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ABSTRACT

A novel visual tracking algorithm is proposed in this pa-
per. The algorithm plays an important role in a cooperative
driving support system (DSSS) that is aimed at reducing
traffic fatalities and injuries. The input to the algorithm
is a gray-scale image for every video frame from a road-
side camera, and the algorithm can be used to detect the
existence of vehicles on the road and then track their tra-
jectories. In this algorithm, discriminative pixel-pair fea-
ture selection is adopted to discriminate between an im-
age patch with an object in the correct position and image
patches with objects in an incorrect position. The proposed
algorithm showed stable and precise tracking performance
when implemented in various illumination conditions and
traffic conditions; the performance was especially good for
the low-contrast vehicles running against a high-contrast
background.
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1 Introduction

According to government statistics[1], in Japan, 5,155 peo-
ple were killed in 766,177 traffic accidents in 2008. Al-
though the accidents have been decreasing over the past
eight years, the prevention of traffic accidents is still one of
the most critical tasks in our society. For this purpose, we
are developing a cooperative driving safety support system
(DSSS) comprising roadside visual sensors to recognize
traffic conditions for providing driving assistance. The traf-
fic conditions are determined on the basis of the existence
(number) of vehicles on the road and their speed (moving
trajectories). While we have developed vehicle detectors to

estimate these conditions, more precise estimation would
be possible if detection and tracking can be combined to
estimate the vehicle movement. Therefore, in this study,
we focus on the vehicle tracking system.

We use gray-scale images from a roadside (above the
road) video camera, and therefore, color-based tracking al-
gorithms such as the mean-shift algorithm are difficult to
implement. Because of the traffic conditions on the road,
the input images may contain scenarios in which it is dif-
ficult to track vehicles, such as the presence of many ve-
hicles with similar appearances, partially occluded or low-
contrast vehicles, illumination changes, and high-contrast
background texture. Therefore, a robust shape-based track-
ing algorithm is required.

In this paper, we propose a tracking algorithm that
can be used to select discriminative pixel-pair features in
every video frame. The pixel-pair feature is determined by
a relative difference in the intensities of two pixels[2, 3, 4];
therefore, it is considered to help realize robustness to il-
lumination changes. Our algorithm showed good track-
ing performance for low-contrast vehicles; the tracking was
performed by selecting pixel pairs on the basis of the dis-
criminant criterion.

Related studies such as those on previous tracking al-
gorithms are described in the next section, and the tracking
algorithm involving discriminative pixel-pair feature selec-
tion is described in section 3. In section 4, we present our
experimental results. Some variations of the discriminative
pixel-pair selection are also considered.

2 Previous Visual Tracking Algorithms

More than two decades of vision research has resulted in
the development of some well-known approaches for ob-



ject tracking. The first is based on the background sub-
traction algorithm [14]. In this approach, the background
is dynamically estimated from incoming images, and the
difference between the current and the background images
is estimated to detect the presence of vehicles. While this
approach enables reliable vehicle detection in favorable il-
lumination conditions, the performance of the background
estimation is degraded in heavy traffic conditions because
the movement of vehicles is small and a significant part of
the background is not observable.

The second approach involves the use of a feature-
based tracking algorithm [7, 6]. In this approach, salient
features such as corner features are individually extracted
and tracked and are grouped on the basis of the proxim-
ity of their positions to each other and the similarities in
movements. This approach is robust to changes in the il-
lumination condition. However, the difficulties in feature
grouping (e.g., features of nearby vehicles not being cor-
rectly separated or features of large vehicles not being de-
composed) affects the precision of the vehicle location and
dimension. Although Kim[8] employed the intensity pro-
file as the feature, Kim’s approach can be classified as an
approach of this type.

The third approach is called the mean-shift[9, 10] ap-
proach, in which local features (such as color histograms)
of pixels corresponding to the object are followed. The
mean-shift approach enables robust and high-speed object
tracking, if a local feature that can be used to discriminate
between the object and the background exists. However,
it is difficult to discriminate between nearby objects with
similar colors and to adopt this method for gray-scale im-
ages.

