Triple crossing numbers of graphs

Masakazu Teragaito

Hiroshima University

March 20, 2010

Information

This is a joint work with Horoyuki Tanaka.

A preprint "Triple crossing numbers of graphs" is available as arXiv:1002.4231.

Drawing of a graph

For a drawing D (on S^2) of a simple graph G, we require

Drawing of a graph

For a drawing D (on S^2) of a simple graph G, we require

- each edge is a simple arc;
- the interior of an edge does not contain a vertex;
- two edges do not intersect if they have a common end-vertex;
- two edges intersect at most once, and if so, they intersect transversely.

Drawing of a graph

For a drawing D (on S^2) of a simple graph G, we require

- each edge is a simple arc;
- the interior of an edge does not contain a vertex;
- two edges do not intersect if they have a common end-vertex;
- two edges intersect at most once, and if so, they intersect transversely.

 $\mathrm{cr}(D)$ denotes the number of crossing points.

Crossing number

The (usual) crossing number of G is defined as follows:

Crossing number

The (usual) crossing number of G is defined as follows:

$$\operatorname{cr}(G) = \min\{\operatorname{cr}(D) \mid D \text{ is a drawing of } G \text{ with only double crossings}\}$$

Triple crossing number

The triple crossing number tcr(G) of G is defined to be

 $\min\{\operatorname{cr}(D)\mid D \text{ is a drawing of } G \text{ with only triple crossings}\}.$

If G does not admit such a drawing, then $tcr(G) = \infty$.

Triple crossing number

The triple crossing number tcr(G) of G is defined to be

 $\min\{\operatorname{cr}(D)\mid D \text{ is a drawing of } G \text{ with only triple crossings}\}.$

If G does not admit such a drawing, then $tcr(G) = \infty$.

Clearly,

• $tcr(G) = 0 \iff G$ is planar

Triple crossing number

The triple crossing number tcr(G) of G is defined to be

 $\min\{\operatorname{cr}(D)\mid D \text{ is a drawing of } G \text{ with only triple crossings}\}.$

If G does not admit such a drawing, then $tcr(G) = \infty$.

Clearly,

- $tcr(G) = 0 \iff G$ is planar
- $\operatorname{cr}(G) \leq 3\operatorname{tcr}(G)$

An example: Petersen graph P

$$\operatorname{cr}(P) = 2$$
, but $\operatorname{tcr}(P) = 1$.

Result

We determine the triple crossing numbers for all complete multipartite graphs as well as complete graphs.

Easy case

Easy case

Theorem

If $t \geq 7$, then no complete t-partite graph G admits a drawing with only triple crossings. That is, $tcr(G) = \infty$.

Easy case

Theorem

If $t \geq 7$, then no complete t-partite graph G admits a drawing with only triple crossings. That is, $\mathrm{tcr}(G) = \infty$.

Proof.

Assume that G has a drawing D with only triple crossings. If a new vertex is added to each triple crossing point, then we have a plane (simple) graph. The original vertices have degree at least $t-1 \geq 6$, and the new vertices have degree 6, a contradiction.

Algebraic criterion

Lemma

Assume G has p vertices and q edges. If G admits a drawing with only triple crossings, then $q \leq 3p-6$.

Algebraic criterion

Lemma

Assume G has p vertices and q edges. If G admits a drawing with only triple crossings, then $q \leq 3p-6$.

Proof.

Let D be such a drawing. Let k be the number of triple crossings of D. As before, we obtain a plane graph G' by adding a new vertex at each triple crossing. Then G' has p+k vertices and q+3k edges. Hence,

$$q + 3k \le 3(p+k) - 6.$$

Another easy case

Theorem

If t=5 or 6, then no complete t-partite graph G admits a drawing with only triple crossings. That is, $tcr(G) = \infty$.

Another easy case

Theorem

If t=5 or 6, then no complete t-partite graph G admits a drawing with only triple crossings. That is, $\operatorname{tcr}(G)=\infty$.

Proof.

