ and $a, b \in \mathbb{R}$ with

$$
\{x \in \mathbb{R} \mid f(x) \neq 0\} \subset [a, b].
$$

As the Riemann integral:

$$
\int_{\mathbb{R}} f(x)dx := \lim_{\Delta \to 0} \sum_{k} f(a_k)|x_{k+1} - x_k|
$$

As the Lebesgue integral:

$$
\int_{\mathbb{R}} f(x)dx := \int_{\mathbb{R}} f_+(x)dx - \int_{\mathbb{R}} f_-(x)dx
$$

where

$$
\int_{\mathbb{R}} f_{\pm}(x) dx = \sup_{s \text{ is a simple function with } 0 \leq s \leq f_{\pm}} \int_{\mathbb{R}} s d\mu_{\mathbb{R}}.
$$

Then for each definition, one can check that

$$
C_c(\mathbb{R}) \to \mathbb{R}, \ f \mapsto \int_{\mathbb{R}} f(x) dx
$$

is invariant strictly-positive linear functional, and for a function

$$
f_0: \mathbb{R} \to \mathbb{R}, \ x \mapsto \begin{cases} 0 & (\text{if } x \le -1) \\ x+1 & (\text{if } -1 < x \le 0) \\ -x+1 & (\text{if } 0 < x \le 1) \\ 0 & (\text{if } 1 < x), \end{cases}
$$

we have

$$
\int_{\mathbb{R}} f_0(x) dx = 1.
$$

Then by the main theorem, the definitions of integrals above are equivalent. Furthermore, there uniquely exists an invariant strictly-positive linear functional μ on $C_c(\mathbb{R})$ with $\mu(f_0) = 1$, and

$$
\int_{\mathbb{R}} f(x) dx := \mu(f)
$$

can be considered as a new definition of the integral of *f* on R.

The following generalization of the main theorem is well-known and applied for the theory of Fourier analysis on locally-compact Hausdorff groups and their homogeneous spaces (cf. [\[2\]](#page-24-0)).

Theorem 2.3 (A generalization (see [\[1\]](#page-24-1) for the details))**.** *Let G be a locallycompact Hausdorff group. Then the following holds:*

- *1. There exists a left-invariant strictly-positive linear functional* μ *on* $C_c(G)$ *.*
- *2. Such µ are unique up to positive scalar multiplications.*

3 Terminologies for functions with compact support

3.1 The vector space of continuous functions on R

Definition 3.1. $C(\mathbb{R}) := \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous on } \mathbb{R} \}.$

- **Definition 3.2.** *1. We simply write* $0 \in C(\mathbb{R})$ *for the zero function on* R*.*
	- 2. For each $f_1, f_2 \in C(\mathbb{R})$, we define the summation $f_1 + f_2 \in C(\mathbb{R})$ of f_1 *and* f_2 *by*

 $f_1 + f_2 : \mathbb{R} \to \mathbb{R}, \ x \mapsto f_1(x) + f_2(x)$.

3. For each $f \in C(\mathbb{R})$ *and* $\lambda \in \mathbb{R}$ *, we define the scalar multiplication* $\lambda f \in C(\mathbb{R})$ *of f and* λ *by*

$$
\lambda f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \lambda f(x).
$$

4. For each $f_1, f_2 \in C(\mathbb{R})$ *, we define the product* $f_1 \cdot f_2 \in C(\mathbb{R})$ *of* f_1 *and* f_2 *by*

$$
f_1 \cdot f_2 : \mathbb{R} \to \mathbb{R}, \ x \mapsto f_1(x) \cdot f_2(x).
$$

Theorem 3.3. *C*(R) *is a vector space with respect to the zero, summations and scalar multiplications defined in Definition 3.2. Furthermore, C*(R) *is a commutative and associative* R*-algebra with respect to the product*

 $C(\mathbb{R}) \times C(\mathbb{R}) \rightarrow C(\mathbb{R})$, $(f_1, f_2) \mapsto f_1 \cdot f_2$.

Remark 3.4. *C*(R) *is not finite-dimensional as a vector space.*

3.2 The vector space of functions with compact support

Definition 3.5. For each $f \in C(\mathbb{R})$, we denote by supp f, and called the *support of f in* \mathbb{R} *, the closure of* $\{x \in \mathbb{R} \mid f(x) \neq 0\}$ *in* \mathbb{R} *.*

Proposition 3.6. *For each* $f \in C(\mathbb{R})$ *, the following two conditions on* f *are equivalent:*

(i) *The support of f in* R *is compact.*

(ii) *There exists* $a, b \in \mathbb{R}$ *with* $a < b$ *such that*

$$
\{x \in \mathbb{R} \mid f(x) \neq 0\} \subset [a, b].
$$

Proposition 3.7. *For any non-zero polynomial function on* R*, the support of it in* R *is not compact.*

Example 3.8. *Let us define*

$$
h: \mathbb{R} \to \mathbb{R}, \ x \mapsto \begin{cases} 0 & (if \ x \le -1) \\ x+1 & (if \ -1 < x \le 0) \\ -x+1 & (if \ 0 < x \le 1) \\ 0 & (if \ 1 < x) \end{cases}
$$

Then $h \in C(\mathbb{R})$ *and* supp $h = [-1, 1]$ *. In particular* supp *h is compact.*

Definition 3.9.

 $C_c(\mathbb{R}) := \{ f \in C(\mathbb{R}) \mid \text{supp } f \text{ is compact} \}.$

Theorem 3.10. $C_c(\mathbb{R})$ *is a linear subspace of* $C(\mathbb{R})$ *. That is,* $C_c(\mathbb{R})$ *itself is a vector space with respect to the zero, summations and scalar multiplications defined in Definition 3.2.* Furthermore, $C_c(\mathbb{R})$ *is an ideal of the commutative and associative* \mathbb{R} -*algebra* $C(\mathbb{R})$ *, that is,* $f \cdot h \in C_c(\mathbb{R})$ *for any* $f \in C(\mathbb{R})$ *and* $any \, h \in C_c(\mathbb{R})$.

3.3 Positive functions with compact support

Definition 3.11. *For* $f \in C_c(\mathbb{R})$ *, we say that* f *is positive if* $f(x) \in \mathbb{R}_{\geq 0}$ *for* $any \; x \in \mathbb{R}$.

