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Abstract— Microarrays have thousands to tens of thou-(PCA), kernel PCA (KPCA) can be used for dimension
sands of gene features but patient samples are fewer aeduction where the methods transform the input space into
a few hundred. ldentifying genes whose disruption causesnother reduced space without loosing important inforomati
congenital or acquired disease is the fundamental problenabout the samples [5]-[7]. However, given the low number of
in microarray data analysis. In this paper, we propose ansamples relative to the very large number of genes, the PCA
efficient evolutionary SVM-based classifier that can seleatnethod is not suitable for gene-oriented analysis [7]. €her
smaller number of features with high accuracy. The proposedxist several evolutionary approaches such askBIAl, GA-
method uses SVM with a given subset of features to evalua®/M, and other evolutionary SVMNN where kNN and
the fitness function, and new subset of features are select&V/M is used to evaluate the fitness function of the GA-based
based on several leave-one-out error bounds for the SVihethods [8]-[10], and genetic programming [11], etc. These
classifier and the frequency of occurrence of the features imethods are capable of selecting a smaller subset of genes
the evolutionary approach. We test our proposed method ofor sample classification. However, multiple sets of reteva
different microarray data and find that the proposed methodeatures may have the same high training accuracy as the
can obtain high classification accuracy with a smaller num-training dataset size is fairly small compared to the number
ber of selected genes. of candidate features and resulting in model uncertairay. T
cope the model uncertainty, some useful approaches have

Keywords: support vector machine, radius-margin error bound,pheen proposed, such as boosting algorithm [12] and model
Jaakkola-Haussler error bound, Opper-Winther error bpewdlu-  agveraging [13], etc.

tionary algorithm In this paper, we propose an efficient evolutionary SVM-
. based classifier that can select smaller number of features
1. Introduction with high accuracy. The proposed method uses SVM with a

Numerous problems of bioinformatics have characteristicsubset of features to evaluate the fitness function, and new
that patient samples are fairly small in number comparedubset of features are selected based on several leave-one-
to the number of genes investigated, such as microarragut error bounds for the SVM classifier and the frequency
datasets. The fundamental problem in microarray data anadf occurrence of the features in the evolutionary approach.
ysis is to find a smaller size subset of genes which iSo select new features according to error bound theories,
responsible for a specific interest (such as cancer diseéase &ve consider radius-margin bound [21] fa2-SVM and
agnosis). This problem can be treated as a machine learnimgmpare the classification accuracy on different micrgarra
with feature selection problem. Though the feature salacti data. We useé:-fold cross-validation as an estimator of the
can be applied to both supervised or unsupervised leargeneralization ability. We also describe Jaakkola-Haussl
ing, we focus here on the problem of supervised learningpound [18] and Opper-Winther bound [20] that can be
(classification). Several supervised learning techniguesr  applied to our proposed algorithm, however experimental
as neural networks;- nearest neighbork(NN) and support results are not presented.
vector machine (SVM), kernel based classifiers, etc., have The reminder of this paper is organized as follows. In Sec-
been successfully applied to microarray data analysisén thtion 2, we briefly describe the support vector machine. We
recent years [1]-[4]. Moreover, the SVM-based classifier iglescribe various error bounds for the SVM that can be used
the superior for its robustness to a small number of highor gene selection in Section 3. In Section 4, we describe the
dimensional samples. proposed evolutionary algorithm. The computational rssul

In general, feature selection can improve the performanceill be shown in Section 5. Section 6 concludes the paper.
of the machine. The SVM does not offer the mechanism o .
automated internal relevance detection and hence theréeatufz- Support Vector Machine
selection is often performed as a prepossessing step of theThe support vector machine (SVM) is very popular algo-
actual learning algorithm. The principle component arialys rithm for solving pattern recognition, regression and dgns



estimation problems, etc., and has already outperformegrogramming problem defined by
most of the machine learning algorithms. Theoretically, ; .
the support vector machine approximately implements the maximize Zo‘f 1 Z iy (X, %) (7)
structural risk minimization principle, thus the suppcettor 2 JIEIE

machine is situated on a strong theoretical foundations Thi . v

is a linear classifier that maximizes the margin between subject to Zaiyi -0, (8)
separating hyperplane and the data points. The SVM has no —

local minima, i.e., it solves a convex optimization problem 0<a; <C, i=1,...,1,

The algorithm can automatically determine the network

architecture. For these why, it has attracted more in th#herea; are Lagrange multipliersix;, x) is inner-product.
application areas than the other neural networks. BagicallThe w is then computed as:

