NEW VIEWS OF SU UMA-TYPE DWARF NOVAE
FROM SIMULTANEOUS OPTICAL AND NEAR-
INFRARED OBSERVATIONS
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OUTLINE

e Superhump

* with time-series photometry

 with simultaneous optical & NIR time-series photometry
 Early superhump

« with simultaneous optical & NIR multi-band time-series photometry




SUPERHUMPS AND EARLY SUPERHUMPS




Superhump evolution

BASIC OBSERVATIONAL PROPERTIES ~ duino superoufburstin
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» Late phase of
superoutbursts in WZ ’
Sge-type stars 22
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A growing phase of superhumps
detected in V2527 Oph

* Having a period 1-4% longer
than the orbital period.

*  The superhump period is
varaible through a
superoutburst

* Decreasing in most
cases

*  Sometimes increasing
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TIDAL INSTABILITY OF ACCRETION DISKS

Simulated superhump light sources
- Tidal instability in the disk At 2

* Aresonance around the 3:1 radius of
the disk

* Eccentric disk

« can explain the appearance and
period of superhumps




THE GOLDEN DAYS OF TIME-SERIES
PHOTOMETRY WITH SMALL TELESCOPES

Example of densely sampled superoutbursts of
WZ Sge-type dwarf nova (in the case of WZ Sge
=g in 2001)




PERIOD CHANGE OF SUPERHUMPS

The evolution of superhump period

Related to the radius of the accretion disk

A probe for the dynamics in the outbursting

disk

Until mid-1990’s

Sometimes positive, sometimes negative
period derivatives

No universal feature has not been
established.

Kato, et al. 2009, PASJ, 61, S395-S616

Universal features of the period evolution

Stage A: an early stage having a
longer period

Stage B: a middle stage with a positive
period derivative. (Outward
propagation of an eccentricity wave.)

Stage C: a late stage with a shorter
period (reappearance of the excitation
at the 3:1 resonance radius)
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THE GOLDEN DAYS OF TIME-SERIES
PHOTOMETRY WITH SMALL TELESCOPES
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“KANATA™: A 1.5-M TELESCOPE OF HIROSHIMA
UNIVERSITY

Since 2006

Dedicated for astronomical transient
objects

Cataclysmic variables
» X-ray binaries
GRBs
Supernovae
* AGNs (blazars)
Unique observation modes
Simultaneous optical and NIR

polarimetry




SUPERHUMPS
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COLOR CHANGE IN SUPERHUMPS

Superhumps in V455 And (Matsui, et al. 2009)

*  Previous study of superhump colors

* Redder at the superhump
maximum?

 Hassall (1989) for EK TrA,
Naylor et al. (1987) for OY Car

 Bluer at the superhump maximum?

0 0.5 1
phase of superhump

Superhumps in J0557+68 Superhumps in GW Lib
* Schoembs & Vogt (1980), Stolz  yemyra, et al. 2010) (Uemura, et al. 2009)

& Schoembs (1984)

« Theoretically, the viscous heating
lead to a higher temperature (Smak
2005)

*  Our optical-NIR observation shows:

mag. (V-15.100, J-14.989)

* The bluest time precedesthe
superhump maximum

064 066 068 0.7
UT (25 Apr. 2007)



HEATING AND COOLING PHASES OF
SUPERHUMPS
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The expansion of a low tempepature region — superhump maximum




EARLY SUPERHUMPS
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BASIC OBSERVATIONAL PROPERTIES

* Seen only during the earliest stage of a
WZSge-type outburst

«  Period = orbital period of binary Zoo of early superhumps

Two-armed spirals on the disk Kato , et al. 2002
and early superhumps
(Maehara, et al. 2007)

*  Geometrical effect?
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MODELS

« Tidally distorted disk
— Kato (2002)
— Even below the 2:1 resonance radius

 The 2:1 resonance
» Osaki & Meyer (2002)

Tidal truncation and resonance radii
Height distortion in the disk (Ogilvie, 2002)
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COLOR CHANGE IN EARLY SUPERHUMPS

Early superhumps in V455 And (Matsui, et al. 2009)

* Successfully observed in
V455 And & HV Vir.

 Bluest at the bottom of
early superhumps P e R

w ]
phase of eardy superhump phase of early superhump

* The hump component is
red.

 An elongated low
temperature region is
the origin of early
superhump.




IMPLICATIONS FOR THE STRUCTURE OF DISKS

«  The temperature and size of the disk,
estimated from g,V,Rc,lc,J,Ks-band
photometric data for V455 And.

» The correlations between the light curve,
temperature, and size are very simple.
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* We see a elongated low temperature region
during early superhumps.
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« Tomography of the vertical structure of
accretion disks?
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SUMMARY

Superhump «  Early superhump
 Bluest phase, and then, superhump - Redder when brighter
maximum

064 066 068 0.7
UT (25 Apr. 2007)

Superhumps in GW Lib

(Uemura, et al.-2009) EartysuperhumpsinHV Vir (Arai, et al. in prep.)



