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Abstract. We proposed automatic factorization method of biological signals 
measured by Fluorescence Correlation Spectroscopy (FCS). Since the signals are 
composed from several positive components, the signals are decomposed by us-
ing the idea of Non-negative matrix factorization (NMF). Each component is 
represented by model functions and the signals are factorized as the non-negative 
sum of the model functions. Analytical accuracy of our proposed method was 
verified by using biological data that were measured by FCS. The experimental 
results showed that our method could automatically factorize the signals and the 
obtained components were similar with the ones obtained manually. 
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1   Introduction 

Factorization of time series signals is very important in biological researches, such as 
spike analysis in brain science [1] and analysis of the protein dynamics in molecular 
biology [2], [3]. Especially, in the field of molecular biology, Fluorescence Correla-
tion Spectroscopy (FCS) [4], [5], [6] begins to be often used to measure and analyze 
the protein dynamics in living cell [2], [3]. Such analysis of time series signals would 
be more important in the future. However, the current methods of time series analysis 
are not efficient because each sample is fitted as a linear combination of the model 
functions and the parameters of model functions are plotted to find the frequent com-
ponents. In addition, there is a possibility to have danger that the subjectivity of  
researchers is included in the results obtained by the current methods because the 
examination of analytical results and judgments of re-analysis are decided manually. 
To improve the current methods, a model function [7] or an approximation method 
[8] has been modified. But these modifications were not sufficient because the re-
searchers in this field want to know what components are included in the set of sig-
nals and the statistical analysis of the large amount of samples is required to estimate 
the components. In molecular biology, the components are manually found through 
statistical investigation. 
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Automatic signal factorization has been examined in a lot of fields, for example, 
factor analysis, independent component analysis (ICA) [9], [10], non-negative matrix 
factorization (NMF) [11], [12]. Especially, NMF is probably effective for the factori-
zation of non-negative energy distribution such as a molecular dynamics in thermal 
equilibrium. On the other hand, ICA is not suitable for this application because the 
independency is not guaranteed. 

In this paper, we proposed a factorization method of biological signals measured 
by FCS in which the idea of NMF is used to decompose the signals into several posi-
tive components. Each component is represented by model functions derived by con-
sidering its physical phenomena and is fitted by the nonlinear least squares method. 
By using NMF approach, we can directly find the components included in the auto-
correlation functions from the all samples. 

To verify the effectiveness of our method, we applied the proposed method to the 
signals obtained by FCS. 

2   Method 

In FCS, autocorrelation function (ACF) was extracted from time series signals meas-
ured from a living cell and they are represented as a feature vector. ACF may include 
several components related with different origins. Usually a set of feature vectors is 
obtained by measuring ACF from different cells in the same situation. The set of 
feature vectors is represented as a matrix. To analyze the protein dynamics of such 
cells, we have to decompose the matrix into the components (the basis vectors). The 
basis vectors can be modeled by the probability density function of Boltzmann distri-
bution law. Usually they are modeled by fitting a model function using the nonlinear 
least squares method. Since both the ACFs and the basis vectors are non-negative, we 
have to decompose the matrix with the non-negative coefficients. 

Non-negative matrix factorization (NMF) [11], [12] was proposed to decompose a 
given non-negative matrix into a non-negative basis matrix and a coefficient matrix. 
We combine this non-negative decomposition with the nonlinear least squares fitting 
of model function. Once the basis vectors are modeled by the model function, we can 
estimate the diffusion time of each component and the component ratios from the 
estimated probability densities. For example, the diffusion time corresponding to a 
basis vector can be calculated from the probability density function estimated for the 
basis vector considering its Boltzmann distribution. 

2.1   Fluorescence Correlation Spectroscopy 

FCS is one of the techniques to measure the fluorescence intensity fluctuations caused 
by fluorescent probe movement of free diffusion and to deduce diffusion times and 
existence ratios of fluorescent probes from autocorrelation function (ACF) calculated 
from the fluorescence intensity fluctuations. ACF is defined as follow: 
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where tI  is the signal intensity in time t . Diffusion time τ  is defined as tΔτ = . 
2

I  is square of the averaged signal intensity. 

Since ACF may include several components related with different origins, usually 
the obtained ACFs are fitted by one-, two-, or three-component model as follows: 
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where iF  and iτ  are the fraction and diffusion time of component i , respectively, N 

is the number of fluorescence molecules in the detection volume element defined by 

00 wzs = , radius 0w  and length 02z . The correlation amplitude of the function (y 

intercept, the value of ( )0G ) is determined by the reciprocal of the number of fluo-

rescence molecules in detection volume. ACF of rhodamine 6G (Rh6G) solution were 
measured for 30s five times at 10s interval, then the diffusion time ( GRh6τ ) and s  

were obtained by one-component fitting of the measured ACF in each sample. 
Usually ACFs are obtained from different cells in the same situation and the statis-

tical properties are investigated. 