SVM is designed for binary classification problems and l

many different forms of SVM algorithms have been intro- w = Zaiyixi 9)
duced for different purposes. In this section, we describe i—1

only the binary SVM classifier. Giveh training examples
(x1,%1), (X2,92), - - -, (X1, 1), Wherex; € R%i = 1,...,1

andy; € {1,—1} is the class label ok;. If these training
examples are linearly separable in the input space, we may

andb is computed by taking any; corresponding td) <
a; < C as:

l
write the decision function that does the separation is as: b=y; - qu;aq;<xq;,xj‘> (10)
=1
f(x) =wlx+b=0, (1) It often happens that a sizable fraction of thealues of

«; is zero. Only the points lie closest to the hyperplane
wherew is a weight vector and is a bias. The SVM finds including those on the wrong side of the hyperplane are
the separating hyperplane of the classes where the distang@'responding to non-zexe;'s. These points;’s are called
of either class from the hyperplane is maximum. Assumé&Upport vectors. When training data is not separable in the
that the nearest points lie Oﬂxi) = +1 for somes, the input space then it is transformed into a hlgh dimensional

margin is then defined by non-linear feature space, and the inner-product is cakuaila
using kernel function without considering the feature gpac

1 itself, i.e., K(x;,x;) = (x;,x;). The requirement of the
= W (@) kernel function is to satisfy Mercer's theorem. Common

types of kernels are Gaussian, polynomial, and sigmoidal
The SVM problem is expressed by the following optimiza-kernels.
tion problem: There is another choic€ 22:1 £2 againstC 22:1 & on
the problem in equation (5). The problem is then known
as the2-norm soft margin(L2-) SVM problem. The dual
problem of the L2-SVM is as:

I I
.. 1 1
maximize E o — 3 g 0G0 Y Y ((xi,xﬁ + Eéij)
i=1

ij=1

min o || wf? ©)
subject to yi(wlisi+b)>1, i=1,...,1. (4)
This problem is known asard margin SVM. When the

training data is not linearly separable in the input space, w !
introduce slack variableg;(> 0) into equations (3)-(4) as subject to Zo‘iyi =0,
i=1

follows:
; 047;207 izl,...,l,
min % | w*+ CZ& (5) whered;; =1if i = j, otherwised;; = 0. The computation
i=1 of w andb is the same as that for the L1-SVM problem.
subject to yi(wlx; +b)>1—¢&, (6) ) ]
6>0, i=1,. 1 3. Boundson Generalization

There have been several error bound theories developed
whereC' is a parameter that determines the tradeoff betweefor SVM and some bounds are useful to select hyperparam-
the maximum margin and the minimum classification erroreters of SVM for good performance. In this paper we will
This form of SVM is known as th&-norm soft margir{L1-)  use error bound theories for new feature selection in the
SVM. Using the Lagrangian, this new optimization problemevolutionary approach. In this section, we describe sévera
can be converted into a dual form which is a quadratieerror bound theories. These bound theories are developed



for hard margin SVM. If the training data is non-separablewhere K sy is the matrix of dot-products between support
then L2-SVM is considered. In this casE(x;,x;) <  vectors. In this paper we use an upper bound of the Opper-

K (xi,x;5) + %57;]-. Winther bound for gene selection given as:
. . l
3.1 Radius-margin Bound looupperglz cz . (15)
Vapnik has developed the radius-margin bound on the ! i=1 (KSV)n‘

number of errors in the leave-one-out (loo) procedure with- .
out bias termb and with no training error given as: 4. Pr oposed Evolutlonary SVM
4 Evolutionary algorithms have been applied to microarray
loo < - R?||wl||? (11) classification in order to search for the optimal or near
! optimal set of predictive genes on complex and large spaces
whereloo is the number of leave-one-out errofaw||* is  of possible gene sets. Evolutionary algorithms are stdichas
the weight vector, and? is the radius of the smallest spare search and optimization techniques that have been dewklope

containg allz;. The R? is computed by solving the following over the last 30 years. A general form of the evolutionary

optimization problem: algorithm is shown below:
; ; I : :
Generate initial population, evaluate fithess
2 _ mi , ) — - 5 : » e
R® = maximize Z@K(X“xﬁ) Z aio; K (xi, %) While stop condition not satisfied do
=1 b=l Produced next population by
_ ! B Selection
subject to Y i =1, Recombination

i=1 Evaluate fitness

End while

This bound .is differentiable and it may use for hyperparquhe evolutionary algorithm, that we propose, maintains a
eters selection for SVM [16]-[17]. In [15], Rakotomamonjy ,,ation of predictors whose effectiveness can be deter-

