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Chapter 1

Introduction

Main problem of the lectures: How to define “differentials” on topological
spaces?

One of the answers in the lectures is the following: On “smooth mani-
folds” (which is a suitable topological space with a certain structure), we can
define

1. Smooth functions

2. Directional differentiations, and

3. Total differentiations.

Plan of lectures:

Part I: Chapter 2–5: We recall and study some basic facts for smooth
functions and their differentiations on open sets in Euclidean space. In
particular, “algebraic characterizations” of directional differentiations
and total differentiations will be given.

Part II: Chapter 6–12: We give a definition of “smooth structure” on
topological spaces. A (suitable) topological space equipped with a
smooth structure is called a smooth manifold.

Part III: Chapter 13–17: The definitions of directional differentiations and
total differentiations are given algebraically.
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Chapter 2

R-algebras

2.1 Definitions of R-algebras
Definition 2.1.1 (Bi-linear maps). Let V1, V2,W be real vector spaces. A
map F : V1 × V2 → W is said to be bi-linear if F is linear on each variable,
i.e. both of the following two conditions hold:

1. For any b ∈ V2, the map

F b : V1 → W, a 7→ F (a, b)

is linear.

2. For any a ∈ V1, the map

Fa : V2 → W, b 7→ F (a, b)

is linear.

Definition 2.1.2. Let V be a real vector space. We fix a binary operation
(which will be called a product)

V × V → V, (a, b) 7→ a · b.

The pair (V, ·) is called an R-algebra if the product fixed above is bi-linear.

Example 2.1.3. “R” itself is an R-algebra with respect to the usual product.

For a set S and a real vector space W , we use the symbol W S as the set
of all maps from S to W .

9



10 CHAPTER 2. R-ALGEBRAS

Proposition 2.1.4. The set W S defined above is a real vector space with
respect to the following sum and the scalar product:

The pointwise sum: For each f, g ∈ W S, the sum f + g ∈ W S is defined
by

f + g : S → W, s 7→ f(s) + g(s).

The pointwise scalar product: For each f ∈ W S and each λ ∈ R, the
scalar product λf ∈ W S is defined by

λf : S → W, s 7→ λ · (f(s)).

We give two types of important examples of R-algebras.

Example 2.1.5. Let S be a set. Then the set RS of all real valued functions
on S is an R-algebra with respect to the following “pointwise product”:

The pointwise product: For each f, g ∈ RS, the product f · g ∈ RS is
defined by

f · g : S → R, s 7→ f(s) · g(s).

Proposition 2.1.6. Let V,W be vector spaces. Then

L(V,W ) := {ξ : V → W | ξ is linear }

gives a linear subspace of W V . In particular, L(V,W ) itself is a real vector
space.

Example 2.1.7. Let V be a real vector space. We put

End(V ) := L(V, V ).

Then the vector space End(V ) is an R-algebra with respect to the composi-
tion.

2.2 Sub R-algebras and R-algebra homomor-

phisms

Definition 2.2.1. Let (V, ·) be an R-algebra and W a linear subspace. We
say that W is a sub R-algebra of (V, ·) if W is closed under the product “·”,
i.e. a · b ∈ W for any a, b ∈ W .
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Proposition 2.2.2. Each sub R-algebra itself is an R-algebra.

Example 2.2.3. Let S be a topological space. We define

C(S) := {f ∈ RS | f is continuous}.

Then C(S) is a sub R-algebra of RS. In particular, C(S) itself is an R-algebra.

Proposition 2.2.4. Let (V, ·) be an R-algebra and {Wλ}λ∈Λ a family of sub
R-algebras of V . Then the intersection

⋂
λ∈ΛWλ is a sub R-algebra of V .

Proposition 2.2.5. Let S be a topological space. For each f ∈ RS, we
define the support supp f of f by the closure in S of

{s ∈ S | f(s) 6= 0}.

Then

{f ∈ RS | supp f is compact}

gives a sub R-algebra of RS. Furthermore,

Cc(S) := C(S) ∩ {f ∈ RS | supp f is compact}

is also a sub R-algebra of RS.

Let us define homomorphisms between R-algebras:

Definition 2.2.6. Let (V, ·V ), (W, ·W ) be both R-algebras. A linear map
ψ : V → W is called an R-algebra homomorphism if

ψ(a ·V b) = ψ(a) ·W ψ(b)

for any a, b ∈ V .

Example 2.2.7. Let S be a set and fix a point p ∈ S. Then the map

evp : RS → R, f 7→ f(p)

is an R-algebra homomorphism.
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2.3 Some properties of R-algebras
Throughout this section, we fix an R-algebra V = (V, ·).

Definition 2.3.1. • V = (V, ·) is called associative if

a · (b · c) = (a · b) · c

for any a, b, c ∈ V .

• V = (V, ·) is called unital if V admits a unit, where we say that an
element 1V of V is an unit if a · 1V = 1V · a = a for any a ∈ V .

• V = (V, ·) is commutative if a · b = b · a for any a, b ∈ V .

Proposition 2.3.2. For each sub R-algebra of an associative [resp. commu-
tative] R-algebra is associative [resp. commutative] as R-algebra.

We note that a sub R-algebra of a unital R-algebra is not needed to be
unital.

Example 2.3.3. Let S be a topological space. Then

• RS is associative, commutative and unital,

• C(S) is associative, commutative and unital,

• Cc(S) is associative, commutative (but not unital if S is non-compact).

Example 2.3.4. Let V be a real vector space. Then the R-algebra End(V )
is associative and unital. End(V ) is commutative if and only if dim V ≤ 1.

Example 2.3.5. Let (V, ·) be an associative R-algebra. We shall define the
binary operator [·, ·] (which will be called the bracket product),

[a, b] := a · b− b · a

for a, b ∈ V . Then (V, [·, ·]) is an R-algebra. It should be noted that (V, [·, ·])
is not needed to be associative.
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2.4 Exercise

1. Let us consider the vector space R2. For each map defined below, check
the map is bi-linear or not:

(a) ν : R2 × R2 → R2, ((x1, x2), (y1, y2)) 7→ (x1y1, x2y2).

(b) µ : R2 × R2 → R2, ((x1, x2), (y1, y2)) 7→ (x1x2, y1y2).

(c) ξ : R2 × R2 → R2, ((x1, x2), (y1, y2)) 7→ (y2, x1).

2. Show that R is an R-algebra with respect to the usual product (Exam-
ple 2.1.3).

3. Let S be a set and W a real vector space. Show that the space of
all W -valued functions W S := {f : S → W} is a real vector space
with respect to the pointwise sum and the pointwise scalar product
(Proposition 2.1.4).

4. Let S be a set. Show that the real vector space RS is an R-algebra
with respect to the pointwise product (Example 2.1.5).

5. Let V , W be both real vector spaces. Show that L(V,W ) := {f : V →
W | f is linear } is a linear subspace of W V (Proposition 2.1.6).

6. Let V be a real vector space. We put End(V ) := L(V, V ). Show
that the real vector space End(V ) is an R-algebra with respect to the
composition of maps (Example 2.1.7).

7. Show that “each sub R-algebra itself is an R-algebra” (Proposition
2.2.2).

8. Show that each of the following maps is continuous:

(a) µ : R× R → R, (x, y) 7→ x+ y.

(b) ν : R× R → R, (x, y) 7→ xy.

(c) ξ : R → R, x 7→ −x.

9. Let S be a topological space. Show that C(S) := {f : S → R |
f is continuous } is a sub R-algebra of the R-algebra RS (Example
2.2.3; Hint: the exercise 8 above).
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10. Let V = (V, ·) be an R-algebra, {Wλ}λ∈Λ a family of sub R-algebras of
V . Show that

⋂
λ∈ΛWλ is a sub R-algebra of V (Proposition 2.2.4).

11. Let S be a topological space. Show that Cc(S) := {f ∈ C(S) |
supp f is compact} is a sub R-algebra of the R-algebra C(S) (Example
2.2.5).

12. Let S be a set and fix a point p ∈ S. Show that the map

evp : RS → R, f 7→ f(p)

is an R-algebra homomorphism (Example 2.2.7).

13. Let S1 and S2 be both topological spaces and ϕ : S1 → S2 a continuous
map. Show that the pullback

ϕ∗ : C(S2) → C(S1), f 7→ f ◦ ϕ

gives an R-algebra homomorphism (Example 2.2.8).

14. Let (V, ·) be an R-algebra. We define the binary operator [ , ] on V by

[a, b] := a · b− b · a.

Show that the following holds (Example 2.3.5):

(a) (V, [ , ]) is an R-algebra.
(b) Assume that V is associative. Then for any a, b, c ∈ V , the fol-

lowing equality (the Jacobi identity) holds:

[a, [b.c]] = [[a, b], c] + [b, [a, c]].



Chapter 3

Multivariable smooth functions

In this chapter, we define the R-algebras of multivariable smooth functions.

3.1 Definition of multivariable smooth func-

tions

Throughout this section, we fix n ∈ Z≥0 and an open set U of Rn.
For a real vector space Rn, we denote by e1, . . . , en the standard basis of

Rn.
Let us recall the definition of smooth functions:

Definition 3.1.1. A function f : U → R is said to be of class C0 on U if f
is continuous on U .

Definition 3.1.2. For each k ∈ Z≥1, a function f : U → R is said to be Ck

on U if for each i = 1, . . . , n,

∂f

∂xi
: U → R, p 7→ lim

h→0

f(p+ hei)− f(p)

h

is well-defined and Ck−1 on U (inductive definition).

Proposition 3.1.3. For any k ∈ Z≥1, any C
k-function f is Ck−1.

We note that in the proposition above, the case k = 1 (i.e. any C1-function
is continuous) is essential and non-trivial. The key is that any C1-function
is “totally differentiable”.

