幾何学 B 演習問題 No.13 問 110-問 124

対面発表は問 110, 問 113, 問 116, 問 117, 問 118.

- キーワード: Van Kampen の定理の応用, 局所切断, ファイバー束, 被覆写像, 被覆準同型.
 - 問 110. (対面発表) $n \ge 2$ とする. n 次元球面 S^n が単連結であることを示せ.
 - 問 111. $(S^1,*) \lor (S^1,*) = (S^1 \lor S^1,*)$ の基本群の表示を求めよ. また $(\Sigma_2,*)$ の基本群の表示を求めよ.
 - 問 112. 以下, Σ_q を種数 g の閉曲面 (g 人乗り浮き輪) とする. また Σ_q の基点 * を固定しておく.
 - (1) $a \in \Sigma_2$ with $a \neq *$ を固定する. $(\Sigma_2 \setminus \{a\},*)$ の基本群の表示を求めよ.
 - (2) $(\Sigma_3,*)$ の基本群の表示を求めよ.

問 113. (対面発表)

- (1) 射影平面およびクラインの壺の展開図を描け.
- (2) 基点付き射影平面の基本群の表示を求めよ. また基点付きクラインの壺の基本群の表示を求めよ.
- **問 114.** E, X, F を位相空間とし, $\pi : E \to X$ を F-ファイバー束とする.
 - (1) π は全射開写像であることを示せ.
 - (2) $x \in X$ とする. このとき「 π は x のまわりで局所切断を持つ」を定式化し、証明せよ.
- 問 115. k=1,2 について, $\pi_k: E_k \to X_k$ を F_k -ファイバー東とする (E_k, X_k, F_k は位相空間). このとき

$$\pi_1 \times \pi_2 : E_1 \times E_2 \to X_1 \times X_2, \ (e_1, e_2) \mapsto (\pi_1(e_1), \pi_2(e_2))$$

は $(F_1 \times F_2)$ -ファイバー束であることを示せ.

- 問 116. (対面発表) 「被覆準同型は合成で閉じる」, 「恒等写像は被覆準同型となる」, 「被覆同型の逆写像も被覆同型である」, 「被覆変換群は群をなす」をそれぞれ定式化し, 証明せよ.
- **問 117.** (対面発表) 「被覆準同型は各ファイバーを保つ」を定式化し, 証明せよ. また 「被覆同型は各ファイバーにおいて同相」を定式化し, 証明せよ.
- 問 118. (対面発表) $S^1 := \{z \in \mathbb{C} \mid |z| = 1\}$ とし, $\pi : \mathbb{R} \to S^1$, $\theta \mapsto \exp(2\pi i\theta)$ とする.
 - (1) $\pi: \mathbb{R} \to S^1$ が \mathbb{Z} -被覆写像であることを示せ、ただし $V_+:=S^1\setminus \{-1\}, V_-:=S^1\setminus \{1\}$ としたとき, $\pi|_{(-1/2,1/2)}:(-1/2,1/2)\to V_+$ および $\pi|_{(0,1)}:(0,1)\to V_-$ が同相であるという事実は用いてよい、

$$L_k: \mathbb{R} \to \mathbb{R}, \ \theta \mapsto \theta + k$$

とする. このとき L_k は π から π への被覆同型であることを示せ.

- 問 119. $n \in \mathbb{Z}_{>1}$ とし, $\pi_n : S^1 \to S^1$, $z \mapsto z^n$ とおく.
 - (1) π_n が $(\mathbb{Z}/n\mathbb{Z})$ -被覆写像であることを示せ.
 - (2) $f_n: \mathbb{R} \to S^1$, $\theta \mapsto \exp(2\pi i \frac{1}{n}\theta)$ が π から π_n への被覆準同型であることを示せ. ただし π は上の問題で定義された \mathbb{Z} -被覆写像 on S^1 とする.
- 問 120. $T^2 = S^1 \times S^1$ とおく.
 - (1) $\varpi: \mathbb{R}^2 \to T^2$, $(\theta_1, \theta_2) \mapsto (\exp(2\pi i \theta_1), \exp(2\pi i \theta_2))$ は \mathbb{Z}^2 -被覆写像であることを示せ.
 - (2) $\varpi': \mathbb{R} \times S^1 \to T^2$, $(\theta_1, z_2) \mapsto (\exp(2\pi i \theta_1), z_2)$ は \mathbb{Z} -被覆写像であることを示せ.
 - (3) $f: \mathbb{R}^2 \to \mathbb{R} \times S^1$, $(\theta_1, \theta_2) \to (\theta_1, \exp(2\pi i \theta_2))$ は ϖ から ϖ' への被覆準同型であることを示せ. 裏へ

問 121. (優先度: 低) 指数関数

$$\exp: \mathbb{C} \to \mathbb{C} \setminus \{0\}, \ z \mapsto \exp(z) := \sum_{k=0}^{\infty} \frac{z^n}{n!}$$

が ℤ-被覆写像であることを示せ.