has ap_plied this bound for fea'ture selection._ Therg exis ined by using them as features in an SVM classifier. The
a gradient-based feature selection method using this bouri‘rqitial predictors in the population are randomly consteat
[16]. Instead of applying crossover and mutation operations, the
3.2 Jaakkola-Haussler Bound proposed method selects and recombines new features pased
. on leave-one-out error bounds on SVM such as radius-
Jaakkola-Haussler have developed the following bound ofhargin bound, Jaakkola-Haussler bound and Opper-Winther
the number of errors in the loo procedure for SVM withoutpgound and frequency of occurrence of the features in the

bias termb given as: evolutionary approach. The number of features in a predicto
1 is parameter that we shall explore experimentally in the
loo < = Z VU (o, K (i, ;) — 1) (12) following section. High performance of evolutionary SVM
l 4 i i i i
i=1 is obtained by choosing optimum parameters of SVMs.

Note that, in [19], Lin and Zhang have proposed an estimatghe k-fold cross validation is used as an estimator of the

of the number of errors made by the loo procedure for th&eneralization ability where the evolutionary SVM is apgli
hard margin SVM as: on ak-fold cross validation set and then the generalization

ability of the selected feature is tested on several diffeke
1< fold cross validation sets. The termination criteria is wiedi
loo < 72%1’((%@0» (13)  using both the maximum number of generations and the
=1 criteria of no improvement of maximum fitness value of the
which can be seen as an upper bound of the Jaakkolgopulation. The predictor with the highest fitness will beon
Haussler method sinc@(x — 1) < = for z > 0. In this  that contains the best subset of genes for the classification
paper Lin and Zhan method is applied for feature selectiomask.
instead of Jaakkola-Haussler method.
4.1 Error Bound Effect

3.3 Opper-Winther Bound In every generation, the right hand side of any equation
Opper-Winther bound on the number of errors in the loan equations (11), (13) and (15) is calculated to observe the
procedure for SVM without bias terfis given as: effect on error bound of each gene in each predictor. Let us
denoteT’, is the bound value of: genes on a predictor and
< Q; ) (14) Tjﬁ_l is the bound value of all genes except généhen,
TZ

m—1

for all i are calculated. Th@”’, | < T*

m—

, means



removing geng from the predictor can reduce error bound 4. Create a new populatioh; by replacing all new
much than removing gerle Thus geneg with small 77, _, G.

should be deleted in the next generation. 5. Replace some worse predictors of the new population
FEry1 based on classification accuracy by some best

4.2 Gene Frequency predictors from the previous generation. To do this,

Let us denotez{ be the frequency of occurrence of merge the features of the selected best predictors
selected gene at generatiory. Initially all z) is set to 0. from the previous generation and then randomly select
At any generatiory, if genei is selected then features from the merge-feature set to create 68w

like cross-fold validation technique.
This procedure will be performed for a set of SVM hyperpa-
This frequency is calculated for each predictor separately rameters and the best hyperparameters for each predidtor wi
. be obtained. From this procedure we will gefeature sets.

4.3 Gene Deletion From then sets we will chooseV,.s; top-rank features in

In every generation, we calculate the error bound valugerms of occurrence frequency. The hyperparameters for the
and frequency of occurrence for each gene in a predictor. Wgnal learning machine (SVM) will be selected by averaging
remove those genes which can reduce the error bound mughe best hyperparameters of the predictors.
and which are selected a few in the previous generations.

We calculate the scoring function as 5. Computational Experiments

Ti=eTi 4+ (1—e)2l /1 (16) In this paper we test our proposed method using
two cancer-related gene expression datasets that are de-
wheree € [0,1] is a tradeoff between bound value and thescriped in Table 1. The datasBrain Tumoris collected
frequency of occurrence in the previous generations. Genefrom http://www-genome.wi.mit.edu/cancer/pub/glionraia
with the minimumT; will be deleted from the predictor.  the dataseProstate Tumoris collected from http://www-
4.4 Fitness Function genome.wi.mit.edu/MPR/prostate. These data files gontain
_ o ) scaled average expression value of genes from different
The fitness function is the only guide to evaluate thegeneChips where the expression value of each gene is ob-
system. The_re are twq quectlves for q_e3|gn|ng evolutipnarizined by Affymetrix's GENECHIP software [1],[4]. These
SVM. One is to maximize the classification accuraCy  mjcroarray data can be preprocessed without loosing poten-
of the k-fold cross-validation and the other is to minimize i3 information about the genes. In the preprocessingestag
the numberV; of selected genes. i§ represents the set of hege expression values are first ranged by a lower threshold
parameters to be evolved in the whole system, the fltnes% and an upper thresholé,,. That is, if the expression
function is defined as follows: value is less thai;, it is replaced withd;. Similarly if the
max t(S) = (1 — wy)Ca(S) — wyNs(S) expression value is greater thap, it is replaced withd,.
After this preprocessing, the expression values are sutajec
wherewy € [0,1] is a control parameter between classifica-z variation filter that excludes genes that has minimal varia
tion accuracy and the number of selected genes. tion across the samples being analyzed. The variation filter
4.5 Proposed Algorithm tests fol_d variatipn and :_jtb_solute variation _for each_ gene by
) ) . comparing (maximum/minimum) and (maximum-minimum)
The proposed algorithm is described below: of genes over the samples, and excludes genes not obeying
1. A populationE, of n predictors{G1, G2, ...,Gn} IS both conditions. In this paper we preposses®tsn Tumor
created. A predictory; is a subset ofm features dataset by setting, = 20, 6,, = 16000, maximum/minimum
(genes) {g1,92, -, gm} initially created randomly. =3, and maximum-minimum = 100. For tfeostate Tumor

