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Abstract. In this paper, we propose a novel method for generic ob-
ject recognition by using higher-order local auto-correlations on proba-
bility images. The proposed method is an extension of bag-of-features
approach to posterior probability images. Standard bag-of-features is
approximately thought as sum of posterior probabilities on probabil-
ity images, and spatial co-occurrences of posterior probability are not
utilized. Thus, its descriptive ability is limited. However, using local
auto-correlations of probability images, the proposed method extracts
richer information than the standard bag-of-features. Experimental re-
sults show the proposed method is enable to have higher classification
performances than the standard bag-of-features.

1 Introduction

Genetic object recognition technologies are important for automatic image search.
Despite many methods have been researched until now, the performance is still
inferior to human recognition system.

The most popular approach for generic object recognition is bag-of-features
[3], because of its simplicity and effectiveness. Bag-of-features is originally in-
spired from text recognition method “bag-of-words”, and uses orderless collection
of quantized local features. The main steps of bag-of-features are : 1) Detection
and description of image patches. 2) Assigning patch descriptors to a set of pre-
determined codebooks with a vector quantization algorithm. 3) Constructing a
bag of features, which counts the number of patches assigned to each codebook.
4) Applying a classifier by treating the bag of features as the features vector,
and thus determine which category to assign to the image.

It is known that the bag of features method is robust for background clutter,
pose changes, intra-class variations and produces good classification accuracy.
However, several problems are existed for applying to image representation. To
solve these problems, many methods are proposed. Some of these methods are
spatial pyramid binning to utilize location informations [7], higher level codebook
creation based on local co-occurrence of codebooks [1][13][18], improvement of
codebook creation[9][10][11] and region of interest based matching [14].



In this paper, we present a novel improvement of bag-of-features. The main
novelty of the proposed method is to utilize probability images for feature ex-
traction. The standard bag-of-features is approximately thought as a method so
called “sum of posterior probabilities” on probability images. So the method does
not utilize local co-occurrence on probability images. We applied higher-order lo-
cal auto-correlations on probability images, thus richer information of probability
images can be extracted. We call this image representation method as “Prob-
ability Higher-order Local Auto-correlations (PHLAC)”. PHLAC has desirable
property for recognition, namely shift-invariance, additivity and synonymy [19]
invariance. We show this image representation method PHLAC has the signifi-
cantly better classification performance than the standard bag-of-features.

The proposed method gives the different direction of improvement to the
currently proposed methods of bag-of-features (e.g. Correlation of codebooks,
improvement of clustering and spatial pyramid binning), so this method can be
combined with those methods in the future.

2 Related Work

The image feature extraction using local co-occurrence is recognized as an impor-
tant concept [6] for recognition. Recently, several methods have been proposed
using correlation. These are categorized to feature level co-occurrence and code-
book level co-occurrence. The examples of feature level co-occurrence are local
self similarity [12] and GLAC [5]. We can use these features in the codebook
creation process, then the codebook level co-occurrence and the feature level
co-occurrence is thought as another concept. The examples of codebook level
co-occurrence are correlations [13] and Visual Phrases [18]. When using code-
book level co-occurrence, we need large number of dimensions, e.g. in proportion
to codebook size × codebook size when we consider only co-occurrence of two
codebooks. Thus, features selection method or dimension reduction method is
necessary and current researches are focused on how to mining frequent and
distinctive codebook sets [17][18][19]. The expressions of co-occurrence using a
generative model have also been proposed [1] [16]. But, these methods require a
complex latent model and expensive parameter estimations. On the other hand,
our method can be easy implemented and is relatively low dimension but effective
for classifications, because it is based on auto-correlations on posterior proba-
bility images. The methods which give posterior probability to a codebook have
also been proposed [15][14], but these methods are not using auto-correlation of
codebooks.