- 問 122. (優先度: 低) $S^1 := \{z \in \mathbb{C} \mid |z| = 1\}, D^2 := \{z \in \mathbb{C} \mid |z| \leq 1\}$ とする.
 - (1) $S^1 \times D^2$ を表す絵を描け (solid torus).
 - (2) $S^1 \times D^2$ の部分位相空間

$$E := \{(z, tw) \in S^1 \times D^2 \mid z, w \in S^1, w^2 = z, t \in [0, 1]\}$$

を表す絵を描け (Möbius の帯)

- (3) $\pi: E \to S^1, \ (z,tw) \mapsto z$ は [-1,1]-ファイバー束であることを示せ.
- 問 123. (優先度: 低) $n \in \mathbb{Z}_{\geq 1}$ とし、 $\mathbb{C}P^{n-1} := \{x \in M(n,\mathbb{C}) \mid x^* = x, \text{trace } x = 1, \text{rank } x = 1\}$ とおく. ただし x^* は x の転置共役を表すものとする. $M(n,\mathbb{C})$ を \mathbb{C}^{n^2} と同一視することにより、 $\mathbb{C}P^{n-1}$ を位相空間とみなす.

$$\mathbb{C}\mathrm{P}^{n-1} \to \Omega_n, \ x \mapsto \mathrm{Image} \ x$$

は全単射となることを示せ.

(2) 直積空間 $\mathbb{C}P^{n-1} \times \mathbb{C}^n$ を考え, 部分位相空間

$$E_n := \{(x, v) \in \mathbb{C}P^{n-1} \times \mathbb{C}^n \mid v \in \text{Image } x\}$$

を考える. このとき $\pi_n: E_n \to \mathbb{C}P^{n-1}, (x,v) \mapsto x$ は \mathbb{C}^n -ファイバー束であることを示せ ($\mathbb{C}P^{n-1}$ 上の canonical line bundle).

(3) n=2 の場合を考える. $\mathbb{C}P^1$ が S^2 と同相であることを示せ. また

$$S(\mathbb{C}^2) := \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = 1\}$$

とおく. $S(\mathbb{C}^2)$ が S^3 と同相であることを示せ. さらに

$$\varpi: S(\mathbb{C}^2) \to \mathbb{C}P^1, \ v:=(z_1,z_2) \mapsto x_v$$

とおく. ただし、各 $v \in S(\mathbb{C}^2)$ について、 $x_v \in \mathbb{C}\mathrm{P}^1$ は $v \in \mathrm{Image}\ x_v$ となるただ一つの元とする. このとき、 $\varpi: S(\mathbb{C}^2) \to \mathbb{C}\mathrm{P}^1$ は S^1 -ファイバー束となることを示せ (S^3 の Hopf fibration).

2枚目へ

問 124. (優先度: 低) $M=(M,\mathcal{A})$ を n 次元 C^∞ 級多様体とする (\mathcal{A} は M 上の n 次元極大 atlas). また各 $p\in M$ について, T_pM を p における M の接空間とする. ここで

$$TM:=\bigsqcup_{p\in M}T_pM:=\{(p,v)\mid p\in M, v\in T_pM\}$$

とおく.

(1) TM 上の位相 \mathcal{O} であって、以下の条件を満たすものが一意に存在することを示せ.

条件: 各 $(O,U,u)\in \mathcal{A}$ について, $TO:=\{(p,v)\in TM\mid p\in O\}\subset TM$ とおいて (TM,\mathcal{O}) の 部分位相空間とみなしたとき,

$$O \times \mathbb{R}^n \to TO, \ (p, (a_1, \dots, a_n)) \mapsto (p, \sum_{i=1}^n a_i (\partial/\partial u_i)_p)$$

が同相写像となる.

(2) 位相空間 $TM = (TM, \mathcal{O})$ を考える. このとき

$$\pi: TM \to M, \ (p,v) \mapsto p$$

は \mathbb{R}^n -ファイバー束であることを示せ (多様体上の接束).