15



16 CHAPTER 3. MULTIVARIABLE SMOOTH FUNCTIONS

Definition 3.1.4. We say that a function f : U → R is C∞ on U if f is Ck

for any k ∈ Z≥0.

Proposition 3.1.5. Let us fix open sets U and V of Rn. Suppose that
U ⊂ V . Then for any k ∈ Z≥0 ∪ {∞} and any Ck-function f on V , the
restriction

f |U : U → R, u 7→ f(u)

gives a Ck-function on U .

3.2 Constructions of multivariable smooth func-

tions

Proposition 3.2.1. Any n-variable polynomial functions on Rn is C∞.

Proposition 3.2.2. Let us fix α ∈ R. Then

R>0 → R, x 7→ xα

is C∞ on R>0.

Proposition 3.2.3. Let U and V be open sets of Rn and R, respectively.
We fix C∞-functions g : U → R and h : V → R. Then the composition
function

U ∩ g−1(V ) → R, x 7→ h(g(x))

of g|g−1(V ) and h is C∞ on U ∩ g−1(V ).

Example 3.2.4. Let

U := {x ∈ Rn |
∑
i

x2i < 1} ⊂ Rn.

Then the function

f : U → R, x 7→
√

1−
∑
i

x2i

is C∞ on U .
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Proof. Define g : U → R and h : R>0 → R by

g : U → R, x 7→ 1−
∑
i

x2i ,

h : R>0 → R, t 7→ t1/2.

Then g and h are both C∞ (by Propositions 3.2.1 and 3.2.2). Note that
g−1(R>0) = U and our function f is a composition of g and h. Therefore f
is C∞ by Proposition 3.2.3.

Example 3.2.5. Let us define

ρ : R → R, x 7→

{
e−

1
x ( if x > 0),

0 ( if x ≤ 0).

Then ρ is C∞ on R. Note that ρ does not admit the Taylor series expansion
at x = 0.

The following theorem will play important roles in our lectures:

Theorem 3.2.6. Let us fix n ∈ Z≥0, p ∈ Rn and 0 < r1 < r2. Then there
exists a C∞-function b on Rn satisfying the following two conditions:

1. b(x) = 1 for any x ∈ Rn with ‖x − p‖ ≤ r1, where we put ‖y‖ :=√∑
i y

2
i .

2. b(x) = 0 for any x ∈ Rn with ‖x− p‖ ≥ r2.

3.3 The R-algebras of multivariable smooth

functions

Throughout this section, we fix n ∈ Z≥0 and an open set U in Rn. Recall
that we use the symbol C(U) for the R-algebra of all continuous real-valued
functions on U .

Definition 3.3.1. For each k ∈ Z≥0 ∪{∞}, the set of all Ck-functions on U
is denoted by Ck(U).

Note that C∞(U) =
⋂
k∈Z≥0

Ck(U).

The theorem below is one of the most important theorems in our lectures.
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Theorem 3.3.2. For each k ∈ Z≥0, C
k(U) is a sub R-algebra of C(U).

Corollary 3.3.3. C∞(U) is a sub R-algebra of C(U). In particular, C∞(U)
itself is an R-algebra.

To prove Theorem 3.3.2, we give the following proposition:

Proposition 3.3.4. Let us fix k ≥ 1, i = 1, . . . , n, f, g ∈ Ck(U) and λ ∈ R.
Then

∂(f + g)

∂xi
,
∂(λf)

∂xi
,
∂(f · g)
∂xi

are all well-defined as functions on U , and the following holds:

• ∂(f+g)
∂xi

= ∂f
∂xi

+ ∂g
∂xi

.

• ∂(λf)
∂xi

= λ · ∂f
∂xi

.

• ∂(f ·g)
∂xi

= ∂f
∂xi

· g + f · ∂g
∂xi

.

Hint of the proof of Theorem 3.3.2. Theorem 3.3.2 can be proved by induc-
tion of k by applying Proposition 3.3.4.

We note that as the following proposition follows from Proposition 3.3.4.

Proposition 3.3.5. Let k = Z≥1 ∪ {∞}. Then for each i = 1, . . . , n,

∂

∂xi
: Ck(U) → Ck−1(U), f 7→ ∂f

∂xi

is linear (if k = ∞, we put k− 1 := ∞). Furthermore, the following equality
(which will be called the Leibniz rule):

∂

∂xi
(f · g) = ∂f

∂xi
· g + f · ∂g

∂xi
.

It should be remarked that one cannot expect that Ck(U) is finite-dimensional
as below.

Proposition 3.3.6. C∞(U) is not finite-dimensional as real vector space if
n ≥ 1 and U 6= ∅.
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3.4 Exercise

Let us fix n ∈ Z≥0 and an non-empty open set U of Rn.

15. (Analysis) Show that any C1-function on U is totally differentiable.

16. (Analysis) Show that any totally differentiable function on U is contin-
uous.

17. (Analysis) Let k ∈ Z≥1. Show that any Ck-function on U is also Ck−1

on U (Proposition 3.1.3).

18. (Analysis) Let k ≥ 1 and i = 1, . . . , n. Show that the following holds
for each f, g ∈ Ck(U), λ ∈ R (Proposition 3.3.4).

∂(f + g)

∂xi
=
∂f

∂xi
+
∂g

∂xi
, (3.1)

∂(λf)

∂xi
= λ

∂f

∂xi
, (3.2)

∂(f · g)
∂xi

=
∂f

∂xi
· g + f · ∂g

∂xi
. (3.3)

19. (Analysis) Show that any n variable polynomial function is C∞ on Rn

(Proposition 3.2.1).

20. (Analysis) Fix α as a real number.

(a) For each positive real number t, describe the definition of the real
number tα, and discuss the wellness of the definition.

(b) Show that the function

φα : R>0 → R, t 7→ tα

is C∞ on R>0 (Proposition 3.2.2).

21. (Analysis) Let V be a non-empty open set in R. For each pair of
functions g : U → R and h : V → R, we define

h ◦ g : U ∩ g−1(V ) → R, x 7→ h(g(x)).

For each k ∈ Z≥0, we shall consider the following claim Pk:
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Claim Pk: Let g : U → R and h : V → R be both Ck-functions. Then
the function h ◦ g is also Ck on U ∩ g−1(V ).

(a) Fix p ∈ g−1(V ). Suppose that the function g : U → R is partially
differentiable at p, and the function h : V → R is differentiable
at g(p) ∈ V . Show that h ◦ g is partially differentiable at p.
Furthermore, write the partial derivative of h ◦ g at p in terms of
the partial derivative of g at p and the derivative of h at g(p) (the
chain rule).

(b) Prove that the claim Pk is true for each k ∈ Z≥0.

(c) Suppose that the functions g : U → R and h : V → R are both
C∞. Show that the function h◦g is C∞ on U∩g−1(V ) (Proposition
3.2.3).

22. For each one variable real polynomial P (t) with a variable t, let us
define the function

fP : R → R, x 7→

{
P ( 1

x
)e−1/x (x > 0)

0 (x ≤ 0).

(a) Show that fP is continuous on R for any P (t).

(b) Show that fP is C∞ on R for any P (t) (a generalization of Example
3.2.5).

(c) Show that the following function does not admit Taylor series
expansions at x = 0:

ρ : R → R, x 7→

{
e−1/x (x > 0)

0 (x ≤ 0).

23. Let p ∈ Rn and r1, r2 ∈ R with 0 < r1 < r2. Show that there exists a
C∞-function on Rn

b = bp,r1,r2 : Rn → R

satisfying the following two conditions (Theorem 3.2.6):

Condition (i): b(x) = 1 for any x ∈ Rn with ‖x− p‖ ≤ r1.

Condition (ii): b(x) = 0 for any x ∈ Rn with ‖x− p‖ ≥ r2.
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24. Let p ∈ U , r1, r2, r3 ∈ R with 0 < r1 < r2 < r3 and Ur3(p) ⊂ U ,
where Ur3(p) denotes the open ball of radius r3 centered at p (in Rn).
Furthermore, we fix a C∞-function bp,r1,r2 on Rn satisfying the two
conditions stated in the previous problem. For each f ∈ C∞(U), we
also define the function

f̃ : Rn → R, x 7→

{
f(x) · bp,r1,r2(x) (if x ∈ U),

0 (if x 6∈ U).

Show that the following holds for any f ∈ C∞(U):

(a) f̃ is C∞ on Rn.

(b) For each i = 1, . . . , n, ∂f
∂xi

(p) = ∂f̃
∂xi

(p).

25. Show that Ck(U) is a sub R-algebra of C(U) (Theorem 3.3.2).

26. Show that C∞(U) is a sub R-algebra of C(U) (Corollary 3.3.3).

27. Fix n ≥ 1. Show that C∞(U) is not finite-dimensional as a real vector
space (Proposition 3.3.6).





Chapter 4

Directional differentiations (on
Euclidean spaces)

4.1 Definition and some properties of direc-

tional differentiations

Throughout this section, we fix n ∈ Z≥0, a non-empty open set U of Rn, a
point p ∈ U and a vector v ∈ Rn. We write {e1, . . . , en} for the standard
basis of the vector space Rn and C∞(U) the R-algebra of smooth functions
on U .

Definition 4.1.1. For each smooth function f ∈ C∞(U), we define

vp(f) := lim
h→0

f(p+ hv)− f(p)

h
∈ R.

Such vp(f) is called the v-directional differentiation of f at p.

Proposition 4.1.2. In the setting in Definition 4.1.1, vp(f) ∈ R is well-
defined. Furthermore, by putting

v =
n∑
i=1

aiei ( for ai ∈ R),

the equality below holds:

vp(f) =
n∑
i=1

ai
∂f

∂xi
(p)

23
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It should be emphasized that the proposition above is non-trivial. The
key is that any C1-function is “totally differentiable”.

