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Abstract

We study the global solvability of Monge-Ampere equations of mixed type by ”blow-
ing up” the problem onto the torus embedded at the singular point of the equations.

1 Introduction

In this paper we are interested in the global solvability of fully nonlinear equa-
tions including Monge-Ampere equations of mixed type degenerating on nor-
mally crossing lines. As far as the author knows these types of equations are
not well solved even in the anaytic class due to the lack of estimates of the
linearized equations. We shall present a new method for such equations. Our
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main idea is to reduce the equations, by use of the Cauchy-Riemann equation,
onto the (product of) torus embedded at points on which the equations change
type. The resultant equations on the torus contain no singularities. After solv-
ing them we extend the solutions inside the torus by harmonic extensions, and
the maximal principle yields the unique solution for the given problems. This
method enables us to work outside ”singular” set instead of working directly in
a neighborhood of such a point. Because we can obtain a good estimate of the
linearized operators on the torus we can use an elementary iteration scheme
instead of a Nash-Moser one although the original equations degenerate.

Our main results in this paper are the global solvability of a Monge-Ampere
type equations M(u) = f in a bounded complete Reinhardt domain in C"
not necessarily convex. (cf. §2 and §5). More precisely, let the order of a
formal power series f, ord f be defined as the smallest degree of its constituent
monomials, that is, the smallest integer k& such that 02 fy(0) # 0 for some
|| = k and 02 f5(0) = 0 for all | 3| < k—1. For ug and f, satisfying M (ug) = fo,
we want to solve M (ug + v) = fo + ¢ for analytic g satisfying ord g > ord f,.
Here the localizing function uy corresponds to initial values in the case of
initial value problems, while in some cases the equations are Tricomi mixed
type at u = ug in the real domain. In §2 we show the global solvability under
the Riemann-Hilbert factorization condition of the corresponding symbol on
tori (Toeplitz symbol) in case n = 2. In §5 we study the global solvability in
the case n > 2 under certain ellipticity conditions like (5.4) and (5.20) of the
reduced symbol on tori.

Another interesting application of the method in this paper is the con-
vergence of all formal power series solutions of fully nonlinear equations not
satisfying a Poincaré condition. (cf. [3], [5], [6]). This is an extension of
a classical theorem of Kashiwara-Kawai-Sjostrand’s (cf. [4]) for linear equa-
tions to fully nonlinear equations. In fact, we have different phenomena in the
nonlinear case. (See Corollary 2.5 and §6).

In §6 we study the global solvability of Monge-Ampere equations in an
unbounded outer domain. We will show new phenomena as to the structure
of regular and singular solutions in the case n = 2. Namely, we will show the
(essentially) linear structure of solutions of M(u) = 0 at infinity (cf. Theo-
rem 6.2.), the parametrization theorem of all solutions of M (u) = fo + g by
a linear subspace (Theorems 6.5). As to the solvability, we will show unique
global solvability of mixed type equations under a Riemann-Hilbert factoriza-
tion condition (Theorem 6.8 ) and the one under a so-called spectral condition
(Corollary 6.9. See also Remark 6.10).



2 Global Solvability and Riemann-Hilbert
factorization

1.1. Statement of results. For x = (x1,22) € C? and o = (@, ) € Z% we
define 0* = (0/0x1)* (0/022)* and || = ay + ag, where Z denotes the set
of nonnegative integers. We set R% = {(n,72) € R*m > 0,7 > 0}. For
a = (a1,as) € C? let D, := {|z1] < |a1|} x {|22] < |az|} and T2 = {|z] =
lai|} x {|z2| = |az|} be the closed disk and the torus, respectively. We say
that Q C C? is a Reinhardt domain if T2 C Q for each a = (a;,a;) € Q. If, in
addition, D, C €2, we say that €2 is complete. Let €2 be a bounded complete
Reinhardt domain containing the origin not necessarily convex. We denote by
O(9), the set of holomorphic functions in €.
For m € Z,m > 1, let M(u) be a fully nonlinear operator

M) := Y aap(0®u)(0°u) + > bapz®0°u, ans, bas € C. (2.1)

la|=|B8l=m la|=|8]=m

Let ug(x) be a homogeneous polynomial of degree 2m, and set fo(x) = M (ug).
For g € O(Q) such that ord g > 2m we consider

M(uy +w) = fo(x) + g(x), in Q. (2.2)

Let P := My, = > ,(0M/0z,)(up)0* be the linearized operator of M at
u = ug. We denote by p,,(z,&) the principal symbol of P, where & = (&1, &)
is the covariable of z. The Toeplitz symbol o(z,7), (z € Q, n € R%) at uy is
defined by

o(2,1) = pm(21, 205 27 01, 25 ' 10), (2.3)

namely, we set & = (21, 2) and € = (21, 2 1) in (2, ).
We denote by €2 the real representation of €2, and by 02 its boundary.
We assume the following conditions

(A1) a(z,n) #0 Vz=(21,2) €Q, (|21, |22]) € 0, || > 0,5 = 1,2,
VneRZ,|nl=1.
(A.2) ind;o = indyo = 0.

Here ind; o (resp. indy o ) is defined by

1 ~
indla = — dCl IOgU(ngl,RQZQ,g), (Rl,Rg) S 0. (24)

21 Jic =1

Remark. The right-hand side of (2.4) is an integer-valued continuous function
of 2z (|ZQ| = RQ), 5 (f S R%_) and R = (RI,RQ) e 00 (R] > 0) By the



connectedness, the integral is independent of z3, £ and R = (Ry, Ry) € 9.
The condition (A.1)-(A.2) is called a Riemann-Hilbert factorization condition.

Then we have

Theorem 2.1 Suppose (A.1) and (A.2). Let Q' CC Q be arbitrarily given.
Then there exist € > 0 and an integer N > 2m such that, for any g € O(Q)
satisfying supq |g(z)| < € and ordg > N, (2.2) has a unique analytic solution
w € O() satisfying ordw > N.

