ブレーザー PKS 1749+096 の 可視偏光観測から探る ジェットの磁場構造

植村誠(広島大学)、伊藤亮介(東京工業大学)

2017年天文学会春季年会@九州大

PKS 1749+096 (OT 081) とは?

- BL Lac型の Low-energy peaked blazar (LBL)
- $\cdot z = 0.32$
- ・ 電波干渉計より、ドップラーファ
 クター 10~20 (Lu+12)
- ・ SEDより、B=1.5 G, θ =3° (Ghisellini+10)
- フェルミによるγ線の検出無し
 (いくつかのフレアは検出)

Lu, et al. (2012)

Ghisellini, et al. (2010)

かなた望遠鏡によるブレーザーの偏光モニター

- · 1.5m 可視光赤外線望遠鏡
- フェルミ衛星の稼働に伴い、
 2007年からブレーザーの偏光
 モニター観測を実施lkejiri+11,
 ltoh+16(今日のデータ)
 - 本講演の内容:
 - PKS 1749+096 の偏光の挙
 動に興味深い特徴を発見
 (Uemura & Itoh, in prep.)

観測結果(フレアとQU平面)

観測結果(PDと色の変化)

- ・ 偏光度の極大がフレア極大より 数日先行(Flares A, C, E)
 - · Flare A で2日
 - 最も青くなる(スペクトルが最 もハードになる)時刻もフレア 極大に先行(Flares A, B, C, E)

偏光から示唆される描像

- ・フレアの極大で偏光方位角が揃う(磁場がジェットにほぼ垂直)
 ・フレアに伴い、偏光方位角が大きく変化(回転?)
 - ·→曲がった軌道の衝撃波。観測者方向を向く時に δ 最大。
- 偏光度の極大がフレア極大に先行
 - →圧縮方向に偏光。傾いた方が偏光度が高い。
 - (Bjornsson 1982; Konigl, Choudhuri 1985; Nalewajko 2010; Lyutikov, Kravchenko 2017)
 - ・Nalewajko (2010) のモデルより、<u>θ min = 4.8°、移動距離 = 0.2 pc (< 放射</u> <u>領域の位置)</u>

この描像の問題点

3C 279 のフレアと偏光 (Nalewajko 2010)

- ・フレア極大の前後の2つの
 偏光度の極大が期待される
 - 観測では極大前のみ
- たまたま見逃した?
- ・ 冷却した?

Synchrotron cooling のタイムスケール

- · $\delta = 10.2 \sim 20.4$, B=1.5G (Lu+12, Ghisellini+10))
- $\cdot \rightarrow \text{tc} \sim 0.04 \text{ day}$
- B=0.15G で tc ~ 1.33 day
- ・磁場への依存性が高いが、1日程度で散逸する可能性。
- スペクトルが最もハードになる日がフレア極大に先行
- · →粒子加速、放射冷却のプロセスが見えている。

まとめ PKS 1749+096 の偏光の挙動

1. 曲がった軌跡は固定

* フレア極大で偏光角がほぼジェットの 方向に揃う

* フレア極大前後で偏光角が大きく変化 (回転?)することもある

* 偏光度(と色)の極大がフレア極大よ り2-4日先行 2. δの変化と衝撃波加速・放射冷却の タイムスケールが同程度 Buck-ups

偏光時系列データの可視化ツール "TimeTubes"

· Uemura, Itoh, Nakayama, Wu, Watanabe, Takahashi, & Fujishiro, Galaxies, 4, 23, 2016

・ 科研費新学術「スパースモデリング」計画研究「可視化班」との共同研究

