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Abstract— Linear discriminant analysis (LDA) is one of the
well known methods to extract the best features for multi-class
discrimination. Recently Kernel discriminant analysis (KDA)
has been successfully applied in many applications. KDA is one
of the nonlinear extensions of LDA and construct nonlinear
discriminant mapping by using kernel functions. But the kernel
function is usually defined a priori and it is not known what the
optimum kernel function for nonlinear discriminant analysis is.
Also the class information is not usually introduced to define
the kernel functions. In this paper the optimum kernel function
in terms of the discriminant criterion is derived by investigating
the optimum discriminant mapping constructed by the optimum
nonlinear discriminant analysis (ONDA).

Otsu derived the optimum nonlinear discriminant analysis
(ONDA) by assuming the underlying probabilities similar with
the Bayesian decision theory. He showed that the optimum non-
linear discriminant mapping was obtained by using Variational
Calculus. The optimum nonlinear discriminant mapping can
be defined as a linear combination of the Bayesian a posterior
probabilities and the coefficients of the linear combination are
obtained by solving the eigenvalue problem of the matrices
defined by using the Bayesian a posterior probabilities. This
means that the ONDA is closely related to Bayesian decision
theory. Also Otsu showed that LDA could be interpreted
as a linear approximation of the ONDA through the linear
approximation of the Bayesian a posterior probabilities.

In this paper, the optimum kernel function is derived by
investigating the optimum discriminant mapping constructed
by ONDA. The derived kernel function is also given by using
the Bayesian a posterior probabilities. This means that the class
information is naturally introduced in the kernel function. For
real application, we can define a family of discriminate kernel
functions can be defined by changing the estimation method of
the Bayesian a posterior probabilities.

I. INTRODUCTION

L INEAR discriminant analysis (LDA) [1] is one of the

well known methods to extract the best discriminating

features for multi-class classification. LDA is formulated as

a problem to find an optimum linear mapping by which the

within-class scatter in the mapped discriminant feature space

is made as small as possible relative to the between-class

scatter. LDA is useful for linear separable cases, but for more

complicated cases, it is necessary to extend it to nonlinear.

Recently the kernel discriminant analysis (KDA) has been

successfully applied in many applications [2], [3], [4]. KDA

is one of the nonlinear extensions of LDA and constructs a

nonlinear discriminant mapping by using kernel functions.

Usually the kernel function is defined a priori. For example,

the polynomial functions or the radial bases functions are

often used as a kernel function for KDA. However, it

is not known what the best kernel function for nonlinear

discriminant analysis is. Also the class information is usually

not introduced in such kernel functions.

On the other hand, Otsu derived the optimum nonlinear

discriminant analysis (ONDA) by assuming the underlying

probabilities [5], [6], [7] similar with the Bayesian decision

theory[8]. He showed that the optimum non-linear discrim-

inant mapping was obtained by using Variational Calculus

and was closely related to Bayesian decision theory (The

posterior probabilities). The optimum nonlinear discriminant

mapping can be defined as a linear combination of the

Bayesian a posterior probabilities and the coefficients of the

linear combination are obtained by solving the eigenvalue

problem of the matrices defined by using the Bayesian a

posterior probabilities. This result is fundamental to under-

stand the nature of the discriminant analysis.

Also Otsu pointed out that LDA could be interpreted as

a linear approximation of this ultimate ONDA through the

linear approximations of the Bayesian posterior probabil-

ities. However the linear model used in the LDA is not

suitable to estimate the posterior probabilities because the

outputs of the linear model can not satisfy the constraints

on the probabilities. To overcome this drawback, Kurita et

al. [9] proposed Logistic discriminant analysis (LgDA) in

which the posteriori probabilities are estimated by using

the Multi-nominal logistic regression (MLR) instead of the

linear model. MLR is known as one of the generalized

linear models (GLM) which are a flexible generalization

of the ordinary least squares regression. MLR can naturally

estimate the posteriori probabilities by modifying the outputs

of the linear predictor by the link function. Thus LgDA can

be regarded as a natural extension of LDA by generalizing the

linear model to the generalized linear model. It was shown

that the discriminant spaces constructed by LgDA were

drastically improved by this generalization for the several

standard repository datasets [9].

