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Abstract. In image classification problems, changes in imaging conditions such 
as lighting, camera position, etc. can strongly affect the performance of trained 
support vector machine (SVM) classifiers. For instance, SVMs trained using 
images obtained during daylight can perform poorly when used to classify 
images taken at night. In this paper, we investigate the use of incremental 
learning to efficiently adapt SVMs to classify the same class of images taken 
under different imaging conditions. A two-stage algorithm to adapt SVM 
classifiers was developed and applied to the car detection problem when 
imaging conditions changed such as changes in camera location and for the 
classification of car images obtained during day and night times. A significant 
improvement in the classification performance was achieved with re-trained 
SVMs as compared to that of the original SVMs without  adaptation. 
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1  Introduction 

The effective training of support vector machine (SVM) usually requires a large pool 
of training datasets. However, gathering datasets for SVM learning takes longer times 
and needs more resources. Once trained, SVM classifiers cannot be easily applied to 
new datasets obtained from different conditions, although of the same subject. For 
instance, in image classification problems, changes in imaging condition such as 
lighting, camera position, among others, can strongly affect the classification 
performance of trained SVMs making the deployment of these classifiers more 
challenging. 

Consider for example the detection of cars in images from cameras stationed along 
highways or roads as a component of an intelligent traffic system (ITS). The problem 
is to detect the presence of cars in sub-regions within the camera’s field of view. To 
solve this problem, one can start collecting images from a given camera, extract 



training datasets from these images, and train an SVM for the detection problem. 
After training, the SVM could work perfectly well for images obtained from this 
camera. However, when used with images taken from other cameras, the trained 
classifier could perform poorly because of the differences in imaging conditions. The 
same can be said of SVMs trained using images obtained during daylight and applied 
to classify images taken at night.  

One solution to this problem is to train SVMs for each camera or imaging 
condition. But this can be very costly, requires significant resources, and takes a 
longer time. An ideal solution is therefore to be able to use an existing large collection 
of training datasets to initially train an SVM and adapt this SVM to the new 
conditions using a minimal number of additional training sets. This involves 
transferring knowledge learned from the initial training set to the new conditions. 

This problem is related to the topic of transfer learning (for instance [1-3]). Closely 
related to this work is that of Dai and colleagues [3]. They presented a novel transfer 
learning framework allowing users to employ a limited number of newly labeled data 
and a large amount of old data to construct a high-quality classification model even if 
the number of the new data is not sufficient to train a model alone. Wu and Dietterich 
[4] also suggested the use of auxiliary data sources, which can be plentiful but of 
lower quality, to improve SVM accuracy. The use of unlabeled data to improve the 
performance on supervised learning tasks has also been proposed by Raina, et al.[5].  

In this paper, we investigate the use of incremental SVM [6-7] to improve the 
classification of the same class of images taken under different imaging conditions. 
We assumed the existence of a large collection of labeled images coming from a 
single camera that could be used as starting training samples. Two training methods 
based on incremental SVM are employed for the initial training. One is the standard 
incremental approach, henceforth referred to as non-constraint training. The other 
one is constraint training, which imposes some limitations on the accepted support 
vectors during the learning process. After training, SVMs are adapted by means of 
incremental re-training to the new imaging condition using only a small number of 
new images. This is the transfer learning stage. The algorithms used will be detailed 
in the next section. In our experiments, we used images captured from cameras 
stationed along major roads and highways in Japan. Sub-images containing cars or 
background (road) were extracted and their histogram of oriented gradient (HOG) [3] 
computed. HOG features were then used as training vectors for SVM learning.  

2  Materials and Method 

In this section, we first give a brief discussion of the standard incremental SVM 
approach (non-constraint training). The constraint training method is then presented in 
the next subsection and finally incremental re-training is discussed.  