Definition 3.12.

$$
C_c^+(\mathbb{R}) := \{ f \in C_c(\mathbb{R}) \mid f \text{ is positive } \}.
$$

Proposition 3.13. *1. For any* $f_1, f_2 \in C_c^+(\mathbb{R})$, $f_1 + f_2 \in C_c^+(\mathbb{R})$ *and* $f_1 \cdot f_2 \in C_c^+(\mathbb{R})$

2. For any $f \in C_c^+(\mathbb{R})$ and any $\lambda \in \mathbb{R}_{\geq 0}$, $\lambda f \in C_c^+(\mathbb{R})$.

In particular, $C_c^+(\mathbb{R})$ *is a convex cone in the vector space* $C_c(\mathbb{R})$ *and closed under the product.*

3.4 The R**-action on functions with compact support**

Definition 3.14. *For each* f ∈ $C_c(\mathbb{R})$ *and each* $s \in \mathbb{R}$ *, we define*

$$
\sigma_s f : \mathbb{R} \to \mathbb{R}, \ x \mapsto f(x - s).
$$

Proposition 3.15. For any $f \in C_c(\mathbb{R})$ and any $s \in \mathbb{R}$, $\sigma_s f \in C_c(\mathbb{R})$. Fur*thermore if* $f \in C_c^+(\mathbb{R})$ *, then* $\sigma_s f \in C_c^+(\mathbb{R})$ *.*

Definition 3.16. *For each* $s \in \mathbb{R}$ *, we define the map*

$$
\sigma_s: C_c(\mathbb{R}) \to C_c(\mathbb{R}), \ f \mapsto \sigma_s f.
$$

Proposition 3.17. *The map*

$$
\mathbb{R} \times C_c(\mathbb{R}) \to C_c(\mathbb{R}), \ (s, f) \mapsto \sigma_s f
$$

defines a linear representation of the additive group R *on the vector space* $C_c(\mathbb{R})$. That is, the following holds:

1. For any $s \in \mathbb{R}$ *, the map*

$$
\sigma_s: C_c(\mathbb{R}) \to C_c(\mathbb{R}), \ f \mapsto \sigma_s f.
$$

is linear.

2. For any $s_1, s_2 \in \mathbb{R}$, the equality

$$
\sigma_{s_1+s_2}=\sigma_{s_1}\circ\sigma_{s_2}.
$$

as linear endomorphisms on $C_c(\mathbb{R})$ holds.

4 Terminologies for linear functionals on the vector space of functions with compact support

4.1 Positive linear functionals on the vector space of functions with compact support

Definition 4.1. *A map* μ : $C_c(\mathbb{R}) \to \mathbb{R}$ *is said to be a linear functional on Cc*(R) *if the map is linear.*

Definition 4.2. *A linear functional* μ *on* $C_c(\mathbb{R})$ *is called positive if* $\mu(f) \in$ $\mathbb{R}_{\geq 0}$ *for any* $f \in C_c^+(\mathbb{R})$ *. Furthermore, if* $\mu(f) > 0$ *for any* $f \in C_c^+(\mathbb{R}) \setminus \{0\}$ *, we say that µ is strictly-positive.*

Proposition 4.3. Let μ be a positive linear functional on $C_c(\mathbb{R})$. Then the *following holds:*

1. Let $f_1, f_2 \in C_c(\mathbb{R})$ *. Assume that*

$$
f_1(x) \le f_2(x)
$$
 for any $x \in \mathbb{R}$.

Then $\mu(f_1) \leq \mu(f_2)$.

2. Let $f_1, f_2 \in C_c(\mathbb{R})$ and $f_3 \in C_c^+(\mathbb{R})$. Assume that

$$
|f_1(x) - f_2(x)| \le f_3(x) \quad for any x \in \mathbb{R}.
$$

Then for any positive linear functional μ *on* $C_c(\mathbb{R})$ *, the inequality below holds:*

$$
|\mu(f_1) - \mu(f_2)| \le \mu(f_3).
$$

Theorem 4.4 (Continuity of positive linear functionals). Let μ be a posi*tive linear functional on* $C_c(\mathbb{R})$ *. Fix any compact set* K *in* \mathbb{R} *and take any uniformaly convergent sequence of functions* $\{f_i\}_{i=1,2,...}$ *such that* $f_i \in C_c(\mathbb{R})$ *with* supp f_i ⊂ K *for each i. Then*

$$
\lim_{i \to \infty} f_i \in C_c(\mathbb{R})
$$

and its support is included in K. Furthermore, the equality below holds:

$$
\lim_{i \to \infty} \mu(f_i) = \mu(\lim_{i \to \infty} f_i).
$$

4.2 Invariant linear functionals

Definition 4.5. A linear functional μ on $C_c(\mathbb{R})$ is called invariant if $\mu(\sigma_s f)$ = $\mu(f)$ *for any* $f \in C_c(\mathbb{R})$ *and any* $s \in \mathbb{R}$ *.*

4.3 Main theorem

Proposition 4.6. *Let* $c \in \mathbb{R}_{>0}$ *and* μ *an invariant strictly-positive linear functional on* $C_c(\mathbb{R})$ *. Then*

$$
c \cdot \mu : C_c(\mathbb{R}) \to \mathbb{R}, \ f \mapsto c \cdot \mu(f)
$$

is also an invariant strictly-positive linear functional on $C_c(\mathbb{R})$.

The main theorem of the lectures is the following:

Theorem 4.7 (Main theorem). Let $\mu_1, \mu_2 : C_c(\mathbb{R}) \to \mathbb{R}$ be both invariant *strictly-positive linear functionals. Then there exists* $c \in \mathbb{R}_{>0}$ *such that* $c \cdot \mu_1 =$ μ_2 *.*

5 Ratios of pairs of positive functions

Let $f, h \in C_c^+(\mathbb{R})$ with $h \neq 0$. In this section, we define "the ratio" $(f : h) \in$ R*≥*⁰ of *f* and *h*. Furthermore we prove that for any invariant strictly-positive linear functional μ on $C_c(\mathbb{R})$, the inequality

$$
\mu(f)/\mu(h) \le (f:h)
$$

holds.

5.1 Definition of ratios of pairs of positive functions

Let $f, h \in C_c^+(\mathbb{R})$ with $h \neq 0$. In this subsection, we define the ratio

$$
(f:h)\in\mathbb{R}_{\geq 0}
$$

of *f* and *h* (see Definition [5.4\)](#page-9-0).