Proposition 4.1.3. The map vp : C
∞(U) → R is a linear map.

Proposition 4.1.4. Fix any f, g ∈ C∞(U). Then the equality below (which
will be called the Leibniz rule at the point p) holds:

vp(f · g) = vp(f) · g(p) + f(p) · vp(g).

Let us introduce the following notion:

Definition 4.1.5. For each i = 1, . . . , n, we put(
∂

∂xi

)
p

: C∞(U) → R, f 7→ ∂f

∂xi
(p).

We note the following holds:

Proposition 4.1.6. For each i = 1, . . . , n,

(ei)p =

(
∂

∂xi

)
p

as linear maps from C∞(U) to R.

4.2 Tangent vectors and tangent spaces

Throughout this section, we fix n ∈ Z≥0, a non-empty open set U of Rn and
a point p ∈ U . We write {e1, . . . , en} for the standard basis of the vector
space Rn and C∞(U) the R-algebra of smooth functions on U . The set of all
linear maps from C∞(U) to R is denoted by

L(C∞(U),R) := {η : C∞(U) → R | η is linear}.

Recall that L(C∞(U),R) can be considered as a vector space in the sense
of Proposition 2.1.6. Usually, an element of L(C∞(U),R) is called a linear
functional on C∞(U).

Definition 4.2.1. We say that a linear functional η : C∞(U) → R satisfies
“the Leibniz rule at p ∈ U” if the following equality holds for each f, g ∈
C∞(U):

η(f · g) = η(f) · g(p) + f(p) · η(g).
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Let us define the tangent space of U at p as below:

Definition 4.2.2. The tangent space of U at the point p is defined by

TpU := {η ∈ L(C∞(U),R) | ηsatisfies the Leibniz rule at p}

Each element of TpU is called a tangent vector of U at p.

We note that the following holds:

Proposition 4.2.3 (cf. Propositions 4.1.3 and 4.1.4). For each v ∈ Rn, the
directional differentiation

vp : C
∞(U) → R

is a tangent vector of U at p, i.e. a member of TpU .

Question: Does there exist a tangent vector which is not a directional dif-
ferentiation?

Answer: No! Surprisingly, the following holds:

TpU = {vp | v ∈ Rn}.

This claims that directional differentiations can be characterized by the
linearity and the Leibniz rule, algebraically (see the next section).

4.3 Tangent vectors vs directional differenti-

ations

In this section, we study a map

Rn → TpU, v 7→ vp

defined in the previous subsection.
First, we note the following:

Proposition 4.3.1. TpU is a linear subspace of L(C∞(U),R). In particular,
TpU itself is also a real vector space.
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Definition 4.3.2. We use the symbol Ψp,U for the map

Rn → TpU, v 7→ vp.

Proposition 4.3.3. The map Ψp,U : Rn → TpU is a linear map.

Hint: Proposition 4.1.2.

Proposition 4.3.4. The map Ψp,U : Rn → TpU is injective.

Proof. We only need to show that KerΨp,U = 0. Take any v ∈ KerΨp,U ,
that is, vp = 0 as a linear functional on C∞(U). Our goal is to show that
v = 0 as in Rn. Put v =

∑
i aiei. Then we only need to show that ai = 0 for

each i. Let us fix i. We shall define the C∞-function

xi : U → R, x 7→ xi,

then we have

ai = vp(xi).

By our assumption, we have ai = 0.

Surprisingly, the following theorem holds:

Theorem 4.3.5. The map Ψp,U : Rn → TpU is surjective, and in particular
Ψp,U is a linear isomorphism.

A proof of the theorem above is omitted in this note (we give it in the
Japanese version (see Sections 4.4 and 4.5 of the Japanese version)).

Corollary 4.3.6. The family of tangent vectors{(
∂

∂xi

)
p

}
i=1,...,n

gives a basis of TpU .
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4.4 Exercise

Let us fix n ∈ Z≥0, an open subset U of Rn and a point p ∈ U .

28. (Analysis) Show the followings (Proposition 4.1.2; Hint: Exercise 15):

(a) For each v ∈ Rn and each f ∈ C∞(U) the map

vp(f) := lim
h→0

f(p+ hv)− f(p)

h
∈ R

is well-defined.

(b) Let us write for {e1, . . . , en} the standard basis of Rn. Fix a1, . . . , an ∈
R and put v :=

∑
i=1 aiei ∈ Rn. Then for any f ∈ C∞(U), the

equality below holds:

vp(f) =
n∑
i=1

ai
∂f

∂xi
(p).

29. Determine vp(f) for each setting below:

(a) U = R2, p = (1, 0), f : U → R, (x, y) 7→ x2 + y2, v = (1, 0).

(b) U = R2, p = (1, 0), f : U → R, (x, y) 7→ x2 + y2, v = (0, 1).

(c) U = R2, p = (1, 0), f : U → R, (x, y) 7→ x2 + y2, v = (1, 1).

(d) U = R2 \ {(0, 0)}, p = (1, 0), f : U → R, (x, y) 7→
√
x2 + y2,

v = (1, 0).

30. Let v ∈ Rn. Show that the map

vp : C
∞(U) → R, f 7→ vp(f)

is linear (Proposition 4.1.3).

31. (Analysis) Let v ∈ Rn, f, g ∈ C∞(U). Show that the equality below
holds:

vp(f · g) = vp(f) · g(p) + f(p) · vp(g)
(Proposition 4.1.4).

32. (Analysis) Show that vp ∈ TpU for each v ∈ Rn (Proposition 4.2.3:
easy).
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33. Show that TpU is a linear subspace of L(C∞(U),R) (Proposition 4.3.1).

34. Show that the map

Ψp,U : Rn → TpU, v 7→ vp

is linear (Proposition 4.3.3).

35. Show that the map

Ψp,U : Rn → TpU, v 7→ vp

is injective (Proposition 4.3.4).



Chapter 5

Total differentiations of smooth
maps (on Euclidean spaces)

5.1 Smooth maps

In this section, we give an “algebraic” definition of smooth maps.
Throughout this section, we fix ni ∈ Z≥0 and open set Ui ⊂ Rni for

i = 1, 2.
For a continuous map ϕ : U1 → U2, we write

ϕ∗ : C(U2) → C(U1), f 7→ f ◦ ϕ

for the pullback by ϕ. Recall that ϕ∗ is an R-algebra homomorphism from
C(U2) to C(U1) (see Example 2.2.8).

Let us give an algebraic definition of smooth maps from U1 to U2:

Definition 5.1.1. A continuous map ϕ : U1 → U2 is said to be C∞ or
smooth if

ϕ∗(C∞(U2)) ⊂ C∞(U1).

Proposition 5.1.2. Assume that ϕ : U1 → U2 is smooth. Then

ϕ∗ : C∞(U2) → C∞(U1), f 7→ f ◦ ϕ

is an R-algebra homomorphism.

The following proposition gives an equivalent definition of smoothness of
maps:

29
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Proposition 5.1.3. Let ϕ : U1 → U2 be a map. Then the following two
conditions on ϕ are equivalent:

(1) The map ϕ : U1 → U2 is smooth in the sense of Definition 5.1.1 (i.e. ϕ
is continuous and ϕ∗(C∞(U2)) ⊂ C∞(U1)).

(2) We put
ϕ : U1 → U2 ⊂ Rn2 , x 7→ (ϕ1(x), . . . , ϕn2(x)).

Then ϕ1, . . . , ϕn1 ∈ C∞(U1).

A sketch of proof of the proposition above will be given later.

Example 5.1.4. Let n1 = n2 = 2 and put

U1 := {(x1, x2) ∈ R2 | x21 + x22 < 1, x1 > 0},
U2 := {(y1, y2) ∈ R2 | y21 + y22 < 1, y2 > 0}.

Then

ϕ : U1 → U2, (x1, x2) 7→ (x2,
√

1− (x21 + x22))

is well-defined and smooth (cf. Proposition 5.1.3). Note that the smooth map
above will be applied to obtain “the smooth structure” on the 2-sphere.

To give a proof of Proposition 5.1.3, we first give the following lemma
and two propositions:

Lemma 5.1.5. For each j = 1, . . . , n2, we put

yj : U2 → R, y 7→ yj.

Then ϕj = ϕ∗(yj) as functions on U1.

Proposition 5.1.6 (Topology). Let X be a topological space and {Yλ}λ∈Λ a
family of topological spaces. We write

∏
λ∈Λ Yλ for the direct product space

of {Yλ}λ∈Λ (equipped with the direct product topology). Then for each map

ϕ : X →
∏
λ∈Λ

Yλ, x 7→ (ϕλ(x))λ∈Λ,

the following two conditions are equivalent:

1. The map ϕ is continuous.
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2. For each λ ∈ Λ, the map ϕλ : X → Yλ is continuous.

Proposition 5.1.7 (Analysis: the chain rule). Let

ϕ : U1 → U2 ⊂ Rn2 , x 7→ (ϕ1(x), . . . , ϕn2(x))

be a map. Assume that ϕ1, . . . , ϕn2 ∈ C1(U2). Then for any f ∈ C1(U2),
ϕ∗(f) ∈ C1(U1) and for each j = 1, . . . , n2, the equality below holds:

∂(ϕ∗(f))

∂xj
=

n2∑
i=1

(ϕ∗(
∂f

∂yi
)) · ∂ϕi

∂xj

as functions on U1.

Let us give a sketch of proof of Proposition 5.1.3:

Proof. First, let us give a proof of the implication (1) ⇒ (2) in Proposition
5.1.3. Assume (1). Then by Lemma 5.1.5, we have ϕj = ϕ∗(yj) for each j.
Since yj ∈ C∞(U2), we have ϕj = ϕ∗(yj) ∈ C∞(U1) by the assumption. This
proves (2).