We define the set of holomorphic functions Wx by

Wgi={u=> u,a": |[u]|r = |u,|R" < oo}. (2.5)

n>0 n
In case 9 consists of one point, R = (Ry, Ry), R; > 0 we have

Theorem 2.2 Suppose that 9Q = {(Ry, Ry)} (R; > 0), and assume (A.1)
and (A.2). Then there exist € > 0 and an integer N > 2m depending only on
ug such that, for any g € Wy satisfying ||g||r < € and ordg > N, (2.2) has a
unique analytic solution w € Wy satisfying ordw > N.

Remark 2.3 In case the local solvability of (2.2) is concerned we need not
the smallness of g, and uy may be any polynomial of degree 2m. Indeed, if we
replace ug in (2.8) with 2m homogeneous part of ugy, a similar argument as in
the proof of Theorem 2.2 yields the following

Proposition 2.4 Suppose (A.1) and (A.2). Then there exist an integer N >
2m depending only on ug such that, for any g analytic in some neighborhood
of the origin satisfying ordg > N, (2.2) has a unique analytic solution w in
some neighborhood of the origin such that ordw > N.

We shall prove a nonlinear version of a Kashiwara-Kawai-Sjostrand theo-
rem.

Corollary 2.5 Suppose (A.1) and (A.2). Then, for every g analytic at the
origin such that ordg > 2m all formal power series solutions of (2.2) converge
in some neighborhood of the origin.

Remark 2.6 a) The condition (A.1) in Corollary 2.5 cannot be dropped in
general. (See Corollary 6.6 and Remark 6.7.)

b) In 1974, Kashiwara-Kawai-Sjéstrand showed the convergence of all for-
mal power series solutions of the following linear partial differential equations
of regqular singular type, 3 |q/=|5/=m Gap(x)*(0/0x) u = f(x), where m is an
integer and aqz(x) and f(x) are analytic in some neighborhood of the origin



of v = (x1,...,x,) € C". They gave a sufficient condition for the convergence
of all formal power series solutions, a certain ellipticity of the equation. (cf.
(0.2) in [4]). It contains, as a special case, a so-called Poincaré condition.
Corollary 2.5 gives a generalization of [{] to fully nonlinear equations.

Let M = M(u) be a Monge-Ampere operator in (z,y) € R?
M (1) = uggtiyy — u, 4 c(@,)uqgy, (2.6)

where ¢(z,y) is a homogeneous polynomial of degree 2, and we abbreviate
Ugy = 02U, Uyy = aju, and so on. Let up(x,y) be a homogeneous polynomial
of degree 4 and set fy(x,y) = M(uy). For an analytic function g(z,y) such
that ord g > 4 we consider

M (ug +w) = fo(z,y) + g(x,y). (2.7)

In the following we denote by P the linearized operator of M (u) at u = uy.
We also set Ry = Ry = 1 for the sake of simplicity.

Example 2.1. Let ug(z,y) = 2%y? and c(z,y) = kxy (k € R). It follows
that fo(z,y) = 4(k — 3)z?y®. The operator P and the Toeplitz symbol are
given, respectively, by

P = 22°0; +2y°0, + (k — 8)xy0,0,, (2.8)
o(z,m) = 2(nf+n3) + (k= 8)mn,.

The condition (A.1) reads 2+ (k —8)mne # 0 for all n € RZ, |n| = 1. Because
0 < mmne < 1/2, it follows that (A.1) is equivalent to k > 4. We can easily
verify (A.2) if k£ > 4. Note that if £ > 4 (A.1) is a so-called Poincaré condition
for P. We note that because the Toeplitz symbol is independent of z, we can
apply Theorem 2.1 as well as Theorem 2.2 if & > 4.

By simple computations of the characteristic polynomials, we see that
M(u) at u = ug is elliptic outside the set zy = 0 if and only if 4 < k < 12.
Note that if £ < 4 or k£ > 12 the equation is weakly hyperbolic and degenerates
on the lines z = 0 and y = 0.

Next we will estimate the integer N in Theorem 2.2 when k£ > 4. Because
P preserves homogeneous polynomials we study the injectivity of P on the
set of homogeneous polynomials of degree greater than 5. By definition, a
monomial y* (v + p > 5) is in the kernel of P if and only if

2u(v — 1)+ 2u(p— 1) + (k — 8)vu # 0. (2.10)

Since k > 4, we easily see that (2.10) implies that k& # 16/3,9/2 if v = 2
or p = 2. If v = p = 3 it follows from (2.10) that k£ # 16/3. Similarly, if
v=3u=4o0orv =4 =3 we get k # 5. More generally, if v + yu = n



(n > 5) the condition (2.10) is equivalent to k # 8 —2(n? —n)/(vu) < 4+8/n.
The equality holds when v = p = n/2. Consequently, the injectivity of P on
the set of homogeneous polynomials of degree n holds in each of the following
cases: a) k>16/3,n>5,b) k>5,n>7¢) k>4+8/n,n>38.

Example 2.2. Let uo(z,y) = z* + kz’y*> + 3%, c(z,y) = 0 and fo(z,y) =
M (up) = 12(2kz* + 2ky* + (12 — k?)z%y?). The operator P and its Toeplitz
symbol o(z,n) are given, respectively by

P = 12y%07 4+ 122°0; + 2k(y*0, + 2°0;) — 8xy0,0, (2.11)

o(z,m) =2k} +n3) — 8mna + 12(2, 2 25m7 + 272, °n3). (2.12)

Clearly, Poincaré condition does not hold for P. In order to apply Theorem
2.2, the condition (A.1) with Q = {(1,1)} reads

k—dmne +6(mit? +m5t™2) #£0  VteC, |t|=1Vne R, |n|=1. (2.13)

In case 1, = 1, it follows from || = 1 that n, = 7, = 1/v/2. Hence (2.13)
implies that k ¢ [—4,8]. If n; # 12 we have that 2i Im (nit? + n3t™2) =
(n? — n2)(t* — t~2), which vanishes only if t* = +1. Because k is real (2.13) is
verified if #2 # +1. In the case t* = +1, (2.13) implies that k # 4nny + 6. It
follows that k ¢ [—6, —4] and k & [6, 8] since 0 < myny < 1/2. Therefore (A.1)
is equivalent to £ < —6 or k > 8. We can easily verify (A.2) formy; =0, n, =1
under these conditions.