3 Probability High-order Local Auto-Correlations

3.1 Probability Images

Let I be an image region and r= (x, y)t be a position vector in I. The image
patch whose center is rk are quantized to M codebook {V1,...,VM} by local fea-
ture extraction and vector quantization algorithm VQ(rk) ∈ {1,...,M}. These



steps are same as the standard bag-of-features [7]. Posterior probability P (c|Vm)
of category c ∈ {1, ..., C} is assigned to each codebook Vm using image patches on
training images. Several forms of estimating posterior probability can be taken.
(a) Codebook plausibility. The posterior probability is estimated by Bayes’ the-
orem as follows.

P (c|Vm) =
P (Vm|c)P (c)

P (Vm)
, (1)

where, P (c) = 1/C, P (Vm)=( # of Vm )/(#of all patches), P (Vm|c) = (# of
class c ∧ Vm )/(# of class c patches). Here, P (c) is common constant, so set to
1.
(b) Codebook uncertainty. In our method, the probability is not restricted to the
theoretical definition of probability. The pseudo probability which indicates the
degree of supporting to each category from a codebook is considered. Codebook
uncertainty is the percentage of class c in given codebook. This is defined as
follows.

P (c|Vm) =
P (Vm|c)P (c)∑C

c=1 P (Vm|c)
. (2)

(c) SVM weight. The weight of each codebook when learning by one-against-
all linear SVM [4] is used to define pseudo probability. Assume we use K lo-
cal image patches from one image, then the histogram of bag-of-features H =
(H(1), ..., H(M))becomes as follows.

H(m) =
K∑

k=1

{
1 if (V Q(xk) = m)
0 otherwise

. (3)

Using the histogram of bag-of-features, the classification function of one-against-
all linear SVM becomes as follows.

arg max
c∈C
{fc(H) =

M∑
m=1

αc,mH(m) + bc}, (4)

where, αc,m is the weight for each histogram bins and bc is the learned threshold.
We transform the weight of each histogram to non-negative by αc,m ← αc,m −
min{αc} and normalize it by αc,m ← αc,m∑M

m=1
αc,m

. Then we can obtain the pseudo

probability by SVM weight as follows.

P (c|Vm) =
αc,m −min{αc}∑M

m=1(αc,m −min{αc})
. (5)

We used SVM weight as pseudo probability because the proposed method be-
comes a complete extension of the standard bag-of-features when using this
pseudo probability (Sec.3.3).

In this paper, we assume to use grid sampling of local features [7] per p
pixel interval, because of simplicity. We denote the set of sample points as Ip

and we call the map of (pseudo) posterior probability of codebook of each local



Fig. 1. Probability images (codebook plausibility): Original image, probability of
BIKE(left), probability of CAR(middle), probability of PEOPLE(right). This proba-
bility image is calculated by 2 pixel interval (p=2), for easy understanding the original
images are resized to the same size to probability images. The actual size of the orig-
inal images are larger than the probability images by p×p pixels. Local features and
codebook are the same as those used in experiment.

regions as a probability image. Examples of probability images are shown in
Fig. 1. White color shows the high probability. The data are comes from IG02
used in the following experiment. The number of categories is 3 (BIKE, CAR
and PEOPLE). It is noticed the human-like contours are appeared in PEOPLE
probability.

3.2 PHLAC

We call HLAC features [6] on this probability images as PHLAC. The definition
of Nth order PHLAC is as follows.

R(c,a1, ...,aN ) =
∫

Ip

P (c|VV Q(r))P (c|VV Q(r + a1)) · · · P (c|VV Q(r + aN ))dr.

(6)
In practice, Eq.(6) can take so many forms by varying the parameters N and
an. In this paper, these are restricted to the following subset: N ∈ {0, 1, 2} and
anx, any ∈ {±∆r × p, 0}. By eliminating duplicates which arise from shifts, the
mask patterns of PHLAC becomes as shown in Fig. 2. This mask pattern is
the same as 35 HLAC mask patterns [6]. Thus, PHLAC inherits the desirable
properties of HLAC for object recognition, namely shift-invariance and additiv-
ity. Although PHLAC does not have scale-invariance, we can deal with scale
changes by using several size of mask patterns.

