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1 Introduction

This paper is concerned with the solvability of a Fuchsian system of a singular nonlinear partia differential
equations in a bounded domain Q c R™ or in R™. These equations naturally appear when we solve a class of
Monge-Ampére equations or when we linearize a singular vector field by a coordinate change. (See §2). Aswe
can seefrom the simple example Lu := (t% —1)u = ¢, these equations do not have a smooth solution in general.
Indeed, if u(t) = co + c1t +v(t), v = O(t?) isasolution, then therelations £(co + c1t) = —co and Lv = O(t?)
imply that « isnot smooth at ¢ = 0. In fact, if we allow a singular solution, then we see that u = ct + tlogt,
(¢, constant) gives a solution. Here we take the branch of the logarithm such that log1 = 0. If we restrict ¢ to
the real line, then v gives a Holder continuous function on the real line. Similar property holds for Lu = x4,
where £ = 9316%1 + mxga%z —1, (m > 1). Theequation Lu = x; has no smooth solution at the origin, while
u = cx1 + 1 log 1, (¢, constant) is asingular solution. It gives a Holder continuous function on the real line
for an appropriate choice of the branch of log ;. We aso note that this phenomenon is closely related with a
Grobman-Hartman theorem. (cf. Remark 2.9). These examples are known as a so-called totally characteristic
type partia differential equation.(cf. [3]). Asto formal solutions of nonlinear first order totally characteristic type
equations we refer [3], and as to singular solutions of nonlinear singular partial differential equations we refer
[19]. We also remark arelated work [11] concerning symbolic cal culus on manifolds with edges.

The object of thispaper isto solvethistype of equationsin aclass of finitely smooth functions. For this purpose
we employ a rapidly convergent iteration method in a class of non smooth functions, because the Fuchsian
equations have a loss of regularity. We stress that the usual rapidly convergent iteration scheme is not useful
in order to solve this type of equations, because one requires high regularity in the iterative scheme, while our
solution does not have such smoothness in general. We introduce a partial smoothing operator which preserves
the vanishing order of approximate solutions on every coordinate axis. This smoothing operator is useful in the
iterative scheme because the Fuchsian partial differential operators which we study in this paper lose derivatives
of the transversal direction of every coordinate axis, although they preserve the vanishing order. Concerning the
loss of regularity of nonlinear equations (of multiple characteristics) we refer [5], [7] and [18].
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4 Yoshino: Nonlinear Singular Equations

This paper is organized as follows. In §2 we state the main theorem and we give several consequences and
applications. In §3 we prepare lemmas which are necessary for the proof of the main theorem. The proof of the
main theorem is given in §4 by using arapidly convergent iteration method.

2 Statement of results

Letz = (z1,...,7,) € R" bethe varidble in R™ (n > 2). For amultiinteger o = (v,... ,an) € Z7,
Zy ={0,1,2,... } weset |a] = a; + - - - + . We define

8j:8/8m]~, 6j:xj8j (jzl,...,n), 5(}:5?1---(52‘".

Letm >1,m > s >0, N > 1beintegers, and let

pi0) = > aa;0% (aa; €R, j=1,...,N)

la|<m

be Fuchsian partia differential operators. Let
aj(x,2),2 = (2a)jaj<s Jj=1,...,N,

be real-valued C>° functionsof (z, z) € R" x 2, whereQ C R*V, (k = #{a € Z";|a| < s}) isaneighborhood
of the origin.
We study the solvability of the system of equationsfor v = (uy, ... ,un)

Gj(u) :==p;j(0)u; +aj(z,0%; o] <s)=0, j=1,...,N. (2.1)
Let o be anonnegative number, and I' be a domain of R™. We define H, = H, r asthe set of holomorphic
(vector) funtions v(¢) = (v1(¢), ... ,on(C)) of = n + i € T + iR™ such that
M= sup [ Q7 (@)1 < . 22)
n n

where (¢) = 1+ 377, |¢;], and [v(¢)| = (Z;\;l |v;(€)|?)'/2. The space H,, r is a Banach space with the norm
(2.2). The fundamental properties of H, r isgiven in Proposition 3.1 which follows.

Let f(x) be an integrable N- vector function on R}, Ry := {t € R;¢ > 0} and let f(¢) be the Méllin
transform of f

f(C) = M(f)(C) = (m)xC7edxa €= (17 al)v ¢(=n+i§,nel,§ eR", (233

n
R%

where z¢—¢ = 2571 241 ¢ = (¢h,...,Ca). Itiseasy to seethat f(¢) is analytic if the integral (2.3)
absolutely converges. Theinverse Méllin transform is given by

fl@) =M (f)x) = (2m)" N fn+ gz, (2.4)
wherex; > 0 (j = 1,...,n) and ny is so taken that the integral converges. We note that these formulas follow
from the corresponding ones of the Fourier transform by the change of variablese? — x;.

We define H, r as the inverse Méllin transform of H, r. We note that the Mellin transform gives the one to
one correspondence between the spaces H, r and H, 1. For u € H, r we define the norm ||u||,,r of u by

lullo,r =M ), r.

For an integer & > 1 we denote by (H, r-)* the product of k copies of H, r. Thenormin (H, r)* is defined as
the sum of the norm of each component. For simplicity, we denote the normin (M, r)* by || - ||, if thereisno
fear of confusion.

(© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



mn header will be provided by the publisher 5

Let p;(C) = X jaj<m %aj(—¢)* betheindicial polynomial associated with p;(5), where ¢ = (Ci, ..., Ga) is
the covariable of z in the sense of the Mellin transform. We assume

(A.1) Thereexistsaconstant ¢ > 0 such that
lpj(n+i&)| = c(lnl + [€))*,  Vnel,v¢eR", j=1,...,N.

We set a(z, 2) = (a1(z, 2),... ,an(z, 2)). Then we assume that a(z, 2) € (C°°(R™ x Q))N and
(A2) VaeZ VB eZtN,3C,s > 0 suchthat

[(0/02)P6%a(x, 2)| < Cap, ¥(z,2) €R™ x Q.

Then our main theorem in this paper is the following

Theorem 2.1 Leto > m beaninteger. Supposethat (A.1) hold for some bounded domainT" C R™ containing
the origin. Assume (A.2). Then there exist aninteger v = v(o) > 0 andane = e(o) > 0 depending on o such
that, if the following conditions are satisfied

laC0)lr <& [[Vza(0)llr <,

then Eq. (2.1) hasa solution u € (Hy )™

Next we study the local solvability. We say that u € (H,,r)" at theoriginif thereexistsay € C>°(R") with
compact support and being identically equal to one in some neighborhood of the origin such that yu € (H, r)".
For opensetsT'; ¢ R™ and ', C R” therelationI'; cC I'; meansT'; C I'y, where T is the closure of T';.
Then we have

Theorem 2.2 Let 0 > m bean integer. Suppose that (A.1) holds for some bounded domain I" containing the
origin. Then there exists an integer v > 0 such that, if

a(z,0) € (H,r)¥ and V.a(z,0) € (H,r)*" attheorigin,

then there exists a solution u € (H, /)" of (2.1) in some neighborhood of the origin for every I'” cc T.

