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Abstract— Microarrays have thousands to tens of thou-
sands of gene features but patient samples are fewer or
a few hundred. Identifying genes whose disruption causes
congenital or acquired disease is the fundamental problem
in microarray data analysis. In this paper, we propose an
efficient evolutionary SVM-based classifier that can select
smaller number of features with high accuracy. The proposed
method uses SVM with a given subset of features to evaluate
the fitness function, and new subset of features are selected
based on several leave-one-out error bounds for the SVM
classifier and the frequency of occurrence of the features in
the evolutionary approach. We test our proposed method on
different microarray data and find that the proposed method
can obtain high classification accuracy with a smaller num-
ber of selected genes.

Keywords: support vector machine, radius-margin error bound,
Jaakkola-Haussler error bound, Opper-Winther error bound, evolu-
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1. Introduction
Numerous problems of bioinformatics have characteristics

that patient samples are fairly small in number compared
to the number of genes investigated, such as microarray
datasets. The fundamental problem in microarray data anal-
ysis is to find a smaller size subset of genes which is
responsible for a specific interest (such as cancer disease di-
agnosis). This problem can be treated as a machine learning
with feature selection problem. Though the feature selection
can be applied to both supervised or unsupervised learn-
ing, we focus here on the problem of supervised learning
(classification). Several supervised learning techniquessuch
as neural networks,k- nearest neighbor (kNN) and support
vector machine (SVM), kernel based classifiers, etc., have
been successfully applied to microarray data analysis in the
recent years [1]-[4]. Moreover, the SVM-based classifier is
the superior for its robustness to a small number of high
dimensional samples.

In general, feature selection can improve the performance
of the machine. The SVM does not offer the mechanism of
automated internal relevance detection and hence the feature
selection is often performed as a prepossessing step of the
actual learning algorithm. The principle component analysis

(PCA), kernel PCA (KPCA) can be used for dimension
reduction where the methods transform the input space into
another reduced space without loosing important information
about the samples [5]-[7]. However, given the low number of
samples relative to the very large number of genes, the PCA
method is not suitable for gene-oriented analysis [7]. There
exist several evolutionary approaches such as GA-kNN, GA-
SVM, and other evolutionary SVM/kNN where kNN and
SVM is used to evaluate the fitness function of the GA-based
methods [8]-[10], and genetic programming [11], etc. These
methods are capable of selecting a smaller subset of genes
for sample classification. However, multiple sets of relevant
features may have the same high training accuracy as the
training dataset size is fairly small compared to the number
of candidate features and resulting in model uncertainty. To
cope the model uncertainty, some useful approaches have
been proposed, such as boosting algorithm [12] and model
averaging [13], etc.

In this paper, we propose an efficient evolutionary SVM-
based classifier that can select smaller number of features
with high accuracy. The proposed method uses SVM with a
subset of features to evaluate the fitness function, and new
subset of features are selected based on several leave-one-
out error bounds for the SVM classifier and the frequency
of occurrence of the features in the evolutionary approach.
To select new features according to error bound theories,
we consider radius-margin bound [21] forL2-SVM, and
compare the classification accuracy on different microarray
data. We usek-fold cross-validation as an estimator of the
generalization ability. We also describe Jaakkola-Haussler
bound [18] and Opper-Winther bound [20] that can be
applied to our proposed algorithm, however experimental
results are not presented.

The reminder of this paper is organized as follows. In Sec-
tion 2, we briefly describe the support vector machine. We
describe various error bounds for the SVM that can be used
for gene selection in Section 3. In Section 4, we describe the
proposed evolutionary algorithm. The computational results
will be shown in Section 5. Section 6 concludes the paper.

2. Support Vector Machine
The support vector machine (SVM) is very popular algo-

rithm for solving pattern recognition, regression and density



estimation problems, etc., and has already outperformed
most of the machine learning algorithms. Theoretically,
the support vector machine approximately implements the
structural risk minimization principle, thus the support vector
machine is situated on a strong theoretical foundation. This
is a linear classifier that maximizes the margin between
separating hyperplane and the data points. The SVM has no
local minima, i.e., it solves a convex optimization problem.
The algorithm can automatically determine the network
architecture. For these why, it has attracted more in the
application areas than the other neural networks. Basically
SVM is designed for binary classification problems and
many different forms of SVM algorithms have been intro-
duced for different purposes. In this section, we describe
only the binary SVM classifier. Givenl training examples
(x1, y1), (x2, y2), . . . , (xl, yl), wherexi ∈ Rd, i = 1, . . . , l
and yi ∈ {1,−1} is the class label ofxi. If these training
examples are linearly separable in the input space, we may
write the decision function that does the separation is as:

f(x) = w
T
x + b = 0, (1)

wherew is a weight vector andb is a bias. The SVM finds
the separating hyperplane of the classes where the distance
of either class from the hyperplane is maximum. Assume
that the nearest points lie onf(xi) = ±1 for somei, the
margin is then defined by

