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1 Report assignments

Report assignment 1 (60/100): Let µ : R2 → R be a map satisfying the
following five conditions:

Condition 1: µ(λv) = λµ(v). for any λ ∈ R and any v ∈ R2.

Condition 2: µ(v + w) = µ(v) + µ(w) for any v, w ∈ R2.

Condition 3: µ(v) ≥ 0 if v1, v2 ≥ 0 for v = (v1, v2) ∈ R2.

Condition 4: µ(v) = µ(σv) for any v = (v1, v2) ∈ R2, where we put
σv = (v2, v1) ∈ R2.

Condition 5: µ((1, 0)) = 1.

Show that µ(v) = v1 + v2 for any v = (v1, v2) ∈ R2.

Report assignment 2 (40/100) : For some claims appeared in our lec-
tures, detailed arguments are omitted. Complete two of them (20+20).

2 Introduction

“Integration” is one of the most important concepts in Mathematics. In our
lectures, we give a characterization of the integration on R as an invariant
strictly-positive linear functional on the space of all continuous functions on
R with compact supports.
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For a continuous function f on R, the support of f is defined by the
closure of

{x ∈ R | f(x) 6= 0}

in R. Note that the support of f is compact if and only if there exists a, b ∈ R
with a < b such that

{x ∈ R | f(x) 6= 0} ⊂ [a, b].

The vector space of continuous functions on R with compact support is de-
noted by Cc(R).

Definition 2.1. Let µ : Cc(R) → R be a map:

• µ is called a linear functional if

µ(λ1f + λ2h) = λ1µ(f) + λ2µ(h)

for any f, h ∈ Cc(R) and any λ1, λ2 ∈ R.

• µ is called strictly-posiive if

µ(f) > 0

for any f ∈ Cc(R) \ {0} with f ≥ 0, where f ≥ 0 means that f(x) ≥ 0
for any x ∈ R.

• µ is called invariant if
µ(f) = µ(σsf)

for any f ∈ Cc(R) and any s ∈ R, where σsf ∈ Cc(R) is defined by

σsf : R → R, x 7→ f(x− s).

Main theorem of the lectures is the following:

Theorem 2.2 (Main theorem). Let µ1, µ2 : Cc(R) → R be both invariant
strictly-positive linear functionals. Then there exists c ∈ R>0 such that c·µ1 =
µ2.

For a continuous function f with compact support, we have some defini-
tions of the integral “

∫
R f(x)dx” of f on R:
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By differential equations:∫
R
f(x)dx := F (b)− F (a)

for a function F with F ′ = f and a, b ∈ R with

{x ∈ R | f(x) 6= 0} ⊂ [a, b].

As the Riemann integral:∫
R
f(x)dx := lim

△→0

∑
k

f(ak)|xk+1 − xk|

As the Lebesgue integral:∫
R
f(x)dx :=

∫
R
f+(x)dx−

∫
R
f−(x)dx

where ∫
R
f±(x)dx = sup

s is a simple function with 0≤s≤f±

∫
R
sdµR.

Then for each definition, one can check that

Cc(R) → R, f 7→
∫
R
f(x)dx

is invariant strictly-positive linear functional, and for a function

f0 : R → R, x 7→


0 (if x ≤ −1)

x+ 1 (if − 1 < x ≤ 0)

−x+ 1 (if 0 < x ≤ 1)

0 (if 1 < x),

we have ∫
R
f0(x)dx = 1.
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Then by the main theorem, the definitions of integrals above are equiva-
lent. Furthermore, there uniquely exists an invariant strictly-positive linear
functional µ on Cc(R) with µ(f0) = 1, and∫

R
f(x)dx := µ(f)

can be considered as a new definition of the integral of f on R.
The following generalization of the main theorem is well-known and ap-

plied for the theory of Fourier analysis on locally-compact Hausdorff groups
and their homogeneous spaces (cf. [2]).

Theorem 2.3 (A generalization (see [1] for the details)). Let G be a locally-
compact Hausdorff group. Then the following holds:

1. There exists a left-invariant strictly-positive linear functional µ on Cc(G).

2. Such µ are unique up to positive scalar multiplications.

3 Terminologies for functions with compact

support

3.1 The vector space of continuous functions on R
Definition 3.1. C(R) := {f : R → R | f is continuous on R}.

Definition 3.2. 1. We simply write 0 ∈ C(R) for the zero function on
R.

2. For each f1, f2 ∈ C(R), we define the summation f1 + f2 ∈ C(R) of f1
and f2 by

f1 + f2 : R → R, x 7→ f1(x) + f2(x).