Remark 2.3 a) Theorem 2.1 and Theorem 2.2 yield the solvability of (2.1) in some neighborhood of the
originin aclass of finitely smooth functions. Indeed, we can solve (2.1) inthe sectors {e;z; > 0;5 =1,... ,n},
(e; = £1), after the change of variables z; — ¢;z;, (j = 1,... ,n) , because §; is invariant under the change
of variables. By the assumption 0 € I' and the definition of 7, r, the solution « together with the derivatives
d%u, |a| < s vanishes (to afinite order) on the coordinate planesz; = 0 (j = 1,... ,n). (See Proposition 3.1.)
Hence, by patching the solutions in these sectors we obtain a finitely smooth solution in some neighborhood of
the origin.

b) (Bifurcation from a resonance) The uniqueness of solutions in Theorem 2.1 and Corollary 2.2 does not
aways hold if there is aresonance. Indeed, we consider the equation

p((S)u + Aa(xau) =0, a(x,u) = O(‘u|2)v

where v is a scalar unknown function, X is areal parameter, and where p(d) is an Fuchisian partial differential
operator similar to p;(4) in (2.1). We note that « = 0 is atrivial solution of the equation. We assume (A.1) for
some domain " 5 0. Then we shall show that the above equation has a non trivial family of solutions u = wuy,
ux = Aug + vy for sufficiently small A\, where u satisfies p(§)ug = 0.

First we note that there exists ug such that p(d)ug = 0 if there is a resonance. (See also Example 2.8 which
follows.) If weset v = vy, then v satisfies

p(d)v + Aa(z, Aug +v) = 0.
The conditionsin Theorem 2.1 read:
IXa(-; Awo)|lor <e and  [|AVyua(-, Aug)|lu,r < €.
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6 Yoshino: Nonlinear Singular Equations

These conditions are satisfied for sufficiently small A if a(x, Aug) € H,r and Vya(z, Aug) € H,r for all
A close to 0. For example, if the local solvability is concerned, these conditions are verified if a(x, \ug) and
Vua(x, Aug) vanish to some order for all sufficiently small A. (We also refer Lemma 4.2 which follows.)

It follows from Theorem 2.1 or Corollary 2.2 that there exists a solution v for sufficiently small A\. Moreover,
by the constructions of an approximate sequence wy, in (4.12), we have v = limy, wy, and

w1 = Sopo, Lopo = go = —Aa(x, Aug), . ..

It follows from the assumption on « that the vanishing order of gy at the origin is greater than uy. Therefore,
we see that the vanishing order of w, at the origin is greater than that of uo, because L, Land S, preserve the
vanishing order. Inductively, we can easily see that the vanishing order at the origin of the solution v = lim wy
is greater than that of ug. It followsthat v = Aug + v # 0. Therefore, we have a family of solutions of our
equation.

Remark 2.4 The smallness conditions in Theorem 2.1 for the nonlinear part a(z,0) and V.a(x,0) of the
equation (2.1) are fulfilled if the following conditions are satisfied

a(z,0) =0, V,a;(z,00=0, j=1,...,n. (2.5)

On the other hand, the condition (A.2) in Theorem 2.1 isfulfilled if a(z, z) isindependent of = or a(z, z) has a
compact support with respect to x.

Example 2.5 We give the example which satisfies (A.1). Let

p2(Q) =G =D (i, >0
j=2
Let p1(¢) bealinear function of ¢ with real coefficients. We set p(¢) = p2(¢) + p1(¢). We assume that
pi(€) +7-Vpa(€) £0 forvpeT, andV ¢ € R™ suchthat pa(€) > 0,[¢] = L.
We want to show that there exists real number K such that p(¢) + K satisfies (A.1) with s = 1. We have
p(n+i&) + K = K —p2(§) + p(n) +i(p1(§) +n - Vp2()).

Because n moves in a bounded set it follows that if K > 0 is sufficiently large, the zero set of the polynomial
of & Rp(n + i€) + K is contained in the set p»(£) > 0, £ > 1, where Rp is the real part of p. On the other
hand, by assumption and the homogeneity, the imaginary part S p(n + i£) does not vanish on the set p2(£) > 0,
|€] > 1. It followsthat p(n + &) + K # 0foraln e 'and .

In order to show (A.1) with s = 1 itissufficient to consider £ such that |{| > N > 0 forlarge N. If { isina
conica neighborhood of &, such that p2(&y) # 0, we have (A.1) with s = 2. If otherwise, the assumption implies
that p1 (&) + 7 - Vp2(€) # 0. Hence we have

lp(n +i&)| = [Sp(n + )| = cl€] = ([ + Inl)

for somec > 0 and ¢’ > 0. Thisproves (A.1) with s = 1.
Example 2.6 Wewrite x; = x, 2 = y, and we consider the Monge-Ampeére operator

M (1) = Uggtyy — uby, + kTytgy +cu, 4 <k <12, c€C.

Let ug = 22y? and set fo = M (ug) = (4k — 12 + ¢)x?y?. We want to solve the equation
M(ug +v) = fo(z,y) +g(z,y), inR?

where g(z, y) isagiven function. If we define
Q = 22°0% + 24202 + (k — 8)ay0,0y + ¢, M (u) = M(u) — kxyuay — cu,

(© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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then the equation can be written in the form
Qu+ M(v) = g.

In order to writethe equation in theform (2.1) weintroduce anew unknown functionw by v(z, y) = z2y?w(x,y).
By simple computations we have

x*Qy*QM(:L'Qwa)
= (%W + 4w, + 2w)(YPwy, + dyw, + 2w) — (TYWey + 22w, + 2ywy, + 4w)?
22y Q(a%y w)
= 2(02 4 465)w + 2(0; + 46, )w + (k — 8)(628y + 205 + 26, )w + (4k — 24 + c)w,
where 6, = x0/0x and 6, = yd/0y. This proves that our equation can be written in the form (2.1). We note

that the condition (A.2) isfulfilled. (cf. Remark 2.4).
Theindicia polynomial is given by

p(¢) :=2(¢F — 4¢1) + 2(¢F — 4¢2) + (k — 8)(C1¢a — 2C1 — 2¢2) + ¢ + 4k — 24.

We will show (A.1) with s = 2 for some bounded domainI" C R™ \ {p(n) = 0} containing the originif ¢ = iK,
K > 0Oissufficiently large . We note that p(&) is eliptic by the condition 4 < k& < 12. It follows that there exist
& > 0 and a > 0 independent of K and n such that R p(n + &) > a2 if |¢] > & andn € T. If |¢] < &, then
Sp(n + i€) does not vanish if K issufficiently large. Therefore we have (A.1) with s = 2.

Next we apply our argument to the normal form theory of asingular hyperbolic vector field y = Z?=1 X,(x)0;,
0; = 0/0x; onR"™. We say that x issingular if X;(0) =0 (j =1,...,n). Weset X = (X4,...,X,). Forthe
sake of simplicity, we assume

X(x) =2zA+ R(x), R(z)=(Ri(x),...,Rn(x)), (2.6)

for areal-valued C*° function R;(z) such that R;(0) = 0, VR,;(0) = 0, and adiagona matrix A =
diag (A1, -+, ), A; € R. Wewant to find a change of variables y — = = y + v(y) which linearizes x. It
follows that v satisfies the so-called homology equation

X(y+o(y) 1+ Vo) h =yA,

or equivaently,

Lv=Ry+v(y), Lv:= z”: Ajojv — vA. (2.7

j=1

We definep(¢) = — Z?:1 ¢iA;I — A, where I isan identity matrix. Then we have

Theorem 2.7 Suppose that (A.1) is satisfied for s = 0 and some bounded domain I" containing the origin.
Assume (2.6). Let o > 1 be aninteger. Then there exists » > 0 such that, if the following conditions are satisfied

Re (H,r)", VR, € (7—[,,71~)"2 attheorigin (j=1,...,n),

then Eq. (2.7) hasa solution v € (H, /)" for everyI" cC T'.

Example 2.8 We give examples which satisfy (A.1). Suppose that A\, --- A, # 0. By definition the k-th
component of R p(¢) (¢ = n +i&) isgivenby — 37, n;A; — A, Hence the set of 7 such that Rp(¢) = 0
consists of n hyperplanes, > ;1A +Ar = 0 not passing through the origin. Therefore we have (A.1) with s = 0
for some open set I" containing the origin. The followings are typical cases which satisfy (A.1).