γ =
1

‖ w ‖2
(2)

The SVM problem is expressed by the following optimiza-
tion problem:

min
1

2
‖ w ‖2 (3)

subject to yi(w
T
xi + b) ≥ 1, i = 1, . . . , l. (4)

This problem is known ashard margin SVM. When the
training data is not linearly separable in the input space, we
introduce slack variablesξi(> 0) into equations (3)-(4) as
follows:

min
1

2
‖ w ‖2 + C

l
∑

i=1

ξi (5)

subject to yi(w
T
xi + b) ≥ 1− ξi, (6)

ξi ≥ 0, i = 1, . . . , l.

whereC is a parameter that determines the tradeoff between
the maximum margin and the minimum classification error.
This form of SVM is known as the1-norm soft margin(L1-)
SVM. Using the Lagrangian, this new optimization problem
can be converted into a dual form which is a quadratic

programming problem defined by

maximize

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyj〈xi,xj〉 (7)

subject to

l
∑

i=1

αiyi = 0, (8)

0 ≤ αi ≤ C, i = 1, . . . , l,

whereαi are Lagrange multipliers,〈xi,x〉 is inner-product.
The w is then computed as:

w =

l
∑

i=1

αiyixi (9)

and b is computed by taking anyxj corresponding to0 <
αj < C as:

b = yj −

l
∑

i=1

yiαi〈xi,xj〉 (10)

It often happens that a sizable fraction of thel values of
αi is zero. Only the points lie closest to the hyperplane
including those on the wrong side of the hyperplane are
corresponding to non-zeroαi’s. These pointsxi’s are called
support vectors. When training data is not separable in the
input space then it is transformed into a high dimensional
non-linear feature space, and the inner-product is calculated
using kernel function without considering the feature space
itself, i.e., K(xi,xj) = 〈xi,xj〉. The requirement of the
kernel function is to satisfy Mercer’s theorem. Common
types of kernels are Gaussian, polynomial, and sigmoidal
kernels.

There is another choiceC
∑l

i=1
ξ2
i againstC

∑l

i=1
ξi on

the problem in equation (5). The problem is then known
as the2-norm soft margin(L2-) SVM problem. The dual
problem of the L2-SVM is as:

maximize

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyj

(

〈xi,xj〉+
1

C
δij

)

subject to

l
∑

i=1

αiyi = 0,

αi ≥ 0, i = 1, . . . , l,

whereδij = 1 if i = j, otherwiseδij = 0. The computation
of w andb is the same as that for the L1-SVM problem.

3. Bounds on Generalization
There have been several error bound theories developed

for SVM and some bounds are useful to select hyperparam-
eters of SVM for good performance. In this paper we will
use error bound theories for new feature selection in the
evolutionary approach. In this section, we describe several
error bound theories. These bound theories are developed



for hard margin SVM. If the training data is non-separable
then L2-SVM is considered. In this caseK(xi,xj) ←
K(xi,xj) + 1

C
δij .

3.1 Radius-margin Bound
Vapnik has developed the radius-margin bound on the

number of errors in the leave-one-out (loo) procedure with-
out bias termb and with no training error given as:

loo ≤
4

l
R2||w||2 (11)

where loo is the number of leave-one-out errors,||w||2 is
the weight vector, andR is the radius of the smallest spare
containg allxi. TheR2 is computed by solving the following
optimization problem:

R2 = maximize

l
∑

i=1

βiK(xi,xi)−

l
∑

i,j=1

αiαjK(xi,xj)

subject to

l
∑

i=1

βi = 1,

βi ≥ 0, i = 1, . . . , l,

This bound is differentiable and it may use for hyperparam-
eters selection for SVM [16]-[17]. In [15], Rakotomamonjy
has applied this bound for feature selection. There exists
a gradient-based feature selection method using this bound
[16].

3.2 Jaakkola-Haussler Bound
Jaakkola-Haussler have developed the following bound on

the number of errors in the loo procedure for SVM without
bias termb given as:

loo ≤
1

l

l
∑

i=1

Ψ (αiK(xi, xi)− 1) (12)

Note that, in [19], Lin and Zhang have proposed an estimate
of the number of errors made by the loo procedure for the
hard margin SVM as:

loo ≤
1

l

l
∑

i=1

αiK(xi, xi), (13)

which can be seen as an upper bound of the Jaakkola-
Haussler method sinceΦ(x − 1) ≤ x for x ≥ 0. In this
paper Lin and Zhan method is applied for feature selection
instead of Jaakkola-Haussler method.

