- **問 1.** E, X, F を位相空間とし, $\pi: E \to X$ を連続写像とする.
 - (1) U を X の開集合とする. 「U における π の F-局所自明化」の定義を述べよ.

(2) $\pi: E \to X$ が F-ファイバー束であることの定義を述べよ.

問 2. $S^1:=\{z\in\mathbb{C}\mid |z|=1\},\,\pi:\mathbb{R}\to S^1,\,\,\theta\mapsto\exp(2\pi i\theta)\,\,$ とおく. S^1 の開集合 V_+ を $V_+:=S^1\setminus\{-1\}$ とし, $\pi^{-1}(V_+)=\mathbb{R}\setminus(\mathbb{Z}+1/2)\,\,$ に注意する. また全単射写像

$$\pi|_{(-1/2,1/2)}: (-1/2,1/2) \to V_+, \ \theta \mapsto \exp(2\pi i\theta)$$

の逆写像を $\tau: V_+ \to (-1/2, 1/2)$ とおく *1. このとき, τ を用いて

$$\eta: \pi^{-1}(V_+) \to V_+ \times \mathbb{Z}, \ \theta \mapsto (\pi(\theta), |\theta + 1/2|)$$

の逆写像を構成せよ. ただし実数 θ に対して、

$$|\theta + 1/2| := \max\{n \in \mathbb{Z} \mid n \le \theta + 1/2\}$$

 $(\theta + 1/2)$ の小数切り捨て) とおいた.

^{*1} memo: $\tau = (1/(2\pi i)) \text{Log}$