Definition 5.1. *We define*

$$
\Omega(f; h) := \bigcup_{N=1}^{\infty} \{ ((c_1, \dots, c_N), (s_1, \dots, s_N)) \mid
$$

$$
c_1, \dots c_N \in \mathbb{R}_{\geq 0} \text{ and } s_1, \dots, s_N \in \mathbb{R}
$$

with $f(x) \leq \sum_{i=1}^{N} c_i \cdot (\sigma_{s_i} h)(x) \text{ for any } x \in \mathbb{R} \}.$

Example 5.2. *Let us define* $f, h \in C_c^+(\mathbb{R})$ *as follows:*

$$
f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \begin{cases} 0 & (if \ x \le -2), \\ \frac{1}{2}x + 1 & (if -2 < x \le 0), \\ -\frac{1}{2}x + 1 & (if \ 0 < x \le 2), \\ 0 & (if \ 2 < x), \end{cases}
$$
\n
$$
h: \mathbb{R} \to \mathbb{R}, \ x \mapsto \begin{cases} 0 & (if \ x \le -1), \\ x + 1 & (if -1 < x \le 0), \\ -x + 1 & (if \ 0 < x \le 1), \\ 0 & (if \ 1 < x). \end{cases}
$$

Take $N = 3$, $(c_1, c_2, c_3) = (1, 1, 1)$ *and* $(s_1, s_2, s_3) = (-1, 0, 1)$ *. Then one can see that, for any* $x \in \mathbb{R}$ *,*

$$
\sum_{i=1}^{N} c_i \cdot (\sigma_{s_i} h)(x) = \begin{cases} 0 & (if \ x \le -2), \\ x+2 & (if \ -2 < x \le -1), \\ 1 & (if \ -1 < x \le 1), \\ -x+2 & (if \ 1 < x \le 2), \\ 0 & (if \ 2 < x). \end{cases}
$$

In particular, we have

$$
f(x) \le \sum_{i=1}^{N} c_i \cdot (\sigma_{s_i} h)(x)
$$

for any $x \in \mathbb{R}$ *, and hence*

$$
((c_1, c_2, c_3), (s_1, s_2, s_3)) = ((1, 1, 1), (-1, 0, 1)) \in \Omega(f; h).
$$

Proposition 5.3. $\Omega(f; h) \neq \emptyset$ *.*

Proof of Proposition [5.3.](#page-9-1) The details are omitted.

Definition 5.4. *We define the ratio*

$$
(f:h)\in\mathbb{R}_{\geq 0}
$$

by

$$
(f : h) := \inf \left\{ \sum_{i=1}^N c_i \mid ((c_1, \ldots, c_N), (s_1, \ldots, s_N)) \in \Omega(f; h) \right\} \in \mathbb{R}_{\geq 0}.
$$

Proposition 5.5. $(f : h) = 0$ *if and only if* $f = 0$ *.*

Proof of Proposition [5.5.](#page-9-2) The details are omitted.

$$
\qquad \qquad \Box
$$

 \Box

5.2 Ratios and invariant positive linear functionals

Theorem 5.6. Let μ be an invariant positive linear functional on $C_c(\mathbb{R})$. *Then for any* $f, h \in C_c^+(\mathbb{R})$ *with* $h \neq 0$ *, the following inequality holds:*

$$
\mu(f) \le \mu(h) \cdot (f : h).
$$

Proof of Theorem [5.6.](#page-9-3) Take any

$$
((c_1,\ldots,c_N),(s_1,\ldots,s_N))\in\Omega(f;h).
$$

We only need to show that

$$
\mu(f) \le \mu(h) \cdot \left(\sum_{i=1}^N c_i\right).
$$

Since

$$
f(x) \le \sum_{i=1}^N c_i \cdot (\sigma_{s_i} h)(x)
$$
 (for any $x \in \mathbb{R}$),

we have

$$
\mu(f) \leq \mu(\sum_{i=1}^{N} c_i \cdot (\sigma_{s_i} h)) \quad (\because \text{ Proposition 4.3})
$$

$$
= \sum_{i=1}^{N} c_i \cdot \mu(\sigma_{s_i} h)
$$

$$
= \sum_{i=1}^{N} c_i \cdot \mu(h) \quad (\because \mu \text{ is invariant})
$$

$$
= \mu(h) \cdot \left(\sum_{i=1}^{N} c_i\right).
$$

This completes the proof.

Corollary 5.7. Let μ be an invariant positive linear functional on $C_c(\mathbb{R})$. *Then the following two conditions on µ are equivalent:*

- *1.* μ *is strictly-positive, i.e.* $\mu(f) > 0$ *for any* $f \in C_c^+(\mathbb{R}) \setminus \{0\}$ *.*
- 2. There exists $f \in C_c^+(\mathbb{R}) \setminus \{0\}$ such that $\mu(f) > 0$.

6 The approximation theorem

In this section, we state the approximation theorem which will plays key roles in our proof of the main theorem [4.7](#page-7-0) in Section [7.](#page-11-0)

Definition 6.1. *For each* $h \in C_c^+(\mathbb{R})$ *, we define* width $(h) \in \mathbb{R}_{\geq 0}$ *by*

width $(h) := \min\{r \in \mathbb{R}_{\geq 0} \mid \text{there exists } a \in \mathbb{R} \text{ such that } \text{supp } h \subset [a, a+r]\}.$

Proposition 6.2. *For any* $h \in C_c^+(\mathbb{R})$ *and any* $s \in \mathbb{R}$ *,*

$$
width(\sigma_s h) = width(h).
$$

Proposition 6.3. *For any* $\delta \in \mathbb{R}_{>0}$ *, there exists* $h \in C_c^+(\mathbb{R})$ *with* width $(h) \leq$ *δ.*

 \Box

Definition 6.4. *For each* $f, h \in C_c^+(\mathbb{R})$ *and* $\varepsilon \in \mathbb{R}_{>0}$ *, we put*

$$
\mathcal{A}_{\varepsilon}(f; h) := \bigcup_{N=1}^{\infty} \{((c_1, \ldots, c_N), (s_1, \ldots, s_N)) \mid
$$

\n
$$
c_1, \ldots, c_N \in \mathbb{R}_{\geq 0} \text{ and } s_1, \ldots, s_N \in \mathbb{R} \text{ satisfying that}
$$

\n
$$
|f(x) - \sum_{i=1}^{N} c_i(\sigma_{s_i} h)(x)| \leq \varepsilon \text{ for any } x \in \mathbb{R}
$$

\nand supp $f \cap \text{supp}(\sigma_{s_i} h) \neq \emptyset$ for any $i = 1, \ldots, N\}.$

The following theorem will play important roles in our proof of Theorem [4.7](#page-7-0) in Section [7.2:](#page-12-0)

Theorem 6.5 (The approximation theorem). *Fix* $f \in C_c^+(\mathbb{R})$ and $\varepsilon \in \mathbb{R}_{>0}$. *Then there exists* $\delta \in \mathbb{R}_{>0}$ *satisfying the following condition:*

Condition: $\mathcal{A}_{\varepsilon}(f; h) \neq \emptyset$ for any $h \in C_c^+(\mathbb{R}) \setminus \{0\}$ with width $(h) \leq \delta$.