2.2   Signal Factorization 

To analyze the protein dynamics of many cells, we have to decompose the matrix of 
ACFs into the components (the basis vectors). Since both the ACFs and the basis 
vectors are non-negative, we have to decompose the matrix with the non-negative 
coefficients.  

Non-negative matrix factorization (NMF) [11], [12] was proposed to decompose a 
given non-negative matrix into a non-negative basis matrix and a coefficient matrix. 
We combine this non-negative decomposition with the nonlinear least squares fitting 
of model function.  

NMF decomposes the given mn ×  input matrix V into a rn ×  basis matrix W  
and an mr ×  coefficient matrix as follow: 

WHV ≈  (3) 

This means that WH  is an approximation of the matrix V .  
NMF uses the objective function that is the divergence of V  from WH  as the 

measure of the cost for factorization. The objective function in NMF is given as fol-
low: 
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From this objective function (4), we can derive multiplicative update rules in NMF as 
follow: 
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The proof of these objective function and multiplicative update rules are shown in 
[12]. Initial values of W  are usually randomly assigned. In the following experi-
ments, all random values were generated using Mersenne Twister algorithm 
(mt19937ar.c). 

There is no guarantee to reflect a physical phenomenon in the basis matrix com-
puted using NMF. 

In FCS, generally ACF are fitted by using equation (2). But  molecular dynamics in 
thermal equilibrium follows Boltzmann distribution law. An exponential function that 
is represented as like Boltzmann distribution is often used in spectroscopy but the 
exponential function is uncommonly used to the analysis of FCS [8]. To modify the 
original NMF, the probability density functions of Boltzmann distribution law are 

fitted to the basis vectors rw  by using the nonlinear least square method. The prob-

ability density function of Boltzmann distribution law is given as follow: 
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where A  is amplitude and rτ  is the diffusion time of rw . This fitting process is 

repeated at each iteration of the NMF update. 

3   Experiments and Results 

We applied the proposed method to two kinds of FCS data that were measured from the 
fluorescent molecule in water solution and the functional protein in living cell. In water 
solution data, the fluorescent fluctuations of Rh6G were used as a standard sample. In 
living cell data, we used Signal transducers and activators of transcription 3 (STAT3). 
The fluorescent fluctuations of functional protein were fused to the enhanced green 
fluorescence protein (EGFP). STAT3 has been shown to play pivotal roles in the cyto-
kine signaling pathway, and also in regulating cell growth and differentiation. STAT3 is 
activated by stimulation with interleukin-6 (IL-6) which is a multifunctional cytokine. 
Molecular weight of STAT3 changes from monomer to dimer after IL-6 stimulation. In 
this paper, we used STAT3 measurement data in the nucleus before and after IL-6 
stimulation because its diffusion time is expected to change into slow diffuse. 
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3.1   Results for Rh6G Data 

We applied the proposed automatic factorization method to the 54 samples of Rh6G 
data that were measured on a 10-7 M concentrated solution. The 54142 ×  input ma-
trix V  was obtained by using these 54 samples. The number of basis vector must be 
one because Rh6G has only one component. The proposed method was applied to this 

data. The approximation of V  by Twh , the products of the basis vector w  and the 

coefficients of each sample h , is shown in Fig. 1. Here the basis vector w  was ap-
proximated by fitting the model function shown in equation (8). This suggests that our 
proposed method gives a good fitting except in slow diffusion times. 

Table 1 shows that the diffusion times of Rh6G that were estimated manually and by 
our proposed method. The manually estimated diffusion time was 24.9μs when it was 
calculated as the average of the 54 samples. The standard deviation of this diffusion 
 

Table 1. Estimated Diffusion time of Rh6G 

Using method Diffusion time / μs  (ratio / %) 
Manually estimated 24.9  (100) 
Proposed method 39.0  (100) 

 

 

Fig. 1. Automatic factorization of Rh6G data measured by FCS. FCS measurements were 
carried out in water solution. The closed circles show the samples measured by FCS and the 
line is the result of approximation. 
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time was 11.5. The diffusion time estimated by fitting the model function to the basis 
vector w  was 39.0μs. We can say that the estimated diffusion time seems biologi-
cally valid. 

 

 

Fig. 2. Automatic factorization of STAT3-GFP measured by FCS before and after IL-6 stimula-
tion. FCS measurements were carried out for STAT3-GFP in the nucleus of living cell. Normal-
ized ACF before and after IL-6 stimulation is shown A and B, respectively. The closed circles 
show the samples measured by FCS (A, B). Line is the result of the approximation by NMF-
based automatic factorization (A, B). The open circles, squares and triangles are the estimated 
basis of each diffusion component 1, 2 and 3, respectively (A, B). 