Conversely, suppose (2). The continuity of ϕ comes from Proposition
5.1.6. To prove (1), we only need to show that ϕ∗(Ck(U2)) ⊂ Ck(U1) for any
k ∈ Z≥0. By applying Proposition 5.1.7, one can prove the claim above by
induction of k.

Let us study relationship between smooth functions and smooth maps.
We consider the cases where n2 = 1 and U2 = R(= Rn2), and put U := U1.
Then for each map f : U → R, the following two conditions are equivalent:

1. f ∈ C∞(U) (i.e. f is a smooth function on U).

2. f is a smooth map from U to R.

It should be remarked that for a pair of smooth functions f, g ∈ C∞(U),
the pointwise product f · g ∈ C∞(U) is defined. However, by considering
general open sets Ui ⊂ Rni , for a pair of smooth maps ϕ, ψ : U1 → U2, the
“pointwise product” ϕ · ψ cannot be defined (because U2 does not admit a
“product”).
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5.2 Total differentiations of Smooth maps

In this section, we give an algebraic definition of the total differentiations of
smooth maps.

Throughout this section, we fix ni ∈ Z≥0 and open set Ui ⊂ Rni for
i = 1, 2. A smooth map ϕ : U1 → U2 and a point p ∈ U1 are also fixed.

We first recall that we have the R-algebra homomorphism (cf. Proposition
5.1.2):

ϕ∗ : C∞(U2) → C∞(U1), f 7→ f ◦ ϕ.

Proposition 5.2.1. η ◦ ϕ∗ ∈ Tφ(p)U2 for each η ∈ TpU1.

Definition 5.2.2. The map

(dϕ)p : TpU1 → Tφ(p)U2, η 7→ η ◦ ϕ∗

is called the total differentiation of ϕ at p ∈ U1.

Proposition 5.2.3. The total differentiation (dϕ)p : TpU1 → Tφ(p)U2 is a
linear map.

The following theorem (a proof is omitted here: see Section 5.5 of the
Japanese version) gives an analytic characterization of the total differentia-
tion (dϕ)p:

Theorem 5.2.4. We use the symbol ‖v‖ :=
√∑

i v
2
i for v ∈ Rn.

1. The equality below holds:

lim
v→0 (v∈Rn1\{0})

‖ϕ(p+ v)− ϕ(p)− (dϕ)pv‖
‖v‖

= 0.

2. Let A : TpU1 → Tφ(p)U2 be a linear map. Suppose that

lim
v→0 (v∈Rn1\{0})

‖ϕ(p+ v)− ϕ(p)− Av‖
‖v‖

= 0.

Then A = (dϕ)p.

It should be emphasized that the total differentiation of ϕ at p gives “the
linear approximation” of the map ϕ.
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5.3 Matrix representations of Total differen-

tiations

In this section, we study matrix representations of total differentiations of
smooth maps.

As in the previous section, we fix ni ∈ Z≥0 and open set Ui ⊂ Rni for
i = 1, 2. A smooth map ϕ : U1 → U2 and a point p ∈ U1 are also fixed.

Throughout this section, we use the symbols

∂

∂x1
, . . . ,

∂

∂xn1

for partial derivatives on U1 ⊂ Rn1 and

∂

∂y1
, . . . ,

∂

∂yn2

for partial derivatives on U2 ⊂ Rn2 .

Recall that by Corollary 4.3.6, we have the following:

• (
∂

∂x1

)
p

, . . . ,

(
∂

∂xn1

)
p

gives a basis of the tangent space TpU1.

• (
∂

∂y1

)
φ(p)

, . . . ,

(
∂

∂yn2

)
φ(p)

gives a basis of the tangent space Tφ(p)U2.

The purpose of this section is to give the matrix representation of the
linear map

(dϕ)p : TpU1 → Tφ(p)U2.

Let us write

ϕ(x) = (ϕ1(x), . . . , ϕn2(x))

for x ∈ U1. Then by Proposition 5.1.2, we have ϕi ∈ C∞(U1).
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Definition 5.3.1. The matrix defined below is called the Jacobi matrix of
ϕ at p:

(Jϕ)p :=

(
∂ϕi
∂xj

(p)

)
i=1,...,n1;j=1,...,n1

∈M(n2, n1 : R).

Theorem 5.3.2. The Jacobi matrix (Jϕ)p gives the matrix representation
of the total differentiation

(dϕ)p : TpU1 → Tφ(p)U2.

with respect to the basis (
∂

∂x1

)
p

, . . . ,

(
∂

∂xn1

)
p

of TpU1 and that (
∂

∂y1

)
φ(p)

, . . . ,

(
∂

∂yn2

)
φ(p)

of Tφ(p)U2, that is, for each vector

η =
∑
j

aj

(
∂

∂xj

)
p

∈ TpU1,

the vector (dϕ)p(η) ∈ Tφ(p)U2 can be written as

(dϕ)p(η) =
∑
i

bi

(
∂

∂yi

)
φ(p)

by putting  b1
...
bn2

 = (Jϕ)p ·

 a1
...
an1

 .

Example 5.3.3. Let n1 = 2, n2 = 3, U1 = R2, U2 = R3 and

ϕ : R2 → R3, (x1, x2) 7→ (cos x1, sin x2, x1 + x2).

For each p = (p1, p2) ∈ R2, the Jacobi matrix (Jϕ)p can be computed as

(Jϕ)p =


∂φ1

∂x1
(p) ∂φ1

∂x2
(p)

∂φ2

∂x1
(p) ∂φ2

∂x2
(p)

∂φ3

∂x1
(p) ∂φ3

∂x2
(p)

 =

− sin p1 0
0 cos p2
1 1

 .
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Therefore, for each

η = a1

(
∂

∂x1

)
p

+ a2

(
∂

∂x2

)
p

∈ TpR2,

we have

(dϕ)p(η) = −a1(sin p1)
(

∂

∂y1

)
φ(p)

+a2(cos p2)

(
∂

∂y2

)
φ(p)

+(a1+a2)

(
∂

∂y3

)
φ(p)

since

(Jϕ)p

(
a1
a2

)
=

−a1 sin p1
a2 cos p2
a1 + a2

 .

Let us give a proof of Theorem 5.3.2. First, we observe the following
lemma:

Lemma 5.3.4. For each η ∈ Tφ(p)U2,

η =

n2∑
i=1

η(yi)

(
∂

∂yi

)
φ(p)

,

where

yi : U2 → R, y 7→ yi.

Proof of Theorem 5.3.2. Take any j = 1, . . . , n1. Our goal is to show the
following:

(dϕ)p

(
∂

∂xj

)
p

=

n2∑
i=1

((Jϕ)p)i,j

(
∂

∂yi

)
φ(p)

.

Recall that

(Jϕ)p)i,j =
∂ϕi
∂xj

(p).

Take any i = 1, . . . , n2. By the lemma stated above, it suffices to show the
following: (

(dϕ)p

(
∂

∂xj

)
p

)
(yi) =

∂ϕi
∂xj

(p).
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One can see that

(LHS) =

((
∂

∂xj

)
p

◦ ϕ∗

)
(yi)

=

(
∂

∂xj

)
p

(ϕ∗(yi))

=

(
∂

∂xj

)
p

(ϕi) (see Lemma 5.1.5),

= (RHS).

5.4 Compositions of smooth maps and their

total differentiations

In this section, we study the following two important properties of smooth
maps and total differentiations:

• Compositions of smooth maps are also smooth.

• Total differentiations of compositions are compositions of total differ-
entiations.

Throughout this section, we fix ni ∈ Z≥0, an open set Ui ⊂ Rni for
i = 1, 2, 3, and consider smooth maps ϕ : U1 → U2 and ψ : U2 → U3.

The following is the first main theorem of this section:

Theorem 5.4.1. The composition

ψ ◦ ϕ : U1 → U3

is smooth.

To prove the theorem above, we observe the lemma below:

Lemma 5.4.2.
(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗

as maps from C(U3) to C(U1).
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Proof of Theorem 5.4.1. Take any f ∈ C∞(U3). We only need to show that
(ψ◦ϕ)∗(f) ∈ C∞(U1). Note that ϕ

∗(ψ∗(f)) ∈ C∞(U1) since ψ and ϕ are both
smooth maps. By the lemma stated above, we have (ψ ◦ϕ)∗(f) = ϕ∗(ψ∗(f)).
This completes the proof.

The following is the second main theorem of this section:

Theorem 5.4.3. Fix p ∈ U1. Then

(d(ψ ◦ ϕ))p = (dψ)φ(p) ◦ (dϕ)p

as maps from TpU1 to T(ψ◦φ)(p)U3.

Proof of Theorem 5.4.3. Take any η ∈ TpU1. Then our goal is to show the
following:

(d(ψ ◦ ϕ))p(η) = ((dψ)φ(p) ◦ (dϕ)p)(η)

as in T(ψ◦φ)(p)U3. One can see that

(LHS) = η ◦ (ψ ◦ ϕ)∗

= η ◦ (ϕ∗ ◦ ψ∗) (see Lemma 5.4.2),

= ((dϕ)p(η)) ◦ ψ∗

= (dψ)φ(p)((dϕ)p(η)) (note that (dϕ)p(η) ∈ Tφ(p)U2),

= (RHS).

For the Jacobi matrices, as a corollary to Theorems 5.3.2 and 5.1.3, we
have the following:

Corollary 5.4.4.

(J(ψ ◦ ϕ)p) = (Jψ)φ(p) · (Jϕ)p.

It should be noted that the corollary above claims the chain rule for
partial derivatives of compositions of smooth maps.
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5.5 Exercise

Let us fix ni ∈ Z≥0 and an open subset Ui of Rni for each i = 1, 2. We
use the symbols {xj}j=1,...,n1 , {yi}i=1,...,n2 for the system of coordinate
functions on U1 and that of U2.