On the other hand, if we want to apply Theorem 2.1, it is necessary to
verify (A.1). By simple computations this is equivalent to verify (2.13) for
|t| = p, where p varies in 0 < Jp; < p < Jpy < oo. Hence the condition is
valid if k is sufficiently large.

We will show that the type of M changes near the origin. Indeed, if k£ > 8
fo changes sign on the four lines fo(z,y) = 0 in R? intersecting at the origin.
Hence the equation is hyperbolic - elliptic near the origin. If k¥ < —6 the origin
x =y = 0 is the only zero of fy in R?, i.e., P is degenerate hyperbolic.

Example 2.3. Let uy(z,y) = z* + ba?y?, c(z,y) = cxy, where b > 6 and ¢
is a constant chosen later. The operator P is given by P = 2bx?9? + 2(62% +
byz)az + (¢ — 8b)xy0,0,, which is degenerate elliptic with degeneracy on the
line z = 0. Because o(z,n) = 2b(n? + n3) + 1203222, + (c — 8b)mma, (A.1)
reads

2b+ 1205t + (¢ — 8b)mme #0, V4 |t|=1, Vpe R, |n|=1. (2.14)

This is easily verified if 7, = 0 or ¢? is not real. Now, suppose that t?> = %1.
Because b > 6 and 0 < myn, < 1/2, (2.14) holds if ¢ — 8 > 0. The condition
(A.2) for gy = 1,19 = 0 is easily checked by definition. It follows from Theorem



2.2 that (2.7) has a solution if the order of g is sufficiently large. If we want
to apply Theorem 2.1 we have to verify (2.14) for [t| = p with 0 < Jp; < p <
dps < 0o. Clearly, this condition is valid for sufficiently large b depending on

p1 and ps.

3 Reduction to the boundary

In this section we obtain a crucial estimate for the linearized operator P in
(2.1) under (A.1) and (A.2).

2.1. Restriction to the boundary and Toeplitz operators. Let Wx(T%) be
the restriction of W in (2.5) to the torus {|zi| = R} x {|x2| = R2}

Wgr(T%) = {u = u, R ||ullg == |uy|R" < oo} : (3.1)
1

n>0

The space Wx(T%) is a Banach space with the norm || - ||z and each u €
Wr(T%) can be extended to an analytic function on the polydisk Dy by a
harmonic extension. We denote by LL(T%) the space of integrable functions
on {|x;| = Ry} X {|z2] = Ry}. We denote by 7 the projection from LL(T%)
to WR(T%)

For o € N2, 8 € N% and a smooth function u we have z*0%u = x* P2PdPu.
Moreover, by the commutator relation [t, 0/9t] = —1 we have t*9F = t0,(t0; —
1)---(t0, — k + 1). It follows that, by setting §; = z,;0/0x; (j = 1,2),

P00 =6,(6, — 1) (6, — BL +1)0o(0y — 1) - -+ (62 — B + 1) = ps(6), (3.2)

where 6§ = (61,02). Hence we can write P in the form P =Y, 5 capz® Pps(d),
where c,g are appropriately chosen constants.

Suppose now that P acts on holomorphic functions u, 5ju = 0, where 5]-
is the Cauchy-Riemann operator with respect to x;. If we introduce the polar
coordinates x; = r;exp(if;) (j = 1,2) we have that x;0,, = (r;0,, —i0p,)/2,
(j = 1,2). It follows from Cauchy-Riemann equation that (r;0,, + 0, )u = 0.
Because the normal derivative r;d,, can be expressed by a tangential derivative
dp;, we can restrict P to the torus {|z1| = R} x {|r2| = Ry}. Namely, we
can regard P as the operator on Wgr(T%). By definition we have 7P = P on
Wi(T3).

Let < Dy > be a pseudodifferential operator on T% with symbol <n>:=
(14 |n|?)'/2, where 7 is the covariable of #. Then the operator 7P < Dy >""=
P < Dyp>"" on Wg(T%) is called a Toeplitz operator on Wgr(T%). Note that
the Fredholmness of P <xd, >"" on W}y, is equivalent to that of the Toeplitz
operator 7P < Dy>"" on Wg(T%).



2.1. Fredholm property of Toeplitz operators. Let H be a Banach space
with norm || - ||. We denote by £(H) the space of linear continuous operators
on H. An operator L € L(H) is said to be a Fredholm operator if the range
LH of L is closed in H, the kernel and cokernel of L is of finite dimension,
i.e., dim KerL < oo and dim Coker L < oo, where Coker L = H/LH. We
denote the space of Fredholm operators by W(H). For L € U(H) we define the
index of L by ind L := dim Ker L — dim CokerL. A linear operator C' is said
to be a compact operator if it maps every bounded set into a precompact set.
For L € W(H) and a compact operator C, the operator L + C' is a Fredholm
operator such that ind (L + C') = ind L.

The following elementary lemma is useful in the following arguments. (See
also Lemma 3.4 in [6])

Lemma 3.1 Let q(n) be a function on N? such that sup, sy |q(n)] — 0 when
N — oco. Then the pseudodifferential operator q(Dyg) : Wr(T%) — Wr(T%)
18 a compact operator.