Let G be a complete 5-partite graph K_{n_1,n_2,n_3,n_4,n_5} with $n_1 \geq n_2 \geq n_3 \geq n_4 \geq n_5 \geq 1$. G has $p = \sum n_i$ vertices and $q = \sum_{i < j} n_i n_j$ edges. Then,

$$q - 3p + 6 = (n_1 + n_4 - 3)(n_2 + n_3 - 3) + n_1 n_4 + n_2 n_3$$
$$+ n_5(n_1 + n_2 + n_3 + n_4 - 3) - 3$$
$$\ge (2n_4 - 3)^2 + 2n_4^2 + n_5 - 3 \ge 1.$$

Complete graphs

Corollary

$$\operatorname{tcr}(K_n) = \begin{cases} 0 & \text{if } n \leq 4, \\ \infty & \text{otherwise.} \end{cases}$$

Complete 4-partite graphs

Theorem

Let G be a complete 4-partite graph K_{n_1,n_2,n_3,n_4} with $n_1 \geq n_2 \geq n_3 \geq n_4 \geq 1$. Then $\mathrm{tcr}(G) = \infty$, except $K_{n_1,1,1,1}$ with $n_1 = 1,2,3,4,6$. For these exceptions, $n_1 \mid 1,2 \mid 3,4 \mid 6$

$K_{3,1,1,1}$ and $K_{4,1,1,1}$

$K_{6,1,1,1}$

Complete tripartite graphs

Theorem

Let G be a complete tripartite graph K_{n_1,n_2,n_3} with $n_1 \geq n_2 \geq n_3 \geq 1$.

- If $n_3 \geq 3$, then $tcr(G) = \infty$.
- ② If $n_3=2$, then $\mathrm{tcr}(G)=\infty$, except $K_{2,2,2}$ with $\mathrm{tcr}=0$.
- **③** If $n_3=1$, then $tcr(G)=\infty$, except $K_{3,3,1}$, $K_{6,2,1}$, $K_{4,2,1}$, $K_{3,2,1}$, $K_{2,2,1}$ and $K_{n_1,1,1}$. For these exceptions,

	(3, 3, 1)	(6, 2, 1)	(4, 2, 1)	(3, 2, 1)	(2, 2, 1)	$(n_1, 1, 1)$
tcr	1	2	1	1	0	0

Complete bipartite graphs

Theorem

Let G be a complete bipartite graph K_{n_1,n_2} with $n_1 \geq n_2 \geq 1$.

- If $n_2 \leq 2$, then tcr(G) = 0.
- ② If $n_2 \geq 3$, then $\operatorname{tcr}(G) = \infty$, except $K_{3,3}$, $K_{4,3}$, $K_{6,3}$ and $K_{6,4}$.

For these exceptions,

	(3, 3)	(4, 3)	(6, 3)	(6, 4)
tcr	1	1	2	4

 $K_{6,4}$

 $K_{6,4}$

This shows $\operatorname{tcr}(K_{6,4}) \leq 4$. But, $\operatorname{cr}(K_{6,4}) = 12$ implies $\operatorname{tcr}(K_{6,4}) \geq 4$.

Tough graphs

Surprisingly, it is hard to show that $K_{5,4}$, $K_{4,4}$, $K_{5,3}$ and $K_{n,3}$ with $n \ge 7$ do not admit a drawing with only triple crossings.

It is good for neither one thing nor the other.

Outline for $K_{5,4}$

Let $G = K_{5,4}$.

Assume ${\cal G}$ has a drawing with only k triple crossings.

Outline for $K_{5,4}$

Let $G = K_{5,4}$.

Assume G has a drawing with only k triple crossings.

By adding new vertices to triple crossings, we obtain a plane graph G' with 9+k vertices and 20+3k edges.

Outline for $K_{5,4}$

Let $G = K_{5,4}$.

Assume G has a drawing with only k triple crossings.

By adding new vertices to triple crossings, we obtain a plane graph G^\prime with 9+k vertices and 20+3k edges.

Hence the faces of G^{\prime} are 3-sided, except one 4-sided face, called the exceptional face.

A key

Let $V_1 = \{A, B, C, D\}$ and $V_2 = \{x_1, \dots, x_5\}$ be the partite sets of G. The former is referred to as white vertices, and the latter as black vertices. The five edges at A are called A-lines. Similarly for others.

A key

Let $V_1 = \{A, B, C, D\}$ and $V_2 = \{x_1, \dots, x_5\}$ be the partite sets of G.

The former is referred to as white vertices, and the latter as black vertices.

The five edges at A are called A-lines. Similarly for others.

Then, three edges at a triple crossing correspond to three different lines.

A key

Let $V_1 = \{A, B, C, D\}$ and $V_2 = \{x_1, \dots, x_5\}$ be the partite sets of G. The former is referred to as white vertices, and the latter as black vertices.

The five edges at A are called A-lines. Similarly for others.

