Makoto Uemura (Hiroshima University) @IUCAA "Transients and Timing" 2013.03.05 Accretion Disk Tomography — New Model with New Data —

Contents

• Cataclysmic variables and tomography

• Disk height mapping

Oppler tomography

Cataclysmic Variables

- White dwarf + red dwarf
 - Orbital period: 80 min – a few hours
 (some systems have Porb>1 day)
- Nova, dwarf nova, novalike, magnetic CV

Accretion disk (dominant source in outburst)

Tomography of accretion disks

- We want to know the accretion disk structure and its evolution
 - Geometrical structure
 - Intensity distribution
 - Temperature distribution
- The disk structure cannot directly be resolved on images.
 - Too small angular size
- Observation at one phase
 - = A section of the disk at one viewing angle
 - \rightarrow Tomography

Marsh+00

Accretion disk tomography: Examples

- Eclipse mapping (Horne 85; Baptista+93)
 - From the light curve
 - To the intensity map

- Doppler tomography (Marsh+88)
 - From the emission-line profile
 - To the intensity map in the velocity space

Disk height mapping (Uemura+12, PASJ, 64, 92)

Early superhump

• Only observed in WZ Sge-type dwarf novae

- Period = Porb
- Doubly-peaked profile
- Rotation effect of the disk having nonaxisymmetric structure

Zoo of early superhumps (Kato , et al. 2002). Larger amplitude in edge-on systems.

Reconstruction of the geometrical structure from early superhumps

8/22

• Data = Time-series multi-band photometric data

- Phase information \rightarrow azimuthal structure of disks
- Color information \rightarrow radial structure of disks

Model

Input Multiband light curves

Model Bayesian estimation of the height, h(i,j) $P(h) \propto L[f_{\nu,obs}(\phi), f_{\nu,model}(\phi)]\pi(h)$ Posterior likelihood prior *Likelihood function $L \propto \prod_{i,j} \exp -\frac{[f_{\nu_i,obs}(\phi_j) - f_{\nu_i,model}(\phi_j)]^2}{2\sigma^2}$ * Prior distribution (locally smooth) $\pi_{\rm smooth}(h) \propto \prod_{l,m} [\exp{-\frac{(h_{l,m}-2h_{l-1,m}+h_{l-2,m})^2}{2w^2}}$ $\exp -\frac{(h_{l,m}-2h_{l,m-1}+h_{l,m-2})^2}{2m^2}],$ 10 10 10 M

$$\pi_{\text{disk}} \propto \begin{cases} \prod_{l,m} \exp{-\frac{(h_{l,m} - h_{\text{disk},l,m})^2}{2h_{\text{disk},l,m}^2}} & (h_{l,m} \ge 0) \\ 0 & (h_{l,m} < 0) \end{cases}$$

* Estimation of "h" is done with MCMC

* The temperature distribution is like an standard disk model:

$$T = T_{\rm in} (\frac{r}{r_{\rm in}})^{-3/4}$$

Output <u>Height map of disk</u>

9/22

Demonstration with artificial data sets

- Working as expected
 - Outer structures are reconstructed to be outer, and vice versa
 - Smoother structures than assumed, due to the prior distribution.

Data

- Dwarf nova V455 And
- 8 Sep. 2007
 - The 5th day of outburst
- Telescope
 - 1.5m Kanata (V, J, Ks)
 - 50cm MITSuME (g, Rc, Ic)

12/22

Reconstruction of the disk using the data of V455 And

- Flaring outermost parts making primary and secondary maxima of the light curve
- Arm-like structures
- Useful for the comparison with numerical simulations.
 - SPH
 - hydro-dynamic

Arm- (spiral?) like structure

Doppler tomography with total variation minimization (Uemura, et al. in prep.)

Doppler tomography

(Horne 85; Baptista+93)

Phase 0.5

Observe

Reconstruct

Emission line

0 Velocity (km/s)

-2000

Intensity map on

Phase

0.25

Observe

the velocity space

- Data (Input)
 - Time variation in emission-line profiles
- Estimates (Output)
 - Intensity map in the velocity space

MEM & TVM

- Maximum Entropy Method (MEM)
 - Standard method to date
 - Regularization:

$$S = -\sum_{i=1}^{M} p_i \ln \frac{p_i}{q_i}.$$
$$q_i = \frac{D_i}{\sum_{j=1}^{M} D_j},$$

- MEM is statistically best, but physically best?
 - Hot spot and/or shock region may have sharp edges, making entropy low

- Total Variation Minimization (TVM)
 - Simple prior
 - Regularization:

$$TV(\boldsymbol{x}) = \sum \sqrt{(\Delta^h \boldsymbol{x})^2 + (\Delta^v \boldsymbol{x})^2}$$

- Δx : differential operator = x_{i+1} x_i
- Sparse gradient

Test

- Well reconstructed
 - Size
 - Position
 - Intensity
 - Structure (flat top & gaussian)

17/22

• The Residual of observations = 0.8%

Variation of the H α line (Nogami+04)

Data

- Dwarf nova WZ Sge
- 1 Aug 2001
 - (the 10th day of the outburst)
- Telescope
 - 122-cm Asiago
 - Resolution ~6Å

18/22

Radial velocity (km/s)

Disk height & Line forming region

- Disk height mapping
 Data: V455 And (the 5th day of outburst)
- Doppler tomography
 - Data: WZ Sge
 (the 10th day of outburst)
- Similar type of object
- Similar state of the accretion disk

Disk height & Line forming region

Contour: disk height Color map: line source

- Large Height region ≠ strong line-forming region
 - Irradiation from the central region may not play an important role
- The strong line-forming region precedes the large height region
 - Compressed, then flared?

Summary

• Tomography is a powerful tool to study accretion disks.

- New data need new methods
 - Disk height mapping using light curves of early superhumps
 - Doppler tomography with total variation minimization

• It is important to keep up with new methods.