Let A\3(Dy) be a pseudodifferential operator with symbol Ag(n) := n°|n|~%! (
n# 0 ) and Ag(0) = 0. By Lemma 3.1, the Fredholmness of 7P is equivalent
to that of the operator T,

T=r Y cape P Ng(Dy) : Wa(T%) — Wg(T%). (3.3)

la|=|8|=m

We note that, by (2.3), T = wo(e?, Dy/|Dy|). For every u € Wgr(T%) the
order of u, ord u is defined as the order of @, where @ is an analytic extension
of u to Wx. The following theorem is crucial in our argument.

Theorem 3.2 Suppose (A.1) and (A.2). Then there exists an integer ko such
that 7P < Dy >"™ is invertible as a map on Wg(T%) N {u;ordu > ko} into
itself.

For the proof we prepare

Proposition 3.3 Suppose (A.1) and (A.2). Then T : Wg(T%) — Wx(T%)
in (3.3) is a Fredholm operator of index zero.

The proof is done by exactly the same method as that of Theorem 3.1 in [6].
]

Proof of Theorem 3.2. By (A.1), (A.2), Proposition 3.3 and Lemma 3.1 we
see that T is a Fredholm operator of index zero on Wx(T%). Because T
preserves the homogeneity there exists an integer k; such that 7' is a bijection
on Wr(T%) N {u;ordu = n} into itself if n > k;. Because 7P < Dy >™™
—T is a pseudodifferential operator with negative order times a projection we
can choose kg such that 7P < Dy >~ is invertible as a map on Wx(T%) N
{u;ordu > ko} into itself. O



4 Proof of Theorems

Proof of Theorem 2.2. We note that Wg(T%) is a Banach algebra by the usual
multiplication of functions. We restrict the equation (2.2) on W to Wr(T%).
Let the polynomial pz(d) be given by (3.2). Then, by restriction we replace
0% in (2.1) by

e o (Dg)u = me™p.(Dy)u. (4.1)

Because M (ug + w) = M(ug) + Qw + M (w) for the linearization @) of M at
u = uy, the restriction of (2.2) to the torus can be written in the following
form

QW + Y ags(me " po(Dg)w) (me™ps(Dy)w) = g. (4.2)

o,

Let ko be given in Theorem 3.2 and consider (4.2) on X := Wx(T%)N{w;ord w
> ko}. It follows from Theorem 3.2 that there exists (7Q) ' =: S on X. We
denote the nonlinear part in (4.2) by K(w) and we introduce a new unknown
function v by w = Sv. Then by recalling g = mg we have

v+ K(Sv) = mg. (4.3)

We define the sequence {vx} by vy = 0, vy = mg — K(Svy) = 7g, vp41 =
mg — K(Svg) for k£ =0,1,.... If ||g|| is sufficiently small, it follows from the
definition of K that the apriori estimate ||vg||r < p (K = 1,2,...) holds for
small p > 0. Hence, the limit v := Y22 j(vg11 — vg) = limy v, exists in X. We
have

v =Ilimv, = 7g — lim K (Svy_1) = mg — K(Sv).

Hence there exists a solution w € X to (4.2).

As to the uniqueness, let [|wi||r < p, ||we||lr < p be the solutions of (4.3).
Then we see that v = w; — wy satisfies v + IN((Swl, Swe)v = 0, where
K (Swy, Swy) := K(Sw) — K(Sws) is a polynomial of Sw; and Sw,. Because
||I:((Sw1, Swy)||g < 1 for sufficiently small p, we have ||[v]|z < ||Kv||z <
IK||rllv]|r < ||v||r. Hence v = 0.

Let w (w = Sv) be the anaytic extension of w into the polydisk Dg. The
analytic function M (ug+w)— fo(z)—g(x) in Dg vanishes on the Silov boundary
of Dg by the construction of w. Hence the maximal principle implies that it
vanishes in Dp. Hence  is the solution of (2.2).

Suppose that there exist two solutions w; and ws of (2.2). By the unique
solvability of the restricted equation we see that w; = w, on the boundary.
The maximal principle implies that w, = ws in Dg. O

Proof of Theorem 2.1. By definition of uy the Toeplitz symbol is in variant
if we replace R by Rp for p < 1. It follows that the conditions (A.1) and (A.2)

hold true for R = Rp. We cover ' by a finite number of polydisks Dpg’s such
that for each Dy (A.1) and (A.2) holds. In each Dy there exists a unique



solution of our equation if ¢ is sufficiently small. In order to prolong analytic
solution, suppose that there exist solutions in Dy and Dg. By assumption
the solution is unique on Dg N Dg. Hence we can prolong the solution to
Dgr U Dpg. It follows that we have a unique solution in Q. O

Proof of Corollary 2.5. Let w = Y222, ., w; be a formal solution of (2.2),
where ord ¢ > 2m+1, and w; is homogeneous degree j. For k chosen later, we
set w = wq + U, where U = 3°7°, w;. In order to show the convergence of U,
define a polynomial h by M (ug + wy) = fo + h and rewrite (2.2) in the form
M (ug+wo+U) = fo+h+g— h. By taking k sufficiently large, one can make
the order of g — h arbitrarily large. Because (A.1) and (A.2) are invariant if
we replace ug by ug + wq, it follows from by Proposition 2.4 that the equation
has a unique analytic solution U near the origin. This proves the convergence
of U. O

5 Extension to higher dimensions

In this section we will generalize the results in §2 to a general dimension.
Let © = (z1,...,2,) € C" and define 0* = (0/0x1)* ---(0/0xy,)*, |a] =
o+ oy fora=(o,...,0p) € Z%. For R= (Ry,...,Ry) (R; > 0), let
Drg be the disk Dg = {|z1| < Ri} x --- x {|z,| < R,}. We define the torus
T by T = {Jos| = Ba} x - x {J| = Ru}.

