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Abstract— Adaboost is an ensemble learning algorithm that
combines many base-classifiers to improve their performance.
Starting with Viola and Jones’ researches, Adaboost has often
been used to local feature selection for object detection. Ad-
aboost by Viola-Jones consists of following two optimization
schemes: (1) training of the local features to make base-
classifiers, and (2) selection of the best local feature. Because
the number of local features becomes usually more than tens
of thousands, the learning algorithm is time consuming if the
two optimizations are completely performed. To omit the un-
necessary redundancy of the learning, we propose fast boosting
algorithms by using Particle Swarm Optimization (PSO) and
random candidate selection (RCS). Proposed learning algorithm
is 50 times faster than the usual Adaboost while keeping
comparable classification accuracy.

I. INTRODUCTION

Adaboost is one of the most powerful algorithm among
existing ensemble learning methods. Originally, Adaboost
was proposed as the algorithm that combines several weak
hypotheses (= classifiers) to construct more powerful classi-
fier [3]. Adaboost has a theoretical guarantee that a training
error of the ensemble classifier converges on 0 if enough
number of hypotheses which have a slightly better estimation
performance than random guess are obtained.

Feature selection is a important issue of pattern recogni-
tion. Especially for object detection, local feature selection
is effective to improve both accuracy and speed of detectors.
Since the aspect of computational difficulty, feature selection
is usually performed by forward stepwise selection (FSS)
or backward stepwise selection (BSS) [10][11]. Recently,
a variant of Adaboost was proposed to create local feature
based face detector, by Viola and Jones [15][16]. Adaboost
by Viola-Jones (we call it Adaboost.V J for convenience)
performs feature selection from many candidate local fea-
tures, called rectangular features (RFs). Due to an easy
algorithm and high classification performance, their method
of feature selection became popular and is still used by many
reseachers for object detection [1][5][14].

However, feature selection by Adaboost.VJ is sometimes
time consuming. In recent object detectors, tens of thousands
of training images are often used to obtain a sufficient clas-
sification performance. In such cases, it is not unusual that
the number of candidates amounts to hundreds of thousands.
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Because Adaboost.VJ is a variant of FSS, all candidate
features are reevaluated whenever one feature is selected.
Therefore, sometimes the training time exceeds a week. This
is inconvenient for users.

It is known that the performance of ensemble classifiers
are closely related to the diversity of components in the
ensemble [12]. Since the candidate RFs were extracted
from all (overlapped) rectangular regions in images, the set
of candidates will contain not only sufficient diversity but
also quite a few redundancy for feature selection. Although
diverse set of candidate features will lead good ensemble
performance, too much redundancy gives bad influence in the
learning times. For efficient learning, it is needed to study
how to reduce unnecessary redundancy in a features set while
keeping classification performance of created ensemble.

In this paper, we propose a fast rectangular feature se-
lection algorithm for Adaboost, by using Particle Swarm
Optimization (PSO) and Random Candidate Selection (RCS).
PSO [9] performs a randomized search, like a genetic
algorithm [7] or particle filters [2][4][8]. Considering the
coordinates of RF’s region to be parameters, PSO does
effective search over the parameter space. As a result, the
RF with high classification power is found efficiently [6].
In RCS, small candidate subsets are extracted at random
from all candidates in every iteration of boosting, and normal
Adaboost is performed by using these subsets. RCS might
seem to give bad influence to accuracy of feature selection.
As the results of experiments, we found that RCS can achieve
comparable accuracy with Adaboost.VJ and Adaboost.PSO
except the early stage of boosting. Furthermore, the combi-
nation algorithm of PSO and RCS yielded the best result.

In our experiments, we tested feature selection of Ad-
aboost by using PSO, RCS or these combination. The best
result of proposed learning algorithm runs about 50 times
faster than the Adaboost.VJ while maintaining comparable
classification accuracy.

II. RECTANGULAR FEATURES BASED BOOSTED

DETECTOR

A. Rectangular Features

For object detection problem, Viola and Jones proposed
rectangular features (RFs), which indicates difference of
brightness between local rectangular regions neighbouring
each other, and they treated such a feature as a simple
base-classifier [15][16]. RFs consists of two to four small
rectangles which are same size and neighbouring each other,
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• Input labeled samples {Ii, yi}
N
i=1. (Ii ∈ Rd: sample, yi ∈ {0, 1}: class label.)

• Initialize samples weights: if yi = 1 then wi = 1
2p

, otherwise wi = 1
2q

. (p: # of face, q: # of non-face)
• for t = 1, · · · , T

– Normalize samples weights: wt,i ←
wt,i∑

N
i=1

wt,i
.

