Application of Total Variation Minimization to Doppler Tomography

Makoto Uemura (Hiroshima University) http://home.hiroshima-u.ac.jp/uemuram/dttvm/ Collaborators: T. Kato, D. Nogami (Kyoto Univ.), R. Mennickent (Univ. Concepcion)

Example

Outline

Our model using total variation minimization.

Tests with artificial and real data

 Cross-validation to determine a hyperparameter

Doppler Tomography (DT)

(Marsh & Horne 1988)

IP Peg (Steeghs+97, Harlaftis+99)

He II 4686 Doppler image model data 0.8 Binary phase 0.6 0.4 0.2 1000-1000 1000-1000 -10000 0 0 1000 Velocity (km/s) Velocity (km/s) Velocity (km/s)

• Data (Input)

- Time variation in emission-line profiles
- Estimates (Output)
 - Intensity map in the velocity space

DT as a linear problem

$$\hat{\boldsymbol{x}} = argmin \left\| \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} - \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} \right\|_2^2 + \lambda f(\boldsymbol{x})$$

2nd order norm = least-square term

Regularization term Ex. MEM, TVM

This inverse problem is usually an ill-posed problem

- Filtering back projection
- Introducing a regularization term (MEM? TVM?)

MEM and TVM

- Maximum Entropy Method (MEM)
 - Standard method to date
 - Regularization:

$$\begin{split} S &= -\sum_{i=1}^{M} p_i \ln \frac{p_i}{q_i}.\\ q_i &= \frac{D_i}{\sum_{j=1}^{M} D_j}, \end{split}$$

- MEM is statistically best, but physically best?
 - Hot spot and/or shock region may have sharp edges, making entropy low

- Total Variation Minimization (TVM)
 - Simple prior
 - Regularization:

$$TV(\boldsymbol{x}) = \sum \sqrt{(\Delta^h \boldsymbol{x})^2 + (\Delta^v \boldsymbol{x})^2}$$

- Δx : differential operator = x_{i+1} x_i
- Sparse gradient

Doppler Tomography using Total Variation Minimization (DTTVM)

- Uemura+13, in prep.
- http://home.hiroshima-u.ac.jp/uemuram/dttvm/
- DT model: standard one
 - 2D, non-self absorbed
 - Instrument response: Gaussian
- Optimization by proximal gradient method
 - TwIST algorithm (Bioucas-Dias & Figueiredo 2007)
- Hyperparameter, λ can be given by hands, or determined by cross-validation
- Tests with artificial data
 - Input data: 630 points
 - Output map: 64x64 bin = 4096
 - Radial velocity resolution = 100 km/s
- Comparison with the MEM results
 - Calculation by the code in Spruit (1998)

$$\hat{\boldsymbol{x}} = argmin \left\| \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} - \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} \right\|_2^2 + \lambda f(\boldsymbol{x})$$

Case 1: Three spots

The position, size, and structure of the spots are reproduced well.
 The residuals between the data and model spectra are smaller in smaller λ.

Case 2: Disk + spot

Case 3: Spirals

 \checkmark

is lost.

Case 4: Data of WZ Sge

	ТVМ	MEM
Disk structure	ellipse	circle
Strongest intensity	Phase ~ 0.1	Phase $= 0.0$
Secondary star?	strong	weak

How to determine the hyperparameter, $\boldsymbol{\lambda}$

Results of cross-validation (TU Men)

Small λ Over-fitting

13/15

Future plan

- Scientific motivation
 - No idea!
 - DTTVM may be a good tool if one can find rotating residuals in the MEM method.
- Application of TVM to another tomography
 - Eclipse mapping
 - And other...

Summary

- We have developed the Doppler tomography using total variation minimization (DTTVM)
 http://home.hiroshima-u.ac.jp/uemuram/dttvm/
- DTTVM provides a good tool to reconstruct localized and/or sharp edge features in Doppler maps.