(i) Poincarécasg;i.e, \; >0(j=1,...,n).

(¢) Nonresonant Siegel case; namely, some \; are positive and others are negative, and p(¢) = 0 (¢ € Z, [(| >
2) has no solution.

(447) Infinite resonances casg; that is, p(¢) = 0 (¢ € Z7}) has an infinitely many solutions.
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8 Yoshino: Nonlinear Singular Equations

The third case contains a volume preserving vector fields, namely E?:1 Aj = 0. Inthe case () the set
{ne R} Rp(n+if) =0 forsome& € R"}

is acompact set not containing the origin. Hence we can take I in (A.1) asabounded domainin R” \ {R p(¢) =
0}. Inthe case (ii) the intersection of the hyperplanes >, n;A; + Ax = 0 and —R} is noncompact. Hence
the set " in (A.1) may be asmaller set. In the case (7i7) there is an additional restriction to I" due to an infinite
resonances apart from the ones caused by a Siegel condition. We note that the larger the set I is, the more regular
the solution is.

Remark 2.9 By Remark 2.3 and Theorem 2.7 we can construct a finitely smooth coordinate change which
linearizes x even in the case of resonances. It is natural to ask wether there existsa C'*° coordinate change which
linearizes x. The answer to this question is not affirmative. Indeed, if the vector field has a resonance, £ has a
(infinite) kernel. It follows that if (2.7) has a C*° solution v, then the Taylor expansion of v at the origin gives
a formal power series solution of (2.7). Hence the Taylor expansion of R satisfies a compatibility condition.
Because we do not assume any compatibility condition a priori, the solution is not smoocth in general. We
stress that the regularity of the solution is related with the property of a resonance as we note in the preceeding
example. If we assume the weaker condition Ay --- A,, # 0, the solution is continuous. We remark that this
fact was essentially noted as a Grobman-Hartman theorem for a vector field, which asserts the existence of a
continuous solution of ahomology equation (cf. [1], p.127 and p191).

Theorem 2.7 can be extended to a commuting system of hyperbolic singular vector fields on R™,
x={x*p=1,...,d}, [x*x"]1=0 foralvandy.

We write x* = >"_, X/'(¢)0; and set X* = (X7,...,X}). For the sake of simplicity we assume that
XH(x) = xA* + R*(x) for some real-valued C'> vector function R such that

R*(0) =0, VRH(0)=0,
and diagonal matrices
AF =diag (A, M), M eR, p=1,...,d

We are interested in the simultaneous linearization of x by the change of varigblesy — = = y + v(y). It
follows that v satisfies an overdetermined system of equations

LMy = R (z + v),
where £* is similarly given by (2.7). Let C be a positive cone generated by the vectors (A},... ,A}) € R,
(j=1,...,n), namely

n
Ci={> t;(\j,... . \)) €R%t; >0,(j =1,...,n), 8] + -+ 15 #0}.
j=1

We say that y satisfies a simultaneous Poincaré condition if the cone C does not contain the origin. In case
d = 1, this condition is equivalent to that the quantity ¢;\} + - - - + ¢, AL does not vanish for ¢; > 0 such that
t2+4---+1t2 # 0. Thelast condition isequivalent to say that A > 0,... , AL > 0. Thisisawell-known Poincaré
condition for asingle vector field. We have

Theorem 2.10 Let ¢ > 1. Suppose that the simultaneous Poincaré condition is satisfied. Then there exists
v > 0 such that, if

R* € (H,r)" and VRFe (7—[,,71~)"2 attheorigin forp=1,...,d,

then x is simultaneously linearized in some neighborhood of the origin by the change of the variablesy — = =
y +v(y), withv € (Hor)", VI" CC T

(© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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3 Somelemmas

In this section we will prepare lemmas which are necessary in the calculus of a class of pseudo-differential
operators of totally characteristic typein aMellin’s sense. We cite [11] concerning symbolic calculus of operators
on manifolds with edges.

Let I' be an open set in R™. First we study fundamental propertiesof H r (s € R4 ) defined in §1.

Proposition 3.1 (1) Let s > 0 bean integer and let & € H . Then the inverse Mellin transform u(z) =
M~1(a)(x) of & is abounded continuous function on R’ such that for every «, |a| < s andn € T, the function
2"0%u(z) is continuous and satisfies

2"6%(z) — 0 as z; — 0, j=1,...,n, (3.1
"6 (z) — 0 as z; —4oo, j=1,...,n. (3.2

Moreover, for every IV cC T there exists ¢ > 0 independent of 4 such that

sup |z"6%u(x)| < clﬁls’p, Vi € Hqr. (3.3
2R [a|<s,nel”

(2) Let s > 0 be an integer and let u(x) be any bounded continuous function on R’} satisfying (3.1) and (3.2)
for every n € T. Then the Mellin transform a.(¢) = M (u)(¢) of u exists and @(¢) is holomorphicin T' + (R™.
Moreover, for every I'" cC I cC T thereexist C > 0 such that

@°laQ)<C sup |z76%u(z)|,  VCRCET (34)

mERﬁ_,\a\Ss,nEW

where (¢) =1+ Z?:1 <18
(3) H,r isaBanach space with the norm (2.2).

Proof. We will prove (1). Theinverse Méellin transform of @ exists because @ € H; . Moreover we have

215%u(z) = (2m) " / (—O)"a(C)a"Cde, neT,RCeT. (35)

n

We take n and ¢ in (3.5) suchthat n; — R¢; > 0ifz; < 1,m; — R < 0if z; > 1. We easily see that (3.1)
and (3.2) hold. The estimate (3.3) follows from (3.5) because |z"~¢| is bounded by some constant.

We prove (2). The conditions (3.1) and (3.2) with o = 0 imply that the Mellin transform M (u)(¢) exists and
it is holomorphic in T" + iR™. In order to show (3.4), we first note that the right-hand side of (3.4) is finite by
(3.1) and (3.2). It follows from (3.1) and (3.2) that, for |a| < s

¢ra(¢) = /U(Z)Caxcfed:c = /u(x)(@m )2 dr = §%u(z)x*Cda. (3.6)

R%
Letr; (j=1,...,n)besuchthat 7; =1 or7; = —1 and definer = (ry,... ,7,). Wedefine S, by
Sy ={x=(x1,... ,2,) € R};0 <z <1}

By (3.6), there exists C’ > 0 independent of ¢ such that, if ¢ € TV

€)*1a(¢)] < C" sup / 27 5%(x)dx| < C' sup Z / 275 (x)dx| . (3.7)

la|<s [JR7Y la|<s /s,
By assumption, for each S, wetakeann = n(r) = (m,... ,n,) andasmall e; > O suchthat R ¢;—n; > &1 > 0
ifr; =1, andR¢ —n; < —e1if 7; = —1. Foragiven I, I" cC I cC T we can choose €; so small that

nel”.
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10 Yoshino: Nonlinear Singular Equations

Therefore, there exists C”” > 0 independent of ¢ such that
/ ST 5%y () dx
s

/ 2~ ¢6%u(z)dx
S, .,

/ aRC—endy
S.

(Qa@Q)l=c sup. |2"0%u(z)].
xeRi,nEF”,|a|§s

< sup |2"5%(z)|
z€RY

<c” suRp [x"0%u(x)] . (3.8)
T€eRY

Hence there exists C > 0 such that

This proves (3.4).

We will prove (3). In order to show that H, r is complete, suppose that i, — wrl, - — 0 (m,n — o).
It follows from (3.3) and (3.4) that {0, ({)} converges compactly uniformly in ®¢ € T to a function w(()
holomorphicin ¢ € T + iR™. Letn € I' be arbitrarily taken and fixed. By assumption, for every ¢ > 0 there
exists N > 1 such that

[0 180(0) = tm(@lde <& nm = N,

It follows that, for any compact set K C R™ we have

/K (O 1 (0) — dm(ONdE <&, Yn,m > N.