3. For each f ∈ C(R) and λ ∈ R, we define the scalar multiplication
λf ∈ C(R) of f and λ by

λf : R → R, x 7→ λf(x).

4. For each f1, f2 ∈ C(R), we define the product f1 · f2 ∈ C(R) of f1 and
f2 by

f1 · f2 : R → R, x 7→ f1(x) · f2(x).
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Theorem 3.3. C(R) is a vector space with respect to the zero, summations
and scalar multiplications defined in Definition 3.2. Furthermore, C(R) is a
commutative and associative R-algebra with respect to the product

C(R)× C(R) → C(R), (f1, f2) 7→ f1 · f2.

Remark 3.4. C(R) is not finite-dimensional as a vector space.

3.2 The vector space of functions with compact sup-
port

Definition 3.5. For each f ∈ C(R), we denote by supp f , and called the
support of f in R, the closure of {x ∈ R | f(x) 6= 0} in R.
Proposition 3.6. For each f ∈ C(R), the following two conditions on f are
equivalent:

(i) The support of f in R is compact.

(ii) There exists a, b ∈ R with a < b such that

{x ∈ R | f(x) 6= 0} ⊂ [a, b].

Proposition 3.7. For any non-zero polynomial function on R, the support
of it in R is not compact.

Example 3.8. Let us define

h : R → R, x 7→


0 (if x ≤ −1)

x+ 1 (if − 1 < x ≤ 0)

−x+ 1 (if 0 < x ≤ 1)

0 (if 1 < x)

Then h ∈ C(R) and supph = [−1, 1]. In particular supph is compact.

Definition 3.9.

Cc(R) := {f ∈ C(R) | supp f is compact}.

Theorem 3.10. Cc(R) is a linear subspace of C(R). That is, Cc(R) itself is
a vector space with respect to the zero, summations and scalar multiplications
defined in Definition 3.2. Furthermore, Cc(R) is an ideal of the commutative
and associative R-algebra C(R), that is, f · h ∈ Cc(R) for any f ∈ C(R) and
any h ∈ Cc(R).
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3.3 Positive functions with compact support

Definition 3.11. For f ∈ Cc(R), we say that f is positive if f(x) ∈ R≥0 for
any x ∈ R.

Definition 3.12.

C+
c (R) := {f ∈ Cc(R) | f is positive }.

Proposition 3.13. 1. For any f1, f2 ∈ C+
c (R), f1 + f2 ∈ C+

c (R) and
f1 · f2 ∈ C+

c (R)

2. For any f ∈ C+
c (R) and any λ ∈ R≥0, λf ∈ C+

c (R).
In particular, C+

c (R) is a convex cone in the vector space Cc(R) and closed
under the product.

3.4 The R-action on functions with compact support

Definition 3.14. For each f ∈ Cc(R) and each s ∈ R, we define

σsf : R → R, x 7→ f(x− s).

Proposition 3.15. For any f ∈ Cc(R) and any s ∈ R, σsf ∈ Cc(R). Fur-
thermore if f ∈ C+

c (R), then σsf ∈ C+
c (R).

Definition 3.16. For each s ∈ R, we define the map

σs : Cc(R) → Cc(R), f 7→ σsf.

Proposition 3.17. The map

R× Cc(R) → Cc(R), (s, f) 7→ σsf

defines a linear representation of the additive group R on the vector space
Cc(R). That is, the following holds:

1. For any s ∈ R, the map

σs : Cc(R) → Cc(R), f 7→ σsf.

is linear.

2. For any s1, s2 ∈ R, the equality

σs1+s2 = σs1 ◦ σs2 .

as linear endomorphisms on Cc(R) holds.
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4 Terminologies for linear functionals on the

vector space of functions with compact sup-

port

4.1 Positive linear functionals on the vector space of
functions with compact support

Definition 4.1. A map µ : Cc(R) → R is said to be a linear functional on
Cc(R) if the map is linear.

Definition 4.2. A linear functional µ on Cc(R) is called positive if µ(f) ∈
R≥0 for any f ∈ C+

c (R). Furthermore, if µ(f) > 0 for any f ∈ C+
c (R) \ {0},

we say that µ is strictly-positive.

Proposition 4.3. Let µ be a positive linear functional on Cc(R). Then the
following holds:

1. Let f1, f2 ∈ Cc(R). Assume that

f1(x) ≤ f2(x) for any x ∈ R.

Then µ(f1) ≤ µ(f2).