3.3 Opper-Winther Bound
Opper-Winther bound on the number of errors in the loo

procedure for SVM without bias termb is given as:

loo ≤
1

l

l
∑

i=1

Ψ

(

αi
(

K
−1

SV

)

ii

− 1

)

(14)

whereKSV is the matrix of dot-products between support
vectors. In this paper we use an upper bound of the Opper-
Winther bound for gene selection given as:

looupper ≤
1

l

l
∑

i=1

αi
(

K
−1

SV

)

ii

. (15)

4. Proposed Evolutionary SVM
Evolutionary algorithms have been applied to microarray

classification in order to search for the optimal or near
optimal set of predictive genes on complex and large spaces
of possible gene sets. Evolutionary algorithms are stochastic
search and optimization techniques that have been developed
over the last 30 years. A general form of the evolutionary
algorithm is shown below:

Generate initial population, evaluate fitness
While stop condition not satisfied do

Produced next population by
Selection
Recombination

Evaluate fitness
End while

The evolutionary algorithm, that we propose, maintains a
population of predictors whose effectiveness can be deter-
mined by using them as features in an SVM classifier. The
initial predictors in the population are randomly constructed.
Instead of applying crossover and mutation operations, the
proposed method selects and recombines new features based
on leave-one-out error bounds on SVM such as radius-
margin bound, Jaakkola-Haussler bound and Opper-Winther
bound and frequency of occurrence of the features in the
evolutionary approach. The number of features in a predictor
is parameter that we shall explore experimentally in the
following section. High performance of evolutionary SVM
is obtained by choosing optimum parameters of SVMs.
The k-fold cross validation is used as an estimator of the
generalization ability where the evolutionary SVM is applied
on ak-fold cross validation set and then the generalization
ability of the selected feature is tested on several different k-
fold cross validation sets. The termination criteria is defined
using both the maximum number of generations and the
criteria of no improvement of maximum fitness value of the
population. The predictor with the highest fitness will be one
that contains the best subset of genes for the classification
task.

4.1 Error Bound Effect
In every generation, the right hand side of any equation

in equations (11), (13) and (15) is calculated to observe the
effect on error bound of each gene in each predictor. Let us
denoteTm is the bound value ofm genes on a predictor and
T i

m−1 is the bound value of all genes except genei. Then,
T i

m−1 for all i are calculated. TheT j
m−1 < T k

m−1 means



removing genej from the predictor can reduce error bound
much than removing genek. Thus genesj with smallT j

m−1

should be deleted in the next generation.

4.2 Gene Frequency
Let us denotezj

i be the frequency of occurrence of
selected genei at generationj. Initially all z0

i is set to 0.
At any generationj, if genei is selected then

zj
i = zj−1

i + 1

This frequency is calculated for each predictor separately.

4.3 Gene Deletion
In every generation, we calculate the error bound value

and frequency of occurrence for each gene in a predictor. We
remove those genes which can reduce the error bound much
and which are selected a few in the previous generations.
We calculate the scoring function as

Ti = ǫT i
m−1 + (1− ǫ)zj

i /l (16)

whereǫ ∈ [0, 1] is a tradeoff between bound value and the
frequency of occurrence in the previous generations. Genei
with the minimumTi will be deleted from the predictor.

4.4 Fitness Function
The fitness function is the only guide to evaluate the

system. There are two objectives for designing evolutionary
SVM. One is to maximize the classification accuracyCa

of the k-fold cross-validation and the other is to minimize
the numberNf of selected genes. IfS represents the set of
parameters to be evolved in the whole system, the fitness
function is defined as follows:

max t(S) = (1 − wf )Ca(S)− wfNf (S)

wherewf ∈ [0, 1] is a control parameter between classifica-
tion accuracy and the number of selected genes.

4.5 Proposed Algorithm
The proposed algorithm is described below:
1. A populationE0 of n predictors{G1, G2, ..., Gn} is

created. A predictorGi is a subset ofm features
(genes) {g1, g2, ..., gm} initially created randomly.
Evaluate the fitness values of all predictors.

2. UNTIL termination criteria NOT satisfied DO:
3. For each predictorGi ∈ Ek, create a new predictor

G′

i

3.1. Deletep genes fromGi as described in Subsec-
tion 4.3

3.2. Add p genes chosen randomly to keep the size
of the feature set the same, i.e.,size(Gi) =
size(G′

i). Compute the frequency of the selected
genes as described in Subsection 4.2.

3.3. Compute fitness function for the new predictor
G′

i.