Weletm — oo. Then we have [} (¢)®|wn(¢) — w(¢)|d¢ < eforall n > N. Letting K 1 R" we obtain
fRﬂ #lwn, (€) — w(¢)|dE < e foral n > N. By taking the supremum with respect to € T', we see that
Wy, — W € Hs,p and {w, } convergesto w in Hs r. O

Now we define a smoothing operator in Hs . Let ¢ € C*(R"),0 < ¢ < 1 be asmooth function with a
compact support such that ¢ = 1 in some neighborhood of the originz = 0 and [;, ¢(0)do = 1. Let N > 1,
¢ > 1 beintegersand let 7 be an odd integer, 27 > £. We set ¢y (¢) := exp(N 7 377 CQT) and define

J4 v
X () = / _$(0) {wo (e‘”“N -2 (—%C) 5) + (1~ wN(<>>e—“</N} do.  (39)

v=1

The function x(¢) isan entire function of ¢ in C™ such that x%,(¢) = xx (). We define a smoothing operator
SN by

Snvi= M (X1 (Q8(C), v eHsr (3.10)

where 9(¢) isthe Méllin transform of v and M ~! denotes the inverse Mellin transform. Then we have

Proposition 3.2 Let I" be a bounded domain. Then Sy has the following properties.
(1) For every 0 < s < r suchthat r — s isan integer, there exists C,. > 0 such that

||SNU||T,F < CT(N—i— 1) - v € Hsr.

(2) For every0 < s < rsuchthatr — s < ¢isan integer, there exists C,- > 0 such that
I(I = Sn)ollsr < Cr(N + 1) [[o]lr

(3) Sy maps areal-valued function to a real-valued function.
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Proof. Proof of (1). In view of the definition of the norm ||.Snv||,,r we consider

/QW%H@MM%,@ﬂHmweD (3.11)

Writing (¢)" = (¢)"~*(¢)*® and recalling that » — s isanonnegativeinteger we havethat ({)"~* = (1+>_|¢;[)"~*
isapolynomial of |¢;|. Hence we will estimate [¢* x4 ; (¢)| (Jo| < r — s). Inview of (3.9) we consider

/d)(a)(l —Yn11(0)¢e 7/ N dg
= /¢(U)(1 — N1 (O)(=(N +1)0,)%e 7/ N+ 4

= (VD) [ 320(0)(1 — i@V o, (3.12)

In order to estimate the right-hand side, we note

1 n
Yn+1(¢) = exp (W Z(TIJQ' + 2§ — éf)T) :

Jj=1

Because T isan odd integer, vy 11 (n + i€) tendsto zero for N = 1,2, ... when ¢ tendsto infinity for a bounded
n. Similarly, e=7¢/(N+1) jsbounded for N = 1,2,... when ¢ — oo and 7 is bounded. Hence the term (3.12)
can be estimated by C,.(N + 1)l°l < C,.(N + 1)"~* for some constant C,. > 0.

We consider the term

. o \" 1
I:= /¢(0)¢N+1(C) (6_04/(1\7“) - (_N n 1) J) (“do.

v=1
By setting ¢ = (t1,... ,tn) = /(N + 1) we have

14

I=(N+1) / ()N (HN + 1) (e = S (=at) ()~ )t do

v=1

Because ¢ +1(t(N + 1)) is exponentially decreasing to zero when S¢ — oo for N = 1,2,..., theintegrand
is uniformly bounded for ¢ € R™ and N = 0,1,2,.... Therefore we see that [C* x4, (¢)| (Jo| < 7 —s)is
bounded by C/.(N + 1)"—° for some constant C. > 0 whichisuniforminn € ', N =0,1,2,... and{ € R,
€] — oo. It follows that [(¢)"~* X% 1 (¢)| is bounded by C.(N + 1)"~* for some constant C, > 0 which is
uniforminn eI, e R*and N = 0,1, 2,... By (3.11) we obtain (1).

Proof of (2). By (3.10) we have

1T = Sw)olls.r =17 = X&)l r

(© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



12 Yoshino: Nonlinear Singular Equations

For the sake of simplicity weset s — r = a < 0. Recallingthat [ ¢(c)do = 1andr — s < ¢ we have

14 v
/ P(o)bn11(C) <e‘”</ WD) %" (— N”i 1) %) do (3.13)

v=1

X§V+1(O -1

4 / B(0)(1 — 41 (O))e "/ N g — / 6(0)do

14

fornn (w52 (-757) 5 o

v=0

/ B(0) (1 — o 41(C))e S/ NV gy / 6(0)do + / $(0)on41(C)do

_|_

14

[oterinin() <e”</<N+1> Y (- 1)" l,> io

v=0
+ [ 0(0)1 = b (OO — 1o = 1y + 1o

By the definition of the norm we consider

(Xv41(0) = DO = () Ty + () L.
Astotheterm (()*I;, we set { = t(N + 1). Then theintegrand is equal to

14

B(0) (Nt + 1)1 (EN +1)(e™* = 3 (=at) (1)),

v=0

We note that

(Nt+t) =14+ (N+1)>_ [t].

J

If >, [tj| = e > 0forsomee, wehave (Nt +t) > (N + 1)e. Henceit followsthat (Nt + ¢)® < (N 4 1)%”.
Because ¢y 4+1(tN + t) is an exponentially decreasing function of (S¢;)?” when St — oo the integrand is
bounded by C'(N + 1) for some C' > 0 independent of ¢.

Next we consider thecase >, |¢;| < e. Because (Nt +t) > (N +1) 3, |t;| we have

(Nt+6)" < (N+1)"(Y It5)"

Hence we have
L oo
(tal 4+ )€™ =) (—ot) () ") = (Jtal + - + [ta)* Y (—ot)’ (@)™ (3.14)
v=0 v=~0+1
Noting that

lot] < (Jta] +--- + [tal) (o1 + - - + [om])

and —a < ¢, the right-hand side of (3.14) is bounded by some constant independent of ¢. Hence (¢)*I; is
estimated by C(N + 1)* for some C' > 0 independent of (.
We will estimate (¢)® 1. By setting ¢ = t(INV + 1) we consider the term

J=(1—exp(d_t77))(e" = 1).

(© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



mn header will be provided by the publisher 13

If > |t;] > e > 0,wehave (Nt +1)* < ¢*(N +1)®. Hencewe seethat (Nt +¢)*J isestimated by C(N + 1)*
for some C' > 0 independent of ¢. Incase ) |¢;| < € we have

(Nt+6)" < (N+1)"(Y It5)"

Because J can be divided by Zt?T and —a < ¢ < 27, itfollowsthat (3 |¢;])*J is bounded by some constant

independent of ¢. Hence (¢)* I, can be estimated by C(N+1). Hence (x4, —1)(¢)* isbounded by C'(N+1).
Because

(1= X1)8(0)° = = (X1 — D(Q)*0(Q)"
we obtain (2).
Proof of (3). We note that f isrea-valued if and only if M (f)(¢) = M(f)(¢). Henceit is sufficient to show

that x4 1 (Q)0(¢) = X% 41(€)9(¢). Thelast relation follows from the definition of the smoothing operator and
the assumption on v. O

Lemma 3.3 Let s be a positive integer and let 'y, T'; and T" be open connected setssuch that T' € T'y + T's.
Letu € H,r, andv € H; r,. Then, it followsthat uv € H, r and the following estimate holds

[[uv]

s < lulls,ry [[v][s,rs-

Proof. Suppose that f(x) [T}, x;’j_l (n € R™) isan integrable function on R%. Let M (f)(n + i&) be the
Méllin transform of f