This theory of ONDA suggests that many novel nonlinear

discriminant mappings can be constructed if we change

the estimation methods of the posterior probabilities. For

example, Kurita et al. [11] proposed the neural network based

non-linear discriminant analysis in which the outputs of the

trained MLP were used as the estimates of the posteriori

probabilities because the outputs of the trained multi-layered

Perceptron (MLP) for pattern classification problems can be

regarded as the approximations of the posteriori probabilities

[10].

This paper investigates the kernel function used in the

ONDA. The best kernel function is derived from the optimum



discriminant mapping constructed by ONDA by investigating

the dual problem of the eigenvalue problem of ONDA.

The derived kernel function is also given by using the

posteriori probabilities. This means that the class information

is naturally introduced in this kernel function. Since ONDA

is optimum in terms of the discriminant criterion, the derived

kernel function is also optimum in terms of the discriminant

criterion. We call this kernel function the discriminant kernel

function (DKF). For real application we can define a family

of discriminate kernel functions by changing the estimation

method of the Bayesian a posterior probabilities. This sit-

uation is similar with applications of the Bayesian decision

theory or the optimum nonlinear discriminant analysis.

The rest of this paper is organized as follows: Section II

reviews LDA and KDA. The theory of ONDA is introduced

in Section III. Then the dual problem of ONDA is inves-

tigated to derive the discriminant kernel function (DKF) in

Section IV. Section IV also shows some simple examples

of KDFs in which the Bayesian a posterior probabilities

are estimated from the training samples. To investigate the

validity of the proposed DKF, the kernel matrix estimated

by using the proposed DKF is compared with the one

computed by using the Radial Basis functions in Section V.

The discriminant spaces constructed by using the proposed

DKF is also compared with the one constructed by using

the Radial Basis functions in Section V. Finally, Section VI

concludes the paper.

II. LINEAR AND KERNEL DISCRIMINANT ANALYSIS

A. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) was proposed by

Fisher in the original article “The use of multiple measures

in taxonomic problems (1936)” [1]. LDA is defined as a

method to find the linear combination of features which best

separates two classes of objects. It is extended to find a

subspace in which the within-class scatter in the mapped

discriminant space is made as small as possible relative to

the between-class scatter for multi-classes. LDA is regarded

as one of the well known methods to extract the best

discriminating features for multi-class classification.

Let an m dimensional feature vector be x =
(x1, . . . , xm)T . Consider K classes denoted by

{C1, . . . , CK}. Assume that we have N feature vectors

{xi|i = 1, . . . , N} as training samples and they are labeled

as one of the K classes. Then LDA constructs a dimension

reducing linear mapping from the input feature vector x to

a new feature vector y as

y = ATx (1)

where A = [aij ] is the coefficient matrix.

The discriminant criterion

J = tr
(

Σ̂−1
T Σ̂B

)

(2)

is used to evaluate the performance of the discrimination of

the new feature vectors y, where Σ̂T and Σ̂B are respectively

the total covariance matrix and the between-class covariance

matrix of the new feature vectors y. The objective of LDA

is to maximize the discriminant criterion J .

The optimal coefficient matrix A is then obtained by

solving the following generalized eigenvalue problem

ΣBA = ΣTAΛ (ATΣTA = I) (3)

where Λ = diag (λ1, . . . , λL) is a diagonal matrix of eigen

values and I denotes the unit matrix. The matrices ΣT

and ΣB are respectively the total covariance matrix and the

between-class covariance matrix of the input feature vectors

x, and they are computed as

ΣT =
1

N

N
∑

i=1

(xi − x̄T )(xi − x̄T )
T (4)

ΣB =
K
∑

k=1

P (Ck)(x̄k − x̄T )(x̄k − x̄T )
T , (5)

where P (Ck), x̄k and x̄T denote a priori probability of the

class Ck, the mean vector of the class Ck and the total mean

vector, respectively. Usually we compute the probability of

the class Ck as P (Ck) = Nk

N , where Nk is the number of

input vectors of the class Ck and N is the number of whole

input vectors.