Let 2 C C" be a bounded complete Reinhardt domain containing the
origin not necessarily convex. We say that (2 is a Reinhardt domain if for each
a=(ai,...,a,) € Q the torus {(a;e®, ... a,e?);0<6; <2m,j=1,...,n}
is contained in €). A Reinhardt domain €2 is said to be complete if for each

a = (ai,...,a,) € Q the disk Dg, R = (|a1],...,|a,|) is contained in 2. We
denote by € the real representation of a Reinhardt domain, namely, 2 := {r €
R%Y;r = (|z1], ..., |z,]), 2 € Q}. We denote by O(Q) the set of holomorphic

functions in €.

Let M(x, z4, |a] < m) be an analytic function of (z,2,) in Q@ x W holo-
morphic in z € Q and polynomial in z,. We consider the operator M(u) :=
M(z,0%). Let ug(xz) € O(Q) and set fo(x) = M(ug). For g € O() we
consider

M(ug +v) = fo(z) + g(x). (5.1)

Let P = My, = ¥ o)<m(0M[024)(x,u9)0y be the linearized operator of M (u)
at u = up. We write it in the form P = Y2, <, aa(7)dy, where m € N,

and a,(x) is holomorphic in the closure of 2. We define the Toeplitz symbol
o(z,€) by
0(2,€) = 3 aa(2)2z "pa() <€>7, (5.2)

laj<m



where <&>= (14 €)% and po(€) = [T}, (& — 1) -+ (§ — oy +1). We
decompose

0(58) =€) +0"(58, o) =] oROd.  (53)
We assume that there exist constants ¢ € C, |¢| = 1 and d > 0 such that
Reco'(€) >d >0 forall VEeZ. (5.4)

Then we have

Theorem 5.1 Let Q' CC Q be arbitrarily given. Suppose that (5.4) is satis-
fied. Then there exist dy and € > 0 such that if d > dy in (5.4) the equation
(5.1) in Q' has a unique solution v in Q' for any g holomorphic in Q) such that

supg [g(z)| < e.
We define the set of holomorphic functions Wi = Wr(Dy) by

Wgr(Dg) == {u="> uyz"; ||lul|g := Y Juy|R" < oc}. (5.5)

n>0 n

We denote by Wg(T?%) the restriction of Wy to the torus T%, |z;| = R; by
Fourier series expansion. Every element in Wx(T%) can be extended as a
holomorphic function in Dpg, uniquely. Let ¢}, be the space of all absolutely
convergent sequences, namely (uy)pez» such that 3=, |u,|R" < co. Let (}, , be
the subspace of ¢}, such that u, = 0 for n ¢ Z". We note that Wgr(T%) is
isomorphic to the space Zfr, r in terms of Fourier series expansion. We denote
by 7 the projection 7 : (% Z}%,Jr. Clearly, the map 7 also defines the natural
projection on the space of all weighted absolutely convergent Fourier series on
T7% onto Wg(T%). Because every element of Wy has a Taylor expansion we
can define a pseudodifferential operator < D, > by the same way as before.

Lemma 5.2 Suppose that (5.4) is satisfied for some Q = (Ry, ..., R,) with
R; >0 (j=1,...,n). Then there exist dy and € > 0 such that if d > dy in
(5.4) the equation Pu = f in Wy has a unique solution for any f € Wg such
that ||f||r < e.

Proof. We restrict the operator P < D, >~™ to the torus by the help of 0
operator. Then the Toeplitz symbol of the restricted operator is given by (5.2).
It follows from (5.4) that, if d is sufficiently large,

Reco(z,§) = Reco'(§) + Reco"(z,6) >d — Ky, Vze Ty, VEeZh,

for some Ky > 0 such that d > K,. Hence, if ¢ > 0 is sufficiently small we
have
11 —eco(-,&)||Le <1—ed+eKy, VEeZl. (5.6)



For u € Wg(T%) we have
I(I = ecro)ullr = |Im(1 — eco)ullp < [|(1 = eco)ully, (5.7)

where we used the boundedness of 7 : ¢ — (5 . If we can show that

(1 — eco)ul|p < ||ul|p = ||u||r we have that ||(I — eero)ul|g < ||u||r. This
R R

proves that ecmo is invertible on Wg(T%). Hence 7o is invertible.

We set Q(H £) = 1—eco(Re¥, €) and we expand Q(, £) into Fourier series,
Q8,¢) = b,(§)Re™. The sum is convergent by the smoothness of Q.
In the following we denote by Q the pseudodifferential operator with symbol
given by Q(0,€). For u = Y a(§)R%e € Wg(T%), we have

=3 Q0 &)a(&)Re™ = ZZeW"b R, (5.8)
3

By changing the summation, the right-hand side is equal to
Zzb R§+V i0(E+v) ZTVu7 (59)

where

(T"u)(0) := " b, (E)a(€) RS eEH) = S™h, (€ — v)i(E — v)REe®.  (5.10)
£ £

Hence we have
1T ulle = 3 [b,(€ —v)[Ja(é — v)|RE
3
sup
¢

< R"|Z|u £ —v)| R ||u||Rs%p|6,,(£)|R".(5.11>

Let o(Re? &) = 3, 6,(6)R"e™® be the Fourier expansion of o(Re?¢).
Then we have

Q(0,6) =1 —cco(Re™, &) =1 — ccoy(€) — ec > 6, (&) R ™, (5.12)
v#0

Suppose that we have the estimate

Zsup|b )[R = sup |l —ecoo(€)| +e Y _sup|o, ()R < 1. (5.13)
6 y;é[] 6

Then we get, from (5.11) that

11— ecojullg, < 31 T"ullr < ||u||Rngp bR < [ullp- (5.14)



In order to prove (5.13) we note that (5.13) is clearly satisfied for sufficiently
small € if the summation in v is finite. (See also (5.6). In the general case we
note