2. Let f1, f2 ∈ Cc(R) and f3 ∈ C+
c (R). Assume that

|f1(x)− f2(x)| ≤ f3(x) for any x ∈ R.

Then for any positive linear functional µ on Cc(R), the inequality below
holds:

|µ(f1)− µ(f2)| ≤ µ(f3).

Theorem 4.4 (Continuity of positive linear functionals). Let µ be a posi-
tive linear functional on Cc(R). Fix any compact set K in R and take any
uniformaly convergent sequence of functions {fi}i=1,2,... such that fi ∈ Cc(R)
with supp fi ⊂ K for each i. Then

lim
i→∞

fi ∈ Cc(R)

and its support is included in K. Furthermore, the equality below holds:

lim
i→∞

µ(fi) = µ( lim
i→∞

fi).
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4.2 Invariant linear functionals

Definition 4.5. A linear functional µ on Cc(R) is called invariant if µ(σsf) =
µ(f) for any f ∈ Cc(R) and any s ∈ R.

4.3 Main theorem

Proposition 4.6. Let c ∈ R>0 and µ an invariant strictly-positive linear
functional on Cc(R). Then

c · µ : Cc(R) → R, f 7→ c · µ(f)

is also an invariant strictly-positive linear functional on Cc(R).

The main theorem of the lectures is the following:

Theorem 4.7 (Main theorem). Let µ1, µ2 : Cc(R) → R be both invariant
strictly-positive linear functionals. Then there exists c ∈ R>0 such that c·µ1 =
µ2.

5 Ratios of pairs of positive functions

Let f, h ∈ C+
c (R) with h 6= 0. In this section, we define “the ratio” (f : h) ∈

R≥0 of f and h. Furthermore we prove that for any invariant strictly-positive
linear functional µ on Cc(R), the inequality

µ(f)/µ(h) ≤ (f : h)

holds.

5.1 Definition of ratios of pairs of positive functions

Let f, h ∈ C+
c (R) with h 6= 0. In this subsection, we define the ratio

(f : h) ∈ R≥0

of f and h (see Definition 5.4).
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Definition 5.1. We define

Ω(f ;h) :=
∞⋃

N=1

{((c1, . . . , cN), (s1, . . . , sN)) |

c1, . . . cN ∈ R≥0 and s1, . . . , sN ∈ R

with f(x) ≤
N∑
i=1

ci · (σsih)(x) for any x ∈ R}.

Example 5.2. Let us define f, h ∈ C+
c (R) as follows:

f : R → R, x 7→


0 (if x ≤ −2),
1
2
x+ 1 (if − 2 < x ≤ 0),

−1
2
x+ 1 (if 0 < x ≤ 2),

0 (if 2 < x),

h : R → R, x 7→


0 (if x ≤ −1),

x+ 1 (if − 1 < x ≤ 0),

−x+ 1 (if 0 < x ≤ 1),

0 (if 1 < x).

Take N = 3, (c1, c2, c3) = (1, 1, 1) and (s1, s2, s3) = (−1, 0, 1). Then one can
see that, for any x ∈ R,

N∑
i=1

ci · (σsih)(x) =



0 (if x ≤ −2),

x+ 2 (if − 2 < x ≤ −1),

1 (if − 1 < x ≤ 1),

−x+ 2 (if 1 < x ≤ 2),

0 (if 2 < x).

In particular, we have

f(x) ≤
N∑
i=1

ci · (σsih)(x)

for any x ∈ R, and hence

((c1, c2, c3), (s1, s2, s3)) = ((1, 1, 1), (−1, 0, 1)) ∈ Ω(f ;h).
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Proposition 5.3. Ω(f ;h) 6= ∅.

Proof of Proposition 5.3. The details are omitted.

Definition 5.4. We define the ratio

(f : h) ∈ R≥0

by

(f : h) := inf

{
N∑
i=1

ci

∣∣∣∣∣ ((c1, . . . , cN), (s1, . . . , sN)) ∈ Ω(f ;h)

}
∈ R≥0.

Proposition 5.5. (f : h) = 0 if and only if f = 0.

Proof of Proposition 5.5. The details are omitted.

5.2 Ratios and invariant positive linear functionals

Theorem 5.6. Let µ be an invariant positive linear functional on Cc(R).
Then for any f, h ∈ C+

c (R) with h 6= 0, the following inequality holds:

µ(f) ≤ µ(h) · (f : h).

Proof of Theorem 5.6. Take any

((c1, . . . , cN), (s1, . . . , sN)) ∈ Ω(f ;h).

We only need to show that

µ(f) ≤ µ(h) ·

(
N∑
i=1

ci

)
.