M(m+ie) = | f@ [[ap " do= | f@ [Ja] [T da
+ Jj=1 i j

Wesett; =logzj, t = (t1,...,t,). Noting that dt = H;L:1 xj_ldm we have the expression

M(f)(n+i€) =/ et (et . et)etttdt = FTHE f(e)(€),

n

where F~! denotes the inverse Fourier transform.
Letd; = F1(uj), (j =1,2). Weassume @t; € L'(R™) N L?(R"™). Let

iy ity = / 1 (€)1 — €)de

be the convolution of ; and i». We can easily show that iy * tis = F 1 (ujus).
Let+' € T. By assumptionT' C T'y + I'y, wehavey' = 1 + 2, 71 € T'1,72 € T, If weset v = v, we
obtain y; = v/ — ~. Hence we have the expression

v=v+7" -7 ~€T2 4 —-7yel
By the conditionsu € H, r, andv € H, r, and Proposition 3.1 we have
ev(e’) e L*NL* and 6(7/_7)tu(et) eL'nI?
It follows that
e u(e)e™ M u(e) = FHE v(e Yule)) = M (vu) (7 + i)

f
= FHe v(e))« F T T u(e) = (M(v)(y + i)« M(u)(y =7 +i))(6)-

Hence we have
M(vu)(y' +i€) = (M(v)(y + i) * M(u)(y =~ +14))(€)-

(© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



14 Yoshino: Nonlinear Singular Equations

We note
O =1+ 1GI <1+ (il +1¢ = mil) < ) (¢ =)
Let
RC=7"€l, R(C-—n)=7-vel, Ryn=97€Ts, I(=¢ In=1".
Then, by the definition of the convolution we have

www=WmLf:wp/@MMMW+wm
RN(¢=y'€l

< sup/<n>s<c -’ / [M(u)(v =y +i(§ = 0" )M (v)(y + in')|dn'de.
By Fubini’s theorem the right-hand side is estimated in the following way

sSw/k—mwww@—w%/@mMmmww

1 ()l r 2 (), =l fl0]s.0-0

Let ¢ (t) be a smooth function on R such that ¢y = 1 for |t| < 1/2 and supp¢o C {|¢t| < 1}. We define
o(x) := ¢o(x1) - - - po(xy,). Then we have

Lemma3.4 Assumethat0 € I'. Leto > 0andletg € (Hoini1r)Y. Wedefine g(x) := g(z)¢(x/N), where
A > 0. Thenfor everyI" cC I" we have ||glo,r» — Owhen XA — 0.

Proof. We define h(x) by h(z) = g(x)z", wheren € T'. Then, by Proposition 3.1 and the Leibnitz rule
§Ph(x) is continuous for every 3, |8] < o +n + 1. Forevery ¢ = ((y,...,¢,) suchthat R¢ € TV we take
n=(m,...,nm) € Tsuchthatn; <R forj=1,...,n. Thenwehave

M(§)(¢) = /R §(x)z*~Cdx :/R h(x)p(x/N)z* " Cdz, e=(1,...,1), R¢eT'. (3.15)

n
+ +

By the assumption 0 € T and Proposition 3.1 we have §°g(z) = 6°(h(x)z~") vanishesasxz; — 0 (j =

1,...,n). Because the support of g iscontained in {|z;| < X,j =1,...,n} thereexists ¢ > 0 such that, for
ol =c+n+1
ICeM(§)(Q)] = ‘/ H(x/N)x1¢ xS da (3.16)
= o(z/ Nz (0 - x)* " Cdx| = ‘/60‘ Yo(z/ N2t dx
< max 6P h(z)| max |6° p(2/\)| || T HL ARECLF FREGn =1 ==t
|5\<0+ﬂ+1 ;| <A |z | <X |B|<o+n+1
where we used

/|x<_"_e|dx < O \ReC1t-+ReCr—n1 =15

for some C' > 0 independent of \. Because 6°h(z) is continuous on R?, we can easily see that the quantity
max |§°h(z)| isbounded in A when A < 1. Similarly, the term max |§%¢(/\)| is uniformly bounded in A when
A < 1. Indeed, we have

53'@(%) = xjaxj%(%) = %%(%).

Thisis uniformly bounded in A by the condition of the support of ¢;. Therefore it follows from (3.16) that there
existse(A), e(A) — 0 (A — 0) such that

Q7M@) < e(N).
It followsthat ||g||, — O when A — 0. O
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Proposition 3.5 Supposethat an openset " in R™ contains a sequencen® = (ni,...,n,) (i = 1,2,...) such
that i — —coask — oo for j = 1,... ,n. Moreover, suppose that u € ;2 (H,,r)". Then, by extending u
as0 for z ¢ R"} we have

(21 -20) Fu e C°[R™) foral k=0,1,2,...

Proof. Let a € Z'} andaninteger k > 0 bearbitrarily given. Wetaken suchthatn € T'and —n—(k,... , k) >
. By the assumption and Proposition 3.1 2”5 u(x) iscontinuouson R"} . Because 03 u isalinear combination
of 6%u (18] < |a) 2"z*d%u iscontinuouson R” . Because a +n < —(k, ... , k) weseethat (zy - - ) “F9%u
iscontinuouson R"} . O

Lemma 3.6 (Interpolation estimate) Leto > 7 > 0,0 # 0,andr > 0. Let " be an open set in R™ containing
the origin. Suppose u € (HUJFT,F)N. Then we have

17
el rsr < [l 720 lull

Proof. Because theinequality istrivial incasec = 7 or 7 = O weassumethato > 7 > 0. Wesetp = o/7
andg = (1—p1)~!. Thenwehavep~! + ¢~! = 1 and, by Holder'sinequality we obtain, for £ = 3¢

/ Q7T la(¢)|de = / ()7 a(o) P ade (3.17)

1/p /4 —7/o /o —7/o
< ( / <C>"”|ﬂ(<)ld€> < / <<>r|a<<>|dg> W T = Wl

4  Proof of Theorem 2.1

For the sake of simplicity we denote by P(¢) the diagonal matrix with diagona elements p;(d),. .., pn(9) inthis
order. Then we can write (2.1) in the form

P(§)u+ a(z,6%u) = 0.
Letu e (HHS’F)N, and let L,, bethe linearized operator of (2.1) at u. We consider
Ly =P()v+Y - V.a(z,2)|.=sou),y=(500) = g- (4.1)

wherev = (v1,...,vy). Then we have

Proposition 4.1 Let o be a nonnegative integer. Assume (A.2) and suppose that (A.1) holds for some bounded
domain I" containing the origin. Moreover, assume that V_a(z,0) € (Hq.r)*Y, where

k=#{ae€Z;|a| < s}
Then there existse > 0 such that, if
[ullo+s+nt1r <e and [[Vza(,0)[lor <e,

then Eq. (4.1) hasa solution v € (H,s.r) for every g € (H, ). Moreover, there exists C' > 0 independent
of g such that

[0llots,r < Cligllor, Vg € (Hor)Y. (4.2)

The solution v isreal-valued if g and v are real-valued.
In order to prove Proposition 4.1 we prepare alemma.
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16 Yoshino: Nonlinear Singular Equations

Lemma 4.2 (Superposition estimate) Let o be a nonnegativeinteger. Supposethat 0 € T" and (A.2) isfulfilled.
Let v € Z7 and let the integer k be given in Proposition 4.1. Assume that V.a(z,0) € (Hypy,r)*Y. Then,
for every neighborhood I'y of the originin R™, I'y CC I there existse > 0 such that , if ||u||s4nt1,r < € and
(S (Hg+5+n+1’F)N, we have

(V.07a)(-,6%u) € (Ho,ro)™.
Moreover there exists C' > 0 independent of ~ such that

1(v202a) (-, 6°u)loro < [IV2a(,0) o110 + Cllullosssnsrrs  Yu € (Hopspnirr)™.
4.3

Proof. Because0 € I it followsfrom (1) of Proposition 3.1 that 6*u (|| < s) are bounded and continuous on
R", and vanish at the origin. Moreover, by (3.3) sup [6%u| (|| < s) are bounded by [[u||s,r < [|u[ls4ni1,r <.
Hence, by taking ¢ > 0 sufficiently small, thefunction (V.67 a)(x, 0*«) iswell-defined as a continuous function.