– Optimize base-classifiers {bc}
C
c=1:

{bt, errt} = OptFunc({bc}
C
c=1, {Ii, wi, yi}

N
i=1)

– Compute αt = log((1− errt)/errt)
– Update samples weights: wi ← wi · exp[αm · δ(yi − bt(Ii))]. (δ(x) = 1 (if x = 0), 0 (otherwise).)

• Final classification function is:

H(I) =

{
1 if

∑T
t=1 αtbt(I) ≥ Θ

∑T
t=1 αt.

0 otherwise.
(Θ: Threshold)

Fig. 2. Common Adaboost algorithm. OptFunc for the described methods are shown in Figs. 3 to 6.

Fig. 1. Configuration of small rectangles.

so RFs have five degrees of freedom; position (xs, ys),
(xe, ye) of small rectangles, and configuration z ∈ {1, 2, 3, 4}
of small rectangles (Fig. 1).

Eq. (1) shows the classification function of rectangular
features.

b(I) =

{
1 if pf(I) > pθ
0 otherwise

(1)

where I shows an input image, f(I) implies a feature value
of a rectangular feature at I , and p ∈ {1,−1} and θ ∈ R are
the parameters determined by training (see [15][16]).

B. Adaboost for Feature Selection

Adaboost [3] is the ensemble learning method that trains
multiple base-classifiers and assembles these to create a more
powerful classifier. In the iterations of Adaboost, a classifier
that assists the weakness of assembled ensemble is chosen
and added into the ensemble. Therefore, the assembled
ensemble will effectively obtain a perfect classification power
for given training samples.

The algorithms of original Adaboost (Adaboost.M1) is
shown in Figs. 2 and 3. In the training of Adaboost, each
training sample Ii is assigned weight wi that implies the
“difficulty” of sample Ii. The cost function of Adaboost is
designed as weighted classification error rate for training
samples. Weight wi is made heavy if the base-classifier
selected newly misclassified sample Ii. Therefore, at the next
iteration, the base-classifier that can correctly classify the
samples which the ensemble fails will be chosen.

In this paper, we use rectangular features as our base-
classifiers for the face detection. There are many RFs in
training images, and the variant of Adaboost proposed by

• Input arguments {b, {Ii, wi, yi}
N
i=1}.

• Fit a classifier b to the training samples using weights
wi.

• Compute err =
∑ N

i=1
wi·δ(yi−b(Ii))∑

N
i=1

wi
.

• Return {b, err}

Fig. 3. Optimization function for Adaboost.M1.

• Input arguments {{bc}
C
c=1, {Ii, wi, yi}

N
i=1}.

• For c = 1, · · · , C,

– Fit a classifier bc to the training samples using
weights wi.

– Compute errc =
∑ N

i=1
wi·δ(yi−bc(Ii))∑

N
i=1

wi
.

• Choose the classifier b∗ with the lowest error err∗.
• Return {b∗, err∗}

Fig. 4. Optimization function for Adaboost.VJ.

Viola and Jones performs feature selection from those can-
didate RFs. For convenience, we call it Adaboost.VJ.

The optimization function for Adaboost.VJ is shown in
Fig. 4. Adaboost.VJ only added the feature selection phase
to Adaboost.M1. Thus, there are two optimization phases in
Adaboost.VJ:

1) parameters fitting for candidate classifiers, and
2) selection of the best classifiers.

If ones consider that five degrees of freedom in RF are kinds
of base-classifier’s parameters, Adaboost.VJ is equivalent to
Adaboost.M1.

III. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) [9] is a search or an
optimization algorithm that performs a randomized search
in a multi-particle system, like a genetic algorithm [7] or
particle filter [2][4][8]. PSO modeled behaviors of swarms
of creatures, for example ants looking for food. In PSO,
hundreds or thousands of particles search the optimum while
communicating with other particles. Each particle p has two
state vectors: position xp

τ and velocity vp
τ . These state vectors
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• Input arguments {{bc}
C
c=1, {Ii, wi, yi}

N
i=1}.

• Set cs = cg = 2, wmin = 0.2, w = wmax = 1.2.
• Set random parameters: rs, rg ∈ [0, 1].
• Set state vector: xp

τ ∈ Rd and vp
τ ∈ Rd at random.

• For τ = 1, · · · , Tit,

– For p = 1, · · · , P ,

∗ Fit a classifier b(xp
τ ; I) to the training samples using weights wi.

∗ Compute errp
τ =

∑ N
i=1

wi·δ(yi−b(xp
τ ;Ii))∑

N
i=1

wi
.