The proof of Theorem [6.5](#page-11-1) is postponed to Section [8.](#page-15-0)

Corollary 6.6. *Let us fix* $f, f_0 \in C_c^+(\mathbb{R})$ *and* $\varepsilon_1, \varepsilon_2 \in \mathbb{R}_{>0}$ *. Then there exists* $h \in C_c^+(\mathbb{R})$ *with* width $(h) \leq 1$, $\mathcal{A}_{\varepsilon_1}(f; h) \neq \emptyset$ *and* $\mathcal{A}_{\varepsilon_2}(f_0; h) \neq \emptyset$ *.*

Proof of Corollary [6.6.](#page-11-2) Hint: Proposition [6.3](#page-10-0) and Theorem [6.5.](#page-11-1) \Box

7 Outline of our proof of the main theorem

In this section, we give a proof of the main theorem [4.7](#page-7-0) by applying the approximation theorem.

7.1 Restrictions of linear functionals on the convex cone of positive functions

The theorem below claims that each positive linear functional on $C_c(\mathbb{R})$ is characterized by its restriction on $C_c^+(\mathbb{R})$:

Theorem 7.1. Let μ_1, μ_2 be both linear functionals on $C_c(\mathbb{R})$. Then the *following two conditions on* (μ_1, μ_2) *are equivalent:*

(i): $\mu_1 = \mu_2$, *i.e.* $\mu_1(f) = \mu_2(f)$ for any $f \in C_c(\mathbb{R})$. (ii): $\mu_1(f) = \mu_2(f)$ *for any* $f \in C_c^+(\mathbb{R})$ *.*

Theorem [7.1](#page-11-3) follows from the lemma below:

Lemma 7.2. For any $f \in C_c(\mathbb{R})$, there exists $f_+, f_- \in C_c^+(\mathbb{R})$ such that $f = f_{+} - f_{-}$.

Proof of Lemma [7.2.](#page-12-1) Hint: One can put

$$
f_{+} : \mathbb{R} \to \mathbb{R}, \ x \mapsto \begin{cases} f(x) & (if \ f(x) > 0), \\ 0 & (otherwise), \end{cases}
$$
\n
$$
f_{-} : \mathbb{R} \to \mathbb{R}, \ x \mapsto \begin{cases} -f(x) & (if \ f(x) < 0), \\ 0 & (otherwise), \end{cases}
$$

 \Box

7.2 Proof of the main theorem

Throughout this susbection, we fix $f_0 \in C_c^+(\mathbb{R}) \setminus \{0\}$.

In order to prove the main theorem [4.7,](#page-7-0) because of Theorem [7.1,](#page-11-3) we only need to show the following proposition.

Proposition 7.3. Let μ_1, μ_2 be both invariant strictly-positive linear func*tionals on* $C_c(\mathbb{R})$ *with* $\mu_1(f_0) = \mu_2(f_0) = 1$ *. Then* $\mu_1(f) = \mu_2(f)$ *for any* $f \in C_c^+(\mathbb{R})$.

Proposition [7.3](#page-12-2) follows directly from the lemma below:

Lemma 7.4. Let us fix $f \in C_c^+(\mathbb{R})$ and $\varepsilon \in \mathbb{R}_{>0}$. Then there exists $r =$ $r_{f,\varepsilon} \in \mathbb{R}_{\geq 0}$ *such that the inequality below holds*

$$
|\mu(f) - r| \le \varepsilon
$$

for any invariant strictly-positive linear functional μ *on* $C_c(\mathbb{R})$ *with* $\mu(f_0) =$ 1*.*

We give a proof of Lemma [7.4](#page-12-3) by applying the approximation theorem (Corollary [6.6\)](#page-11-2) below:

Remark 7.5. *Idea of the proof of Lemma [7.4:](#page-12-3) By Corollary [6.6,](#page-11-2) we can find*

- $h \in C_c^+(\mathbb{R}) \setminus \{0\},\$
- \bullet *c*₁*, . . . , c_N* ∈ $\mathbb{R}_{\geq0}$ *,*
- \bullet $s_1, \ldots, s_N \in \mathbb{R}$,
- $d_1, \ldots, d_{N'} \in \mathbb{R}_{\geq 0}$ *and*
- \bullet $t_1, \ldots, t_{N'} \in \mathbb{R}$

such that

$$
f = \sum_{i=1}^{N} c_i(\sigma_{s_i} h),
$$

$$
f_0 = \sum_{j=1}^{N'} d_j(\sigma_{t_j} h).
$$

We put $r := (\sum_i c_i)/(\sum_j d_j)$. Then for any invariant strictly-positive linear *functional* μ *on* $C_c(\mathbb{R})$ *with* $\mu(f) = 1$ *, we have*

$$
\mu(f) = \sum_{i=1}^{N} c_i \mu(\sigma_{s_i} h) = \mu(h) \cdot \sum_{i=1}^{N} c_i,
$$

$$
1 = \mu(f_0) = \sum_{j=1}^{N'} d_j \mu(\sigma_{t_j} h) = \mu(h) \cdot \sum_{i=1}^{N'} d_i,
$$

and hence

$$
\mu(f) = \left(\sum_i c_i\right) / \left(\sum_j d_j\right) = r.
$$

Proof of Lemma [7.4.](#page-12-3) Let us fix $f \in C_c^+(\mathbb{R})$ and $\varepsilon \in \mathbb{R}_{>0}$. If $f = 0$, then one can take $r = 0$. Let us consider the cases where $f \neq 0$. We fix $a, b \in \mathbb{R}$ with $a < b$ and

$$
supp f \cup supp f_0 \subset [a, b].
$$

Let us also fix $\psi \in C_c^+(\mathbb{R}) \setminus \{0\}$ satisfying the following conditions:

• $0 \leq \psi(x) \leq 1$ for any $x \in \mathbb{R}$.