The j-th column of A is the eigenvector corresponding

to the j-th largest eigenvalue. Therefore, the importance of

each element of the new feature vector y is evaluated by the

corresponding eigenvalues. The dimension of the new feature

vector y is bounded by min(K − 1, N) because the rank of

the matrix ΣB is bounded by min(K − 1, N).

B. Kernel Discriminant Analysis

Recently the kernel discriminant analysis (KDA) has been

successfully applied in many applications [2], [3], [4]. The

KDA is one of the nonlinear extensions of LDA and con-

structs a nonlinear discriminant mapping as a linear com-

bination of kernel functions. This is similar with the kernel

Support Vector Machine (SVM) which constructs a nonlinear

decision functions using kernel functions.

Consider a nonlinear mapping Φ from a input feature

vector x to the new feature vector Φ(x). In KDA the dis-

criminant features y are constructed as a linear combinations

of the new feature Φ(x).

For the case of 1-dimensional feature extraction, the dis-

criminant mapping can be given as

y = aTΦ(x). (6)

Since the coefficient vector a can be expressed as a linear

combinations of the training samples as

a =

N
∑

i=1

αiΦ(xi), (7)



the discriminant mapping can be rewritten as

y =

N
∑

i=1

αiΦ(xi)
TΦ(x)

=

N
∑

i=1

αiK(xi,x) = αTk(x), (8)

where K(xi,x) = Φ(xi)
TΦ(x) and k(x) =

(K(x1,x), . . . ,K(xN ,x)) are the kernel function defined

by the nonlinear mapping Φ(x) and the vector of the kernel

functions, respectively.

Then the discriminant criterion is given as

J =
σ2
B

σ2
T

=
αTΣ

(K)
B α

αTΣ
(K)
T α

, (9)

where

σ2
T =

1

N

N
∑

i=1

||yi − ȳ||2 (10)

σ2
B =

K
∑

k=1

P (Ck)||ȳk − ȳ||2 (11)

Σ
(K)
T =

1

N

N
∑

i=1

(k(xi)− k̄T )(k(xi)− k̄T )
T (12)

Σ
(K)
B =

K
∑

k=1

P (Ck)(k̄k − k̄T )(k̄k − k̄T )
T . (13)

In these definitions, ȳ, ȳk, k̄T , and k̄k denote the total mean

value of the discriminant feature y, the mean value of the

class Ck of the discriminant feature y, the total mean vector

of the kernel feature vector k(x), and the mean vector of the

class Ck of the kernel feature vector k(x), respectively.

From these relations, it is noticed that the problem to find

the optimum coefficients vector α which maximizes the dis-

criminant criterion J is equivalent to apply LDA to the kernel

feature vector k(x). Thus the optimum coefficient vector

α can be obtained by solving the generalized eigenvalue

problem

Σ
(K)
B α = Σ

(K)
W αλ. (14)

For the multi-dimension case, the kernel discriminant

mapping is given by

y = ATk(x), (15)

where the coefficinet matrix A is defined by AT =
(α1, . . . ,αN ). The optimum coefficient matrix A is obtained

by solving the eigenvalue problem

Σ
(K)
B A = Σ

(K)
W AΛ. (16)

Usually the kernel function is defined a priori in KDA.

The polynomial functions

K(x,y) = (xTy + 1)q (17)

or the Radial Basis functions

K(x,y) = exp

(

−
||x− y||2

2σ2

)

(18)

are often used as the kernel function for KDA. However

it is not noticed what the best kernel function for nonlinear

discriminant analysis is. Also the class information is usually

not introduced in these kernel functions.