Since

f(x) ≤
N∑
i=1

ci · (σsih)(x) ( for any x ∈ R),
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we have

µ(f) ≤ µ(
N∑
i=1

ci · (σsih)) (∵ Proposition 4.3)

=
N∑
i=1

ci · µ(σsih)

=
N∑
i=1

ci · µ(h) (∵ µ is invariant)

= µ(h) ·

(
N∑
i=1

ci

)
.

This completes the proof.

Corollary 5.7. Let µ be an invariant positive linear functional on Cc(R).
Then the following two conditions on µ are equivalent:

1. µ is strictly-positive, i.e. µ(f) > 0 for any f ∈ C+
c (R) \ {0}.

2. There exists f ∈ C+
c (R) \ {0} such that µ(f) > 0.

6 The approximation theorem

In this section, we state the approximation theorem which will plays key roles
in our proof of the main theorem 4.7 in Section 7.

Definition 6.1. For each h ∈ C+
c (R), we define width(h) ∈ R≥0 by

width(h) := min{r ∈ R≥0 | there exists a ∈ R such that supph ⊂ [a, a+ r]}.

Proposition 6.2. For any h ∈ C+
c (R) and any s ∈ R,

width(σsh) = width(h).

Proposition 6.3. For any δ ∈ R>0, there exists h ∈ C+
c (R) with width(h) ≤

δ.
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Definition 6.4. For each f, h ∈ C+
c (R) and ε ∈ R>0, we put

Aε(f ;h) :=
∞⋃

N=1

{((c1, . . . , cN), (s1, . . . , sN)) |

c1, . . . , cN ∈ R≥0 and s1, . . . , sN ∈ R satisfying that

|f(x)−
N∑
i=1

ci(σsih)(x)| ≤ ε for any x ∈ R

and supp f ∩ supp(σsih) 6= ∅ for any i = 1, . . . , N}.

The following theorem will play important roles in our proof of Theorem
4.7 in Section 7.2:

Theorem 6.5 (The approximation theorem). Fix f ∈ C+
c (R) and ε ∈ R>0.

Then there exists δ ∈ R>0 satisfying the following condition:

Condition: Aε(f ;h) 6= ∅ for any h ∈ C+
c (R) \ {0} with width(h) ≤ δ.

The proof of Theorem 6.5 is postponed to Section 8.

Corollary 6.6. Let us fix f, f0 ∈ C+
c (R) and ε1, ε2 ∈ R>0. Then there exists

h ∈ C+
c (R) with width(h) ≤ 1, Aε1(f ;h) 6= ∅ and Aε2(f0;h) 6= ∅.

Proof of Corollary 6.6. Hint: Proposition 6.3 and Theorem 6.5.

7 Outline of our proof of the main theorem

In this section, we give a proof of the main theorem 4.7 by applying the
approximation theorem.

7.1 Restrictions of linear functionals on the convex
cone of positive functions

The theorem below claims that each positive linear functional on Cc(R) is
characterized by its restriction on C+

c (R):

Theorem 7.1. Let µ1, µ2 be both linear functionals on Cc(R). Then the
following two conditions on (µ1, µ2) are equivalent:
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(i): µ1 = µ2, i.e. µ1(f) = µ2(f) for any f ∈ Cc(R).

(ii): µ1(f) = µ2(f) for any f ∈ C+
c (R).

Theorem 7.1 follows from the lemma below:

Lemma 7.2. For any f ∈ Cc(R), there exists f+, f− ∈ C+
c (R) such that

f = f+ − f−.

Proof of Lemma 7.2. Hint: One can put

f+ : R → R, x 7→

{
f(x) ( if f(x) > 0),

0 (otherwise),

f− : R → R, x 7→

{
−f(x) ( if f(x) < 0),

0 (otherwise),

7.2 Proof of the main theorem

Throughout this susbection, we fix f0 ∈ C+
c (R) \ {0}.

In order to prove the main theorem 4.7, because of Theorem 7.1, we only
need to show the following proposition.

Proposition 7.3. Let µ1, µ2 be both invariant strictly-positive linear func-
tionals on Cc(R) with µ1(f0) = µ2(f0) = 1. Then µ1(f) = µ2(f) for any
f ∈ C+

c (R).

Proposition 7.3 follows directly from the lemma below:

Lemma 7.4. Let us fix f ∈ C+
c (R) and ε ∈ R>0. Then there exists r =

rf,ε ∈ R≥0 such that the inequality below holds

|µ(f)− r| ≤ ε

for any invariant strictly-positive linear functional µ on Cc(R) with µ(f0) =
1.

