NEW VIEWS OF SU UMA-TYPE DWARF NOVAE FROM SIMULTANEOUS OPTICAL AND NEAR-INFRARED OBSERVATIONS

Makoto Uemura (Hiroshima University), and the Kanata team

OUTLINE

- Superhump
 - with time-series photometry
 - with simultaneous optical & NIR time-series photometry
- Early superhump
 - with simultaneous optical & NIR multi-band time-series photometry

SUPERHUMPS AND EARLY SUPERHUMPS

BASIC OBSERVATIONAL PROPERTIES

Superhump evolution during superoutburst in V2527 Oph

- Characterize superoutbursts
 - SU UMa-type dwarf nova
 - Late phase of superoutbursts in WZ Sge-type stars
- Having a period 1-4% longer than the orbital period.
- The superhump period is varaible through a superoutburst
 - Decreasing in most cases
 - Sometimes increasing

A growing phase of superhumps detected in V2527 Oph

0.5

-0.5

TIDAL INSTABILITY OF ACCRETION DISKS

time = 1003.5

-0.5

0.0

0.5

- Tidal instability in the disk
 - A resonance around the 3:1 radius of the disk
 - Eccentric disk
 - can explain the appearance and period of superhumps

Simulated superhump light sources (Murray 1998) 2.290 0.940 5.100 0.5 0.5 0.5 0.0 0.0 0.0 -0.5 -0.5 -0.5 time = 1001.0 time = 1000.5 time = 1001.5 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 23.37 13.68 0.5 37.5/ 0.5 0.5 0.0 0.0 0.0 -0.5 -0.5 -0.5 time = 1002.5 time = 1002.0 time = 1003.0 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 30.77 0.5 0.5 0.5 10.43 0.0 0.0 0.0 -0.5 -0.5 -0.5

time = 1004.0

-0.5

0.0

0.5

time = 1004.5

-0.5

0.0

0.5

THE GOLDEN DAYS OF TIME-SERIES PHOTOMETRY WITH SMALL TELESCOPES

PERIOD CHANGE OF SUPERHUMPS

- The evolution of superhump period
 - Related to the radius of the accretion disk
 - A probe for the dynamics in the outbursting disk
- Until mid-1990's
 - Sometimes positive, sometimes negative period derivatives
 - No universal feature has not been established.
- Kato, et al. 2009, PASJ, 61, S395-S616
 - Universal features of the period evolution
 - Stage A: an early stage having a longer period
 - Stage B: a middle stage with a positive period derivative. (Outward propagation of an eccentricity wave.)
 - Stage C: a late stage with a shorter period (reappearance of the excitation at the 3:1 resonance radius)

THE GOLDEN DAYS OF TIME-SERIES PHOTOMETRY WITH SMALL TELESCOPES

"KANATA": A 1.5-M TELESCOPE OF HIROSHIMA UNIVERSITY

- Since 2006
- Dedicated for astronomical transient objects
 - Cataclysmic variables
 - X-ray binaries
 - GRBs
 - Supernovae
 - AGNs (blazars)
- Unique observation modes
 - Simultaneous optical and NIR
 - polarimetry

SUPERHUMPS

COLOR CHANGE IN SUPERHUMPS

- Previous study of superhump colors
 - Redder at the superhump maximum?
 - Hassall (1985) for EK TrA, Naylor et al. (1987) for OY Car
 - Bluer at the superhump maximum?
 - Schoembs & Vogt (1980), Stolz
 & Schoembs (1984)
 - Theoretically, the viscous heating lead to a higher temperature (Smak 2005)
- Our optical-NIR observation shows:
 - The bluest time precedes the superhump maximum

Superhumps in V455 And (Matsui, et al. 2009)

Superhumps in J0557+68 (Uemura, et al. 2010) Superhumps in GW Lib (Uemura, et al. 2009)

 $g^{9,9}$ $g^{9,9}$ $g^{9,9}$ $g^{10,1}$ $g^{10,1}$ $g^{10,1}$ $g^{10,2}$ $g^{10,1}$ $g^{10,2}$ $g^{10,1}$ $g^{10,1}$ g

HEATING AND COOLING PHASES OF SUPERHUMPS

0.2

Ω

0.6

0.4

superhump phase

0.8

- Viscous heating, then cooling
- Superhump maximum ≠ Temperature maximm
- The expansion of a low tempepature region \rightarrow superhump maximum

EARLY SUPERHUMPS

BASIC OBSERVATIONAL PROPERTIES

- Seen only during the earliest stage of a WZSge-type outburst
- Period = orbital period of binary
- Geometrical effect?

Two-armed spirals on the disk and early superhumps (Maehara, et al. 2007)

MODELS

- The 2:1 resonance
 - Osaki & Meyer (2002)

Tidal truncation and resonance radii

UG WZ SU 0.7 2:1 resonance 0.6 r/a ilda/ 0.5 3:1 resonance 0.4 -2.5 -1.5 -0.5 -2 -1 0 log q

• Tidally distorted disk

- Kato (2002)
- Even below the 2:1 resonance radius

COLOR CHANGE IN EARLY SUPERHUMPS

- Successfully observed in V455 And & HV Vir.
- Bluest at the bottom of early superhumps
 - The hump component is red.
 - An elongated low temperature region is the origin of early superhump.

Early superhumps in HV Vir (Arai, et al. in prep.)

IMPLICATIONS FOR THE STRUCTURE OF DISKS

- The temperature and size of the disk, estimated from g,V,Rc,Ic,J,Ks-band photometric data for V455 And.
- The correlations between the light curve, temperature, and size are very simple.
- We see a elongated low temperature region during early superhumps.
- Tomography of the vertical structure of accretion disks?

SUMMARY

9.9

10

10.1

10.2

10.3

-0.25

-0.2

0.64

mag.

<u>^-</u>

- Superhump
 - Bluest phase, and then, superhump • maximum

- Early superhump
 - Redder when brighter