III. OPTIMUM NONLINEAR DISCRIMINANT ANALYSIS

A. Optimal Nonlinear Discriminant Analysis

Otsu derived the optimal nonlinear discriminant analysis

(ONDA) by assuming the underlying probabilities [5], [6],

[7]. This assumption is similar with the Bayesian decision

theory. Similar with LDA, ONDA constructs the dimension

reducing optimum nonlinear mapping which maximizes the

discriminant criterion J . Namely ONDA finds the optimum

nonlinear mapping in terms of the discriminant criterion J .

By using Variational Calculus, Otsu showed that the opti-

mal non-linear discriminant mapping is obtained as

y =

K
∑

k=1

P (Ck|x)uk (19)

where P (Ck|x) is the Bayesian posterior probability of the

class Ck given the input x. The vectors uk(k = 1, . . . ,K)
are class representative vectors which are determined by the

following generalized eigenvalue problem

ΓU = PUΛ (20)

where Γ = [γij ] is a K × K matrix whose elements are

defined by

γij =

∫

(P (Ci|x)− P (Ci))(P (Cj |x)− P (Cj))p(x)dx

(21)

and the other matrices are defined as

U = [u1, . . . ,uK ]
T

(22)

P = diag (P (C1), . . . , P (CK)) (23)

Λ = diag (λ1, . . . , λL) . (24)

It is important to notice that the optimal non-linear mapping

is closely related to Bayesian decision theory, namely the

posterior probabilities P (Ck|x). Along this line, Fukunaga

et al. [12] discussed the various properties of the criterion

from the viewpoint of such non-linear mappings.

By using the eigen vectors obtained by solving the general-

ized eigenvalue problem (20), we can construct the optimum

nonlinear discriminant mapping from a given input feature x

to the new discriminant feature y as shown in the equation

(19) if we can know or estimate all the posterior proba-

bilities. This means that we have to estimate the posterior

probabilities for real applications. This situation is similar

with the Bayesian decision theory. In other words, a family of

nonlinear discriminant mapping can be defined by changing

the estimation method of the posterior probabilities.



B. Linear discriminant analysis of posterior probabilities

The optimum nonlinear discriminant mapping (19) ob-

tained by ONDA can be rewritten as

y =

K
∑

k=1

P (Ck|x)uk = UTB(x), (25)

where B(x) = (P (C1|x), . . . , P (Ck|x))
T is the vector

of posterior probabilities. This means that the optimum

nonlinear discriminant mapping can be interpreted as a linear

combination of posterior probabilities.

Here we consider the linear discriminant analysis of the

vector of posterior probabilities B(x). Namely the vector

of posterior probabilities B(x) is considered as the input

feature vector and LDA is applied to this vector B(x). The

linear discriminant mapping from this vector B(x) to the

new discriminant feature vector y is defined by

y = UTB(x). (26)

Then the optimum coefficient matrix U which maximizes the

discriminant criterion J is obtained by solving the following

generalized eigenvalue problem

ΦBU = ΦTUΛ. (27)

The matrices ΦT and ΦB are respectively the total covariance

matrix and the between-class covariance matrix of the vectors

of posterior probabilities B(x), and they are given as

ΦT =

∫

(B(x)− B̄T )(B(x)− B̄T )
T p(x)dx (28)

ΦB =

K
∑

k=1

P (Ck)(B̄k − B̄T )(B̄k − B̄T )
T , (29)

where B̄k and B̄T denote the mean vector of the class

Ck and the total mean vector of the vector of posterior

probabilities respectively. By using the relations between Γ,

ΦT , and ΦB shown as

ΦT = Γ (30)

ΦB = ΓP−1Γ, (31)

the eigenvalue problem (27) can be rewritten as

ΓU = PUΛ. (32)

This is the same as the eigenvalue problem (20) of ONDA.