• $\psi(x) = 1$ if $x \in [a-1, b+1]$.

Note that such $\psi \in C_c^+(\mathbb{R}) \setminus \{0\}$ exists and $(\psi : f_0) > 0$ by Proposition [5.5.](#page-9-2) We define $\varepsilon_1, \varepsilon_2 \in \mathbb{R}$ by

$$
\varepsilon_1 := \varepsilon/2 > 0
$$

$$
\varepsilon_2 := \min\left\{\frac{1}{2}, \frac{\varepsilon}{3(2(f:f_0)+\varepsilon)}, \frac{(\psi:f_0)}{2}(\max_{x \in \mathbb{R}} f(x))\right\} > 0.
$$

Note that one can easily check that the following ineqalities holds:

$$
\varepsilon_2 \le 1/2,\tag{1}
$$

$$
\varepsilon_1 + \varepsilon_2 \frac{(f : f_0) + \varepsilon_1}{1 - \varepsilon_2} < \varepsilon. \tag{2}
$$

Furthermore, let us also put

$$
\varepsilon_1' := \varepsilon_1/(\psi : f_0) > 0,
$$

$$
\varepsilon_2' := \varepsilon_2/(\psi : f_0) > 0.
$$

We also note that

$$
|f(x)| > \varepsilon_2' \psi(x) \quad \text{ for some } x \in \mathbb{R}.
$$
 (3)

By Corollary [6.6,](#page-11-2) one can find and fix $h \in C_c^+(\mathbb{R})$ with width $(h) \leq 1$, $\mathcal{A}_{\varepsilon'_1}(f;h) \neq \emptyset$ and $\mathcal{A}_{\varepsilon'_2}(f_0;h) \neq \emptyset$. We also fix $((c_1,\ldots,c_N),(s_1,\ldots,s_N)) \in$ $\mathcal{A}_{\varepsilon'_1}(f;h)$ and $((d_1,\ldots,d_{N'}),(t_1,\ldots,t_{N'}))\in\mathcal{A}_{\varepsilon'_2}(f_0;h)$. By the definitions of ψ , width(*h*), $\mathcal{A}_{\varepsilon_1'}(f;h)$ and $\mathcal{A}_{\varepsilon_2'}(f_0;h)$, we see that both inequalities below holds for any $x \in \mathbb{R}$:

$$
|f(x) - \sum_{i=1}^{N} c_i(\sigma_{s_i} h)(x)| \le \varepsilon_1' \psi(x), \tag{4}
$$

$$
|f_0(x) - \sum_{j=1}^{N'} d_j(\sigma_{t_j} h)(x)| \le \varepsilon_2' \psi(x).
$$
 (5)

Put

$$
c := \sum_{i=1}^{N} c_i, \ d := \sum_{j=1}^{N'} d_j \in \mathbb{R}_{\geq 0}.
$$

Then $d = \sum_j d_j > 0$ by [\(3\)](#page-14-0). We put

$$
r := c/d \in \mathbb{R}_{\geq 0}.
$$

Take any invariant strictly-positive linear functional μ on $C_c^+(\mathbb{R})$ with $\mu(f_0)$ = 1. We shall prove that

$$
|\mu(f) - r| \le \varepsilon.
$$

By Proposition [4.3,](#page-6-0) Theorem [5.6,](#page-9-3) $\mu(f_0) = 1$, [\(4\)](#page-14-1) and [\(5\)](#page-14-2), we have

$$
|\mu(f) - c \cdot \mu(h)| \le \varepsilon'_1 \cdot \mu(\psi) \le \varepsilon'_1 \cdot (\psi : f_0) = \varepsilon_1,
$$

$$
|1 - d \cdot \mu(h)| \le \varepsilon'_2 \cdot \mu(\psi) \le \varepsilon'_2 \cdot (\psi : f_0) = \varepsilon_2.
$$

In particular, we also have

$$
c \cdot \mu(h) \le \mu(f) + \varepsilon_1 \le (f : f_0) + \varepsilon_1,
$$

$$
d \cdot \mu(h) \ge 1 - \varepsilon_2 > 0,
$$

and hence

$$
r \le \frac{(f: f_0) + \varepsilon_1}{1 - \varepsilon_2}.
$$

Therefore we obtain

$$
|\mu(f) - r| = |\mu(f) - c\mu(h) + c\mu(h) - r|
$$

\n
$$
\leq |\mu(f) - c\mu(h)| + r|d\mu(h) - 1|
$$

\n
$$
\leq \varepsilon_1 + r\varepsilon_2
$$

\n
$$
\leq \varepsilon_1 + \varepsilon_2 \frac{(f : f_0) + \varepsilon_1}{1 - \varepsilon_2}
$$

\n
$$
\leq \varepsilon \quad (\because (2)).
$$

 \Box

8 Proof of the approximation theorem

In this section, we give a proof of Theorem [6.5.](#page-11-1)

8.1 Partitions of unity for finite open covers

Proposition 8.1 (Urysohn's lemma on R)**.** *Let C be a compact subset of* \mathbb{R} *and U an open subset of* \mathbb{R} *with* $C \subset U$ *. Then there exists* $\psi \in C_c^+(\mathbb{R})$ *satisfying the following conditions:*

- *1.* supp $\psi \subset U$.
- *2.* $0 \leq \psi(x) \leq 1$ *for any* $x \in \mathbb{R}$ *.*
- *3.* $\psi(x) = 1$ *for any* $x \in C$ *.*

Theorem 8.2. Let K be a compact subset of \mathbb{R} and U_1, \ldots, U_N a finite *open cover on K in* **R**. Then there exist $\phi_1, \ldots, \phi_N \in C_c^+(\mathbb{R})$ satisfying the *following conditions:*

- *1.* supp $\phi_i \subset U_i$ for each $i = 1, \ldots, N$.
- *2.* $0 \le \phi_i(x) \le 1$ *for each* $i = 1, ..., N$ *and each* $x \in \mathbb{R}$ *.*
- *3.* $\sum_{i=1}^{N} \phi_i(x) = 1$ *for each* $x \in K$ *.*