4. Create a new populationEk+1 by replacing all new
G′

i.
5. Replace some worse predictors of the new population

Ek+1 based on classification accuracy by some best
predictors from the previous generation. To do this,
merge the features of the selected best predictors
from the previous generation and then randomly select
features from the merge-feature set to create newG′

i

like cross-fold validation technique.
This procedure will be performed for a set of SVM hyperpa-
rameters and the best hyperparameters for each predictor will
be obtained. From this procedure we will getn feature sets.
From then sets we will chooseNbest top-rank features in
terms of occurrence frequency. The hyperparameters for the
final learning machine (SVM) will be selected by averaging
the best hyperparameters of the predictors.

5. Computational Experiments
In this paper we test our proposed method using

two cancer-related gene expression datasets that are de-
scribed in Table 1. The datasetBrain Tumor is collected
from http://www-genome.wi.mit.edu/cancer/pub/glioma and
the datasetProstate Tumoris collected from http://www-
genome.wi.mit.edu/MPR/prostate. These data files contain
scaled average expression value of genes from different
GeneChips where the expression value of each gene is ob-
tained by Affymetrix’s GENECHIP software [1],[4]. These
microarray data can be preprocessed without loosing poten-
tial information about the genes. In the preprocessing stage,
these expression values are first ranged by a lower threshold
θl and an upper thresholdθu. That is, if the expression
value is less thanθl, it is replaced withθl. Similarly if the
expression value is greater thanθu, it is replaced withθu.
After this preprocessing, the expression values are subject to
a variation filter that excludes genes that has minimal varia-
tion across the samples being analyzed. The variation filter
tests fold variation and absolute variation for each gene by
comparing (maximum/minimum) and (maximum-minimum)
of genes over the samples, and excludes genes not obeying
both conditions. In this paper we prepossess theBrain Tumor
dataset by settingθl = 20, θu = 16000, maximum/minimum
= 3, and maximum-minimum = 100. For theProstate Tumor
dataset we setθl = 10, θu = 16000, maximum/minimum
= 5, and maximum-minimum = 50 as these parameters
have been used in [1],[4]. After preprocessing, theBrain
Tumor dataset has 4434 genes andProstate Tumordataset
has 5966 genes. Then these datasets are linearly scaled into
the range [-1,1] and then applied to the proposed algorithm.
To evaluate the performance of the proposed method we
use 5-fold cross-validation on each dataset. In this paper
we experiment with only Linear SVM and tested with
various SVM parameter as:C = [2−2, 2−1, . . . , 211, 212].
We compare the results of our proposed method with the
that of signal-to noise score (gene ranking) method. The



Table 1: Features of microarray datasets.
Dataset Diagnostic Task #Samples #Genes #Classes Reference

Brain Tumor Glioblastomas and anaplastic oligodendrogliomas Types 50 12625 2 Nutt et al. (2003) [1]
Prostate Tumor Prostate Tumor and normal tissue 102 12600 2 Singh et al. (2002) [4]

Table 2: Mean accuracy rate (%) of the proposed method with radius-margin bound and signal-to-noise ratio approach using
prespecified number of selected genes.

Dataset Proposed Method Signal-to-noise ratio
Training Ac.(%) Test Ac.(%) #Genes Training Ac.(%) Test Ac.(%) #Genes

Brain Tumor 100 100 3
100 80.72 80
100 74.51 50

Prostate Tumor 100 100 3
100 90.19 50
100 88.23 30

signal-to-noise score method for a binary problem calculates
the ranking function:g(i) = (µclass:1(i) − µclass:2(i))/
(σclass:1(i)+σclass:2(i)) for each genei and selects the top-
ranked genes according to their sorted values in descending
order whereµclass:j(i) and σclass:j(i) are the mean and
variance of genei in classj, respectively. The signal-to-noise
score method selects features (genes) and then the selected
features are applied to the SVM classifier. The computational
results are shown in Table 2 for radius-margin bound. In this
paper, we experiment with 50 predictors and 100 populations
in our algorithm, and size of the feature subset,N , is
prespecified. Thus we setwf = 0 in the fitness function
but check with different values ofN , and show the best
results. The parameter in the scoring function in equation
(16) is also set experimentally. From the experimental result
we see that the proposed method can select a small number
of genes with high accuracy. This paper shows the result
using Linear SVM; however, other non-linear kernels such
as Gaussian and polynomial kernels may show better result.

6. Conclusions
In this paper we propose an efficient evolutionary gene

selection method based on SVM error bound theories. The
SVM is used to evaluate the fitness function as a classifier.
Both feature selection and hyperparameters tuning for SVM
are embedded in the proposed approach. Thus the proposed
method can select few informative features with high pre-
dictive accuracy by considering model uncertainty.

In a future work, we will experiment the proposed method
using other existing error bounds and with different non-
linear kernels and for multi-class problems.
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