Then, three edges at a triple crossing correspond to three different lines.

Since the exceptional face is incident with at most two white vertices, we can assume that vertex \boldsymbol{A} is incident with only triangles.

Types of triangle

There are two types of triangles at A.

Types of triangle

There are two types of triangles at A.

Since type II triangles appear in pairs, the number of type II triangles at A is either $0,\ 2$ or 4. We divide the proof, according to this number.

Four type II triangles at A

Up to symmetry and renaming, there are 4 subcases.

Two type II triangles at A

Up to symmetry and renaming, there are 3 subcases.

Two type II triangles at A

Up to symmetry and renaming, there are 3 subcases.

We demonstrate how the last configuration is excluded.

Demonstration 1

At least two among f_1, f_2, f_3 are 3-sided. But f_1 and f_2 cannot be 3-sided, simultaneously. Similarly for f_1 and f_3 . Thus f_2 and f_3 are 3-sided.

Demonstration 1

At least two among $f_1,\,f_2,\,f_3$ are 3-sided. But f_1 and f_2 cannot be 3-sided, simultaneously. Similarly for f_1 and f_3 . Thus f_2 and f_3 are 3-sided.

Then d_1 goes to x_2 or x_3 , and d_2 goes to x_4 or x_5 , impossible.

No type II triangles at A

Up to symmetry and renaming, the local configuration at \boldsymbol{A} is as below.

Demonstration 2

By symmetry, we can assume that f_1,\ldots,f_4 are 3-sided.

Similarly, if $K_{4,4}$ admits a drawing with only triple crossings, then there are two cases for the plane graph G' obtained as before:

Similarly, if $K_{4,4}$ admits a drawing with only triple crossings, then there are two cases for the plane graph G' obtained as before:

- **①** A single face of G' is 5-sided, and the others are 3-sided;
- ② Two faces of G' are 4-sided, and the others are 3-sided.

Similarly, if $K_{4,4}$ admits a drawing with only triple crossings, then there are two cases for the plane graph G' obtained as before:

- lacktriangle A single face of G' is 5-sided, and the others are 3-sided;
- ② Two faces of G' are 4-sided, and the others are 3-sided.

For the former case, there are 3 subcases, according to the number of type II triangles at ${\cal A}.$

Similarly, if $K_{4,4}$ admits a drawing with only triple crossings, then there are two cases for the plane graph G' obtained as before:

- **①** A single face of G' is 5-sided, and the others are 3-sided;
- ② Two faces of G' are 4-sided, and the others are 3-sided.

For the former case, there are 3 subcases, according to the number of type II triangles at A.

For the latter case, there are 2 subcases:

Similarly, if $K_{4,4}$ admits a drawing with only triple crossings, then there are two cases for the plane graph G' obtained as before:

- **①** A single face of G' is 5-sided, and the others are 3-sided;
- ② Two faces of G' are 4-sided, and the others are 3-sided.

For the former case, there are 3 subcases, according to the number of type II triangles at A.

For the latter case, there are 2 subcases:

all white vertices are incident with an exceptional face.

Similarly, if $K_{4,4}$ admits a drawing with only triple crossings, then there are two cases for the plane graph G' obtained as before:

- lacktriangle A single face of G' is 5-sided, and the others are 3-sided;
- ② Two faces of G' are 4-sided, and the others are 3-sided.

For the former case, there are 3 subcases, according to the number of type II triangles at A.

For the latter case, there are 2 subcases:

- all white vertices are incident with an exceptional face.
- Some white vertex is not incident with an exceptional face.

$$K_{n,3}$$
 with $n \geq 5$ and $n \neq 6$

There are 3 possibilities for exceptional faces of G':

- lacktriangledown G' has only one exceptional face, which is 6-sided.
- $oldsymbol{@}$ G' has just two exceptional faces, which are 5-sided and 4-sided, resp.
- \odot G' has just three exceptional faces, which are 4-sided.

A comment

In this study, we require:

- Two adjacent edges do not intersect;
- Two edges intersect at most once.

It may be so strong that most complete multipartite graphs do not admit drawings with only triple crossings. If we relax it, then $K_{4,4}$, for example, admits a drawing with only triple crossings.

In this drawing of $K_{4,4}$, some two edges meet twice.

A generalization

For $n \geq 4$, we can define the n-fold crossing number similarly. In fact, all non-planar complete multipartite graphs do not admit drawings with only n-fold crossings.