By calculating correlations in local regions, PHLAC becomes to robust against
small spatial difference and noise. There are several alternatives of preprocessing
of these local regions such as {max, average, median}. We found average is the



Algorithm1. PHLAC computation
Training Image :
1) Create codebook by local features and clustering algorithm (e.g. SIFT + K means).
2) Configure posterior probability of each codebook {plausibility, uncertainly, SVM}.
Training and Test Image :
3) Create C posterior probability images by p pixel interval.
4) Preprocessing posterior probability images (local averaging).
5) Calculate HLAC on posterior probability images by sliding HLAC mask patterns.

Fig. 2. PHLAC: local averaging size(left), extracting process(middle) and mask pat-
terns(right).The number {1,2,3} of mask patterns show the frequency for which its
pixel value is used for product in Eq.(6).

best for other settings. Thus the practical formulation of PHLAC is given by

0thorder RN=0(c) =
∑
r∈Ip

La(P (c|VV Q(r))) (7)

1storder RN=1(c,a1) =
∑
r∈Ip

La(P (c|VV Q(r)))La(P (c|VV Q(r + a1)))

2ndorder RN=2(c,a1, a2) =
∑
r∈Ip

La(P (c|VV Q(r)))La(P (c|VV Q(r + a1)))

La(P (c|VV Q(r + a2))),

where La means local averaging on a (∆r × p) × (∆r × p) region centered on
r(Fig. 2). Actually, PHLAC are obtained by HLAC calculation on local averaged
probability image (see Algorithm.1.). PHLAC are extracted from probability
images of all categories, thus the total number of features of PHLAC becomes
35×C. There are two possibilities of classification using PHLAC image represen-
tations. One is the classification using all PHLAC of all categories (PHLACALL)
and the other is using one categories PHLAC for each one-against-all classifiers
(PHLACCLASSWISE). We compare these methods in the following experiments.



3.3 Interpretation of PHLAC

Bag-of-features(0th) + local auto-correlations(1st + 2nd) : If we use SVM
weights as pseudo probabilities, then 0-th order of PHLAC becomes the same as
the classification by the standard bag-of-features using linear-SVM. Because H
is a histogram (see Eq.(3)), Eq.(4) is rewritten as follows.

arg max
c∈C
{

K∑
k=1

αc,V Q(rk) + bc} (8)

= arg max
c∈C
{

K∑
k=1

(αc,V Q(rk) −min{αc}) + Kmin{αc}+ bc} (9)

= arg max
c∈C
{AcRN=0(c) + Bc}, (10)

where Ac =
∑M

m=1(αc,m−min{αc}), Bc = Kmin{αc}+bc. (In this transforma-

tion from Eq.(9) to Eq.(10), the relationship RN=0(c) =
∑K

k=1

αc,V Q(rk)−min{αc}
Ac

is used.) This equation shows that the classification by the standard bag-of-
features is possible by using only 0-th order of PHLAC and the learned param-
eters Ac and Bc. (Exactly, this was assumed no-preprocessing in the calculation
of PHLAC ). This is the case that SVM weight is used as pseudo probability,
but it is expected other probabilities have also similar property. Because the
histogram of the standard bag-of-feature is created by not utilizing local co-
occurrences, the 0th order of PHLAC is thought as almost the one-against-all
bag-of-features classifications. Higher order features of PHLAC have richer infor-
mation of probability images (e.g. the shape of local probability distributions).
Thus, if any commonly existed patterns are contained in the specific classes, this
representation can be expected to achieve better classification performance than
the standard bag-of-features.