RY6,(€) = (21) ™" /T o"(Re™, &) " db. (5.15)

Hence by the partial integration we have
R'v%6,(&) = (2m)~ / Dyo"( f)e_i”gdﬁ. (5.16)
It follows that sup, 16, (§)|R” < supgy |Dgo ”( ,€)| =: K. Therefore the

=
quantity (1 + |v|)""'R|6,(¢)| (Jv| = || + -+ + |l/n|) is bounded by some
constant K depending only on R, ¢” and n. By (5.4) the left-hand side of
(5.13) is bounded by

sup [L—eco’(§)|+e > sup |6, (§)|RY < 1—ed+e D (1+y]) ™ ' < 1—ed+eK’',
£ y;é[] £ I/#U
(5.17)

for some K’ > 0 depending on K. If d is sufficiently large we have that
l—ed+eK'<1. 0

Proof of Theorem 5.1. Let Q be a real representation of Q. By assumption
(Y is covered by a finite number of Dg’s with R = (Ry,...,R,) € Q such
that R; > p; > 0. In each Dy we will solve (5.1). Indeed, by Lemma 5.2
and the argument of the proof of Theorem 2.2 (5.1) has a unique holomorphic
solution if d in (5.4) is sufficiently large and sup, | f| is sufficiently small. The
intersection of two disks Dg and D is equal to Dg» with R" = (RY, ..., R]),
R} = min(R;, R}) > p;. Because (2 is a complete Reinhardt domain it follows

that R” € Q. Hence, by the unique solvability of the holomorphic solution in
Dpgr the solutions in D and Dpg coincide in Dgr if d in (5.4) is sufficiently
large and supq, | f| is sufficiently small. It follows that we can continue a unique
holomorphic solution over a finite union of Dg’s. Therefore we have a unique
solution in €. O

We will apply the above method to Monge-Ampere type equations under
a weaker condition than (5.4). With the same notations as above we consider

M(u) == det(ug;z,) + . Gapz®d?, (5.18)

laf=[8|=2
where aqs € C and uy,,, = 0*u/0x;0xy. Let u’ be holomorphic in € and
define M (u®) = fy. We want to solve the equation (5.1) for g € O(Q) such

that ord ¢ is sufficiently large. Here the order of ¢ is defined in the introduction.
The Toeplitz symbol o(z, &) of the linearized operator P is given by

0(2,6) = (21 2) Pdet(§ + za,, (2) = o)+ X aapz OE
la=|8|=2
(5.19)



We make the decomposition (5.3) and assume that there exist constants ¢ € C,
el =1, N > 1 and d > 0 such that

Reco'(§) >d >0 forall VEeZh,[£] > N. (5.20)

The condition (5.20) is slightly weaker than (5.4). Then we have

Theorem 5.3 Let Q' CC Q be arbitrarily given. Suppose that (5.20) is sat-
isfied. Then there exist dy, No > 1 and € > 0 such that if d > dy in (5.20)
the equation (5.1) in ' has a unique holomorphic solution v in Q' for any g
holomorphic in Q such that ordg > Ny, supgq |g(z)| < e.

The proof of Theorem 5.3 is almost the same as that of Theorem 5.1 except
for that we work in the class of functions v such that ordv > Np. (See also
the proof of Theorem 2.2.)

Example. We consider the case n = 3, u® = ;2225 and the linear part is
equal to —2((2101)? + (£202)? + (£303)%). We can easily verify the condition
(5.20).

6 Monge-Ampere equations in an outer do-
main

Let €2 be a simply connected complete Reinhardt domain containing the infin-
ity, xt1 = 00, ..., x, = oo. We say that  is complete if for each (ay, ..., a,) €
the disk at oo, D, = {|z1| > |ai| '} x -+ x {|z,| > |an| "'} is contained in
Q. Let Q be the real representation of Q. We say that a Reinhardt domain
V' is compactly contained in 2 and denote it by €' CC Q if there exist p; > 0
(j = 1,...,n) such that the real representation (¥ is contained in the set
{R%;2; > pj,j=1,...,n} and Q' cc Q.

We consider the operator given by the left-hand side of (5.18). By the
transformation z; = yj_l (j = 1,...,n) we have that u,,, = y;y(d;0pu +
gjkdju), where 0; = y;0,. and £ is a Kronecker delta. Hence it follows that
det(Ua;a,) = (Y1 ---yn)? det(d;0pu + £jx0;u). Because det(d;0,u + €j50;u) is
divisable by y; - - -y, we set M := (y; -+ - y,)~" det(6,;65u+2,40;u) and we have
det(tug,z,) = (y1 -+ -yn)* M. Hence, if aqs = 0 in (5.18), (5.18) is equivalent to
M = g for appropriately chosen ¢g. In view of this we consider the following
operator

M(u) := (21 - - 2)* det (t,,) +| |Z a32®0P = f(). (6.1)
a|=|8|=2

Let u° be a holomorphic function in Q such that ord u® > 2 and set fo = M (u®).
Let P be the linearized operator of M(u) at u = ug. The Toeplitz symbol



o(z,&) is then given by

B det (&€ + ijkugjmk(z))

() = SN TE “hE Y ), (62)
L7t on Jof=5]=2
where
h(z) = (21 -+ 2,) " " det(;0,u). (6.3)

We have the following theorem.

Theorem 6.1 Let Q' CC Q) be an arbitrarily Reinhardt domain. We make
the decomposition (5.3) for o(z,€) in (6.2), and we assume (5.20). Then
there exist dy, Ny > 1 and € > 0 such that if d > dy in (5.20) the equation
(6.1) withu =u’+v and f = fo+g in Q' has a unique holomorphic solution
v for any g holomorphic in Q, such that ord g > Ny, Supg, lg| < e.