36. Suppose that ϕ : U1 → U2 is a smooth map. Show that

ϕ∗ : C∞(U2) → C∞(U1)

is an R-algebra homomorphism (Proposition 5.1.2).

37. (Topology) Let X be a topological space, {Yλ}λ∈Λ a family of topolog-
ical space. We use the symbol

∏
λıΛ Yλ for the direct product space of

{Yλ}λ∈Λ equipped with the product topology. Fix a map

ϕ : X →
∏
λıΛ

Yλ, x 7→ (ϕλ(x))λ∈Λ.

Show the following holds (Proposition 5.1.6):

(a) Assume that Λ is a finite set. Show that the following two condi-
tions on ϕ are equivalent:

Condition (i): ϕ : X →
∏

λıΛ Yλ is continuous.

Condition (ii): For any λ ∈ Λ, the mapϕλ : X → Yλ is continu-
ous.

(b) What is the definition of the product topology on
∏

λıΛ Yλ in the
cases where Λ is not finite? Show that the similar equivalence
above for general Λ.

38. (Analysis; the Chain rule) Write

ϕ : U1 → U2, x 7→ (ϕ1(x), . . . , ϕn2(x))

and assume ϕ1, . . . , ϕn2 ∈ C1(U1). Show that for any f ∈ C1(U2) に
ついて, ϕ∗(f) ∈ C1(U1), furthermore, for each j = 1, 2, . . . , n1, the
equality below holds

∂(ϕ∗(f))

∂xj
=

n2∑
i=1

(
ϕ∗
(
∂f

∂yi

))
· ∂ϕi
∂xj

on U1 (Proposition 5.1.7).
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39. Fix a map

ϕ : U1 → U2, x 7→ (ϕ1(x), . . . , ϕn2(x)).

Show that the following two conditions on ϕ are equivalent (Proposition
5.1.3):

Condition (i): ϕ is smooth in the sense of Definition 5.1.1 (i.e. ϕ is
continuous and ϕ∗(C∞(U2)) ⊂ C∞(U1)).

Condition (ii): ϕ1, . . . , ϕn2 ∈ C∞(U1).

40. Let n1 = n2 = 2 and put

U1 = {(x1, x2) ∈ R2 | x21 + x22 < 1, x1 > 0}
U2 = {(y1, y2) ∈ R2 | y21 + y22 < 1, y2 > 0}.

(a) Show that each Ui is open in R2 respectively.

(b) Show that the map

ϕ : U1 → U2, (x1, x2) 7→
(
x2,
√

1− (x21 + x22)

)
is smooth (Example 5.1.4).

41. Let ϕ : U1 → U2 be a smooth map and fix a point p ∈ U1. Show
η ◦ ϕ∗ ∈ Tφ(p)U2 for each η ∈ TpU1 (Proposition 5.2.1).

42. Let ϕ : U1 → U2 be a smooth map and fix a point p ∈ U1. Show that
the total differentiation

(dϕ)p : TpU1 → Tφ(p)U2, η 7→ η ◦ ϕ∗

of ϕ at p is a linear map (Proposition 5.2.3).

43. Fix q ∈ U2. Show that for any η ∈ TqU2, the equality below holds

η =

n2∑
i=1

η(yi)

(
∂

∂yi

)
q

by applying Corollary 4.3.6 (Lemma 5.3.4).
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44. (Linear algebra) Let V , W be real vector spaces with dimensions n1

and n2. We fix base {v1, . . . , vn1}, {w1, . . . , wn2} of V , W . Let us also
consider a linear map φ : V → W and a matrix A of size n2×n1. Show
that the following two conditions on (ϕ,A) are equivalent:

Condition (i): A represents φ with respect to the base {v1, . . . , vn1}
and {w1, . . . , wn2} i.e. for any a1

...
an1

 ∈ Rn1 ,

if we put

φ(

n1∑
j=1

ajvj) =

n2∑
i=1

biwi for

 b1
...
bn2

 ∈ Rn2 ,

then  b1
...
bn2

 = A

 a1
...
an1

 .

Condition (ii): φ(vj) =
∑n2

i=1Aijwi for any j = 1, . . . , n1.

45. Let ϕ : U1 → U2 be a smooth map and fix p ∈ U1. Show that the
Jacobi matrix

(Jϕ)p :=

(
∂ϕi
∂xj

(p)

)
i=1,...,n2,j=1,...,n1

represents the linear map

(dϕ)p : TpU1 → Tφ(p)U2

with respect to the base

{(
∂
∂xj

)
p

}
j=1,...,n1

and

{(
∂
∂yi

)
φ(p)

}
i=1,...,n2

(Proposition 5.3.2).

46. Determine the Jacobi matrix (Jϕ)p for a smooth map ϕ : U1 → U2 and
a point p ∈ U1 in the following situations:
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(a) n1 = 2, n2 = 3, U1 = R2, U2 = R3,

ϕ : R2 → R3, (x1, x2) 7→ (cos x1, sin x2, x1 + x2),

p = (p1, p2) ∈ R2 (Example 5.3.3).

(b) n1 = 1, n2 = 2, U1 = R, U2 = R2,

ϕ : R → R2, x 7→ (x2, 2x),

p ∈ R.
(c) n1 = 3, n2 = 2, U1 = R3, U2 = R2,

ϕ : R3 → R2, (x1, x2, x3) 7→ (x21, x1 + x2 + x3),

p = (p1, p2, p3) ∈ R3.

(d) n1 = 2, n2 = 2, U1 = R2 \ {(0, 0)}, U2 = R2 \ {(0, 0)},

ϕ : U1 → U2, (x1, x2) 7→

(
x1√
x21 + x22

,
x2√
x21 + x22

)
,

p = (p1, p2) ∈ U1.

Setting: For i = 1, 2, 3, let us fix ni ∈ Z≥0 and an open set Ui of Rni .
Furthermore, we also fix smooth maps ϕ : U1 → U2 and ψ : U2 → U3.

47. Show the equality

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ as C(U3) → C(U1).

(Lemma 5.4.2).

48. Show that the map
ψ ◦ ϕ : U1 → U3

is smooth (Theorem 5.4.1).

49. Fix p ∈ U1. Show the equality below:

(d(ψ ◦ ϕ))p = (dψ)φ(p) ◦ (dϕ)p
(Theorem 5.4.3).

50. Can you find some relationship between “the chain rule” and the equal-
ity below?

(J(ψ ◦ ϕ))p = (Jψ)φ(p) · (Jϕ)p
(Corollary 5.4.4).





Chapter 6

Local coordinate systems

In this section, we introduce the concept of local coordinate systems on topo-
logical spaces.

6.1 Some basic facts in Topology

In this section, we recall some basic facts in Topology which will be applied
in this lecture course.

Throughout this section, topological spaces X = (X,OX) and Y =
(Y,OY ) are fixed.

First, we recall the definition of relative topology:

Definition 6.1.1. For each subset A of X, the topology

OX(A) := {A ∩ U | U ∈ OX}

on A is called the relative topology on A induced from OX .

Proposition 6.1.2. Let us fix a subset A of X. Then the relative topology
on A is the weakest topology on A such that the inclusion map A ↪→ X is
continuous.

Proposition 6.1.3. Fix subsets A and B of X with B ⊂ A. Then

OX(B) = (OX(A))(B).

Proposition 6.1.4. Fix an open set U of X (i.e. U ∈ OX). For a subset V
of U , the following two conditions are equivalent:

43
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1. V is open in U with respect to the relative topology (i.e. V ∈ OX(U)).

2. V is open in X (i.e. V ∈ OX).

It should be remarked that in the proposition above, the assumption that
“U is open in X” cannot be omitted. For example, if U is NOT open in X,
by putting V = U , we have an example of V that V is open in U but not
open in X.

Let us some basic facts for homeomorphisms:

Proposition 6.1.5. Let φ : X → Y be a bijective continuous map. Then
the following two conditions on φ are equivalent:

1. φ : X → Y is a homeomorphism (i.e. the inverse map φ−1 : Y → X is
also continuous).

2. φ : X → Y is an open map (i.e. for any open set U of X, the image
φ(U) is also open in Y ).

Proposition 6.1.6. Fix a subset A of X and that B of Y . We regard A and
B are both topological spaces equipped with the relative topology.

1. Let φ : X → Y be a continuous map such that φ(A) ⊂ B. Then φ
defines a continuous map from A to B.

2. Let φ : X → Y be a homeomorphism such that φ(A) = B. Then φ
defines a homeomorphism from A to B.

6.2 Definition of local coordinate systems

The definition of local coordinate systems on a topological space is given in
this section.

Throughout this section, we fix a topological space M = (M,OM) and
n ∈ Z≥0.

Definition 6.2.1 (Local coordinate systems). Fix an open set O inM and an
open set U of Rn. We regard O and U are both topological spaces equipped
with the relative topology. Let u : O → U be a homeomorphism. Then the
system (O,U,u) is said to be an n-dimensional local coordinate system on
M . Furthermore, u is called a coordinate on O.
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It should be noted that sometimes the pair (O,u) is called a local coor-
dinate system on M (an open set U = u(O) in Rn is omitted).

Definition 6.2.2. In this lecture course, we use the symbol

LC(M ;Rn)

for the set of all n-dimensional local coordinate systems on M .

Example 6.2.3. Let us consider the situation that M is an open set of
Rn. Then by putting U = M , we have a local coordinate system (M,U =
M, idM) ∈ LC(M ;Rn).

Example 6.2.4. Suppose n ∈ Z≥1. Let us consider

Sn := {x = (x1, . . . , xn+1) ∈ Rn+1 |
n+1∑
i=1

x2i = 1} ⊂ Rn+1.

It should be noted that Sn is not open in Rn+1. We regard Sn as a topological
space equipped with the relative topology. Put

O : = {x ∈ Sn | xn+1 > 0} ⊂ Sn,

U := {u = (u1, . . . , un) ∈ Rn |
n∑
i=1

u2i < 1} ⊂ Rn,

u : O → U, x 7→ (x1, . . . , xn).