In other words, the optimum nonlinear discriminant mapping

obtained by ONDA is the same as the mapping obtained by

the linear discriminant analysis of the vector of posterior

probabilities B(x). By using the vector of the posterior

probabilities as the new feature vector and applying LDA

to such vectors, we can construct the optimum nonlinear

discriminant mapping from the input vector x to the new

discriminant feature vectors y. Since the mapping is the

same as the optimum nonlinear discriminant mapping, the

constructed mapping is optimum in terms of the discriminant

criterion J .

These results show that the estimation of the posterior

probabilities is also very important in the context of the

discriminant analysis like in the Bayesian decision theory.

C. Linear approximation of ONDA

In the previous subsections, ONDA is derived as the ulti-

mate nonlinear extension of LDA and the optimum nonlinear

discriminant mapping which maximizes the discriminant

criterion J can be obtained by applying LDA to the vector

of posterior probabilities. Then we may have the following

question: in what sense does LDA approximate this optimum

nonlinear discriminant mapping constructed by ONDA ?

The answer to this question was also given by Otsu [7].

The discriminant mapping of LDA can be interpreted as a

linear approximation of the one of ONDA through the linear

approximations of the posterior probabilities P (Ck|x).
Consider a linear approximation of the Bayesian posterior

probabilities P (Ck|x) which is expressed as

L(Ck|x) = bTk x+ b
(0)
k . (33)

To determine the coefficients bTk and b
(0)
k , we minimize the

mean squared errors between the Bayesian posterior proba-

bilities P (Ck|x) and their linear approximations L(Ck|x)

ε2 =

∫

(P (Ck|x)− L(Ck|x))
2p(x)dx. (34)

The optimum linear approximation of the Bayesian poste-

rior probabilities which minimizes the mean squared errors

is given by

L(Ck|x) = P (Ck)[(x̄k − x̄T )
TΣ−1

T (x− x̄T ) + 1] (35)

where ΣT denotes the total covariance matrix of the input

feature vectors x.

It is interesting to note that this function has unit-sum

property as
K
∑

k=1

L(Ck|x) = 1. (36)

This is similar with the property of the probabilities but it’s

value happens to be greater than 1 or less than 0. Namely

this function L(Ck|x) is an approximation of the Bayesian

posterior probabilities P (Ck|X) but it does not satisfy some

properties of the probability.

Consider the approximation of the optimum nonlinear dis-

criminant mapping obtained by ONDA by substituting these

linear approximations L(Ck|x) for the Bayesian posterior

probabilities P (Ck|x) in (19) and (20). By this substitution,

the equation (19) becomes

y =

K
∑

k=1

L(Ck|x)uk

= UTPMTΣ−1
T (x− x̄T ) + UTp (37)

where

M = [(x̄1 − x̄T ), . . . , (x̄K − x̄T )]
T (38)

p = (P (C1), . . . , P (CK))T . (39)

Also by substituting these linear approximations L(Ck|x) for

the Bayesian posterior probabilities P (Ck|x), the matrix Γ
in Eq. (20) of ONDA becomes

Γ = PMTΣ−1
T MP. (40)



By multiplying M from the left and substituting A for

Σ−1
T MPU , we have

ΣBA = ΣTAΛ. (41)

This is the same as the eigenvalue problem (3) of LDA.

This means that the linear discriminant mapping of LDA is

the linear approximation of the one of ONDA through the

linear approximation L(Ck|x) of the posterior probabilities

P (Ck|x). This also shows the importance of the estimation

of the posterior probabilities to construct the discriminant

mapping.

Linear approximation L(Ck|x) of the posterior probabili-

ties are used in LDA. However a linear model is not suitable

to estimate the posterior probabilities because they are not

satisfy the property on the probability. To overcome this

drawback, Kurita et al. [9] proposed Logistic discriminant

analysis (LgDA) in which the posteriori probabilities are es-

timated by Multi-nominal logistic regression (MLR) instead

of the linear model in LDA. MLR is known as one of the

members of the generalized linear model (GLM) which is

flexible generalization of the ordinary least squares regres-

sion. MLR can naturally estimate the posteriori probabilities

by modifying the outputs of the linear predictor by the link

function [13]. Thus LgDA can be regarded as a natural

extension of LDA by generalizing the linear model to the

generalized linear model. It was shown that the discriminant

spaces constructed by the LgDA were drastically improved

for the several standard repository datasets.

