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DN in the shortest Porb regime

* Two interesting points of view

— Binary evolution
* Final stage of the low-mass binary evolution

— Dynamics of accretion disks
* Extreme mass-ratio
» Strong tidal effect



In the view point of

Binary evolution

 WZ Sge-type DNe as a “missing” population
— Uemura+10 (PASJ, 62, 613)



Problems in the Porb
distribution

— Period spike problem

— Period minimum
problem
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Porb dependence on recurrence times

* Long recurrence time of superoutbursts (Ts) near Pmin
* Intrinsic population of WZ Sge-type DNe (=very long Ts)???
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Number of sources

Bayesian estimation of
the intrinsic Porb distribution of DNe

Sample: DNe whose superoutbursts are detected in a certain period of time with a
certain equipment.

—  “Observed sample” = “intrinsic distribution” x “outburst detectability”
Estimation of the intrinsic distribution, using a Bayesian analysis
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Models

e Observed distribution, Q, Outburst detectability (Doutb), Intrinsic distribution, |

Q(a/a Pmin) — Dma,g ’ Doutb ) I(af: Pmin)/AQ (af: Pmin)

D . :
The intrinsic distribution. etectability depending on

the absolut itude.
(The form has no physical meaning) € absolute magnitude
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Detectability of outbursts depending on the recurrence time.
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Estimating a and Pmin, with Markov-Chain Monte Carlo method
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Results

The intrinsic distribution has a
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Among sources between 70—130 min,
59 % of sources are concentrated
between 70—86 min.
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Summary 1

e Our experimental approach showed that WZ
Sge-type DNe could be a part of “missing
population” near Pmin.

* The result depends on the assumed form of
the intrinsic distribution.

— Another form?

* The result should be tested by another sample,
or another period of time.



In the view point of
Dynamics of accretion disks

* New type of tomography:
Early superhump mapping
(Uemura+11, in prep.)



Early superhump

* Only observed in WZ Sge-type DN
Period = Porb
— Doubly-peaked profile

Zoo of early superhumps (Kato, et al. 2002).
Larger amplitude in edge-on systems.

* Rotation effect of non-axisymmetric structure 0
of accretion disks
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Reconstruction of the accretion-disk
structure from early superhumps

e Phase information —>azimuthal structure in disks

e Color information —radial structure in disks
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Details of our Bayesian model

Model
Bayesian estimation of the height, h(i,j)

P(h) X L[fu,obs(@): fu,model(@‘)]?r(h)

Posterior likelihood prior

|nput * Likelihood function (defined by the observed and model LC)

Lo Hexp - [fyl)ObS(éj) _ fVi,model(@j)P
1,]
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Multiband light curves

* Prior distribution Output

(locally smoother) Height map of disk
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* Estimation of “h” is done with Markov-chained montecarlo (MCMC)

* The temperature distribution is like an standard disk model, as
.
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Demonstration with artificial data sets

* Working as expected

— Quter structures are reconstructed to be outer, and vice versa
— Smoother structures than assumed, due to the prior distribution.
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Reconstruction of the disk from early superhums in V455 And:

The 5t day of the superoutburst
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Comparison with theoretical models
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Summary 2

We have developed a Bayesian model which reconstruct the height map of
disks from the multi-band light curves of early superhumps.

The reconstructed disk has flaring outermost parts making the primary
and secondary maxima of the light curve, and “arm”-like structures.

The structure is similar to the disk structure distorted by the tidal effect,
but the part for the secondary minimum cannot be explained.

Future work:
— Does the model make similar results for another objects?
— How the disk evolves with time?
— Can the reconstructed disk explain the emission-like profile in WZ Sge stars?