The relationship of the standard bag-of-features and PHLAC classification is
shown in Fig.3. In our PHLAC classification, we train additional classifier using
0th order PHLAC {RN=0(1), ...,RN=0(C)} and higher order PHLAC as feature
vector. Thus, the only 0-th order PHLACSV M can achieve better performance
than the standard bag-of-features.
Synonymy invariance : The synonymous codebooks are the codebooks which
have similar posterior probabilities [18]. PHLAC calculates directly on the prob-
ability images, the same features can be extracted even a local appearance is
exchanged to other appearances whose posterior probabilities are same. This
synonymy invariance is important for creating compact image representations
[19].

4 Experiment

We compared the classification performances of the standard bag-of-features and
PHLAC using two commonly used image datasets: IG02[8] and fifteen natural
scene categories [7].



Fig. 3. Schematic comparison of the standard bag-of-features classification with our
proposed PHLAC classification.

To obtain reliable results, we repeated the experiments 10 times. Ten random
subsets were selected from the data to create 10 pairs of training and test data.
For each of these pairs a codebook was created by using k-means clustering on
training set. For classification, a linear SVM was used by one-against-all. As
implementation of SVM, we used LIBSVM. Five-fold cross-validation on the
training set was used to tune parameters of SVM. The classification rate we
report is the average of the per-class recognition rates which in turn are averaged
over the 10 random test sets.

As local features, we used a SIFT descriptor [2] sampled on a regular grid.
The modification by the dominant orientation was not used and computed on
16×16 pixel patch sampled every 8 pixels (p = 8). In the codebook creation
process, all features sampled every 16 pixel on all training images were used
for k-means clustering. As normalization method, we used L2-norm normaliza-
tion for both the standard bag-of-features and PHLAC. In PHLAC, the features
were L2 normalized by each auto-correlations order. Below we denote the clas-
sification of PHLAC using probability by codebook plausibility as PHLACPlau,
PHLAC using pseudo probability by codebook uncertainty as PHLACUnc and
SVM weight as PHLACSV M . Note that although the SVM of standard bag-of-
features is used for Eq.(5) of PHLACSV M , the result of 0th order PHLACSV M is
different from the result of standard bag-of-features from the reason mentioned
in Sec 3.3.

4.1 Result of IG02

At first, we used IG02 [8](INRIA Annotations for Granz-02) dataset which con-
tains large variations of target size. The classification task is to classify the test
images to 3 categories, CAR, BIKE and PEOPLE. The number of training im-



Fig. 4. Recognition rates of IG02. The basic setting is codebook size = 400 ((b)-(f)),
Spatial Interval ∆r= 12 ((a),(b),(d)-(f)) and PHLACALL ((a)-(e)).

ages of each category is 162 for CAR, 177 for BIKE and 140 for PEOPLE. The
number of test images is same as training images. We resampled 10 sets of train-
ing and test sets from all images. Image size is 640×480 pixels or 480×640 pixels.
Maraszalek at el prepared mask images which indicates target object locations.
We also attempted to estimate probability of Eq.(1) by using only target object
region’s local features. We denote this PHLAC features as PHLACPlau−MASK .
The experimental results are shown in Fig. 4.
Overall performance: As basic settings we used spatial interval ∆r=12 and
PHLACALL. In all codebook size, all types of PHLAC achieves higher classifi-
cation performances than the standard bag-of-features (Fig.4(a).). PHLACSV M

achieves higher classification rates than PHLACP lau and PHLACUnc. By using
mask images for estimating probability, the performance of PHLACP lau be-
comes better when the codebook size is larger than 400.
Recognition rates per category: The classification rates of PHLAC becomes
higher than the standard bag-of-features almost all cases (Fig.4(b).). Especially,



