R&D for Advanced Photo-Cathode

KURIKI Masao (Hiroshima University/KEK)

2008/12/8

Japan-UK meeting at Oxford, UK

Contents

Advanced Photo-cathode
Band Structure Optimization
Super High Vacuum
R&D plan
Summary

Goal of Cathode R&D

- High performance: Super-low emittance, high polarization
- High Power : High Quantum efficiency, Optimized for high power laser
- Long Operational lifetime
 - Robust cathode
 - Less damage by better vacuum
- Introduce to the Q-beam system, ERL, ILC, CLIC, SRIPES, SPLEEM, etc.

GaAs cathode and EA

- GaAs : NEA surface is artificially made.
 - PEA (Positive Electron Affinity):electron in conduction band is confined.
 - NEA(Negative Electron
 Affinity):electrons in conduction band is extracted to vacuum.

Electron emission from NEA

- Electron excited to conduction band is easily emitted to vacuum : High Quantum efficiency (1-20%)
- Excitation by optimized laser and thermalization results that the electron beam has small energy spread: superlow emittance beam
- Helicity selection by circularly polarized laser : polarized electron.

Super-lattice Cathode

- GaAs-GaAsP superlattice: Mini-band is formed in conduction and valence Conduction Mini Band bands, respectively.
- Selection on the transition is enhanced both for energy and heliciy.
 - High polarization (90%)
 - Super-low emittance (0.1mm.mrd)

Super-lattice Cathode

2008/12/8

Japan-UK meeting at Oxford, UK

Issues for GaAs cathode

- GaAs-GaAsP super-lattice cathode is developed for high polarization (ILC), but it is also useful for super-low emittance cathode (ERL).
- Performance is excellent, but the operational lifetime is limited.
 - Robust cathode
 - Super high vacuum

Issues for GaAs cathode

- Band gap energy of GaAs cathode corresponds to 800nm.
- Ti:S laser is widely used, but high average power operation is critical due to thermal effects and less efficiency for pumping.
- If the band gap is optimized to 500nm, SH of a stable full solid-state laser (Yb:YAG, Yb fbr, etc) can be used for the drive laser without emittance increment.
- Eg optimization to 500nm is desirable for high power and super-low emittance beam.

Band Structure Optimization

- NEA surface is made by two treatment.
 - Band bending by Pdoping:E_{BB}∝ E_g
 - Electric dipole by cesiation:Ecs
 - $E_a = E_{a0} E_{BB} E_{cs}$
- Smaller E_a is achieved with smaller E_{a0} and larger E_g.

Damage on Cathode

- Damage on Cs layer (NEA surface) increases E_a, which degrades the electron emission.
- The limited operation life time is caused by this damage.
- If the initial NEA is large, the operational life time could be longer.
- Super high vacuum is also helpful.

Band Structure Optimization, Again

$\blacktriangleright E_a = E_{a0} - E_{BB} - E_{cs}$

- Smaller E_a is achieved with smaller E_{a0} and larger E_g.
- Materials with small E_{a0} and larger E_g is candidates of robust cathode.

AlGaAs/InGaN Cathode

Band gap energy, Eg and electron affinity, Ea0 :

- GaAs Eg=1.42eV, Ea0=4.1eV
- AIAs Eg=2.17eV, Ea0=3.5eV
- GaN Eg = 3.3eV, Ea0=4.1eV
- InN Eg=0.6-2.0eV, Ea0=??
- ► AIAs, GaN : Large Eg
 - Longer life time
 - Smaller wave length
- Al_xGa_{1-x}As, In_xGa_{1-x}N : Optimization on E_g and E_{a0} by Mixed Crystal.

AlGaAs/InGaN Cathode

► Al_xGa_{1-x}As:

- Longer lifetime than that of GaAs is already demonstrated.
- Larger Eg makes less Ea.

► In_xGa_{1-x}N :

- Longer lifetime is expected because of large Eg.
- Eg optimization to 500nm laser is also possible.

T. Nishitani et al., Proc. of the 28th International FEL Conf. (FEL2006), pp319-322, 2006

Super High Vacuum

- Limited operational lifetime of GaAs cathode
 - Chemical dilution by H₂0, Hydrocarbon, etc.
 - Ion back-bombardment.
- These effects should be compensated by better vacuum
 - Current : 1E-8~1E-9Pa
 - Goal : 1E-10~1E-11Pa

Operational Lifetime and H₂0 pressure

- Lifetime is inversely proportional to H₂O pressure.
 - TH₂0~290h at 1E 10Pa.
- The pressure should be even lower than that level by considering beam operation.

Lifetime vs H₂0 pressure

D. Durek et al., Applied Surface Science 143 (1999) 319–322

Super High Vacuum (2)

- EP SUS chamber + Ion pump + NEG pump:1E-9Pa
 - Pumping speed is decreased in super-high vacuum.
 - Pump is a source of out gas.
- CP Ti chamber + Cryo-pump + NEG : less than 1E-10Pa ?
 - Cryo-pump is better than lon pump for Super high vacuum?
 - CP Ti has less out gas rate than that of EP SUS.

Q-beam System

2008/12/8

Japan-UK meeting at Oxford, UK

R&D Plan

2008-2009 : Cathode Test Chamber

- Super high vacuum chamber design and manufacturing:CP Ti chamber + Cryo-pump + NEG pump
- Load-lock chamber, Activation chamber design and manufacturing
- 2009-2010 : AlGaAs, InGaN cathode preparation, optimization
- ► 2011 : Further optimization, beam test
- ► 2012 : Implementation to the electron gun

Electron source R&D plan in Quantum Beam Project

	2008		2009	2010		2011	2012				
High Brightnes						<u> </u>					
		Grand d		Iotal test							
500 kV											
10 mA E-gun	Insulator Ceramic Cock-Croft Insulation gas tank Preparation & Ioad-lock chamber		Main chamber Solenoid Laser Beam test	Insulator gas circulation Vacuum improvement		Total test SC accele	with erator				
Cathode R&D											
	Supervac vac Load- Prepa	er high cuum -lock aration	Cathode preparation Optimization	_							
				Beam te Beam di		st agnostic					

2008/12/8

Summary

- Long life time cathode and high power operation are aimed for future projects;
 - Band structure optimization on Al_xGa₁₋ _xAs_x In_xGa_{1-x}N
 - Longer lifetime by smaller E_a
 - 500nm E_g driven by SH of solid state laser
 - Super high vacuum for less damage on cathode
 - CP Ti chamber
 - Cryo-pump + NEG pump
- Robust and high power cathode will be introduced to the final system of Q-beam project, ERL, ILC, CLIC, SRIPES, SPLEEM, etc.

Back Up Slides

2008/12/8

Japan-UK meeting at Oxford, UK

Grand Plan

項目	1年度目	2年度目	3年度目	4年度目	5年度目
超伝導空洞装置開発 (年額 3.1 億円、 その他 0.5 億円含む)	空洞製作技術 超伝導空洞製 高周波源小型 ビーム制御機	所高度化 製作 型化 機器開発			
電子源開発 (年額 0.53 億円)	高効率・長寿 500 kV 直流1 ビーム生成3	命フォトカソード 電子源開発 電験	·開発	→ システ 総合試	ム組立・調整 験・性能確認
レーザー蓄積・ X線検出装置開発 (年額 0.21 億円)	レーザー蓄積 レーザー蓄積 レーザー蓄積 X線検出器試	錶置設計 錶置製作 験		>J	

Japan-UK meeting at Oxford, UK