Proof. We make the change of variables z; = yj_l in (6.1) to obtain

M+Q=g(y), gy)=fy"), (6.4)

for some (). By simple calculations the Topelitz symbol of the linearized op-
erator of the left-hand side of (6.4) at u = u° is given by (6.2) and (6.3).
Moreover, we may solve (6.4) in a bounded complete Reinhardt domain be-
cause ) CC €2,. By the similar argument as in Theorem 5.3, we can prove
the existence of a solution for (6.4). O

In the above theorem the existence of a linear part is crucial in actual
applications. In the following, we suppose that the linear part in (6.1) is zero,
namely a,s = 0. Furthermore, we assume n = 2, and we shall study regular
and singular solutions to the equation

Ugy gy Ugozs — uilm = f(l'), (65)
where © = (z1,25) € R% Let o = (aq,0) € Z*. Let X, be the linear
space of all formal power series in z; given by X, = {v;v = x;aj >0 ka]_k}
( =1,2). Then we have

Theorem 6.2 Suppose that f = 0 and |a] = a3 + @y # —1. Then every
solution of (6.5) of the form u = x=* Znezi upx " s contained either in X,
or in Xo. Hence they depend only on one variable.

Remark 6.3 Theorem 6.2 can be stated in a more general setting. Indeed,
consider general Monge-Ampére equation

Ar+Bs+Ct+D(rt —8°) —E =0, 7= Z2p2,,5= Zezsst = Zosess



where A, B, C, D and E are smooth functions of x1,x9,2z,p = 0z/0x1,q =
0z/0xy. Let \; and Ny be the roots of the equation \* + BA+ (AC + DE) =0
and consider the Monge system M

M :dz — pdx, — qdxy = Ddp + Cdxy + Mdry = Ddq + Modx; + Adxy = 0.

It is well-known that if M has three independent first integrals, then the above
Monge-Ampére equation is mapped to (6.5) with f =0 by contact transforma-
tions.

We first note that the change of variables z; = z; ', (j = 1,2) in (6.5) yields

M (u) = (6Fu + 61u) (65u + Su) — (6,02u)® = g(2), (6.6)

where §; = 2;(9/0z;) (j =1,2) and g(2) = 21 22, f(z1 ', 25 ).

Proof of Theorem 6.2. We set |a] = m and g = 0. By substituting the expan-
sion u = 2% ¥, cz2 upz" (up # 0) in (6.6) and by comparing the homogeneous
part of degree 2m we obtain (a2 +ay) (a2 +as) — a?a3 = 0. Tt follows from the
condition |a| # —1 that ayay = 0, which implies a = (m, 0) or a = (0, m).

Suppose that m < —2 and o = (m,0). Let u = 2" + u; + us + - - - be the
homogeneous expansion of u with u; being homogeneous degree m + j. By
comparing 2m + 1 homogeneous part of (6.6) we have (§3 +d,)u; = 0. Because
u; contains only nonnegative powers of z, by assumption a = (m, 0) it follows
that u; = c12; ™! for some constant ¢;. Suppose that uj = cjz{nﬂ for j < k.
By comparing the homogeneous part of degree 2m + k + 1 in (6.6) we obtain
(62 + 03)upyy = 0, to yield w1 = cpp 2. This proves that v € X;. We
can similarly prove that u € X, in case a = (0, m). In view of |a| # —1, the
other case m > 0 is contained in the following proposition. O

Proposition 6.4 Let v = > )2, u, be the homogeneous expansion of u in
(6.6). Suppose that u; =0 for any j < k and that uy # 0. Then we have the
followings

a) Either uj, = cz¥ or up = c25 holds for some ¢ # 0.

b)Either u, = c¢,2¥ (v > k) or u, = ¢,25 (v > k) holds for some c,.

Proof. If we prove a), b) follows by the same argument as in Theorem 6.2.
In order to prove a) we note that the comparison of terms of homogeneous
order 2k in (6.6) implies that uy satisfies (6.6) with g = 0. We substitute the

expansion of uy, u = ¥5_, a;7l2577 into (6.6). Since the term z2* does not

appear we compare the coefficients of 22 'z, to obtain azar_, = 0.

If a;, # 0 it follows that az_; = 0. Next, by comparing the terms of 22¥7222,
we obtain agap_o = 0, that is ay_o = 0. In the same way we can show that uy
depends only on z;.



We consider the case a; = 0. Because the assertion is trivial for £ =1 we
assume k > 2. By comparing the coefficients of 22¥7222 in M (u;) = 0 we have
that ai_, = 0. Suppose that a,_, = 0 for v < j < k — 2. It follows that uy,
is of degree greater than j 4+ 1 in z,. Hence, by comparing the coefficients of
degree 2(j + 1) in 2y, we obtain a7 , , = 0. It follows that a, = --- = a; = 0.

Hence u; depends only on z,. O

We will study the solutions of the form u = 3, cz2 upz™" of (6.5) or (6.6).
By writing g(z) = Y52, g; with g; being homogeneous degree j, we seek u =
Z;’il uj where u; = az; + b2y and u; is homogeneous degree j. We assume
ab # 0. If there exists a formal solution of (6.6), we can easily see that g(z)
satisfies the condition ¢g(z) = O(z122). By comparing terms of homogeneous
degree 2 in (6.6) we have go(z) = 4abziz;. We assume these compatibility
conditions. By the scale change of variables we may assume a = b =1/2.

Theorem 6.5 Let g be an arbitrarily power series satisfying go(2) = 2122,
g(z) = O(z122). For any formal power series v such that M(v) =0, ordv > 2
there exists a unique formal power series ¢ such that ord¢ > 2 and u :=
uy + v + ¢ satisfies (6.6). We write ¢ = Sv. Conversely, let u = uy + w,
ordw > 2 be a solution of (6.6) and let j =1 or j = 2. Then there ezists a
unique power series v of xj such that, M(v) =0, ordv > 2 and u = u; +v+Sv.
Moreover, Sv does not contain the powers of x; only.