Remark 8.3. *For Proposition [8.1](#page-16-0) and Theorem [8.2,](#page-16-1) the similar statements hold on any locally-compact Hausdorff topological space. Note that it is not needed to assume that the space is second countable.*

Proof of Theorem [8.2.](#page-16-1) For each point $x \in K$, we fix $i_x \in \{1, \ldots, N\}$ with $x \in U_{i_x}$ and a compact neighberhood C_x of *x* included in U_{i_x} . Since *K* is compact, one can find finite subset $\{x_1, \ldots, x_r\}$ with

$$
K \subset \bigcup_{j=1}^r C_{x_j}.
$$

For each $i = 1, \ldots, N$, we put

$$
C_i := \bigcup_{i_{x_j} = i} C_{x_j} \subset U_i.
$$

Then each *Cⁱ* is compact and

$$
K \subset \bigcup_{i=1}^N C_i.
$$

By Proposition [8.1,](#page-16-0) for each *i*, we can choose $\psi_i \in C_c^+(\mathbb{R})$ satisfying the following conditions:

- 1. supp $\psi_i \subset U_i$.
- 2. $0 \leq \psi_i(x) \leq 1$ for any $x \in \mathbb{R}$.
- 3. $\psi_i(x) = 1$ for any $x \in C_i$.

Note that $(1 - \psi_i)(x) \ge 0$ for any *i* and any $x \in \mathbb{R}$. Let us define $\phi_i \in C_c^+(\mathbb{R})$ $(i = 1, \ldots, N)$ as follows:

- $\phi_1 := \psi_1$.
- $\phi_i := \psi_k \prod_{l=1}^{i-1} (1 \psi_l) \ (i \geq 2).$

Note that

$$
\sum_{i=1}^{N} \psi_i = 1 - \prod_{l=1}^{N} (1 - \psi_l).
$$

Then one can easily check that the three conditions in the statement of Theorem [8.2.](#page-16-1) \Box

8.2 Uniformly continuity of functions with compact support

Definition 8.4. *A function* $f : \mathbb{R} \to \mathbb{R}$ *is called* uniformly continuous *if for* $any \varepsilon \in \mathbb{R}_{>0}$, there exists $\delta \in \mathbb{R}_{>0}$ such that the inequality

$$
|f(x) - f(y)| \le \varepsilon
$$

holds for any $x, y \in \mathbb{R}$ *with* $|x - y| \leq \delta$ *.*

Proposition 8.5. *Any uniformly continuous function is continuous.*

Theorem 8.6. *Any continuous functions with compact support is uniformly continuous.*

Proof of Theorem [8.6.](#page-17-0) Hint: "sequentially compactness". \Box

8.3 Key lemma for Theorem [6.5](#page-11-1)

In this subsection, we give a proof of the key lemma for Theorem [6.5](#page-11-1) below:

Lemma 8.7. *Let us fix a function* $h \in C_c^+(\mathbb{R}) \setminus \{0\}$, a compact subset K of \mathbb{R} *and* $\varepsilon \in \mathbb{R}_{>0}$ *. Then there exist* $N \in \mathbb{Z}_{\geq 0}$ *,* $s_1, \ldots, s_N \in K$ *and* $\phi_1, \ldots, \phi_N \in$ $C_c^+(\mathbb{R})$ *such that the inequality*

$$
\left|(\sigma_s h)(x) - \sum_{i=1}^N \phi_i(s)(\sigma_{s_i} h)(x)\right| \leq \varepsilon.
$$

holds for any $s \in K$ *and any* $x \in \mathbb{R}$ *.*

Proof of Lemma [8.7.](#page-18-0) By Theorem [8.6,](#page-17-0) the function *h* is uniformly continuous. Therefore, one can find and fix $\delta \in \mathbb{R}_{>0}$ such that for any $s, t \in \mathbb{R}$ with $|s - t| \leq \delta$, the inequality below holds:

$$
|(\sigma_s h)(x) - (\sigma_t h)(x)| \le \varepsilon \text{ for any } x \in \mathbb{R}.
$$
 (6)

For each $t \in \mathbb{R}$, we define the open neighberhood U_t^{δ} of t in \mathbb{R} by

$$
U_t^{\delta} := \{ s \in \mathbb{R} \mid |s - t| < \delta \} \subset \mathbb{R}.
$$

Since *K* is compact, one can find and fix $s_1, \ldots, s_N \in K$ such that

$$
K \subset \bigcup_{i=1}^N U_{s_i}^{\delta}.
$$

By Theorem [8.2,](#page-16-1) one can also find and fix $\phi_1, \ldots, \phi_N \in C_c^+(\mathbb{R})$ satisfying that

• supp $\phi_i \subset U_{s_i}^{\delta}$ for each $i = 1, \ldots, N$, and

$$
\sum_{i=1}^N \phi_i(s) = 1
$$

for any $s \in K$.

•

Then for any $i = 1, ..., N$ and any $s, x \in \mathbb{R}$, the following inequality holds:

$$
\phi_i(s) \cdot |(\sigma_s h)(x) - (\sigma_{s_i} h)(x)| \le \varepsilon \phi_i(s). \tag{7}
$$

 \Box

In fact, $\phi_i(s) = 0$ in the cases where $s \notin U_{s_i}^{\delta}$, and the inequality holds

$$
|(\sigma_s h)(x) - (\sigma_{s_i} h)(x)| \le \varepsilon
$$

in the cases where $s \in U_{s_i}^{\delta}$ by [\(6\)](#page-18-1) above.

Let us consider cases where $s \in K$. Then $\sum_{i=1}^{N} \phi_i(s) = 1$, and hence for any $x \in \mathbb{R}$, we have

$$
\left| (\sigma_s h)(x) - \sum_{i=1}^N \phi_i(s)(\sigma_{s_i} h)(x) \right| = \left| \sum_{i=1}^N (\phi_i(s) \cdot (\sigma_s h)(x) - (\sigma_{s_i} h)(x)) \right|
$$

$$
\leq \sum_{i=1}^N \phi_i(s) \cdot |(\sigma_s h)(x) - (\sigma_{s_i} h)(x)|
$$

$$
\leq \varepsilon \cdot \sum_{i=1}^N \phi_i(s) \quad (\because (7))
$$

$$
= \varepsilon.
$$

This completes the proof.

8.4 Proof of Theorem [6.5](#page-11-1)

In order to give a proof of Theorem [6.5,](#page-11-1) we introduce the notation below for functions on R.