∗ Update states of particles:
xp

τ+1 = xp
τ + vp

τ ,
vp

τ+1 = wvp
τ + csrs(h

p
s − xp

τ ) + cgrg(hg − xp
τ ).

– Update momentum:
w ← wmax −

τ
Tit

(wmax − wmin)

• Return {hg, errhg
}

Fig. 5. Optimization function for Adaboost.PSO. h
p
s shows the best position in histry of p-th particle, and hg shows the best position in history of all

particles. errhg
implies computed error of hg . State vector x

p
τ = (xs, ys, xe, ye, z) implies type of a rectangular feature. (xs, ys) and (xe, ye) are the

diagonal apex of small rectangles, and z ∈ {1, 2, 3, 4} shows the configuration of small rectangles (Fig. 1).

are simply updated as follows:

xp
τ+1 = xp

τ + vp
τ ,

vp
τ+1 = wvp

τ + csrs(h
p
s − xp

τ ) + cgrg(hg − xp
τ ),

where w is the inertia term, cs and cg are parameters given
manually, rs and rg are random values between 0 to 1, hp

s

and hg show the best position in the histry of p-th particle
and all particles, respectively. PSO is easy to implement
compared with genetic algorithm or particle filter. Each
particle communicates with other particles and obtains the
current best position hg .

As understood from the above rule, PSO has the following
action policies:

1) keep the same direction as vp,
2) go to the direction to hp

s ,
3) go to the direction to hg .
Acutually, each particle will go to weighted and random-

ized average of the three directions.

IV. FAST FEATURE SELECTION BY PSO AND RCS

After the work of Viola and Jones [15][16], many re-
searchers are using Adaboost for local feature selection
[1][5][14]. However, original Adaboost is not designed for
the purpose of feature selection. Adaboost.VJ optimizes tens
of thousands or more candidates in every step of boosting,
while Adaboost.M1 performs only one optimization. It is
considered that such multiple optimizations are excessive
learning for the purpose of improvement of ensemble’s accu-
racy. The full set of candidate RFs has rich redundancy, but
more redundancy to saturate the improvement of ensemble
performance is actually not necessary for the training and
is the cause of waste of computational cost. Therefore, we
have to remove such unnecessary redundancy for the efficient
feature selection.

The classification power of ensemble classifier is closely
related to the diversity of ensemble [12]. As described in

Section V-C, a simple approach that ones thin out candidate
features regularly will not provide sufficient performance.
In this paper, we propose Adaboost.PSO and Adaboost.RCS
algorithms that can reduce the number of optimizations for
candidates while maintaining high classification accuracy.
These algorithms are described in following sections.

A. Adaboost.PSO

As described in Section II-A, RFs have five parameters;
position (xs, ys), (xe, ye) of small rectangles, and configura-
tion z ∈ {1, 2, 3, 4} of small rectangles (Fig. 1). Considering
the state vector as xp

τ = (xs, ys, xe, ye, z)p
τ , the best RF is

searched over the state space by the manner of PSO. As a
result, the RF with high accuracy is selected efficiently. The
optimization algorithm is shown in Figs. 2 and 5.

The computational cost of Adaboost.PSO depends on the
two hyperparameters: the number of particles P and the
number of iterations Tit. The total P ×Tit classifiers will be
optimized throughout the training.

B. Adaboost.RCS

In Adaboost.VJ, all RFs are used as candidates for op-
timization and the RF with highest performance is chosen
from the candidates. On the other hand, Adaboost.RCS use
only the candidates in the small subset of RFs. The subset
is selected at random from all candidates, in each iteration
of boosting. Therefore, the frequency of optimization can be
saved keeping the diversity of the features. The optimization
algorithm is shown in Figs. 2 and 6.

RCS directly brings saved computation time because the
number of candidates in the subset just implies the compu-
tational cost.

V. EXPERIMENTS

In this paper, we used MIT CBCL face database [13] for
our experiments. The database consists of 2,901 facial and
28,121 background 19 × 19 pixel images. Approximatedly
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• Input arguments {{bc}
C
c=1, {Ii, wi, yi}

N
i=1}.

• Select K classifiers {bk}
K
k=1 at random (K < C).

• For k = 1, · · · ,K,

– Fit a classifier bk to the training samples using
weights wi.

– Compute errk =
∑ N

i=1
wi·δ(yi−bk(Ii))∑

N
i=1

wi
.

• Choose the classifier b∗ with the lowest error err∗.
• Return {b∗, err∗}

Fig. 6. Optimization function for Adaboost.RCS.