The fourth (and final) approach can be classified as
a discriminative tracking approach. Avidan[11] redefined
the tracking problem as the problem of classifying (or
discriminating between) objects and the background. In
this approach, features are extracted from both the ob-
jects and the background; then, a classifier is trained to
classify (discriminate between) the object and the back-
ground. Hidaka[12] employed rectangle feature for their
classifier and tracked objects by maximizing the classifi-
cation score. Grabner[13] trained a classifier to discrimi-
nate an image patch with an object in the correct position
and image patches with objects in the in-correct position,
thereby, the position of the object could be estimated in
higher precision. While this approach enables stable and
robust object tracking, a large number of computations are
necessary. The approach of Collins[5] and Mahadevan[15]
is classified as an approach of this type, but they selected
discriminative features instead of training classifiers.

Object trackers must cope with the appearance change
(illumination change, deformation etc.), thus most of the
trackers update feature set while tracking a particular ob-
ject. Although updating feature set improves the tracking
performance, it may affects the precision (or stability) of
tracking such as drifting[16]. Therefore, Grabner[16] in-
troduced on-line boosting to update feature weights to at-
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Figure 2. Example of initial image patch for objects

tain a compatibility of adaptation and stability of tracking
classfiers. Woodley[17] employed discriminative feature
selection using a local generative model to cope with ap-
pearance change while maintaining the proximity to a static
appearance model.

3 Discriminative Pixel-Pair Selection for
Tracking

In this section, we first describe our system environment
and then our tracking algorithm, including the definition of
pixel-pair features.

3.1 System Environment

Our purpose is to develop a robust and stable vehicle track-
ing system for images input from a roadside video cam-
era; the input images are gray-scale images and are ob-
tained under various illumination conditions, such as day-
time or night-time illumination conditions, varying illumi-
nation conditions during tracking, conditions with a high-
contrast shadow on the road plane, and those with low-
contrast vehicles (fig. 1). Because of these characteristics,
the background subtraction and mean-shift approaches are
difficult to adopt, and the illumination conditions necessi-
tate robust feature extraction. In addition, the initial po-
sition of the vehicle is given by the vehicle detector as a
square image patch; therefore, the initial patch for a vehi-
cle should contain some background. Figure 2 shows ex-
amples of an initial patch; the background in the patch may
contain other vehicles and high-contrast road texture (such
as road-markings, shadows, and sunlight), and this makes
it difficult to discriminate between the object/background.



Therefore, we employed pixel-pair feature selection,
which is considered to be robust to illumination changes
and redefined the tracking problem as that of discriminat-
ing between the image patch containing the object in the
correct position and the image patches containing the ob-
ject in an incorrect position, rather than a problem of dis-
criminating between object/background[13].

3.2 Problem Definition

We define a tracking problem as a classification problem
of obtaining an image patch that contains the object in the
correct position from a new image frame. A tracking pro-
cedure is briefly illustrated in figure 3. For the ¢;;, frame,
the image frame V'; and a vehicle position (and scale) L;
are obtained from the (¢t — 1), frame (the initial position is
given by the vehicle detector). Our tracking system can
be used to crop a positive (correct) image patch I, us-
ing V', and L;; then, F' false (incorrect) image patches
J tl, vy d f surrounding L, are cropped (figure 4 shows
examples). Next, the features for discriminating between
I, and Js are extracted, instead of training a classifier. Fi-
nally, a search for an image patch I, which is the most
similar to the positive (correct) image patch I, is carried
out from the next frame V4.

We adopt a discriminative pixel-pair feature selection
for our tracking system.

3.3 Pixel-Pair Feature

The pixel-pair feature is an extension of the statistical reach
feature (SRF)[2] in which the restriction on the distance
between pixel pairs is removed. The definition of the pixel-
pair feature and the similarity index ¢(I, J) of a given pair
of images I and J of the same size are described as follows
(figure 5). Suppose the size of the input images is W x H.
Let grid T represent a set of pixel coordinates in the images
I and J. To be specific,

C={G/)i=1,....,W,j=1,...,H}. (1)

We regard the image of size W x H as an intensity function
defined on T'. For an arbitrary pair (p, q) of grid points in
T, we define the value ppf(p > ¢; T},) as follows:

1 I(p)—I(q) > T,

ppf(p - ¢ Tp) =< —1 I(p)—1I(q) <-T, (2
10} otherwise

Here, T,,(> 0) is the threshold of the intensity differ-
ence. We adopt the grid-point pair (p, ¢) as a feature when
ppf(p > ¢;T,) # . Hereafter, we write ppf(p > q)
rather than ppf(p > ¢; T},), unless there is any ambiguity.