Then u is well-defined and one can see that (O,U,u) ∈ LC(Sn;Rn) (with
plenty of basic arguments).

The proposition below is useful:

Proposition 6.2.5. Let (O,U,u) ∈ LC(M ;Rn) and O0 is an open subset of
O. Then

(O0,u(O0),u|O0 : O0 → u(O0)) ∈ LC(M ;Rn).

6.3 Exercise

Setting on Problem 51 to 55: We fix topological spaces (X,OX)
and (Y,OY ).
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51. (Topology) Let A be a subset of X. The inclusion map is denoted
by ι : A ↪→ X. Show that the relative topology OX(A) is the weak-
est topology on A such that the map ι : A → X to be continuous
(Proposition 6.1.2).

52. (Topology) Let B ⊂ A ⊂ X. Show that

OX(B) = (OX(A))(B)

(Proposition 6.1.3).

53. (Topology) Let U ∈ OX . For a subset V of U , show that the following
two conditions are equivalent (Proposition 6.1.4):

Condition (i): V ∈ OX(U).

Condition (ii): V ∈ OX .

54. (Topology) Let φ : X → Y be a bijective continuous map. Show that
the following two conditions on φ are equivalent (Proposition 6.1.5):

Condition (i): φ : X → Y is a homeomorphism (i.e. the inverse map
φ−1 : Y → X is also continuous).

Condition (ii): φ : X → Y is an open map (i.e. for any open set U
of X, the image φ(U) is also open in Y ).

55. (Topology) Let A ⊂ X and B ⊂ Y . We regard A and B as topological
spaces equipped with the relative topologies OX(A) and OY (B). Show
that the following holds (Proposition 6.1.6):

(a) Fix a continuous map φ : X → Y with φ(A) ⊂ B. Then φ defines
a continuous map from A to B.

(b) Fix a homeomorphism φ : X → Y with φ(A) = B. Then φ defines
a homeomorphism from A to B.

56. Let M be a topological space, n ∈ Z≥0 and (O,U,u) ∈ LC(M ;Rn).
Fix an open set O0 of O. Show that (O0,u(O0),u|O0 : O0 → u(O0)) ∈
LC(M : Rn) (Proposition 6.2.4).
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Setting in Exercise 57 to 61: Fix n ∈ Z≥1 and put

Sn := {x ∈ Rn+1 |
n+1∑
i=1

x2i = 1} ⊂ Rn+1.

We regard Sn as a topological space equipped with the relative topol-
ogy. Let us define

• O = {x ∈ Sn | xn+1 > 0} ⊂ Sn,

• U = {u ∈ Rn |
∑n

i=1 u
2
i < 1} ⊂ Rn,

• u : O → U, x 7→ (x1, . . . , xn).

57. (Topology) Show that Sn is connected compact Hausdorff space.

58. Show that
u : O → U, x 7→ (x1, . . . , xn)

is well-defined as a map.

59. Show that O is open in Sn. Furthermore, show that U is open in Rn

(Example 6.2.3).

60. Determine the inverse map u : O → U (Example 6.2.3).

61. Show that u : O → U is a homeomorphism (Example 6.2.3).





Chapter 7

Coordinate transformations
and smooth atlas

In this section, we define the coordinate transformations between local coor-
dinate systems. Furthermore, we shall introduce the concept of smooth atlas
on a topological space.

7.1 Definition of Coordinate transformations

Throughout this section, we fix a topological space M and n ∈ Z≥0. Fur-
thermore, n-dimensional local coordinate systems (O,U,u) and (O′.V, v) on
M are also fixed.

Recall that we use the symbol LC(M ;Rn) for the set of all n-dimensional
local coordinate systems.

First, we note that the intersection O∩O′ is open inM , and thus u(O∩O′)
and v(O ∩O′) are both open in Rn.

Let us define the coordinate transformation from (O,U,u) to (O′, V,v)
as a map from u(O ∩O′) to v(O ∩O′) as follows:

Definition 7.1.1. The map

τuv := v ◦ u−1 : u(O ∩O′) → v(O ∩O′), u 7→ v(u−1(u))

is called the coordinate transformation from (O,U,u) to (O′, V,v).

49
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Example 7.1.2. Suppose n = 2 and M = S2 = {x ∈ R3 |
∑3

i=1 x
2
i = 1}.

Let us take (O,U,u), (O′, V,v) ∈ LC(S2;R2) as

O := {x ∈ S2 | x3 > 0} ⊂ S2,

U := {u ∈ R2 |
2∑
i=1

u2i < 1} ⊂ R2,

u :O → U, x 7→ (x1, x2)

and

O′ := {x ∈ S2 | x2 > 0} ⊂ S2,

V := {v ∈ R2 |
2∑
i=1

v2i < 1} ⊂ R2,

v :O′ → V, x 7→ (x1, x3).

We note that

u−1 :U → O, u 7→ (u1, u2,
√

1− u21 − u22),

v−1 :V → O′, v 7→ (v1,
√

1− v21 − v22, v2),

Then we have

O ∩O′ = {x ∈ S2 | x2 > 0, x3 > 0},
u(O ∩O′) = {u ∈ U | u2 > 0},
v(O ∩O′) = {v ∈ V | v2 > 0}

and the coordinate transformations τuv and τvu can be written as

τuv : {u ∈ U | u2 > 0} → {v ∈ V | v2 > 0}, u 7→ (u1,
√

1− u21 − u22),

τvu : {v ∈ V | v2 > 0} → {u ∈ U | u2 > 0}, v 7→ (v1,
√

1− v21 − v22).

We will sometimes apply the following three propositions:

Proposition 7.1.3. τuu is the identity map on U .
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Proposition 7.1.4. τuv and τvu are inverse to each other.

Proposition 7.1.5. Let (Oi, Ui,ui) ∈ LC(M ;Rn) for i = 1, 2, 3. Then for
any u ∈ u(O1 ∩O2 ∩O3),

τu1u2(u) ∈ u2(O1 ∩O2 ∩O3),

and
τu1u3(u) = τu2u3(τu1u2(u)).

7.2 Smoothness of coordinate transformations

Throughout this section, we fix a topological space M and n ∈ Z≥0. Fur-
thermore, n-dimensional local coordinate systems (O,U,u) and (O′, V,v) are
also fixed.

Question: Coordinate transformations

τuv : u(O ∩O′) → v(O ∩O′)

τvu : v(O ∩O′) → u(O ∩O′)

are both smooth maps? It should be noted that since u(O ∩ O′) and
v(O ∩ O′) are both open sets of Euclidean spaces, the smoothness of
τuv and τvu are defined in the sense of Definition 5.1.1.

Answer: No! In general, coordinate transformations fail to be smooth!

Example 7.2.1. LetM := {x ∈ R2 | x2 = x31}. Take a pair of 1-dimensional
local coordinate systems (O,U,u) and (O′, V,v) on M as below:

O :=M,

U := R,
u : O → U, x 7→ x1,

(u−1 : U → O, u 7→ (u, u3)).

O′ :=M,

V := R,
v : O′ → V, x 7→ x2,

(u−1 : V → O′, v 7→ (v1/3, v)).
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Then we have

O ∩O′ =M,

u(O ∩O′) = R,
v(O ∩O′) = R,

τuv : R → R, u 7→ u3,

τvu : R → R, v 7→ u1/3.

Thus, τuv is a smooth map but not τvu. (Note that

R → R, u 7→ u1/3

is not differentiable at the origin.)

It should be emphasized that the question that “is u : O → U smooth?”
does not make sense!! Recall that now we have only the definition of smooth-
ness of maps between open sets of Euclidean spaces (but our O is not needed
to be an open set of a Euclidean space).

The key idea in this lecture: Our goal is to define the algebra C∞(M)
of “smooth functions” on M . To this, it is suitable if coordinate trans-
forms are smooth (we will discuss in Section 8).

Example 7.2.2. Let us consider the situation in Example 7.1.2. Recall that

τuv : {u ∈ U | u2 > 0} → {v ∈ V | v2 > 0}, u 7→ (u1,
√

1− u21 − u22),

τvu : {v ∈ V | v2 > 0} → {u ∈ U | u2 > 0}, v 7→ (v1,
√

1− v21 − v22).

They are both smooth.

7.3 Smooth atlas

In this section, we introduce the concept of smooth atlas on topological
spaces.

Throughout this section, we fix a topological space M and n ∈ Z≥0.
Recall that we use the symbol LC(M ;Rn) for the set of all n-dimensional
local coordinate systems on M .
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Definition 7.3.1 (Smooth atlas). A subset A0 of LC(M ;Rn) is said to be an
n-dimensional smooth atlas (C∞-atlas) if the following two conditions hold:

1.
⋃

(O,U,u)∈A0
O =M ,

2. For any (O,U,u) and any (O′, V,v), the coordinate transformation

τuv : u(O ∩O′) → v(O ∩O′), u 7→ v(u−1(u))

is a smooth map.

Example 7.3.2. Suppose n ∈ Z≥1. For the topological space

Sn := {x ∈ Rn+1 |
n+1∑
i=1

x2i = 1} ⊂ Rn+1,

For each k = 1, . . . , n+1, let us define n-dimensional local coordinate systems
(O+

k , U
+
k ,u

+
k ) and (O−

k , U
−
k ,u

−
k ) and as follows:

O+
k := {x ∈ Sn | xk > 0} ⊂ Sn,

U+
k := {u ∈ Rn |

n∑
i=1

u2i < 1} ⊂ Rn,

u+
k :O+

k → U+
k , x(x1, . . . , xk−1, xk+1, . . . , xn+1),

(u+
k )

−1 :U+
k → O+

k , u(u1, . . . , uk−1,

√√√√1−
n∑
i=1

u2i , uk, . . . , un).