2.1 Incremental SVM 

Incremental SVM [6-7] learning solves the optimization problem using one training 
vector at a time, as opposed to the batch mode where all the training vectors are used 



at once. Several methods had been proposed, but these mostly provided only 
approximate solutions [9-10]. In 2001, an exact solution to incremental SVM was 
proposed by Cauwenberghs and Poggio (CP) [6]. In the CP algorithm, the Kuhn-
Tucker (KT) conditions on all previously seen training vectors are preserved while 
“adiabatically” adding a new vector to the solution set.  
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with C being the regularization parameter, the αi‘s are the expansion coefficients, and 
b the offset. The above equations effectively divides the training vectors into three 
groups, namely, margin support vectors ( 0=ig ), error support vectors ( 0<ig ), and 
non-support vectors ( 0>ig ). 

In the CP algorithm, a new training vector is incorporated into the solution set by 
first setting its α-value to 0, and then its g-value is computed using Eq. (1). If it is 
greater than 0, then the new training vector is a non-support vector and no further 
processing is necessary. If not, the training vector is either an error vector or a support 
vector and the initial assumption that its α-value is 0 is not valid. The α-value is then 
recursively adjusted to its final value while at the same time preserving the KT 
conditions on all existing vectors. For a detailed discussion, refer to Ref. [6]. In this 
paper, the use of the original CP algorithm for training is referred to as non-constraint 
training as compared to constraint training, which will be discussed next. We also 
used an in-house implementation of this algorithm using C to support incremental 
SVM learning. 

2.2 Constraint Training 

Supposed we have an initial training set labeled as ( ) ( ) ( ){ }nn yyy ,,,,,, 2211 xxxX K=  
where n is significantly large. In our problem, the training vector xi represents the 
HOG features from images coming from a given camera, while the label yi can either 
be ‘with car’ (1) or ‘no car’ (0). Also, let ( ) ( ) ( ){ }mm yyy ,,,,,, 2211 zzzZ K=  denotes 
another dataset taken from another camera and m << n. We defined constraint training 
as the selection of an appropriate set of support vectors from X that maximizes the 
classification performance of an SVM using dataset Z as test set. It should be noted 
that the support vectors of X do not necessarily give an optimal classification of Z as 
will be shown in the results. However, there may exist a subset of X with support 



vectors that can lead to an optimal classification of Z. Finding this subset is the aimed 
of constraint training. 
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Figure 1. Incremental SVM-based constraint training: 1) Get a new training vector from the 
training set X. 2) Update existing SVM using incremental approach. 3) Test updated SVM 
using target dataset Z. 4) If classification accuracy increases, keep the support vector (SV); 
otherwise, discard it. 5) Repeat (1) until all training vectors are processed 

There are several ways to implement constraint training. An example is to 
randomly extract subsets from X, train SVMs using these subsets, and select the 
subset which gives the maximum classification accuracy of Z. In this paper, we used 
incremental SVM and employed the algorithm outlined in Fig. 1. The algorithm 
follows from that of the non-constraint case except for an additional constraint, which 
is given as follows. As each new training vector is added, a classification test using a 
target dataset (Z in the notation above) is performed. A newly computed support 
vector is included into the running solution set if it increases the classification 
accuracy of the evolving SVM; otherwise, support vectors that tend to decrease the 
classification accuracy are discarded. The algorithm ensures that only support vectors 
that increase the classification accuracy of the target set are included in the final 
SVM. This effectively realigns the separating function of X to give an optimal 
separation of samples from Z, without using any sample from the latter. The final set 
of support vectors is the desired subset of X.  