We give a proof of Lemma 7.4 by applying the approximation theorem
(Corollary 6.6) below:
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Remark 7.5. Idea of the proof of Lemma 7.4: By Corollary 6.6, we can find

• h ∈ C+
c (R) \ {0},

• c1, . . . , cN ∈ R≥0,

• s1, . . . , sN ∈ R,

• d1, . . . , dN ′ ∈ R≥0 and

• t1, . . . , tN ′ ∈ R

such that

f ≒
N∑
i=1

ci(σsih),

f0 ≒
N ′∑
j=1

dj(σtjh).

We put r := (
∑

i ci)/(
∑

j dj). Then for any invariant strictly-positive linear
functional µ on Cc(R) with µ(f) = 1, we have

µ(f) ≒
N∑
i=1

ciµ(σsih) = µ(h) ·
N∑
i=1

ci,

1 = µ(f0) ≒
N ′∑
j=1

djµ(σtjh) = µ(h) ·
N ′∑
i=1

di,

and hence
µ(f) ≒ (

∑
i

ci)/(
∑
j

dj) = r.

Proof of Lemma 7.4. Let us fix f ∈ C+
c (R) and ε ∈ R>0. If f = 0, then one

can take r = 0. Let us consider the cases where f 6= 0. We fix a, b ∈ R with
a < b and

supp f ∪ supp f0 ⊂ [a, b].

Let us also fix ψ ∈ C+
c (R) \ {0} satisfying the following conditions:

• 0 ≤ ψ(x) ≤ 1 for any x ∈ R.
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• ψ(x) = 1 if x ∈ [a− 1, b+ 1].

Note that such ψ ∈ C+
c (R) \ {0} exists and (ψ : f0) > 0 by Proposition 5.5.

We define ε1, ε2 ∈ R by

ε1 := ε/2 > 0

ε2 := min

{
1

2
,

ε

3(2(f : f0) + ε)
,
(ψ : f0)

2
(max
x∈R

f(x))

}
> 0.

Note that one can easily check that the following ineqalities holds:

ε2 ≤ 1/2, (1)

ε1 + ε2
(f : f0) + ε1

1− ε2
< ε. (2)

Furthermore, let us also put

ε′1 := ε1/(ψ : f0) > 0,

ε′2 := ε2/(ψ : f0) > 0.

We also note that

|f(x)| > ε′2ψ(x) for some x ∈ R. (3)

By Corollary 6.6, one can find and fix h ∈ C+
c (R) with width(h) ≤ 1,

Aε′1
(f ;h) 6= ∅ and Aε′2

(f0;h) 6= ∅. We also fix ((c1, . . . , cN), (s1, . . . , sN)) ∈
Aε′1

(f ;h) and ((d1, . . . , dN ′), (t1, . . . , tN ′)) ∈ Aε′2
(f0;h). By the definitions of

ψ, width(h), Aε′1
(f ;h) and Aε′2

(f0;h), we see that both inequalities below
holds for any x ∈ R:

|f(x)−
N∑
i=1

ci(σsih)(x)| ≤ ε′1ψ(x), (4)

|f0(x)−
N ′∑
j=1

dj(σtjh)(x)| ≤ ε′2ψ(x). (5)

Put

c :=
N∑
i=1

ci, d :=
N ′∑
j=1

dj ∈ R≥0.
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Then d =
∑

j dj > 0 by (3). We put

r := c/d ∈ R≥0.

Take any invariant strictly-positive linear functional µ on C+
c (R) with µ(f0) =

1. We shall prove that
|µ(f)− r| ≤ ε.

By Proposition 4.3, Theorem 5.6, µ(f0) = 1, (4) and (5), we have

|µ(f)− c · µ(h)| ≤ ε′1 · µ(ψ) ≤ ε′1 · (ψ : f0) = ε1,

|1− d · µ(h)| ≤ ε′2 · µ(ψ) ≤ ε′2 · (ψ : f0) = ε2.

In particular, we also have

c · µ(h) ≤ µ(f) + ε1 ≤ (f : f0) + ε1,

d · µ(h) ≥ 1− ε2 > 0,

and hence

r ≤ (f : f0) + ε1
1− ε2

.

Therefore we obtain

|µ(f)− r| = |µ(f)− cµ(h) + cµ(h)− r|
≤ |µ(f)− cµ(h)|+ r|dµ(h)− 1|
≤ ε1 + rε2

≤ ε1 + ε2
(f : f0) + ε1

1− ε2
≤ ε (∵ (2)).