53,000 RFs are extracted from each image. We divided
all images into training and test set; 2,000 face and 4,000
background images are used for training, and remained
images are used for test. Three pairs of training and test sets
were generated randomly. All of the accuracies presented in
this section are the averaged values calculated from the three
pairs.

We describe four classification experiments as follows.

A. Adaboost.RCS

First, we examined Adaboost.RCS with 1, 10, 100, 500,
1, 000, 1, 500, and 2, 000 random candidates. Figure 7
shows the relationship between candidate numbers of Ad-
aboost.RCS and the ensembles’ accuracy.

In our experiments, it seems the classification perfor-
mances were saturated when the number of candidates
reached about 1,000. In later stage of boosting, Ad-
aboost.RCS has comparable accuracy with Adaboost.VJ
(Tab. I, Fig. 10).

However, the accuracy of Adaboost.RCS in early stage
is slightly worse than other methods. It is considered that
the first several classifiers selected by Adaboost will have
an important role in the ensemble. Therefore, we have to
choose surely good RFs in the early stage of boosting. The
improvement of this point is argued in Section V-D.

B. Adaboost.PSO

Second, we examined Adaboost.PSO with 10 particles and
10 iterations (written as 10-10 for convenience), 30-20, 50-
20, 100-20, 200-10, 200-20 and 200-30 (Fig. 8).

Comparing with Adaboost.RCS, the differences of accu-
racies between PSO with various computational cost were
relatively small. As shown in Tab. I and Fig. 10, the ac-
curacy of Adaboost.PSO in early stage is almost equal to
Adaboost.VJ. This result shows that PSO has reliable search
ability compared with exhaustive search.

On the other hand, Adaboost.PSO has slightly low perfor-
mance in later stage of boosting. This phenomenon may be
caused by history-based searching of Adaboost.PSO. In the
PSO, each particle reffers the search history of oneself and
others. And, many particles consentrate near the best position
which has found so far. Therefore, the practical diversity of
candidate features will be decreasing. To solve this problem,

we propose the hybrid algorithm of Adaboost.PSO and
Adaboost.RCS in Section V-D.

C. Regularly Reduced Features

Third, we compared our random approach and Ad-
aboost.VJ in same computational cost. A simple way to
reduce the candidate features is to thin out RFs regularly.
We use RCS-1000 and PSO-50-20 which evaluates 1,000
rectangular features in each iteration of boosting. To arrange
the computational cost of Adaboost.VJ, the step length of
xs, ys, xe, ye ∈ [1, 19] of RFs is changed to 3 from 1, so the
number of RFs for Adaboost.VJ were reduced to 1,068.

Figure 9 shows the comparing result. Adaboost.VJ with
regularly reduced candidates marked bad results. It is con-
sidered that the regular reduction of RFs will decrease the
diversity of features, and as a result the classification power
of ensemble turned worse.

D. The Hybrid Algorithm

From these experiments, it is found that Adaboost.PSO
and Adaboost.RCS have good performances as well as
Adaboost.VJ even if only use 1,000 candidates. And Ad-
aboost.RCS and Adaboost.PSO are slightly weak in early or
later stage of boosting, respectively.

However, these algorithms can supplement their weak
points each other. As described Section V-A, it is important
to select superior features as first several weak classifiers. So
we tested the hybrid algorithm which performs PSO-300-30
from 1st to 10th iteration, and RCS-1000 from 11th to 600th
iteration.

The results are shown in Tab. I, Fig. 10. Our hybrid
algorithm has comparable accuracy with Adaboost.VJ while
reducing computational cost to 1/50.

VI. CONCLUSIONS

In this paper, we showed that feature selection by a variant
of Adaboost (written as Adaboost.VJ) has much redundancy,
and that we can save the computational cost of Adaboost.VJ
by Particle Swarm Optimization (PSO) and Random Can-
didate Selection (RCS). Adaboost.RCS and Adaboost.PSO
can make emsembles which has comparable accuracy with
Adaboost.VJ, by using only 1.9% to 3.8% of all candidate
features in each iteration of the training. The best proposal
algorithm, PSO-RCS hybrid algorithm, runs about 50 times
faster than the Adaboost.VJ while maintaining comparable
classification accuracy.

In future works, we would like to investigate about com-
binations of our algorithm and bagging or random subspace
method.
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Fig. 8. Classification accuracy of PSO for test sets. Left: black/red/green/blue lines show the experimental results by using 100-20/50-20/30-20/10-10
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TABLE I

ACCURACY AND COMPUTATIONAL COST OF EACH METHOD.
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