Definition 8.8. For each $h \in C_c^+(\mathbb{R})$ and each $x \in \mathbb{R}$, we define the functions \tilde{h} *and* \tilde{h}_x *by*

$$
\tilde{h}: \mathbb{R} \to \mathbb{R}, \ s \mapsto h(-s)
$$

and

$$
\tilde{h}_x : \mathbb{R} \to \mathbb{R}, \ s \mapsto h(x - s).
$$

Proposition 8.9. *Let us fix any* $h \in C_c^+(\mathbb{R})$ *and any* $x \in \mathbb{R}$ *. Then the following holds:*

1. $\tilde{h}, \tilde{h}_x \in C_c^+(\mathbb{R})$.

2. If $h \neq 0$, then $\tilde{h}, \tilde{h}_x \in C_c^+(\mathbb{R}) \setminus \{0\}$.

3.
$$
\tilde{h}_x(s) = (\sigma_{-x}\tilde{h})(s) = (\sigma_s h)(x)
$$
 for any $s \in \mathbb{R}$.

In our lectures, for the proof of Theorem [6.5,](#page-11-1) we also apply the following theorem (see also Remark [8.12](#page-23-0) below):

Theorem 8.10. *Let* $h \in C_c^+(\mathbb{R}) \setminus \{0\}$ *. Then there exists an invariant strictlypositive linear functional* μ *on* $C_c(\mathbb{R})$ *with* $\mu(h) = 1$ *.*

Proof of Theorem [8.10.](#page-20-0) We know that Riemann integrations and Lebesgue integrations defines invariant strictly-positive linear functionals on $C_c(\mathbb{R})$. By considering positive scalar multiplications of such linear functionals on $C_c(\mathbb{R})$, we have μ . \Box

Let us give a proof of Theorem [6.5](#page-11-1) by applying Lemma [8.7](#page-18-0) below:

Remark 8.11. *Idea of proof of Theorem [6.5.](#page-11-1) Take small* $\delta > 0$ *and* $h \in$ $C_c^+(\mathbb{R}) \setminus \{0\}$ *with* width $h \leq \delta$ *. Our goal is to show that there exist* $N \in \mathbb{Z}_{\geq 0}$ *,* $s_1, \ldots, s_N \in \mathbb{R}$ and $c_1, \ldots, c_N \in \mathbb{R}_{\geq 0}$ *satisfying that*

$$
f(x) = \sum_{i=1}^{N} c_i(\sigma_{s_i} h)(x)
$$

for any $x \in \mathbb{R}$ *. Without loss of the generaliy, we can assume that* $h(0) > 0$ *. Note that* $h(t) = 0$ *if t is not small since* width $h \leq \delta$.

By applying Lemma [8.7,](#page-18-0) one can find and fix $N \in \mathbb{Z}_{\geq 0}$, $s_1, \ldots, s_N \in \mathbb{R}$ $\text{and } \phi_1, \ldots, \phi_N \in C_c^+(\mathbb{R}) \text{ such that }$

$$
(\sigma_s h)(x) \doteq \sum_i \phi_i(s) (\sigma_{s_i} h)(x) \tag{8}
$$

holds for any $s \in \text{supp } f$ *and any* $x \in \mathbb{R}$ *. In particular, we have*

$$
f(s)(\sigma_s h)(x) = f(s) \sum_i \phi_i(s)(\sigma_{s_i} h)(x)
$$

for any $s \in \mathbb{R}$ *and any* $x \in \mathbb{R}$ *.*

By Theorem [8.10,](#page-20-0) we can find and take invariant strictly-positive linear functional μ *on* $C_c(\mathbb{R})$ *with* $\mu(h) = 1$ *. Put*

$$
c_i := \mu(f \cdot \phi_i) \in \mathbb{R}_{\geq 0}
$$

for each $i = 1, \ldots, N$ *.*

Take any $x \in \mathbb{R}$ *. Then we have*

$$
f(x)\tilde{h}_x(s) = f(x)h(x-s) = f(s)h(x-s) = f(s)\tilde{h}_x(s)
$$

since f *is uniformly continuous and* $h(t) = 0$ *if* t *is not small. Thus*

$$
f(x) = f(x)\mu(\tilde{h}_x) = \mu(f \cdot \tilde{h}_x).
$$

Furthermore, we also have

$$
f(s)\tilde{h}_x(s) = f(s)(\sigma_s h)(x) = f(s) \sum_i (\phi_i)(s)(\sigma_{s_i} h)(x) = \sum_i (f \cdot \phi_i)(s)(\sigma_{s_i} h)(x)
$$

for any $s \in \mathbb{R}$ *. Therefore,*

$$
\mu(f \cdot \tilde{h}_x) = \sum_i \mu(f \cdot \phi_i)(\sigma_{s_i} h)(x) = \sum_i c_i(\sigma_{s_i} h)(x).
$$

Hence we have

$$
f(x) = \sum_{i} c_i(\sigma_{s_i} h)(x).
$$

Proof of Theorem [6.5.](#page-11-1) Put $\varepsilon_1 := \varepsilon/2 \in \mathbb{R}_{>0}$. By Theorem [8.6,](#page-17-0) one can find and fix $\delta \in \mathbb{R}_{>0}$ such that for any $x, y \in \mathbb{R}$ with $|x - y| \leq \delta$,

$$
|f(x) - f(y)| \le \varepsilon_1. \tag{9}
$$

Let us fix any $h \in C_c^+(X) \setminus \{0\}$ with width $h \leq \delta$.

Our goal is to show that $A_{\varepsilon}(f; h) \neq \emptyset$. Note that for any $s \in \mathbb{R}$,

$$
\mathcal{A}_{\varepsilon}(f;h)=\mathcal{A}_{\varepsilon}(f;\sigma_s h).
$$

Therefore, without loss of the generality, we can assume that $h(0) > 0$. Note that we have

$$
\operatorname{supp} h \subset [-\delta, \delta].\tag{10}
$$

It is not difficult to see that we only need to prove the existance of $N \in \mathbb{Z}_{\geq 0}$, $s_1, \ldots, s_N \in \mathbb{R}$ and $c_1, \ldots, c_N \in \mathbb{R}_{\geq 0}$ satisfying that

$$
|f(x) - \sum_{i=1}^{N} c_i(\sigma_{s_i} h)(x)| \leq \varepsilon
$$
 for any $x \in \mathbb{R}$.