O−
k := {x ∈ Sn | xk < 0} ⊂ Sn,

U−
k := {u ∈ Rn |

n∑
i=1

u2i < 1} ⊂ Rn,

u−
k :O−

k → U−
k , x(x1, . . . , xk−1, xk+1, . . . , xn+1),

(u−
k )

−1 :U−
k → O−

k , u(u1, . . . , uk−1,−

√√√√1−
n∑
i=1

u2i , uk, . . . , un).

Then

A0 := {(O+
k , U

+
k ,u

+
k ) | k = 1, . . . , n+1}

⊔
{(O−

k , U
−
k ,u

−
k ) | k = 1, . . . , n+1} ⊂ LC(Sn;Rn)

is an n-dimensional smooth atlas on Sn.
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7.4 Exercise

Setting in Exercise 62 to 66: Let M be a topological space and
n ∈ Z≥0. We also fix n-dimensional local coordinate systems (O,U,u)
and (O′, V,v) on M .

62. Explain the coordinate transformation by drawing a picture.

63. Show that the coordinate transformation

τuu : u(O) → u(O)

from (O,U,u) (O,U,u) itself is the identity (Proposition 7.1.3).

64. Show that the coordinate transformations

τuv : u(O ∩O′) → v(O ∩O′)

and

τvu : v(O ∩O′) → u(O ∩O′)

are inverse to each other (Proposition 7.1.4).

65. Fix (O1, U1,u1), (O2, U2,u2), (O3, U3,u3) ∈ LC(M ;Rn). Show that

τu1u3 |u1(O1∩O2∩O3) = (τu2u3 |u2(O1∩O2∩O3)) ◦ (τu1u2 |u1(O1∩O2∩O3))

as maps from u1(O1∩O2∩O3) to u3(O1∩O2∩O3) (Proposition 7.1.5).

66. Put M = {x ∈ R2 | x2 = x31} ⊂ R2. We take (O,U,u), (O′, V,v) ∈
LC(M ;R) as

• O = O′ =M .

• U = V = R.

• u : O → U, x 7→ x1.

• v : O → V, x 7→ x2.

Determine the coordinate transformations τuv and τvu. Furthermore,
discuss whether τuv and τvu are smooth or not (Example 7.2.1).
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Setting in Exercise 67 to 69: We put

Sn = {x ∈ Rn+1 |
n+1∑
i=1

x2i = 1} ⊂ Rn+1.

For each k = 1, . . . , n + 1, let us define (O±
k , U

±
k ,u

±
k ) ∈ LC(Sn;Rn) as

below:

• O+
k = {x ∈ Sn | xk > 0}, O−

k = {x ∈ Sn | xk < 0} ⊂ S2.

• U±
k = {u ∈ Rn |

∑n
i=1 u

2
i < 1} ⊂ Rn.

• u±
k : O±

k → U±
k , x 7→ (x1, . . . , xk−1, xk+1, . . . , xn+1).

Furthermore we also define the subset A0 of LC(M ;Rn) by

A0 = {(O+
k , U

+
k ,u

+
k ) | k = 1, . . . , n+1}∪{(O−

k , U
−
k ,u

−
k ) | k = 1, . . . , n+1}.

67. For each k = 1, . . . , n + 1, determine the inverse map of u+
k and that

of u−
k , respectively.

68. Take 1 ≤ k1 < k2 ≤ n+1. Determine u+
k1
(O+

k1
∩O−

k2
) and u−

k2
(O+

k1
∩O−

k2
).

Furthermore, determine the coordinate transformation

τu+
k1

u−
k2

: u+
k1
(O+

k1
∩O−

k2
) → u−

k2
(O+

k1
∩O−

k2
),

and show that u+
k1

u−
k2

is smooth (Example 7.1.2, Example 7.3.2).

69. Show that A0 is an n-dimensional smooth atlas on Sn (Example 7.3.2).





Chapter 8

Smooth functions on a
topological space equipped with
a smooth atlas

In this section, we shall define the smooth functions on topological space
equipped with a smooth atlas.

8.1 Smoothness on a local coordinate system

Throughout this section, we fix M as a topological space, n ∈ Z≥0 and an
n-dimensional local coordinate system (O,U,u) on M .

Our goal is to give a definition that f is smooth on (O,U,u) for each
function f on M .

Definition 8.1.1. For each function f :M → R onM , we define the function
fu on U by

fu : U → R, u 7→ f(u−1(u)).

Definition 8.1.2. We say that f is smooth (or C∞) on (O,U,u) if fu ∈
C∞(U).

Example 8.1.3. Let us consider S1 = {x ∈ R2 | x21 + x22 = 1} ⊂ R2 and a

57
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1-dimensional local coordinate system (O,U,u) defined by

O := {x ∈ S1 | x2 > 0} ⊂ S1,

U := (−1, 1) ⊂ R,
u : O → U, x 7→ x1,

(u−1 : U → O, u 7→ (u,
√
1− u2)).

For the function
f : S1 → R, x 7→ x2,

we have

fu : U → R, u 7→ f(u−1(u)) = f(u,
√
1− u2) =

√
1− u2.

Thus fu is smooth on U = (−1, 1), and thus f is smooth on (O,U,u).

8.2 Smooth functions on a topological space

equipped with a smooth atlas

Throughout this section, we fix M as a topological space, n ∈ Z≥0 and an
n-dimensional smooth atlas A0 ⊂ LC(M ;Rn).

Definition 8.2.1. We say that a function f on M is smooth (or C∞) on
(M,A0) if fu ∈ C∞(U) for any (O,U,u) ∈ A0.

Example 8.2.2. For S1 := {x ∈ R2 | x21 + x22 = 1}, let us consider the 1-
dimensional smooth atlas A0 defined in Example 7.3.2. Then one can check
that the function

f : S1 → R, x 7→ x2

is smooth on (S1,A0).

The following theorem is fundamental and useful:

Theorem 8.2.3. Let f : M → R a function on M (which might not be
continuous). Then the following two conditions on f are equivalent:

1. f is smooth on (M,A0).

2. For each p ∈ M , there exists (O,U,u) ∈ A0 such that p ∈ O and
fu ∈ C∞(U).
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To prove Theorem 8.2.3, we will apply the following theorem:

Theorem 8.2.4. Let U be an open set of Rn and fix an open cover {Uλ}λ∈Λ
of the topological space U . Then for each function h : U → R, the following
two conditions are equivalent:

1. h ∈ C∞(U).

2. h|Uλ
∈ C∞(Uλ) for any λ ∈ Λ.

Proof of Theorem 8.2.3. The implication (1) ⇒ (2) is easy. Suppose (2) and
we shall prove (1). Take any (O,U,u) ∈ A0. Let us prove that fu ∈ C∞(U).
By (2), for each p ∈ O, one can choose (Op, Up,up) ∈ A0 such that p ∈ Op

and fup ∈ C∞(Up). Note that {u(O ∩Op)}p∈O is an open cover on U . Thus
by Theorem 8.2.4, it suffices to show that

fu|u(O∩Op) ∈ C∞(u(O ∩Op))

for each p ∈ O. Let us fix p ∈ O. Put (O′, V,v) := (Op, Up,up). Then our
goal is to show that

fu|u(O∩O′) ∈ C∞(u(O ∩O′)).

Since (O,U,u), (O′, V,v) ∈ A0, the coordinate transformation

τuv : u(O ∩O′) → v(O ∩O′), u 7→ v(u−1(u))

is smooth. Recall that fv∈C∞(V ). Thus fv|v(O∩O′)∈C∞(v(O∩O′)) (cf. Proposition

3.1.5). Therefore

τ ∗uv(fv|v(O∩O′)) ∈ C∞(u(O ∩O′)).

One can easily check that

τ ∗uv(fv)|v(O∩O′)) = fu|u(O∩O′).

Thus we obtain
fu|u(O∩O′) ∈ C∞(u(O ∩O′)).

We note that the following also holds:

Proposition 8.2.5. If a function f on M is smooth on (M,A0), then f is
continuous on M .
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8.3 The R-algebras of smooth functions on a

smooth atlas

Throughout this section, we fix M as a topological space, n ∈ Z≥0 and an
n-dimensional smooth atlas A0 ⊂ LC(M ;Rn).

Definition 8.3.1. We put

C∞(M ;A0) := {f ∈ C(M) | f is smooth on (M,A0)}

The following theorem is one of the most important claims in this lecture
course.

Theorem 8.3.2. C∞(M ;A0) is a sub R-algebra of C(M). In particular,
C∞(M ;A0) itself is an R-algebra.

Theorem 8.3.2 comes immediately from the following proposition and
lemma:

Proposition 8.3.3. Let V1, V2 be both R-algebras and W a sub R-algebra
of V2. We fix an R-algebra homomorphism ψ : V1 → V2. Then ψ−1(W ) is
also a sub R-algebra of V1.

Lemma 8.3.4. For each (O,U,u) ∈ A0, the map

ψu : C(M) → C(U), f 7→ fu

is an R-algebra homomorphism.

8.4 Exercise

Preparing...
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Maximal smooth atlas

9.1 Maximal smooth atlas

Throughout this section, let M be a topological space and n ∈ Z≥0.

Definition 9.1.1. We put

C∞-atlas(M ;Rn) := {A0 ⊂ LC(M ;Rn) | A0 is an n-dimensional smooth atlas on M}.

Theorem 9.1.2. Let A0,A′
0 ∈ C∞-atlas(M ;Rn) with A0 ⊂ A′

0. Then
C∞(M ;A0) = C∞(M ;A′

0).

Hint: Theorem 8.2.4.

Definition 9.1.3. An n-dimensional A ∈ C∞-atlas(M ;Rn) is called maxi-
mal if there does not exist B ∈ C∞-atlas(M ;Rn) with A ⊂ B and A 6= B.