2.3 Incremental Re-training 

In constraint training, only samples from the initial training set X are used during 
training. Samples from the target set Z are not included in the training process. In 
incremental re-training, the trained SVM is updated using this limited number of 



samples. See Fig22. 2. The basic idea is that an SVM is already trained using dataset 
X via either non-constraint or constraint training method. After this initial training, 
samples from dataset Z are incrementally incorporated into the trained SVM to adapt 
it to the new dataset. This is the transfer learning phase. The final result is an adapted 
SVM with a much improved classification performance of the class of feature vectors 
represented by the target dataset Z. 
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Figure 2. With incremental re-training, an SVM is trained using an initial training set either via 
non-constraint or constraint approach, then is re-trained using the target set by means of 
incremental SVM 

3  Results 

Five cameras stationed at five different locations along major roads in Japan were 
used to capture images of passing vehicles. For each camera image, 16 x 16 sub-
images containing cars and no cars were extracted. These selected images were then 
converted into HOG features using an 8 x 8 overlapping blocks with 4 pixels overlap 
giving a total of 9 blocks. The direction of gradient in each block was divided into 8 
effectively converting each 16 x 16 image into a 72-dimensional feature vector.  

From this, five groups of datasets were formed and labeled as follows: 379LCR 
(58,453 feature vectors), 382LR (56,405 feature vectors), 383LR (50,058 feature 
vectors), 122LR (12,762 feature vectors), and 384LCR (61,214 feature vectors). 
Images from 379LCR, 382LR, and 383LR were taken during daytime, while that 
from 122LR and 384LCR were obtained at night. Each dataset was then divided into 
10 subsets. For each subset, an SVM was trained and then tested using the other 
subsets. The optimal SVM kernel (selected from linear, polynomial, RBF, and 
sigmoid kernels) and the associated kernel parameters were chosen using a cross 
validation approach with a grid search method in the parameter space. Each subset 
can have different optimal kernel and kernel parameters. 

In our first experiment, we looked into the classification performance of SVMs 
trained using the non-constraint approach. The within group classification 
performance where SVMs were trained and tested using datasets belonging to the 
same group was evaluated. For instance, an SVM trained using 379LCR_0 was used 
to classify 379LCR_n, where n = 1, …, 9. We also tested cross group classification 
performance where SVMs trained from one group were used to classify data from 
another group.  



The classification performance for different SVMs trained using subsets of 
384LCR are shown in Table 1. The first column indicates the subset used to train the 
SVM, while the rest of the columns show the classification accuracy. The second 
column is the result for within group classification, while columns 3 to 6 are the 
results for cross group classification. For within group classification, the classification 
accuracy is significantly high (more than 99%).  The same performance can be said 
for the other datasets not shown. On the other hand, the performance for cross group 
classification varies depending on the dataset used as test set. For some dataset, the 
performance can be as high as 99% (e.g., table 1, column 6), while for others, it can 
be lower than 70% (e.g., table 1, column 4). 384LCR-based SVMs are poor classifiers 
for 382LR or 383LR (both daytime datasets), but performed relatively well in 
classifying 379LCR (daytime dataset) or 122LR (nighttime datasets).  

 

Table 1. Classification accuracy (%) of SVMs trained using subsets of 384LCR 

384LCR_n 384LCR 379LCR 382LR 383LR 122LR 
0 99.9739 84.6013 75.1565 74.8072 98.5896 
1 99.9804 90.4915 67.9231 75.1508 99.8433 
2 99.9869 91.2442 72.4156 79.7095 99.8668 
3 99.9902 88.5310 69.6002 77.0167 99.8198 
4 99.9755 91.1023 73.3942 80.6065 99.7649 
5 99.9739 90.5240 73.3907 80.7084 99.7649 
6 99.9771 91.4256 72.7755 80.2269 99.7963 
7 99.9820 91.2152 80.9450 86.7913 99.8041 
8 99.9902 90.1887 70.3555 77.6399 99.8590 
9 99.9788 91.6240 77.9559 83.3593 99.8746 
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Figure 3. Classification accuracy during constraint (red plots) and non-constraint (green plots) 
training as the number of incorporated samples is increased. In both panels, 382LR_0 was used 
as the target/test set, while 379LCR_0 (left) and 379LCR_6 (right) as the training sets 

 
For the next experiment, we examined whether it is possible to improve cross 

group classification accuracy using constraint training. We also compared the 



accuracy of the constraint method with that of the non-constraint method for cross 
group classification during incremental learning. The results are shown in Fig. 33. For 
non-constraint training, the classification accuracy of the target set fluctuates as the 
number of support vectors increases. This is shown in the green plots of both panels. 
Since constraint training considers only support vectors that can increase the 
classification accuracy of the target set, the plots shown in red are always increasing. 
Interestingly, the classification accuracy with constraint training exceeded that of the 
non-constraint case even with this simple condition. By imposing this constraint to the 
learning process, the performance of the evolving SVM as a classifier of the target set 
is considerably improved. 

