Makoto Uemura (Hiroshima University, Japan), and the "Kanata" team Bayesian approach to find a long-term trend in erratic polarization variations observed in blazars

Polarization variations in blazars

- Erratic variations
 - Random motion in the QU plane?
 - Blinks of a number of polarization components?
- Systematic variations
 - Increase of the polarization degree (PD) with flares
 - Rotation of the polarization angle (PA)
 - A probe of the magnetic field in jets
- Are there universal characteristics in blazar polarization?
 - The main theme of this talk
 - We want to find a kind of "rules" in apparently erratic variations.

Apparently random motion in the QU plane (Moore, et al. 1982)

Multiple polarization components?

Stokes parameters for linear polarization

$$P = \frac{\sqrt{Q^2 + U^2}}{I}$$
$$\theta = \frac{1}{2}\arctan\frac{U}{Q}$$

- Systematic variation could be hidden by the presence of another polarization component.
 - Preferential direction of polarization for years
- Our model assumptions:
 - A flare is always associated with the flare of the polarized flux.
 - There is a long-term variation trend in polarization.

Bayesian method to estimate a long-term trend in polarization

 The estimation of the parameters is done with the Markov Chain Monte Carlo (MCMC) method.

Demonstration with artificial data Test 1: Case for low frequency flares

The long-term trend is reproduced as assumed

Demonstration with artificial data Test 1: Case for low frequency flares

 The long-term trend is reproduced as assumed

Demonstration with artificial data Test 2: Case for High frequency flares

- The long-term trend is successfully estimated.
- This method can extract a long-term trend even if observed variations are apparently just erratic.

Demonstration with artificial data Test 2: Case for High frequency flares

- The long-term trend is successfully estimated.
- This method can extract a long-term trend even if observed variations are apparently just erratic.

Blazar monitoring with the 1.5-m "Kanata" Telescope

- Since 2006
- TRISPEC
 - developed by Nagoya Univ.
 - Simultaneous optical and near-infrared observation
 - photo-polarimetric mode is available
- Monitoring of blazars
 - since 2007
 - 42 sources

Case 1: OJ 287

- Data: Oct. 2008 May 2009
- Observed Q,U distribute NOT around (Q,U)=(o,o)
 - A long-term trend is expected to be present.
- As expected, our method shows a long-term trend, possibly oscillating in a small range of PA with a time scale of a few tens of days.
- Good example for our model.

Case 1: OJ 287

- Data: Oct. 2008 May 2009
- Observed Q,U distribute NOT around (Q,U)=(o,o)
 - A long-term trend is expected to be present.
- As expected, our method shows a long-term trend, possibly oscillating in a small range of PA with a time scale of a few tens of days.
- Good example for our model.

Case 2: S2 0109+224

- Data: Aug.2008 May 2009
- Our model works well, even if the observed Q,U apparently distribute around (Q,U)=(o,o).
- Growth and decay of long-term trends?
 - Another trend was born in the latter period?

Case 2: S2 0109+224

- Data: Aug.2008 May 2009
- Our model works well, even if the observed Q,U apparently distribute around (Q,U)=(o,o).
- Growth and decay of long-term trends?
 - Another trend was born in the latter period?

Case 3: S5 0716+714

- Data: Jul. 2008 Feb.
 2009
- The estimated longterm trend leads to no significant improvement of the correlation between the light curve and the polarized flux.
- No long-term trend (defined in our model)

Case 3: S5 0716+714

- Data: Jul. 2008 Feb.
 2009
- The estimated longterm trend leads to no significant improvement of the correlation between the light curve and the polarized flux.
- No long-term trend (defined in our model)

Summary: advantage and disadvantage

- Advantages of our Bayesian model
 - We can extract a systematic long-term trend from the observed variation, even if it is apparently erratic.
 - The model may be useful for the test of the presence of the long-term trend.
 - The long-term trend is NOT always obtained.
- Disadvantages of our Bayesian model
 - The model is only valid for the polarized flux, not for the polarization degree in % (, or Q/I, U/I).
 - better definition of the likelihood function or prior distribution?
 - The model do NOT provide evidence for the long-term trend.
 - Confirmation is needed by another kind of observations