It follows that

1(V=03a) (- 6%u)lorg < [(V207a)(, 0)lo,re +[[(V207a) (- 6%u) = (V=67a) (-, 0)llory-  (44)

The first term in the right-hand side of (4.4) is bounded by [|V.a(-,0)|s+y|,r,- Hence we will consider the
second term. By Taylor'sformula, it isequal to, with z = (6%u),

||/ V257a (,t0%u)dt|| o.r, < sup||z - (Vg&ga)(~,t5au)||g,po. (4.5)
t
In order to estimate the right-hand side it is sufficient to estimate

187 (= - V2(83a) (-, t6%w))[lo,r,  for|8] < o

Wefirst consider thecase 3 = 0. Let ¢o(t) € C*°(R), ¢o(t) > 0 beasmooth function such that ¢g = 1 in some
neighborhood of the origin t = 0 and that ¢o(¢t) = ¢~7 when |t| > 1, where 7 > 0 is asmall constant to be
chosen later. We define ¢(x) := H] 1 %o(z;) and write

2-V28a(x,tz) = ¢~ (x)z - ¢V25)a(x, t2).

WetakeI'y (ITy cCc It cc T)andTy cC Ty == {n > 0;0 < n; < 7} suchthatT'y cCc I'y + 'y cC T, by
taking 7 sufficiently small. In view of Lemma 3.3 we estimate ||¢~*z||o.r, and ||¢V287allo.r,-

We consider [[¢~1z|lor,. Weset s =n + 1andu = ¢~ 'z in (3.4). By assumption T'; + I', cC T we take
I suchthat T'y cc I cc T, T” + T, cC T. Then, by integration we have, for some C > 0,

lo~2llor, = IM(¢ o)k,

C s [2%8°(6'2)] sup / (e, £ =S

z,|a|<n+1,nel” R(ely

IN

Because ¢~ !(z) has the growth z} near z; = oo we have, for some € > 0,

sup |z70%(¢p ™ 2)| < Cy sup |15 2| (4.6)
z,|a|<n+1,neT’” z,|a|<n41,neT”

where e = (1,...,1). By Proposition 3.1, (3.3) with I¥ o> T” + I'y, I’ cc T, the right-hand side term
can be bounded by C||z|,,+1.r for some Cy > 0. By the definition of z, the term Cy||z||,,+ 1. iS bounded by
C3||u|| s4n+1,r for some Cs > 0.

Next we will estimate || V257 allo,r, we note, from (A.2), that V767 a decays faster than or equal to [] z; "
when z — oo. By Proposition 3.1 we consider

sup 2163 (¢V267a)|, T cc Ty ccTh cCT. (4.7)
xERi,nEF,’Z',\)\|§n+1
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We take I') sufficiently small that ; — 7 < 0 for every n € T'%. In the term 2762 (¢V257 a), the terms which
appear when the differentiation §* is applied to ¢ are bounded, because the decay order of 210, ;¢ when
xTj — 00 in;“ ~7. Onthe other hand the term (V2§7a)(x, t5%u) is bounded by some constant independent of ~
because of (A.2). Hence the norm is bounded. Next we consider the case when the differentiation 6* is applied
to the z variable of 6)a. We can easily see that these terms are bounded by some constant independent of ~y in
view of (A.2). On the other hand, if the differentiation §* isapplied to 6“u in (V26)a)(z, t6“u), these terms are
bounded by some constant independent of v by the assumption ||u||s+r+1,r < € and Lemma 3.3. It follows that
216 (¢V267 a) isbounded by some constant independent of ~. Thereforewe seethat 2 - V2(67a) € (Hor, )",
and satisfies the estimate

Iz V(63 a)llory < Cllullstnsrr

for some C' > 0 independent of ~y. By (4.5) and (4.4) we see that V. (67a) € (Hor, )"~ and (4.3) holds.
In the general case 3 # 0, theterm 6°(z - V2§7a)(-,tz)) isthe sum of products of the terms

6;((82v36;a‘)¢)5 Héo{‘?—’—ﬁjua (|a]| S S, Zﬁ] S 67 aj76j € ZQI—)?
Jj=1 1

and the differentiations of ¢—! for some multiintegersy and <.

Theterm 65 ((97 V267 a)¢) can be estimated by (A.2) by the same argument asin the case 3 = 0. Concerning
the products of the differentiations of ¢! and [ §%+%iv, the argument in the case 3 = 0 implies that one may
consider || [T0% Piul|q1.r whenu € (Hoysint1.ry ) inview of the estimate of ||¢p— 5% Fiu|or,. Inthe
following we omit the suffix T" of the norm for the sake of simplicity. By Lemma 3.3 and |«;| < s we have

ITTo%  ulner < T 1% ullnrr < Tl oy 1418, 14m40 < [Tl 4 5ms-
j j j

Weseta =}, 5| (a <|B| < o). By Lemma3.6withr = s +n + 1, 7 = [5;] we see that the right-hand side
is estimated in the following way

1651/ 1-151/ 1651/a . 11-5 1851/
< TT el el 22 < Ml B 20l T2 = Mllarstnss < Tullossintr.

Summing up the above, the second term of the right-hand side of (4.4) can be bounded by C||ul|g+s+n+1 fOr
some C > 0 independent of u and ~. Therefore we seethat V. (87a)(-, 6%u) € (Hor,)*", and (4.3) holds. O

Proof of Proposition 4.1. We apply the Mellin transform to the equation L,,v = g. Then we have
P(Q)0(0) + ) da(¢) * (—¢)*0(Q) = 4(¢), (=n+i nel, R, (4.8)

where * denotes the convolution and
Ga(C) = M(qa)(C), 4a(C) = (0a/0za)(z,6%u).

Becausea(z, z) isrea-valued it followsthat §,, isrea-vauedif w isreal-valued, namely ¢, (¢) = ¢.(¢). Because
P(¢)~! existsfor ¢ =7+ i€ € T + iR™ by assumption it follows from (4.8) that

B(Q) + PO da* ((—0Q)*0(C) = P(O)™4(C)- (4.9)

We define the sequence {9y, } inductively, by
@0 = P(C)*lg’ /lA)l = _A@O;/IA)]C+1 = _A/IA)]C; k= Oa ]-a 2a ceey (410)
A8(¢) = PO da(Q) * (=0)™8(¢))-
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18 Yoshino: Nonlinear Singular Equations

Indeed, by Lemma 4.2 we have ¢, € (H,1,)" fordl a, |a| < s and someT, CC T. Because
G (C) * (=€) () = M (gad™v)(C),

we see, from Lemma 3.3, that v, € (HU+S,F)N fork =0,1,2,.... Moreover, 0 isreal-vaued if g and u are
real-valued. If there existsalimit o = ;2 9 € (H,+s1)Y, 0 isarea-valued solution of (4.8). Indeed, we
have

0+ P (o (—Q%0) =3 bk + Y Abtp = > (0k — rr1) = 00 = P(O)T13(0).  (411)

Therefore v = M ~1(9)(¢) givesasolution of L,v = g.
By Lemmas 3.3, 4.2 and the assumption we have, for someC' > 0and C; > 0

lvktillorsr = Al or < CD da * (O ik, r = C D llgad®villor
[e3% e

IN

C Y llgallorollvelorsr

IN

[e3%
C Y (IVza(,0)llory + Cullullotstntrr)[vkllors,r = Kllvrllors,r-
«

We choose ¢ > 0 so small that K < 1/2. It follows that the sum & = 3 % convergesin (H,,sr)". The
estimate (4.2) easily follows from the same argumentsasin (4.11). O

Proof of Theorem 2.1. We divide the proof into 5 steps.