the classification rates of PEOPLE are higher than the standard bag-of-features
in any settings of PHLAC. This is because human-like contours which are shown
in Fig.1 are appeared in human’s regions and not existed in other images.
Spatial interval: The spatial interval seems to be better near ∆r=12 (12×8
= 96 pixel) in all settings except for PHLACSV M (Fig.4(c).). The classification
rates of PHLACPlau and PHLACUnc become lower as to increase the spatial
interval. In the case of PHLACSV M , classification rates is still high when the
spatial interval becomes large and the peak of classification rates is appeared near
∆r=20. But the classification rates in ∆r=20, PHLACPlau and PHLACUnc be-
come to be low, so we set the spatial interval as to ∆r=12 as basic settings. In
practice, multi-scale spatial interval is more useful than single spatial interval,
because there are several optimal spatial intervals.
Auto-correlation order: In the case of PHLACPlau and PHLACUnc, the clas-
sification rates become higher as to increase auto-correlation order (Fig.4(d)).
PHLACSV M is higher classification performance than other PHLAC only 0-
th order auto-correlations. This is the reason of high classification rates of
PHLACSV M in the large spatial intervals. Using up to 2nd order auto-correlations,
PHLACSV M also can achieve the best classification performance. Especially
in the optimal spatial interval of PHLACSV M (∆r=20), the 2nd order auto-
correlation of PHLACSV M were 5.01% better than 0th order (Fig.4(c)).
Preprocessing: In local averaging and no preprocessing seems to be compara-
ble in Fig.4(e). But when we tried another codebook size and spatial intervals,
the local averaging were often outperformed no preprocessing cases. Thus, we
recommend to using local averaging for preprocessing.
PHLAC type: PHLACALL are better performance than PHLACCLASSWISE

in PHLACPlau and PHLACUnc (Fig.4(f)). On the other hand PHLACSV M are
better in the case of using PHLACCLASSWISE . This indicates the dimension for
training of each SVM can be reduced to 35 dimension when using PHLACSV M .

4.2 Result of scene-15

Next we performed experiments on Scene-15 dataset [7]. The Scene-15 dataset
consists of 4485 images spread over 15 categories. The fifteen categories contain
200 to 400 images each and range from natural scene like mountains and forest
to man-made environments like kitchens and office. We selected 100 random
images per categories as a training set and the remaining images as the test
set. We used PHLACALL and experimentally set spatial interval as to ∆r = 8.
Some examples of dataset images and probability images are shown in Fig.5.
Recognition rates of scene 15 are shown in Fig.6. In Scene-15, PHLAC achieves
higher recognition performances than the standard bag-of-features classification
in all categories and all number of codebook. In this dataset, PHLACPlau and
PHLACUnc indicates higher accuracy than PHLACSV M . In the case of codebook
size is 200, PHLACPlau gives more than 15% higher recognition rate.

In our experimental settings, classification rates of the standard bag-of-
features using histogram intersection kernel [7] is 66.31(± 0.15)% in codebook
size 200 and PHLACPlau achieves 69.48 (± 0.27) % by using linear SVM. While



office opencountry forest mountain

industrial coast bedroom highway

Fig. 5. Example of Scene15. Probability image shows probabilities of own category.

Fig. 6. Recognition Rates of Scene15: per codebook size (left) and per category when
codebook size is 200(right).

Lazabnik reported 72.2(± 0.6) % on the standard bag-of-features, this difference
is caused by the difference of implementations such as feature extractions and
codebook creations. The proposed method and the standard bag-of-features use
the same codebook and features through in our experiments.

5 Conclusion

In this paper, we proposed an image description method using higher-order local
auto-correlations on probability images called ”Probability Higher-order Auto
Correlations(PHLAC)”. This method is regarded as an extension of the standard
bag-of-features for improving the limitation of spatial information by utilizing
co-occurrence of local spatial pattern in posterior probabilities. This method
has shift-invariance and additivity as in HLAC [6]. Experimental results show
the proposed method achieved higher classification performance than the stan-
dard bag-of-features in average 2 % and 15 % in the case of IG02 and Fifteen
Scene Dataset respectively using 200 codebooks. We think combinations with
other method (e.g. spatial binning and correlation features) probably improve
the performance by the proposed probability auto-correlations scheme.
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