8 Proof of the approximation theorem

In this section, we give a proof of Theorem 6.5.
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8.1 Partitions of unity for finite open covers

Proposition 8.1 (Urysohn’s lemma on R). Let C be a compact subset of
R and U an open subset of R with C ⊂ U . Then there exists ψ ∈ C+

c (R)
satisfying the following conditions:

1. suppψ ⊂ U .

2. 0 ≤ ψ(x) ≤ 1 for any x ∈ R.

3. ψ(x) = 1 for any x ∈ C.

Theorem 8.2. Let K be a compact subset of R and U1, . . . , UN a finite
open cover on K in R. Then there exist ϕ1, . . . , ϕN ∈ C+

c (R) satisfying the
following conditions:

1. suppϕi ⊂ Ui for each i = 1, . . . , N .

2. 0 ≤ ϕi(x) ≤ 1 for each i = 1, . . . , N and each x ∈ R.

3.
∑N

i=1 ϕi(x) = 1 for each x ∈ K.

Remark 8.3. For Proposition 8.1 and Theorem 8.2, the similar statements
hold on any locally-compact Hausdorff topological space. Note that it is not
needed to assume that the space is second countable.

Proof of Theorem 8.2. For each point x ∈ K, we fix ix ∈ {1, . . . , N} with
x ∈ Uix and a compact neighberhood Cx of x included in Uix . Since K is
compact, one can find finite subset {x1, . . . , xr} with

K ⊂
r⋃

j=1

Cxj
.

For each i = 1, . . . , N , we put

Ci :=
⋃
ixj=i

Cxj
⊂ Ui.

Then each Ci is compact and

K ⊂
N⋃
i=1

Ci.

By Proposition 8.1, for each i, we can choose ψi ∈ C+
c (R) satisfying the

following conditions:
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1. suppψi ⊂ Ui.

2. 0 ≤ ψi(x) ≤ 1 for any x ∈ R.

3. ψi(x) = 1 for any x ∈ Ci.

Note that (1−ψi)(x) ≥ 0 for any i and any x ∈ R. Let us define ϕi ∈ C+
c (R)

(i = 1, . . . , N) as follows:

• ϕ1 := ψ1.

• ϕi := ψk

∏i−1
l=1(1− ψl) (i ≥ 2).

Note that
N∑
i=1

ψi = 1−
N∏
l=1

(1− ψl).

Then one can easily check that the three conditions in the statement of
Theorem 8.2.

8.2 Uniformly continuity of functions with compact
support

Definition 8.4. A function f : R → R is called uniformly continuous if for
any ε ∈ R>0, there exists δ ∈ R>0 such that the inequality

|f(x)− f(y)| ≤ ε

holds for any x, y ∈ R with |x− y| ≤ δ.

Proposition 8.5. Any uniformly continuous function is continuous.

Theorem 8.6. Any continuous functions with compact support is uniformly
continuous.

Proof of Theorem 8.6. Hint: “sequentially compactness”.
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8.3 Key lemma for Theorem 6.5

In this subsection, we give a proof of the key lemma for Theorem 6.5 below:

Lemma 8.7. Let us fix a function h ∈ C+
c (R) \ {0}, a compact subset K of

R and ε ∈ R>0. Then there exist N ∈ Z≥0, s1, . . . , sN ∈ K and ϕ1, . . . , ϕN ∈
C+

c (R) such that the inequality∣∣∣∣∣(σsh)(x)−
N∑
i=1

ϕi(s)(σsih)(x)

∣∣∣∣∣ ≤ ε.

holds for any s ∈ K and any x ∈ R.

Proof of Lemma 8.7. By Theorem 8.6, the function h is uniformly continu-
ous. Therefore, one can find and fix δ ∈ R>0 such that for any s, t ∈ R with
|s− t| ≤ δ, the inequality below holds:

|(σsh)(x)− (σth)(x)| ≤ ε for any x ∈ R. (6)

For each t ∈ R, we define the open neighberhood U δ
t of t in R by

U δ
t := {s ∈ R | |s− t| < δ} ⊂ R.

Since K is compact, one can find and fix s1, . . . , sN ∈ K such that

K ⊂
N⋃
i=1

U δ
si
.

By Theorem 8.2, one can also find and fix ϕ1, . . . , ϕN ∈ C+
c (R) satisfying

that

• suppϕi ⊂ U δ
si
for each i = 1, . . . , N , and

•
N∑
i=1

ϕi(s) = 1

for any s ∈ K.
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Then for any i = 1, . . . , N and any s, x ∈ R, the following inequality holds:

ϕi(s) · |(σsh)(x)− (σsih)(x)| ≤ εϕi(s). (7)

In fact, ϕi(s) = 0 in the cases where s 6∈ U δ
si
, and the inequality holds

|(σsh)(x)− (σsih)(x)| ≤ ε

in the cases where s ∈ U δ
si
by (6) above.