Kurita et al. [11] also proposed the neural network based

non-linear discriminant analysis in which the outputs of the

trained MLP are used as the estimates of the posteriori

probabilities because the outputs of the trained multi-layered

Perceptron (MLP) for pattern classification problems can be

regarded as the approximations of the posteriori probabilities

[10].

IV. DISCRIMINANT KERNELS

A. Dual Problem of ONDA

In the KDA, usually the kernel function is defined a priori.

The polynomial functions or the Radial Basis functions are

often used as the kernel functions but such kernel functions

are general and are not related to the discrimination. Thus

the class information is usually not introduced in these kernel

functions. Also it is not known what the optimum kernel

function for nonlinear discriminant analysis is.

This paper derives the optimum kernel function in terms

of the discriminant criterion by investigating the optimum

nonlinear discriminant mapping constructed by ONDA. The

optimum kernel function can be derived by investigating the

dual problem of the eigenvalue problem of ONDA. Since

ONDA is optimum in terms of the discriminant criterion,

the derived discriminant kernel function is also optimum in

terms of the discriminant criterion.

The eigenvalue problem of ONDA given by the equation

(20) is the generalized eigenvalue problem. By multiplying

P−1/2 from the left, this eigen equations can be rewritten as

the usual eigenvalue problem as

P−1/2ΓP−1/2P 1/2U = P 1/2UΛ. (42)

By denoting Ũ = P 1/2U , we have the following usual

eigenvalue problem as

(P−1/2ΓP−1/2)Ũ = ŨΛ. (43)

Then the optimum nonlinear discriminant mapping of

ODNA is rewritten as

y = UT B̃(x) = ŨTP−1/2B̃(x) = ŨTφ(x) (44)

where φ(x) = P−1/2B̃(x) and B̃(x) = (P (C1|x) −
P (C1), . . . , P (CK |x)− P (CK))T .

For the case of N training samples, the eigenvalue problem

to determine the class representative vectors (43) is given by

(ΦTΦ)Ũ = ŨΛ, (45)

where Φ = (φ(x1), . . . ,φ(xN ))T .

The dual eigenvalue problem of (45) is then given by

(ΦΦT )V = V Λ. (46)

From the relation on the singular value decomposition of

the matrix Φ, these two eigenvalue problems (45) and (46)

have the same eigenvalues and there is the following relation

between the eigenvectors Ũ and V as

Ũ = ΦTV Λ−1/2. (47)

By inserting this relation into the nonlinear discriminant

mapping (44), we have

y = Λ−1/2V TΦφ(x)

=

N
∑

i=1

Λ−1/2viφ((xi)
Tφ(x)

=

N
∑

i=1

αiK(xi,x)−α0 (48)

where

K(xi,x) = φ((xi)
Tφ(x) + 1

=

K
∑

k=1

(P (Ck|xi)− P (Ck)(P (Ck|x)− P (Ck)

P (Ck)
+ 1

=

K
∑

k=1

P (Ck|xi)P (Ck|x)

P (Ck)
. (49)

This shows that the kernel function of the optimum nonlinear

discriminant mapping is given by

K(x,y) =

K
∑

k=1

P (Ck|x)P (Ck|y)

P (Ck)
. (50)

We call this function the discriminant kernel function (DKF).

The derived DKF is defined by using the Bayesian a

posterior probabilities P (Ck|x). This means that the class

information is explicitly introduced in this kernel function.



B. Discriminant Kernel Functions

For real application, we have to estimate the Bayesian a

posterior probabilities similar with the Bayesian decision

theory, but this means that we can defined a family of

discriminate kernel functions by changing the estimation

method of the Bayesian a posterior probabilities.