Proof. We use the same notations as above. In order to determine u, we
compare the terms of homogeneous degree 3 in (6.6). We then have Pju, =
g3(2), where Py = 2(62 + 82) + 29(07 + 6,). If we substitute the expansions
u(2) = co22 + c12120 + 227 and g3(2) = dyz125 + dozize into the equation
Piuy = g3(z) we obtain that 6c¢y + 2¢; = dy and 2¢; + 6¢; = dy. These
equations have a unique solution once we give ¢y or ¢y, which is a kernel
element of M (v) =0 in view of Theorem 6.2.

Suppose that we have determined u; for j < k. By comparing (k + 1)-th
homogeneous part of (6.6) we see that uy satisfies Piug + (-+-) = gri1(2),
where the dots denotes the terms determined by u; with j < k. Because we
can easily see, from the definition of M that these term are divisable by z;25
the recurrence relations has the same structures as for u, and we can determine
uy if we assign the kernel element in u;. The rest of Theorem 6.5 is clear. O

Corollary 6.6 Let u = uj+v+ Sv be a formal power series solution of (6.6).
If u converges, it follows that the kernel element v converges.

Proof. If otherwise, u does not converge because Sv does not contain the
powers of z; only. O

Remark 6.7 We note that the operator Py in the proof of Theorem 6.5 is
degenerate elliptic-hyperbolic near the origin. Indeed, the principal symbol of



Py is given by —z129(2262 + 21£2).  We remark that Corollary 2.5 cannot be
applied since Py does not satisfy (A.1).

Concerning the convergence of formal solutions u in Theorem 6.5 we note
that the existence of a nontrivial kernel element v, M(v) = 0 leads to the
divergence in general.

We define the space Wg as in Theorem 2.2 with respect to the variable
z. Now, we drop the assumption ab # 0 in Theorem 6.5. For simplicity we
assume u; = 0 and we look for the solution of (6.6) in the form u = >222, uj,
where uy(2) = az} + bz129 + €23, u; being homogeneous degree j. We define
92 = M(us).

Theorem 6.8 We define the Toeplitz symbol by o(t, &) := 3a&3t + b(£? + &2 —
£1&) + 3c€2t L. Suppose that

o(t,§) £0 forVteC, |t|=1, VEe R, £ =1, (6.7)
1
indy= o(t,§) = Py %t|:1 dilogo(t,§) =036 e R2, €| =1. (6.8)

Then there exists N > 3 and r > 0 such that for every g = g4 + g € Wg such
that ordg > N and ||g||r < r the equation (6.6) has a unique solution u € Wg
such that v = us + v, ordv > N.

Proof. Because both sides of (6.6) is divisable by z; 2, by definition we consider
21 ta T M (up+v) /2 = 2, 'z, Lg/2. By simple computation we have that M (ugp+
v) = M(ug) + 22122 Pv + M (v), where

P = 3az2; (65 4+ 85) + b(6] + 05 — 6102 + 61 + 02) + 3czy P 22(67 + 61). (6.9)

The conditions (A.1) and (A.2) in Theorem 2.2 are equivalent to (6.7) and
(6.8), respectively. Hence Theorem 6.8 follows from Theorem 2.2. O

Corollary 6.9 Let uy be as in the above. Suppose that |b| > 6|ac|'/?. Then,
there exists v > 0 such that for every g € Wg such that ordg > 4, ||g||lr < r
and gy = M (us) there exists a solution u = uy+us+--- € Wg of the equation

(6.6).

Proof. First we note that M is invariant under the scale change of variables. If
ac = 0, we may assume ¢ = 0 without loss of generality. By the scale change of
variables, one can make a arbitrarily small, while b remains unchanged. Then
(6.7) and (6.8) are clearly satisfied.

If ac # 0 one may assume, by scale change that |a| = |¢| = |ac|"? in us.
The Toeplitz symbol is equal to o(e!1=%) ¢), with o(t,€) given in Theorem
6.8. Hence (A.1) holds if |b|/(3]ac|*?) > (€2 + £2)(£2 + &2 — £,&) L. Because
the maximum of the right-hand side is 2 the condition is easily verfied by the

1/2



assumption |b| > 6|ac|'/2. As to (A.2), by setting & = 0,& = 1 we consider
b+ 3ce?279)  The condition (A.2) is easily verified.

To end the proof, we will show that there is no finite -dimensional kernel
for P in (6.9). The coefficient of 27 in Pu, u = Y u,2" is equal to

(M2 + 1) tp,—1+1 + 007 + 15 — mima + 11+ m2)uy + (M1 + 1)ty 41,951

Because P preserves homogeneous polynomials, for a given & > 3 we write
the system of equations || = k in the matrix form. We apply Gershgorin’s
theorem to the matrices obtained from this recurrence relation. For n; = v,
1Ny = k — v Gerschgorin’s condition implies that any eigenvalue A satisfies

b2 + (k—v)? —v(k —v) + k) — A < 3lac|?(v? + (k — v)?). (6.10)
Hence \ = 0 is not an eigenvalue if |b| > 6|ac|'/2. O

Remark 6.10 (a) Theorem 6.8 and Corollary 6.9 hold in the case of local
solvability. Namely, we take R > 0 sufficiently small instead of the smallness
of g. Because the statement is similar to Proposition 2.4, we omat it. It is also
possible to extend the above results to the case of a complete Reinhardt outer
domain in C? as in Theorem 6.1.

(b) The operator P in (6.9) is of mized type in general. Indeed, the principal
symbol is given by az1 2983 +c21 283 +b(22E3 + 2265 — 21261&). Ifa = ¢ =0 and
b # 0, P is degenerate elliptic near the origin. If c=0,a=1ora=c=1,
P s degenerate elliptic-hyperbolic near the origin.
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