Let us consider cases where s ∈ K. Then
∑N

i=1 ϕi(s) = 1, and hence for
any x ∈ R, we have∣∣∣∣∣(σsh)(x)−

N∑
i=1

ϕi(s)(σsih)(x)

∣∣∣∣∣ =
∣∣∣∣∣

N∑
i=1

(ϕi(s) · (σsh)(x)− (σsih)(x))

∣∣∣∣∣
≤

N∑
i=1

ϕi(s) · |(σsh)(x)− (σsih)(x)|

≤ ε ·
N∑
i=1

ϕi(s) (∵ (7))

= ε.

This completes the proof.

8.4 Proof of Theorem 6.5

In order to give a proof of Theorem 6.5, we introduce the notation below for
functions on R.

Definition 8.8. For each h ∈ C+
c (R) and each x ∈ R, we define the functions

h̃ and h̃x by
h̃ : R → R, s 7→ h(−s)

and
h̃x : R → R, s 7→ h(x− s).

Proposition 8.9. Let us fix any h ∈ C+
c (R) and any x ∈ R. Then the

following holds:

1. h̃, h̃x ∈ C+
c (R).
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2. If h 6= 0, then h̃, h̃x ∈ C+
c (R) \ {0}.

3. h̃x(s) = (σ−xh̃)(s) = (σsh)(x) for any s ∈ R.

In our lectures, for the proof of Theorem 6.5, we also apply the following
theorem (see also Remark 8.12 below):

Theorem 8.10. Let h ∈ C+
c (R)\{0}. Then there exists an invariant strictly-

positive linear functional µ on Cc(R) with µ(h) = 1.

Proof of Theorem 8.10. We know that Riemann integrations and Lebesgue
integrations defines invariant strictly-positive linear functionals on Cc(R).
By considering positive scalar multiplications of such linear functionals on
Cc(R), we have µ.

Let us give a proof of Theorem 6.5 by applying Lemma 8.7 below:

Remark 8.11. Idea of proof of Theorem 6.5. Take small δ > 0 and h ∈
C+

c (R) \ {0} with widthh ≤ δ. Our goal is to show that there exist N ∈ Z≥0,
s1, . . . , sN ∈ R and c1, . . . , cN ∈ R≥0 satisfying that

f(x) ≒
N∑
i=1

ci(σsih)(x)

for any x ∈ R. Without loss of the generaliy, we can assume that h(0) > 0.
Note that h(t) = 0 if t is not small since widthh ≤ δ.

By applying Lemma 8.7, one can find and fix N ∈ Z≥0, s1, . . . , sN ∈ R
and ϕ1, . . . , ϕN ∈ C+

c (R) such that

(σsh)(x) ≒
∑
i

ϕi(s)(σsih)(x) (8)

holds for any s ∈ supp f and any x ∈ R. In particular, we have

f(s)(σsh)(x) ≒ f(s)
∑
i

ϕi(s)(σsih)(x)

for any s ∈ R and any x ∈ R.
By Theorem 8.10, we can find and take invariant strictly-positive linear

functional µ on Cc(R) with µ(h̃) = 1. Put

ci := µ(f · ϕi) ∈ R≥0
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for each i = 1, . . . , N .
Take any x ∈ R. Then we have

f(x)h̃x(s) = f(x)h(x− s) ≒ f(s)h(x− s) = f(s)h̃x(s)

since f is uniformly continuous and h(t) = 0 if t is not small. Thus

f(x) = f(x)µ(h̃x) ≒ µ(f · h̃x).

Furthermore, we also have

f(s)h̃x(s) = f(s)(σsh)(x) ≒ f(s)
∑
i

(ϕi)(s)(σsih)(x) =
∑
i

(f ·ϕi)(s)(σsih)(x)

for any s ∈ R. Therefore,

µ(f · h̃x) ≒
∑
i

µ(f · ϕi)(σsih)(x) =
∑
i

ci(σsih)(x).

Hence we have
f(x) ≒

∑
i

ci(σsih)(x).

Proof of Theorem 6.5. Put ε1 := ε/2 ∈ R>0. By Theorem 8.6, one can find
and fix δ ∈ R>0 such that for any x, y ∈ R with |x− y| ≤ δ,

|f(x)− f(y)| ≤ ε1. (9)

Let us fix any h ∈ C+
c (X) \ {0} with widthh ≤ δ.