There are many ways to estimate the Bayesian a posterior

probabilities. Depending on the estimation method, we can

define the corresponding DKF. Here two simple examples

of the DKFs are shown. One is the DKF in which the

Bayesian a posterior probabilities are estimated by assuming

the probability densities of each class as multivariate normal

distribution. The other is the DKF in which they are esti-

mated by applying the K-nearest-neighbor density estimation

technique to each class separately.

1) The Gaussian Disctibution: The one of the most simple

methods to estimate the Bayesian a posterior probabilities

is to assume the probability densities of each class as

multivariate normal distribution. If the Bayesian a posterior

probabilities are estimated from the training samples, we can

easily define the discriminant kernel function by using the

equation (50).

If the probability densities p(x|Ck) of each class Ck can

be defined as multivariate normal N(x|x̄k,Σk), that is

N(x|x̄k,Σk) =
1

√

(2π)d|Σk|
exp

[

−
1

2
(x− x̄k)

TΣk(x− x̄k)

]

(51)

and the parameters x̄k and Σk are estimated from the training

samples, the Bayesian a posterior probabilities are given by

P (Ck|x) =
P (Ck)N(x|x̄k,Σk)

p(x)
, (52)

where the probability density of x is given by

p(x) =

K
∑

k=1

P (Ck)N(x|x̄k,Σk). (53)

This is the most simple way to estimate the Bayesian a

posterior probabilities and is known as parametric method.

Then the corresponding DKF is given as

KGauss(x,y) =

K
∑

k=1

P (Ck)
N(x|x̄k,Σk)N(y|x̄k,Σk)

p(x)p(y)
.

(54)

For more complicated distributions, we can estimate the

probability densities p(x|Ck) by using the mixtures of Gaus-

sians as

p(x|Ck) =

Jk
∑

j=1

π
(k)
j N(x|x̄

(k)
j ,Σ

(k)
j ) (55)

with the components N(x|x̄
(k)
j ,Σ

(k)
j ), where x̄

(k)
j and Σ

(k)
j

are their own mean and covariance.

2) Nearest-neighbor: We can also estimate the Bayesian

a posterior probabilities by applying the K-nearest-neighbor

density estimation technique to each class separately.

Assume we have a training data set comprising Nk sam-

ples in the class Ck with N samples in total. Consider a

sphere centered on x containing precisely K samples in the

sphere. Suppose this sphere has volume V (x) and contains

Kk(x) samples from the class Ck. Then the estimate of the

probability density associated with the class Ck is estimated

by

p(x|Ck) =
Kk(x)

NkV (x)
. (56)

Similarly the unconditional density is given by

p(x) =
K

NV (x)
. (57)

The probabilities of each class are also given by

P (Ck) =
Nk

N
. (58)

Using Bayes’s theorem, the Bayesian a posterior proba-

bilities are obtained as

P (Ck|x) =
Kk(x)

K
. (59)

Thus the DKF for this estimation method is given by

Kk−NN (x,y) =
N

K2

K
∑

k=1

Kk(x)Kk(y)

Nk
. (60)

This is one of the examples of the non-parametric esti-

mation of the DKF. Similarly we can estimate the Bayesian

a posterior probabilities by using Kernel density estimators

and use them to define the DKF.

V. EXPERIMENTS

To investigate the validity of the proposed Discriminant

Kernel Functions, the kernel matrix was computed for

Fisher’s Iris data set. The dataset consists of 50 samples

from each of three species of Iris flowers. Four features

are measured from each sample, they are the length and the

width of sepal and petal, in centimeters. Here the data was

rearranged such that the first 25 samples are from the class

C1, the next 25 samples are from the class C2, the next 25
samples are from the class C3, the next 25 samples are from

the class C1, and so on.

The Bayesian a posterior probabilities are estimated by

assuming the probability densities of each class as multivari-

ate normal distribution. The estimated kernel matrix is shown

in Figure 1 (a). It is noticed that kernel function values of

samples with the same class label are high and they are low

for the samples with different class labels.