Question: For A0 ∈ C∞-atlas(M ;Rn), does there exist a maximal A ∈
C∞-atlas(M ;Rn) with A0 ⊂ A?

Answer: Yes!! Furthermore, such A is unique for each A0.

Definition 9.1.4. For each A0 ∈ C∞-atlas(M ;Rn), we define

[A0] := {(O,U,u) ∈ LC(M ;Rn) | τuv, τvu are both smooth for any (O′, V,v) ∈ A0}.

Example 9.1.5. Preparing...

Theorem 9.1.6. Let A0 ∈ C∞-atlas(M ;Rn). Then the following holds:
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1. A′ ⊂ [A0].

2. [A0] ∈ C∞-atlas(M ;Rn) and maximal.

3. [A0] is the unique smooth atlas containing A0.

A proof of Theorem 9.1.6 can be found in Section 9.2 in the Japanese
version of the lecture notes.

Note that by Theorem 9.1.2, the following holds:

Proposition 9.1.7. For each A0 ∈ C∞-atlas(M ;Rn),

C∞(M ;A0) = C∞(M ; [A0]).

The next proposition is useful:

Proposition 9.1.8. Let A0,B0 ∈ C∞-atlas(M ;Rn). Then the following two
conditions on A0,B0 are equivalent:

1. [A0] = [B0].

2. For any (O,U,u) ∈ A0 and any (O′, V,v) ∈ B0, the coordinate trans-
formations τuv and τvu are both smooth.

Hint: Theorem 9.1.6.

Example 9.1.9. Preparing...

9.2 Exercise

Preparing...
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Smooth manifolds

10.1 Hausdorff spaces

preparing...

10.2 Smooth manifolds

Let us fix n ∈ Z≥0. We shall define n-dimensional smooth manifold as below:

Definition 10.2.1. (M,A) is an n-dimensional smooth manifold if M is a
Hausdorff topological space and A is a maximal n-dimensional smooth atlas
on M .

Sometimes, we assume thatM is second countable (i.e.M admits a count-
able base of the topology).

Example 10.2.2. The empty set ∅ is an n-dimensional smooth manifold for
any n ∈ Z≥0 (with respect to A = ∅).

Example 10.2.3. Let U be an open set of Rn. Then A0 := {(U,U, idU)}
is an n-dimensional smooth atlas on U . Thus (U, [A0]) is an n-dimensional
smooth manifold. Note that in this situation,

C∞(U ; [A0]) = C∞(U,A0) = C∞(U).

Example 10.2.4. preparing... (Sn is an n-dimensional manifold.)
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Example 10.2.5. preparing... (two types of smooth manifold structure on
M := {(x1, x2) ∈ R2 | x2 = x31})

Example 10.2.6. D := {(x1, x2) ∈ R2 | x1x2 = 0} is not a manifold because
there does not exist a local coordinate system (O,U,u) with (0, 0) ∈ O (non-
trivial fact).

10.3 Open submanifolds

preparing...

10.4 Exercise

Preparing...



Chapter 11

Direct products of smooth
manifolds

preparing...
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Chapter 12

Projective spaces

12.1 Projective spaces and their topology

Let us fix n ∈ Z≥0.

Definition 12.1.1. The n-dimensional projective space RPn is defined by

RPn := {` ⊂ Rn+1 | ` is a one-dimensional linear subspace of Rn+1}.

Let us give a definition of a topology of RPn as below: First, we consider
the topological space Rn+1 \ {0}.

Proposition 12.1.2.

π : Rn+1 \ {0} → RPn, x 7→:= {rx | r ∈ R} ⊂ Rn+1

is well-defined as a map and surjective.

Definition 12.1.3. We consider RPn as a topological space with respect to
the quotient topology on RPn by π. That is, a subset O in RPn is said to be
open if π−1(O) is open in Rn+1 \ {0}.

The following proposition will be applied:

Proposition 12.1.4. Let W be a linear subspace of Rn+1. Then

OW := {` ∈ RPn | ` ⊂ W}

is an open set of RPn.

Proof. preparing...

Theorem 12.1.5. RPn is compact and Hausdorff.
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12.2 Smooth atlas on projective spaces

Let us fix n ∈ Z≥0. We shall give a smooth atlas on RPn as below:
For each x ∈ Rn+1{0}, we write

[x1 : x2 : · · · : xn+1] := [x] := π(x) := Rx ∈ RPn.
Note that for x, y ∈ Rn+1 \ {0},

[x1 : · · · : xn+1] = [y1 : · · · : yn+1]

holds if and only if there exists λ ∈ R \ {0} such that x = λy.

Theorem 12.2.1. For each i = 1, . . . , n+ 1, we put Wi := {x ∈ Rn+1 | xi =
0} and define

Oi := OWi
⊂ RPn,

Ui := Rn,

ui : Oi → Ui, [x] 7→
1

xi
(x1, . . . , xi−1, xi+1, . . . , xn+1).

Then (Oi, Ui,ui) ∈ LC(RPn;Rn).

Theorem 12.2.2.

A0 := {(Oi, Ui,ui) | i = 1, . . . , n+ 1} ∈ C∞-atlas.

Furthermore, (RPn, [A0]) is an n-dimensional smooth manifold.

Proof. preparing...

We also give an example of smooth function on RPn:
Theorem 12.2.3. Let k ∈ Z≥0. Fix f1, f2 ∈ C∞(Rn+1 \ {0}). Assume that
f2 has no zero on Rn+1 \ {0}, f1 and f2 are both homogeneous of degree k,
that is, fi(λx) = λkfi(x) for any x ∈ Rn+1 \ {0} and any λ ∈ R. Then

f : RPn → R, [x] 7→ f1(x)

f2(x)

is well-defined and f ∈ C∞(RPn; [A0]).

Proof. preparing...

Example 12.2.4. Let

f : RP2 → R, [x] 7→ 2x1x2
x21 + x22 + x23

.

Then f is well-defined and smooth on RP2.



Chapter 13

Tangent spaces

13.1 Definition of tangent space

Let n ∈ Z≥0. We fix an n-dimensional smooth manifold M = (M,A) and
a point p ∈ M . The R-algebra of all smooth functions on (M,A) will be
denoted by C∞(M) := C∞(M ;A).

Definition 13.1.1. The tangent space TpM of M at p is defined by

TpM := {η : C∞(M) → R | η is linear and satisfies the Leibniz rule at p},

where we say that η satisfies the Leibniz rule at p if

η(f · g) = η(f) · g(p) + f(p) · η(g)

holds for any f, g ∈ C∞(M).

Proposition 13.1.2. TpM is a linear subspace of L(C∞(M),R).

13.2 Coordinate basis

Let n ∈ Z≥0. We fix an n-dimensional smooth manifold M = (M,A) and a
point p ∈M . Furthermore, we also fix (O,U,u) ∈ A with p ∈ O.

Definition 13.2.1. For each i = 1, . . . , n, we define(
∂

∂ui

)
p

: C∞(M) → R, f 7→ ∂fu
∂ui

(u(p)).
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Proposition 13.2.2.
(

∂
∂ui

)
p
∈ TpM for i = 1, . . . , n.

Theorem 13.2.3.

{(
∂
∂ui

)
p

}
i=1,...,n

forms a basis of TpM .

In our lectures, We call

{(
∂
∂ui

)
p

}
i=1,...,n

the coordinate basis of TpM

with respect to (O,U,u).

Corollary 13.2.4. dimTpM = n.

13.3 Coordinate basis and change of basis

Let n ∈ Z≥0. We fix an n-dimensional smooth manifold M = (M,A) and
a point p ∈ M . Furthermore, we also fix (O,U,u), (O′, V,v) ∈ A with
p ∈ O ∩O′.

Theorem 13.3.1. Let us consider the Jacobi matrix

(Jτuv)u(p) :=

(
∂(τuv)i
∂uj

(u(p))

)
i,j=1,...,n

.

Then (Jτuv)u(p) gives the matrix of the change of basis

{(
∂
∂vi

)
p

}
i=1,...,n

to{(
∂
∂ui

)
p

}
i=1,...,n

of TpM , that is, for each

η =
n∑
i=1

ai

(
∂

∂ui

)
p

=
n∑
i=1

bi

(
∂

∂vi

)
p

∈ TpM,

we have

(Jτuv)u(p)

a1...
an

 =

b1...
bn

 .

Example 13.3.2. Let us consider the 2-dimensional smooth manifold S2 =
(S2, [A0]) (cf. Ex 10.2.4). We put p := 1√

3
(1, 1, 1) ∈ S2. Let us consider

(O,U,u) = (O+
1 , U

+
1 ,u

+
1 ) ∈ A0,

(O′, V,v) = (O+
2 , U

+
2 ,u

+
2 ) ∈ A0.
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Then p ∈ O ∩O′. One can compute that u(p) = 1√
3
(1, 1),

u(O ∩O′) := {u ∈ R2 | ‖u‖ < 1, u1 > 0},
v(O ∩O′) := {v ∈ R2 | ‖v‖ < 1, v1 > 0},

and

τuv : u(O ∩O′) → v(O ∩O′), u 7→ (
√
1− u21 − u22, u2).

Thus we have

(Jτuv)u(p) =

(
−1 −1
0 1

)
.

In particular, we have that(
∂

∂u1

)
p

= −
(

∂

∂v1

)
p(

∂

∂u2

)
p

= −
(

∂

∂v1

)
p

+

(
∂

∂v2

)
p





Chapter 14

Smooth maps between smooth
manifolds

preparing...
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Chapter 15

Total differentiations of smooth
maps between smooth
manifolds

preparing...
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Chapter 16

Regular submanifolds

preparing...
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Chapter 17

Vector fields and flows

preparing...
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