Since we do not restrict the selection of p and ¢ from
the image I, it is possible to extract a huge number of pixel-
pair features. Therefore, we limit the number of pixel-pair
features to N. By selecting a set of pairs (p, q) with se-
lection policy s, we denote a random pixel-pair-feature set
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RP; as follows:

RPs(p,q,1,T,,N) := ({ppf(p = q) #®), (3)

where {p,q € ' xT}, p = {p1,...,pn}, and ¢ =
{q1,...,qn}. We define the incremental sign b(p > q)
for the image J for computing the similarity between im-
ages I and J as follows:

J(p) > J(q)
otherwise

bp - ) = { 4 o)

For a pixel pair (p, q) € RP;, a single-pair similarity
r(p, q, J) is defined as follows:

r(p,q,J) = {ppf(p = q) =b(p = q)}. S))

The similarity index ¢,(I, J, RPs) measured by us-
ing a pixel-pair feature set RP is defined as follows:

> payerp, T4, J)
|RP|

¢s(I,J,RP,) = (6)

3.4 Discriminative Pixel-Pair Selection

Pixel-pair features are selected to maximize the discrim-
inant criterion used for discriminating between a correct
image patch I and incorrect image patches Js.

According to our problem definition, the discriminant
criterion is defined for following condition:

o the feature takes binary values +v, —v
e only ONE positive sample exists

e alarge number F of false samples exist

The feature values for the positive sample p and false sam-
ples n’ are defined as

p=w, {nl}f =, —0. @)

Assuming F' > 1, the total mean zir is nearly equal
to the mean for false samples ji,,. Defining m as a number
of false samples of which values are n' = —wv,

Ar = [ = n'

) =

F
2
1n, F—m
Qo)+ > )
1 1

1
= f(F_ 2m)v. ®)
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The total variance and inter-class variance are defined
as follows:

F
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Therefore, the discriminant criterion (ratio of inter-
class variance to the total variance) is defined as

—2 Ry
s (v — fin) (11

72 - _ F _ .
Fr o (0= pn)? + (327 (nf = fin)?

This equation indicates that minimizing the variance
of false samples is equivalent to maximizing the discrimi-
nant criterion.

The variances of false samples are redefined by sub-
stituting fi,, = + (F — 2m)v as

F m F—m
Z(ni —[in)? = Z(*U — [in)® + Z (v = fin)?
1 1 1
49?2
= ?m(F —m). (12)

The variance of false samples attains the minimum
value zero at m = 0 and m = F. Since m = 0 im-
plies that all the false samples have the same value as the
positive sample, discrimination is impossible. At m = F,
the discriminant criterion is maximized to one, where the
similarity between a positive sample and a false sample is



minimized to 0. Therefore, minimizing the single-pair sim-
ilarity index for a pixel-pair feature ¢5(I, J, RP;) is equiv-
alent to maximizing the discriminant criterion. It is also
equivalent to minimizing the sum of similarity indices for
a feature set C,,,;,, as follows:

F
Cmin = Z{Cmin(-L Jiy RPmin)}a (13)

i=1

where C\ins Crin, and RP,,;, represent the selection pol-
icy for minimizing the single-pair similarity for each pixel
pair in the feature set.

Three implementations of discriminative pixel-pair
selection were considered for our experiment:

1. Randomly generate pixel-pair features and collect the
features whose similarity indices c are smaller than a
certain threshold.

2. Randomly generate more pixel-pair features than
needed; then, select the number of required features
from among those with similarity indices less than c;.

3. Randomly generate a certain number of pixel-pair fea-
ture sets; then, select the feature set with the lowest
similarity index as the set C.

We adopted the third implementation in our experiment.

4 Experiment

In this section, we present the performance results of our
system for challenging conditions, such as illumination
changes for a vehicle, presence of a low-contrast vehicle,
a vehicle with partial occlusion, and night-time crowded
traffic. To validate our algorithm based on the discrimina-
tive pixel-pair feature (DPF tracker), the results are com-
pared with the results of tracking algorithm based on the
least sum of the squared difference (SSD tracker).