The kernel matrix computed by using the Radial Basis

functions is also shown in Figure 1 (b). The kernel parameter

σ was set to 1.0. By comparing these two figures of the kernel

matrices, the kernel matrix estimated by the proposed method

gives the clear discrimination between the different classes

and the values are more deterministic, namely differences



between the high values and the low values are clearer than

the kernel matrix of the Radial Basis functions.

The kernel matrix computed by using the linear model

is also shown in Figure 1 (c). Since the LDA is the linear

approximation of the ONDA in which the Bayesian posterior

probabilities are estimated by using linear model, this kernel

matrix corresponds to the one used in LDA. The discrimi-

nation between the classes of this kernel matrix is also not

clear.

Comparisons of these kernel matrices shows that the

proposed discriminant kernel function gives better discrim-

ination than the Radial Basis Kernel or the kernel used in

LDA.

The discriminant space constructed by using the kernel

functions shown in Figure 1 are shown in Figure 2. Figure

2 (a) shows the discriminant space constructed by using

the discriminant kernel function estimated by the proposed

method assuming the Normal Distribution. It is noticed that

the samples of the class C1 gather on a single point and the

samples from the class C2 and C3 are aligned on a straight

line.

The discriminant space constructed by KDA is shown in

Figure 2 (b), where the Radial Basis Kernel (σ = 1) is

used as the kernel function. The configuration of the samples

is roughly similar with the discriminant space constructed

by using the proposed discriminant kernel function. But the

samples from the class C1 are scattered and the samples from

the class C2 and C3 are not aligned on a straight line.

The discriminant space constructed by LDA is also shown

in Figure 2 (c). In this case, the samples are scattered more

than the other two discriminant spaces.

From these comparisons, we can say that the discriminant

kernel function proposed in this paper is effective for dis-

criminant analysis.

VI. CONCLUSIONS

Based on the theory on the ONDA, the optimum kernel

function was derived by investigating the optimum discrimi-

nant mapping constructed by the ONDA. Since the ONDA is

optimum in terms of the discriminant criterion, the proposed

discriminant kernel function is optimum in terms of the

discriminant criterion. The derived kernel function is defined

by using the Bayesian a posterior probabilities. This means

that the class information is naturally introduced in the

proposed kernel function.

For real application, we have to estimate the Bayesian a

posterior probabilities similar with the Bayesian decision

theory, but this means that we can defined a family of

discriminate kernel functions by changing the estimation

method of the Bayesian a posterior probabilities. In this

paper, two simple examples of the DKFs are shown. One is

the DKF in which the Bayesian a posterior probabilities are

estimated by assuming the probability densities of each class

as multivariate normal distribution. The other is the DKF in

which they are estimated by applying the K-nearest-neighbor

density estimation technique to each class separately. Since

the theory of the discriminant kernel functions is general,

any other methods to estimate the Bayesian a posterior

probabilities can be utilized to define the discriminant kernel

functions.

The effectiveness for discrimination of the proposed DKF

was confirmed by comparing the kernel matrix computed

by the proposed DKF with the one computed by the Radial

Basis Kernel. Also the discriminant space constructed by the

proposed DKF was better than the one constructed by using

the Radial Basis Kernel.

As the future works, we would like to investigate the

relations between the effectiveness of the discrimination

and the estimation methods of the Bayesian a posterior

probabilities. Also we would like to show the merit of the

proposed DKF as the kernel function of the support vector

machines (SVM).
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(a) Kernel matrix estimated by the proposed method

assuming the Normal Distribution
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(b) Kernel matrix computed by the Radial Basis Kernel

(σ = 1)
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(c) Kernel matrix estimated by using the linear model

(Kernel matrix used in LDA)

Fig. 1. Comparison of kernel matrices

(a) Discrimination space constructed by using the

discriminant kernel function estimated by the proposed

method assuming the Normal Distribution

(b) The discriminant space constructed by KDA (the Radial

Basis Kernel with σ = 1)
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(c) The discriminant space constructed by LDA

Fig. 2. Comparison of the discriminant spaces.