Jj_ -1
zp =z  +1

Evaluate the fitness values of all predictors. dataset we set;, = 10, 6, = 16000, maximum/minimum
2. UNTIL termination criteria NOT satisfied DO: = 5, and maximum-minimum = 50 as these parameters
3. For each predicto6i; € Ej, create a new predictor have been used in [1],[4]. After preprocessing, Bin
G; Tumor dataset has 4434 genes aPnbstate Tumordataset
3.1. Deletep genes from(z; as described in Subsec- has 5966 genes. Then these datasets are linearly scaled into
tion 4.3 the range [-1,1] and then applied to the proposed algorithm.
3.2. Addp genes chosen randomly to keep the sizelo evaluate the performance of the proposed method we
of the feature set the same, i.eize(G;) =  use 5-fold cross-validation on each dataset. In this paper
size(G}). Compute the frequency of the selectedwe experiment with only Linear SVM and tested with
genes as described in Subsection 4.2. various SVM parameter agl = [272,271 ... 211 212

3.3. Compute fitness function for the new predictorWe compare the results of our proposed method with the
G.. that of signal-to noise score (gene ranking) method. The



Table 1: Features of microarray datasets.

Dataset Diagnostic Task #Samples| #Genes| #Classes Reference
Brain Tumor | Glioblastomas and anaplastic oligodendrogliomas Types 50 12625 2 Nutt et al. (2003) [1]
Prostate Tumor| Prostate Tumor and normal tissue 102 12600 2 Singh et al. (2002) [4]

Table 2: Mean accuracy rate (%) of the proposed method witlusamargin bound and signal-to-noise ratio approachgusin

prespecified number of selected genes.

Dataset Proposed Method Signal-to-noise ratio
Training Ac.(%) | Test Ac.(%)| #Genes| Training Ac.(%) | Test Ac.(%)| #Genes
. 100 80.72 80
Brain Tumor 100 100 3 100 74,51 50
100 90.19 50
Prostate Tumotr 100 100 3 100 88.23 30

signal-to-noise score method for a binary problem caleslat References

the ranking function:g(i) = (teiass:1(1) — felass:2(2))/
(Cctass:1 (1) +0cass:2(4)) for each gené and selects the top-  [1]
ranked genes according to their sorted values in descending
order whereficqss:5(i) and ocqss:j(2) are the mean and
variance of geneéin classj, respectively. The signal-to-noise
score method selects features (genes) and then the selectﬁﬁi
features are applied to the SVM classifier. The computationa
results are shown in Table 2 for radius-margin bound. In this
paper, we experiment with 50 predictors and 100 populationsm
in our algorithm, and size of the feature subsat, is
prespecified. Thus we set; = 0 in the fitness function
but check with different values oN, and show the best
results. The parameter in the scoring function in equation[4]
(16) is also set experimentally. From the experimentalltesu
we see that the proposed method can select a small number
of genes with high accuracy. This paper shows the result
using Linear SVM; however, other non-linear kernels suchs)
as Gaussian and polynomial kernels may show better result.
6. Conclusions .

In this paper we propose an efficient evolutionary gene[7;
selection method based on SVM error bound theories. The
SVM is used to evaluate the fitness function as a classifier[®]
Both feature selection and hyperparameters tuning for SVM
are embedded in the proposed approach. Thus the proposed
method can select few informative features with high pre- [°]
dictive accuracy by considering model uncertainty.

In a future work, we will experiment the proposed method;10]
using other existing error bounds and with different non-
linear kernels and for multi-class problems. [11]
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