First, we choose $N \in \mathbb{Z}_{\geq 0}, s_1, \ldots, s_N \in \mathbb{R}$ and $c_1, \ldots, c_N \in \mathbb{R}_{\geq 0}$ as follows: Recall that $\tilde{h} \in C_c^+(\mathbb{R}) \setminus \{0\}$ by Proposition [8.9.](#page-19-1) In particular, the ratio

$$
(f:\tilde{h})\in\mathbb{R}_{>0}
$$

is defined as in Section [5.1.](#page-7-1) Put

$$
\varepsilon_2 := \frac{\varepsilon}{2(f:\tilde{h})} \in \mathbb{R}_{>0}.
$$

Let us denote by

$$
K := \operatorname{supp} f \subset \mathbb{R}.
$$

Then K is compact subset of $\mathbb R$. By applying Lemma [8.7,](#page-18-0) one can find and fix $N \in \mathbb{Z}_{\geq 0}, s_1, \ldots, s_N \in \mathbb{R}$ and $\phi_1, \ldots, \phi_N \in C_c^+(\mathbb{R})$ such that the inequality

$$
|(\sigma_s h)(x) - \sum_i \phi_i(s)(\sigma_{s_i} h)(x)| \le \varepsilon_2 \tag{11}
$$

holds for any $s \in K$ and any $x \in \mathbb{R}$. Let us take any invariant strictly-positive linear functional μ on $C_c(\mathbb{R})$ with $\mu(h) = 1$ (see Theorem [8.10\)](#page-20-0). Put

$$
c_i := \mu(f \cdot \phi_i) \in \mathbb{R}_{\geq 0}
$$

for each $i = 1, \ldots, N$.

Next, take any $x \in \mathbb{R}$. We only need to show that

$$
|f(x) - \sum_{i=1}^{N} c_i(\sigma_{s_i} h)(x)| \le \varepsilon.
$$
 (12)

To prove [\(12\)](#page-22-0), let us show that the inequality below holds for any $s \in \mathbb{R}$:

$$
|f(x) \cdot \tilde{h}_x(s) - \sum_{i=1}^N (\sigma_{s_i} h)(x) \cdot \phi_i(s) \cdot f(s)| \le \varepsilon_1 \tilde{h}_x(s) + \varepsilon_2 f(s). \tag{13}
$$

Fix any $s \in \mathbb{R}$. By the definitions of $\tilde{h}_x(s)$, the left hand side of [\(13\)](#page-22-1) can be evaluated as

$$
|f(x) \cdot \tilde{h}_x(s) - \sum_{i=1}^N (\sigma_{s_i} h)(x) \cdot \phi_i(s) \cdot f(s)|
$$

= $|f(x) \cdot (\sigma_s h)(x) - f(s) \cdot \sum_{i=1}^N \phi_i(s) \cdot (\sigma_{s_i} h)(x)|$

$$
\leq (\sigma_s h)(x) \cdot |f(x) - f(s)| + f(s) \cdot |(\sigma_s h)(x) - \sum_{i=1}^N \phi_i(s) (\sigma_{s_i} h)(x)|.
$$

Therefore, for (13) , it is enough to show both inequalities below:

$$
(\sigma_s h)(x) \cdot |f(x) - f(s)| \le \varepsilon_1(\sigma_s h)(x) \quad (= \varepsilon_1 \tilde{h}_x(s)),\tag{14}
$$

$$
f(s) \cdot |(\sigma_s h)(x) - \sum_{i=1}^n \phi_i(s)(\sigma_{s_i} h)(x)| \le \varepsilon_2 f(s) \ (= \varepsilon_2 f(s)). \tag{15}
$$

The inequality [\(14\)](#page-23-1) follows from the observation that if $|x - s| \leq \delta$, then

$$
|f(x) - f(s)| \le \varepsilon_1
$$

by [\(9\)](#page-21-0), otherwise $(\sigma_s h)(x) = h(x-s) = 0$ by [\(10\)](#page-21-1). The inequality [\(15\)](#page-23-2) comes from the fact that if $s \in K$ then the inequality [\(11\)](#page-22-2) holds, and otherwise $f(s) = 0$ sinse $K := \text{supp } f$. Thus the inequality [\(13\)](#page-22-1) holds.

Finally, let us give a proof of the inequality [\(12\)](#page-22-0). Note that by Proposition [8.9,](#page-19-1) we have

$$
\mu(\tilde{h}_x) = \mu(\sigma_{-x}\tilde{h}) = \mu(\tilde{h}) = 1.
$$

Then we have

$$
|f(x) - \sum_{i} c_i(\sigma_{s_i} h)(x)|
$$

\n
$$
= |\mu(\tilde{h}_x) f(x) - \sum_{i} \mu(\phi_i \cdot f)(\sigma_{s_i} h)(x)|
$$

\n
$$
= |\mu(f(x) \cdot \tilde{h}_x - \sum_{i} (\sigma_{s_i} h)(x) \cdot \phi_i \cdot f)|
$$

\n
$$
\leq \mu(\varepsilon_1 \tilde{h}_x + \varepsilon_2 f) \quad (\because (13))
$$

\n
$$
= \varepsilon_1 \cdot \mu(\tilde{h}_x) + \varepsilon_2 \cdot \mu(f)
$$

\n
$$
\leq \varepsilon_1 + \varepsilon_2 \cdot (f : \tilde{h}) \quad (\because \text{Theorem 5.6})
$$

\n
$$
= \varepsilon \quad (\because \text{definitions of } \varepsilon_1, \varepsilon_2).
$$

This completes the proof.

Remark 8.12. *For the proof of Theorem [6.5](#page-11-1) above, we apply Theorem [8.10.](#page-20-0) By giving careful arguments for invariant strictly-positive "subadditive" operators on Cc*(R)*, one can prove Theorem [6.5](#page-11-1) without applying Theorem [8.10.](#page-20-0) Furthermore, Theorem [8.10](#page-20-0) can be obtained as a corollary to Theorem [6.5](#page-11-1) without any arguments for Riemann integrations nor Lebesgue integrations. See Nachbin [\[1\]](#page-24-1) for more details.*

 \Box

References

- [1] Leopoldo Nachbin, *The Haar integral*, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London (1965).
- [2] Joseph A. Wolf, *Harmonic Analysis on Commutative Spaces*, Mathematical Surveys and Monographs, **142**. American Mathematical Society, Providence, RI, (2007).