Our goal is to show that Aε(f ;h) 6= ∅. Note that for any s ∈ R,

Aε(f ;h) = Aε(f ;σsh).

Therefore, without loss of the generality, we can assume that h(0) > 0. Note
that we have

supph ⊂ [−δ, δ]. (10)

It is not difficult to see that we only need to prove the existance of N ∈ Z≥0,
s1, . . . , sN ∈ R and c1, . . . , cN ∈ R≥0 satisfying that

|f(x)−
N∑
i=1

ci(σsih)(x)| ≤ ε for any x ∈ R.
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First, we choose N ∈ Z≥0, s1, . . . , sN ∈ R and c1, . . . , cN ∈ R≥0 as follows:
Recall that h̃ ∈ C+

c (R) \ {0} by Proposition 8.9. In particular, the ratio

(f : h̃) ∈ R>0

is defined as in Section 5.1. Put

ε2 :=
ε

2(f : h̃)
∈ R>0.

Let us denote by
K := supp f ⊂ R.

ThenK is compact subset of R. By applying Lemma 8.7, one can find and fix
N ∈ Z≥0, s1, . . . , sN ∈ R and ϕ1, . . . , ϕN ∈ C+

c (R) such that the inequality

|(σsh)(x)−
∑
i

ϕi(s)(σsih)(x)| ≤ ε2 (11)

holds for any s ∈ K and any x ∈ R. Let us take any invariant strictly-positive
linear functional µ on Cc(R) with µ(h̃) = 1 (see Theorem 8.10). Put

ci := µ(f · ϕi) ∈ R≥0

for each i = 1, . . . , N .
Next, take any x ∈ R. We only need to show that

|f(x)−
N∑
i=1

ci(σsih)(x)| ≤ ε. (12)

To prove (12), let us show that the inequality below holds for any s ∈ R:

|f(x) · h̃x(s)−
N∑
i=1

(σsih)(x) · ϕi(s) · f(s)| ≤ ε1h̃x(s) + ε2f(s). (13)

Fix any s ∈ R. By the definitions of h̃x(s), the left hand side of (13) can be
evaluated as

|f(x) · h̃x(s)−
N∑
i=1

(σsih)(x) · ϕi(s) · f(s)|

= |f(x) · (σsh)(x)− f(s) ·
N∑
i=1

ϕi(s) · (σsih)(x)|

≤ (σsh)(x) · |f(x)− f(s)|+ f(s) · |(σsh)(x)−
N∑
i=1

ϕi(s)(σsih)(x)|.
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Therefore, for (13), it is enough to show both inequalities below:

(σsh)(x) · |f(x)− f(s)| ≤ ε1(σsh)(x) (= ε1h̃x(s)), (14)

f(s) · |(σsh)(x)−
N∑
i=1

ϕi(s)(σsih)(x)| ≤ ε2f(s) (= ε2f(s)). (15)

The inequality (14) follows from the observation that if |x− s| ≤ δ, then

|f(x)− f(s)| ≤ ε1

by (9), otherwise (σsh)(x) = h(x−s) = 0 by (10). The inequality (15) comes
from the fact that if s ∈ K then the inequality (11) holds, and otherwise
f(s) = 0 sinse K := supp f . Thus the inequality (13) holds.

Finally, let us give a proof of the inequality (12). Note that by Proposition
8.9, we have

µ(h̃x) = µ(σ−xh̃) = µ(h̃) = 1.

Then we have

|f(x)−
∑
i

ci(σsih)(x)|

= |µ(h̃x)f(x)−
∑
i

µ(ϕi · f)(σsih)(x)|

= |µ(f(x) · h̃x −
∑
i

(σsih)(x) · ϕi · f)|

≤ µ(ε1h̃x + ε2f) (∵ (13))

= ε1 · µ(h̃x) + ε2 · µ(f)
≤ ε1 + ε2 · (f : h̃) (∵ Theorem 5.6)

= ε (∵ definitions of ε1, ε2).

This completes the proof.

Remark 8.12. For the proof of Theorem 6.5 above, we apply Theorem 8.10.
By giving careful arguments for invariant strictly-positive “subadditive” oper-
ators on Cc(R), one can prove Theorem 6.5 without applying Theorem 8.10.
Furthermore, Theorem 8.10 can be obtained as a corollary to Theorem 6.5
without any arguments for Riemann integrations nor Lebesgue integrations.
See Nachbin [1] for more details.
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