 

Table 2. Classification accuracy (%) of SVMs trained with constraint and using subsets of 
379LCR as training sets and 382LR_0 as target set 

379LCR_n 379LCR 382LR 383LR 384LCR 122LR 
0 91.2186 91.0664 93.3217 90.6786 93.3004 
1 86.4113 94.7753 93.5515 95.9650 97.7198 
2 86.3121 93.6920 92.0253 92.6275 96.4739 
3 86.3172 93.9863 92.7764 97.9841 98.8011 
4 79.6931 93.3215 92.1611 94.1419 96.3329 
5 78.2252 92.8127 92.7164 92.4756 95.2359 
6 87.0819 95.2256 93.7712 92.8742 96.4582 
7 83.0770 93.3481 93.4796 96.1463 96.0586 
8 86.0674 88.6038 91.3760 98.4415 97.4220 
9 88.8885 95.1299 94.4924 97.0056 98.0959 

 
 

Table 3. Classification accuracy (%) results for incremental re-training. Subsets of 379LCR 
were used as training sets and 384LR_0 as the target set  

Incremental Retraining 379LCR_n 
Constraint Non-constraint 

n 379LCR 384LCR 379LCR 384LCR 
0 89.0613 99.9951 99.6750 99.9935 
1 90.9996 99.9886 99.7109 99.9935 
2 93.0765 99.9935 99.6613 99.9902 
3 96.0669 99.9706 99.7006 99.9951 
4 90.9329 99.9967 99.7793 99.9967 
5 90.6660 99.9967 99.8084 99.9918 
6 82.0351 98.6686 99.7536 99.9886 
7 92.5308 99.9984 98.8777 99.4527 
8 90.9466 99.9951 99.7827 99.9918 
9 97.9693 99.9918 99.6921 99.9820 

 
 



Table 2 shows the classification performance of the trained SVMs with constraint. 
Two effects can be observed. As expected, the cross group classification accuracy 
generally increases for all datasets considered.  This is particularly true for the target 
dataset, which in this case is 382LR, with more or less 10% increase in accuracy 
(column 3). On the other hand, a corresponding decrease in the within group 
classification accuracy can also be observed (column 2). But this is just expected 
since constraint training is designed to optimize the classification of the target set, 
which may not result in an optimal solution for the original training set. 

We next used incremental re-training to include the limited number of target 
dataset into the training process and evaluated the classification performance of the 
resulting SVMs. Both the use of non-constraint and constraint approaches for initial 
training was investigated. The results are summarized in Table 333.  Here, subsets of 
379LCR were used as initial training sets and the resulting SVMs were incrementally 
re-trained using 384LR_0. With incremental re-training, the classification accuracy of 
the target dataset (384LCR) jumps to more than 99%, a significant improvement 
compared to the cross group classification performance. Moreover, for non-constraint 
initial training, the classification accuracy of the initial training dataset (379LCR) 
remains high.   