The parameters for our DPF tracker are as follows:
threshold of intensity difference T}, is 20 (range: 0-255);
the number of false samples, F', is 120 (implying that the
false samples are extracted from the region within £5 pix-
els of the positive sample region in the horizontal or vertical
directions); the number of pixel-pair features, IV, is 200, re-
gardless to the patch size of the object region. 100 feature
sets are generated, and the one with the lowest similarity
index C is adopted.

4.1 Illumination Change for a Vehicle

Figure 6 shows the result in the case of illumination
changes for the tracking vehicle. The green-shaded area
indicates the tracked vehicle position. The black car in
the left lane is tracked, and the patch size for the object is
100 x 100 in the leftmost video frame. In the SSD tracker,
obviously, all the pixels in the image patch are used, and
hence, 10,000 pixel are compared as features. The results

B: Result of SSD Tracker

Figure 6. Tracking result: illumination change

B: Result of SSD Tracker

Figure 7. Tracking result: partial occlusion

for the DPF tracker and the SSD tracker are almost the
same, even though a small number of features are used in
the former (200).

4.2 Partial Occlusion

Figure 7 shows the result for a partially occluded vehicle.
The tracking is very poor when the SSD tracker is used
and the precision (especially for the scale) is not sufficient,
while the object was successfully tracked when the DPF
was used.

4.3 Crowded Night-Time

Figure 8 shows the result for the night-time conditions, yel-
low area indicates manually defined ground-truth, while
green area indicates tracker estimation. Since the initial
patch includes some parts of the other vehicles as back-
ground, the SSD estimations are affected by the back-
ground (parts of other vehicles), and thus, the scale of es-
timations are larger than ground-truth. While the scale of
estimations by the DPF tracker are larger than ground-truth,
the estimations are more sufficient than those by the SSD
tracker.

Figure 9 shows the relative position error: (position
error)/(scale of ground-truth) and figure 10 shows the scale
error: (estimation size)/(ground-truth size). These results
indicates that the DPF tracker attains higher precision with
both of the position and scale estimation.



B: Result of SSD Tracker

Figure 8. Tracking result: crowded traffic at night
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Figure 11. Tracking result: low contrast vehicle

A: Result of DPF Tracker B: Result of SSD Tracker

Figure 12. Tracking miss by SSD tracker

4.4 Low-Contrast Vehicle

Figure 11 shows the results for a low-contrast vehicle. The
black car in the right lane is tracked. The DPF tracker
was successfully used to track the vehicle, while when the
SSD tracker was used, the vehicle was missed in an early
frame. Figure 12 shows a magnified version of the sec-
ond video frame of figure 11. The result indicates that the
SSD tracker was affected by the high-contrast shadow in
the background (road plane), while the DPF tracker showed
robustness to the background texture.

Figure 13 and figure 14 shows the confidence map
for the first frame of the sequence in figure 11 by using
DPF tracker and SSD tracker. The confidence map by DPF



Figure 13. Confidence map for DPF tracker

Confidence Score

Figure 14. Confidence map for SSD tracker

tracker shows a significant peak, while SSD tracker could
not show such peak in confidence. This result indicates that
selection of discriminative pixel-pair feature improves the
precision of tracking.

4.5 The Effect of T},

Figure 15 shows the effect of the threshold 7},. We used the
same sequence as that in subsection 4.4. For T}, = 50, the
tracking failed in the early video frame, and the tracking
is considered to be affected by the difference between the
background with high-contrast texture and the low-contrast
vehicle. For T}, = 20, the optimal tracking performance
was obtained (this is why we set T,, = 20 for other exper-
iments), and for T,, = 10, the object was tracked almost
completely, except for at the end. The extraction of pixel-
pair features with low 7T}, seems to be too sensitive to in-

significant difference in intensities, such as the fluctuations
caused by noise.

5 Conclusion

We proposed a novel algorithm for object tracking. In the
proposed method, pixel-pair features that are considered to
be robust to changes in illumination conditions are adopted
along with discriminative feature selection. The pixel-pair
features are selected to discriminate between the image
patch containing the object in the correct position and im-
age patches containing the object in an incorrect position.
The proposed algorithm showed a stable and precise track-
ing performance with high robustness to changes in illu-
mination and traffic conditions, especially for low-contrast
vehicles. We also evaluated the effect of a threshold param-
eter for pixel-pair features; this is important for tracking of
low-contrast vehicles. We are now developing a coopera-
tive detection and tracking system to help recognize traffic
conditions.
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