Step 1. We define the iteration scheme. Let 1 < 7 < 2. Let S, (k = 0,1,2,...) be the smoothing operator
defined by (3.10) with N + 1 = py, = d™", where d > 1. For avector valued function v = (v1,...,uN) We
define Siv := (Skv1, ... ,Skvn). For the sake of simplicity we use the notation Sy, v for avector valued function
aswell asfor a scalar function. We set G(u) = (G1(u), ... ,Gn(u)) and define the sequences {wy. } and {gx }
by the following relations

wy = 0, Wg+1 = Wk + Skpk; kapk = gk, 9k = —G(wk), k=0, 1,2,..., (412)

where go = a(z,0) and the linearized operator L,, is given by (4.1). We note that wy, is real-valued if g is
real-valued. In the following we sometimes omit the suffix I" of || - ||,.r, and we denoteit by | - ||, if thereisno
fear of confusion.

We choose v and « in the following way and we fix them.

k>max{oc —52mn+1)2—-7)""}, v>A+ns+ (T -1 (m+n+2—s+mr).
(4.13)

We want to show that there exists C' > 0 independent of d > 1 and k such that
lgrllo < CAup ™, k=0,1,2,..., A, =d"|gollv+1,r (4.149)

The estimate (4.14) holds for £ = 0. Indeed, we can take C' = 1 because d" ;" = 1. We suppose that (4.14)
holds up to &, and we shall show (4.14) for k£ + 1.

Sep 2. For a nonnegative integer ¢ we shall show that there exists C' > 0 independent of d > 1 and k such
that,forj=1,... ) k+1,

lwille < CAy (if €<k +5), |wjlle < CASTIT 75 (if£ >k + ). (4.15)

In the following we denote constants independent of d > 1 and k by C, C1, Cz andsoon. Let 0 < j < k. By
(4.12) we have wj1 = wj + S;p; = > 1_, Sip;. First we assumethat ¢ > s. Then, by (1) of Proposition 3.2,
Proposition 4.1 and (4.14) with & = i we have

i i i i
lwirille <D ISipille < CY i llpills < CVY 5 llgillo < Caly Y ™ 75 (4.16)
1=0

=0 =0 =0
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Incase? < K+ s, thesum El Ouf ®~* isbounded by some constant independent of j and d > dq if dg > 1. If
¢ < s,wehave||wji1]l; < [Jwjt1]|s. Hence we are reduced to the case ¢ = s. Therefore we have proved (4.15)
when/ < k + s. Incase ! > k + s wehave

J o
Zﬂffsfn < /l?fsfn Zd(TI—TJ)(E—S—R). (417)
i =0

The sum in the right-hand side is bounded by some constant independent of d > dy and j if £ > x + s and
do > 1. It followsthat ||w;41]¢ isbounded by Ca (5 + 1)A, (if £ = k + s) and CgAVp§*S*“ (if > k+s)for
some C3 > 0. Because j + 1 < p; for sufficiently large d > 1 we obtain (4.15).

Sep 3. We want to show the estimate: there exists C' > 0 independent of k& and d such that

gkl < CAL(1 4 pi Fmrmt2meme)/my, (4.18)
By (4.12), (2.1) and (4.15) we have

lgrlly < CALpFPT57 1 la(-, 6%wi) = gollv + [lgollo- (4.19)
Recalling that go = a(z,0) we obtain

la(-, 6%wr) = goll =M (a(-,8%wy) — a(-,0))],. (420

The right-hand side can be estimated by the argument given after (4.4). We replace V.67 a(-, §%wy) with
a(-,0%wy). It follows that it is bounded by C||lwk || s+v+n+1 for some C' > 0 independent of k. By (4.15),
it is estimated by CA, (1 + pfT727") for possibly another constant C' > 0 independent of k. Recalling that
lgoll, < Ay, m > sand py, = pj,_, weget (4.18) from (4.19).

Sep 4. We will show that there exists C' > 0 independent of k£ and d such that

||pk’Hu < CAV(1+MECV+m+n+2757H)/T)- (421)

It follows from (4.1) and (4.12) that p;, satisfies

P(0)pk + Y 6%pk - Va,a(z, 6%wi) = gi. (4.22)

Set uy, = Ppk. Then Uk satisfies

up + Z V..a(z,8%wy) - 0P~ uy, = up, + Blwy)ur, = gr, (4.23)
la|<s
where B(wi) = Y, V., a(z,5%wy) - §*P~1. Hence uy, is given by

oo

ur = (= Bwy)) g. (4.24)

=0
In view of the condition (A.2) we have
lprlly = 1P~ urlly < Cllugllv—s < Cllullu,

for some C' > 0 independent of v, p;.. Hence we may consider ||6°u||o for [3] = ¢ < v.
We will estimate ||6°(B7 g,)||o for |3] = q. We first consider the case j = 1, ||6°(Bgx)|lo . In view of the
definition of B and the Leibnitz formulawe have

0 (Bge)= > > 0 (Ve,alz,0%wi))80° P lge = > 67(V.,a)6 P g,
yHe=B « a,yte=8
= Y O(VeoP = Y S (VP ey,
a,y+e=4 a,0<pu<q y+e=B,|yI=q—plel=p
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where we used the commutativity of P~ and 5. In view of the definition (A.1) and the assumption |a| < s
there exists a constant C' > 0 such that

1P~ gillo < Cl16%grllo < Cllgill-
Next we study theterm 67(V,_a(z, 2)), z = (6%wg)q. For the sake of simplicity we denote the j-th compo-
nent of z = (6®wy)a by 2z; := 0% wy, (j =1,...,¢,£ > 1). By Leibnitz rule we have the expression

ni 2
0V, a(x,z) = Z 00V ... VIV, a)(T, 2) H STty H STy
j=1 j=1

where the summation >~ istaken for all pairs of indices

ny

ny
T=+> Mt D Ve V0V Ve €L M. me € Ly
j=1 j=1

We first consider the term which appear when the differentiations are applied to the « variables of Va(z, z).
Noting that 67V, a(x, z) = V., (d7a)(x, z) we get, from (4.3) that

||(5’sza(', 6awk)

0.r0 < IVza(-,0)[ly),ro + Cllwkls+nt1,r- (4.25)
The right-hand side can be made arbitrarily small, if wi, € (H,1s1ne1)” and
|wills+nt1 <&, [[Vza(-0)[lyre < [[Vza(-0)]lnr <&

for sufficiently small .

We next investigate the terms that appear when the differentiations are applied to §“wy, in Va(z, *wy,). For
simplicity we consider the terms 670%Va(z, 2)5¢T“w), for some multi integers &, 6, «, €] < ¢ — pu. Let 7 > 0
be a small number, and let ¢o(t) € C*°(R), ¢o(t) > 0 be a smooth function such that ¢o(¢) = ¢t in some
neighborhood of the origint = 0 and ¢ (¢t) = ¢t~ " when |¢| > 1. Define ¢(z) := H?Zl ¢o(z;), and write

5100V a(z,2)0 T wy = ((2)5709Va(z, ) (¢(z) '8¢ *wy) .
By Lemma 3.3 we have

16707V a(w, 2)8* wi[lo < [|6(x)5702 Va(, 2) ol é(x) " 8+ wo-
We will estimate ||¢(x)8) 0%V a(z, 2)||o. By integrating (3.4) with

s=n+1, u=¢(x)570°Va(z,2), 2 = (6wy),

and by recalling the definition of the norm we have, for IV > T’y and some constants C' > 0 and C’ > 0,

flor, = lbr,<C st [

z€RY |a|<n+1,nel””

< sup |2"6%u(z)|.
z€RY, |a|<n+1,neT”

We note that, if |n;| is sufficiently small, the quantity
2"5%u(z) = "6 ((2)07 0 Va(z, )

tends to zero when z; — oo by (A.2) and the decay property of ¢(z). It follows that, if we take I’y and I'”
sufficiently small we have

sup 216 (¢(x)07 0 Va(z, ) | < C”,
z€RY, |a|<n+1,neT”
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for some C” > 0. It follows that
||¢(x)5;82Va(x, 2)|lo < C'C".