To evaluate the number of additional training vectors needed to raise the 
classification accuracy during retraining, we performed classification test for each 
newly added support vectors as the SVM evolved. We randomly shuffled the order 
the additional training vectors are incorporated into the training process and took the 
average of the classification result. Representative plots are shown in Fig. 4. The left 
panel shows the classification performance of an SVM initially trained using 
379LCR_0, and then incrementally re-trained using 382LR_0. On the other hand, 
384LCR_0 was used for re-training in the right panel. Both panels showed that the 
constraint approach for initial training (blue plots) made the trained SVMs adapt 
faster (less additional training samples) to the new datasets as compared to the use of 
non-constraint approach for initial training. In both cases, only a small number of 
target vectors are needed to adapt the SVMs to the new datasets. 
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Figure 4. Classification accuracy as a function of the number of target samples incorporated 
into the incremental re-learning process. The SVMs were initially trained using 379LCR_0 and 
then incrementally retrained using 382LR_0 (left panel) and 384LCR_0 (right panel). Both 
constraint (blue plots) and non-constraint (red plots) approaches for initial training were 
evaluated  



4  Discussion 

Support vector machines are robust classifiers for datasets they are initially trained. 
Changes to some of the conditions where the initial datasets were acquired could 
significantly affect the classifiers’ performance. The case currently considered is the 
detection of cars in images from cameras stationed along major roads. From the 
results presented, differences in lighting conditions from one location to the other can 
significantly affect the classification performance of SVMs trained using only dataset 
from one location (see Table 1). This presents a significant problem in the 
deployment of these classifiers. Training an SVM for each location can mitigate this 
limitation for small deployment. But for large scale application, this can be very 
costly, requires significant resources, and takes a longer time, and therefore, 
impractical. 

In this paper, we have demonstrated a practical approach to overcome this 
limitation. The approach requires that an initial collection of dataset, possibly from a 
single camera, be available. For new deployment, a small number of additional 
images can be taken, which can then be used to adapt an existing classifier to the new 
imaging condition via transfer learning. Since the approach is based on incremental 
SVM, it is also possible to do on-line learning. The general idea is that from the initial 
collection, a subset can be selected that optimizes the classification accuracy of the 
new dataset using constraint training. The resulting SVM can then be incrementally 
re-trained using the additional (target) dataset to further improve its classification 
performance.  

The result in Table 2 shows the efficacy of the constraint approach to extract 
subsets from the initial training set which can maximize the classification accuracy of 
the target set. Although the classification accuracy of the initial dataset decreases, this 
is immaterial since the final goal is the improvement in the classification of the new 
dataset for deployment purposes. The extracted subsets can then be combined with the 
target set via incremental re-training to further improve the classification of the target 
set as shown in Table 33. This has the advantage of faster adaptation of the trained 
SVM to the new datasets. On the other hand, using non-constraint approach for initial 
training does not only improve the classification of the target set, but also preserve the 
accuracy of the initial dataset (see Table 33). This is important if we don’t want to 
lose the classification accuracy of the initial training set such as the case when re-
training the SVM to accommodate day and night time images. In both cases, the 
achieved improvement requires only several hundreds of additional datasets, which 
can be readily obtained. The cost involved and the resources required will therefore 
be minimal.  

The use of incremental SVM here is critical. With incremental SVM, additional 
training vectors can be added to the learning process without retraining from scratch. 
Given that training is the most computationally intensive task in the classification 
problem, incremental SVM can provide a significant saving in training time. It also 
enables us to evaluate the contribution of the newly added vectors to the classification 
performance of the evolving SVM. As an application, we were able to constraint the 
support vectors that can be included into the solution set in terms of their contribution 
to the classification accuracy. This in turn allowed us to select only subsets within the 
initial training dataset that are useful for the optimization of the target set. Moreover, 



the training process itself involves the selection process. And with an additional 
incremental re-training, the target dataset can be easily incorporated into the final 
SVM.  

In conclusion, we have demonstrated the combined use of non-constraint/constraint 
initial training and incremental re-training to adapt SVM image classifiers to changes 
in imaging conditions. When applied to the car detection problem, significant 
improvement in the classification accuracy was achieved validating the efficacy of the 
method. The small number of additional datasets required for re-training makes the 
approach cost effective and practical for use in large deployment, such as in 
intelligent traffic systems, as the additional cost and needed resources are minimal.  
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