804 K. Watanabe and T. Kurita 

3.2   Results for STAT3 Data 

STAT3 was fused to EGFP (STAT3-GFP) and the 47 samples and the 43 samples 
before and after IL-6 stimulation were measured by using FCS [2]. Thus, we can 
obtain the 47124 ×  input matrix V  for before IL-6 stimulation and the 43127 ×  
input matrix V  for after IL-6 stimulation. For each input matrix the proposed factori-
zation method was applied. For this data, we assumed the number of basis vectors,  
 

 

 

Fig. 3. The distribution of the diffusion times of STAT3-GFP measured by FCS in the nucleus 
of living cell before and after IL-6 stimulation is shown A and B, respectively. The manually 
estimated diffusion times of each measurement are shown in the scatter plots of open diamonds. 
Bars shows the diffusion times calculated from the estimated basis vectors by the proposed 
method. 
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namely rank of the NMF, was at most three because STAT3 in the nucleus of living 
cell is inhibited free diffusion and exists as the monomeric form or the dimeric form 
before and after IL-6 stimulation, respectively. 

The results of automatic factorization for STAT3-GFP measured by FCS before and 
after IL-6 stimulation were shown Fig. 2. Fig.2 A and B show the results for before IL-6 
stimulation and after IL-6 stimulation, respectively. The closed circles show the samples 
measured by FCS. Line is the result of the approximation by NMF-based automatic 
factorization. The open circles, squares and triangles are the estimated basis of each 
diffusion component 1, 2 and 3, respectively. These results are reasonable because the 
number of samples with faster diffusion times increase after the stimulation.  

The distribution of the diffusion times of STAT3-GFP measured by FCS in the nu-
cleus of living cell before and after IL-6 stimulation is shown in A and B of Fig. 3, 
respectively. The manually estimated diffusion times of each measurement are shown 
in the scatter plots of open diamonds. Bars shows the diffusion times calculated from 
the estimated basis vectors by the proposed method. The distribution of the diffusion 
times and the existence ratios are shown in Fig. 3. The diffusion time of the main 
component obtained by the automatic factorization is 702.1μs (48.7%) and the other 
components are 3830.5μs (26.3%) and 2385.8μs (25.1%) as shown in Fig. 3 A. On 
the other hand, the diffusion time of the main component for after stimulation is 
831.4μs (94.7%) and the other components are 4876.4μs (2.70%) and 2994.4μs 
(2.63%) as shown in Fig. 3 B. The diffusion time of the main component increased 
after IL-6 stimulation. This reflects the physical phenomenon that changes from the 
monomeric form to the dimeric form. These results show the validity of the proposed 
method. 

4   Discussion 

The proposed method gave the similar tendency with the previous biological theory. 
In General, the current biological theory about the state of STAT3 in the nucleus is as 
follow. Before IL-6 stimulation, the main component of STAT3 exists as monomer 
and the sub components exist as lower movements. However, after IL-6 stimulation, a 
main component of STAT3 exists as dimer. Such a biological theory was confirmed 
by using classical biological experimental methods in dead cell and was also verified 
by using FCS in living cell [2]. 

In our experimental results, the different diffusion time of the main components 
were estimated by using our proposed factorization method before and after IL-6 
stimulation. The results of the main components are probably STAT3 monomer and 
dimer. The other diffusion times of the sub components were over 2000μs before IL-
6 stimulation. These results of sub components may be inhibited by the free diffuse of 
STAT3. These results have the similar tendency of the biological theory. The pro-
posed method can also give the same results with the ordinal method in FCS data 
analysis (Fig 3). Even if our proposed method could not obtain the results of com-
pletely same tendency, it may be caused for a spectroscopy problem such as the effect 
of triplet state. This problem can be solved by changing the model function to an-
other. 
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In ordinal FCS data analysis, the diffusion times and the existence ratios are esti-
mated by fitting the equation (2) to each measurement sample. When we need a statis-
tics that reflects the physical phenomena measured by FCS, we have to manually 
analyze the diffusion times. In this manual treatment of the data, there is a possibility 
to have danger that the subjectivity of researchers is included. The manual analysis 
requires a great labor because the analysis has to perform for each sample. However, 
the proposed method makes automatic statistical analysis of all samples possible. 
From these reasons, the proposed method is useful. 

For future works, we have to modify NMF to introduce the probability density 
function of Boltzmann distribution law to the multiplicative update rules. This modi-
fied NMF will be verified by using the simple simulation data that is generated by the 
model function. Also we have to select the number of basis vectors automatically. We 
will try to use model selection techniques. Thereafter we have to confirm the effec-
tiveness of the proposed method by applying to other biological data sets. 
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