On the other hand, we can easily show that || () =1 65T “wy | o is bounded by aconstant multiplied by ||wg ||s-y41- ¢ -
Therefore the term ||6709Va(z, 2)65+“wy || is estimated by ||wg[|s1n+1+4¢|- BY the interpolation and the sim-
ilar calculations as in the proof of Lemma 4.2 the product of the terms which appear by differentiating §*wy, in
Va(z,z) isestimated by ||wg || s+n+1+4—p- HENCe, for every ' > 0 there exists aconstant C' > 0 such that

q
167 (Bg)llo < CZ (€ + lwkllstntrrg—pw)llgnllu-

Especially, we have || Bgy|lo < Ce’||g]|,. for some constant C' > 0, because ||wi || s+n+1 < €.
In order to estimate 6° (B g;,) we note that

P (Blgr)= Y. 3 (6" B)B---B(6"B)B---B--- (6% B)(6%gy).

|Bel=p,0<u<q B=P1++B¢,1<<q

We can estimate the right-hand side terms by Lemma 3.3, the interpolation lemma and the above estimate of
|6%(Bwv)|o. Because the number of combinations in 6°(B7g;) can be estimated by a constant multiplied by
79 H there exists C; > 0 such that

q
167 (B gr)llo < C1 Y 397 H(C'YTICUE" + [[wrllstnt14a—pw) |9l
pn=0

if [|wi|lstni1 < € andwy € (Hyts+n+1)Y, which follows from (4.15) if A, issufficiently small.
Lets+n+1+q—p>k+s. Thenitfollowsfrom (4.15), (4.18) and py, = pj,_, thet

lgillallwnllstnsiq—p € CPAZpEETFITHTN(L 4 gt mt2maimy
< CzAlzlul(Cq—wszn)/r(ler(c ptm— s+n+2 K /T) < CQA§(1+MI(€q+mfs+n+2w)/T) (4.26)
for some Cy > 0, wherewe have used n + 2 — k < 0 by (4.13), and
qg—p+n+2—-rxK<g+m—-s+n+2—=xk.
We can similarly argueincases +n + 1+ g — u < k + s. It followsthat there exists C's > 0 such that

167(B7 gi)llo.r < CajtriAZ (1 + p T,
Because
I6%ukllor <D 16°(B2gi)llors Nkl < Cllukll, ¢ < v,
7=0

we obtain (4.21).
Sep 5. We will estimate ||gx+1]|o- By (4.12) we have

—gk+1 = G(wrg1) = G(wy + Skpr) = G(wr) + L, Skpr + Q(wy, Skpk)
= G(wk) + Luw,p + L, (Sk — I)pr + Q(wi, Skpr), (4.27)

where Q (wg, Skpx) isthe quadratic term of Sy px. Hence we have
lgk+1llo < | Ly, (Sk = Dpkllo + [|Q(wk, Skpr)llo = 11 + 2. (4.28)
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By (4.21) and Proposition 3.2 we have

I < C|[(Sk = Dpillm < CC'u " llpwlly < C2C My ™ (1 + 1f) (4.29)
for some constants C' > 0 and C’ > 0, where

a=v+m+n+2—-s—k)/T>0.
Because 1 < ug the right-hand side is bounded by C”A, u;" " for some C” > 0. By (4.13) we have

m — v +a < —k7. Henceit follows from 41 = o, that

/jlzlfqua — /jlzlfu+a+/{rﬂ]:mr _ MT7V+a+HTM];:1' (430)
If wetake d > dy sufficiently large, we can absorb constants independent of d by the term p}j‘””*” <dL
Thereforewe have I; < CA, ;.17 /2.

Asto I we have, by Propositions 3.1, 3.2, 4.1 and the inductive assumption of g,

I < Crl[Skprl2insr < Copd" okl < Capp 2| gillg < Cap P27 (CA,)%. (4.31)
If wetake||go||,+1,r SO small that
2C3CAV = 203Cdn|‘go|‘l,+1}r* S ].,

then we have I, < CA,,M,;’jl/Q. Thereforeit follows from (4.28) that || gx+1lo < CAuu;fl- Thisproves (4.14).
It follows from (4.12), (4.14), (1) of Proposition 3.2 and Proposition 4.1 that, for every £ < « + s

i1 = wille < ISkprlle < Cri"*llorlls < O llgrllo < C”py™ " Ay

Clearly w = limy, wy, existsin (H,)", and w satisfies G(w) = lim G(wy) = — lim gx = 0. Sincex > o — s we
have s < k + s andw € (H,)". Thisproves Theorem 2.1. O

Proof of Theorem 2.2. Let ¢(x/A) (A > 0) be a cutoff function given in Lemma 3.4. Instead of (2.1) we
consider the equation

Gj(u) :==p;(O)u; + ¢(x/Na;(x,0;|a| <s)=0, j=1,...,N. (4.32)

We can easily seethat ¢(z/\)a(z, z) satisfies (A.2). Let v be apositive integer. Let ¢» € C°°(R™) be afunction
with compact support which isidentically equal to 1 in some neighborhood of the origin such that

Ya € (Hv+n+1,F)N7 w(w)Vza(%O) € (Hu+n+1,1“)kN-

We take A > 0 so smdll that supp ¢(z/\) C {x;v = 1}. Then we have ¢(x/ M) (x) = ¢(z/N). It follows from
Lemma 3.4 that there exists A > 0 such that

IgaC, )l <& (¢V2a;(;,0)llvr <& (I CCT).

Therefore, by Theorem 2.1 Eq. (4.32) hasasolution u € (H, ). Thisyieldsasolution of (2.1) because ¢ = 1
in some neighborhood of the origin. O
Proof of Theorem2.10. By definition the dual cone of C isnot empty. Hencethereexistc, € R(u =1,... ,d)

suchthat Y0 _; c, \Y > 0foral j=1,... n. Itfollowsthat x* = 2, ¢, x* commuteswith x* and x° isa
Poincaré vector fields since all eigenvalues of the linear part of x° are positive. In the following we assume that
x! isaPoincaré vector field in . By Theorem 2.7, there exists a change of variables, y — = = y + v(y) which
linearizes x', namely R' = 0. For simplicity we assume that ! islinearized. In view of the commutativity and

the definition of the homology equation, we have
LiR*(x) — L, R*(z) = OR*(z)R*(x) — OR*(z)R*(z) =0, pu=1,...,d.
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It followsthat wehave £;R* =0forpu=1,... .d.
We define w(o) and X (o), respectively by

w(o) := R“(xla)‘i, e ,xna)‘fll), X(o):= diag(a*)‘i, e ,0'7)\;).

It iseasy to verify that dX /do = —A' Xo~!. Hence we have

d dw dX dw
—(wX)=—X+w— = —X —wA'Xo L. 4.
do (wX) do tw do do v 7 (4.33)

By the relation £, R* = 0 with z; replaced by a:jakal (0 < o < 1) theright-hand side of (4.33) is zero. By
assumption, R* € ‘H, r and R* vanishes at the origin « = 0. Therefore, by integrating (4.33) with respect to ¢
from0Oto1wehave R* =0. O
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