NPES3-AR beamline での ビーム試験

2010年6月21日(月)13時30分 第24回高輝度電子源開発G会合

高エネルギー加速器研究機構

宫島司、本田洋介、山本将博、内山隆司、松葉俊哉、帯名崇

NPES3-AR beamlineでのビーム試験

- 名古屋大学で開発されたNPES3電子銃がAR南棟に移設されて、 運転出来る状態になった。
- 電子銃の高圧試験後に、100kVの加速電圧で、NPES3-ARビームラインでのビーム試験を開始した(ここでの名称:とりあえず、名古屋大学でのビームラインをNPES3-ARと呼ぶ)
- NPES3-ARビームラインでの試験で、ビーム制御の経験を積んだ後に、現在開発中の診断部ビームラインを接続して、本格的なビーム試験に入る。
- NPES3-ARビームラインでの試験の目的
 - NPES3電子銃本体の性能の確認(移設によってトラブルは生じていないか?)
 - 各機器の性能の確認(真空装置、ビーム診断装置、電磁石システム)
 - 低エネルギービームの制御に対して経験を積む

AR南棟のレイアウト(NPES3-Gunに新しいビームラインを接続した場合の図)

現状は、NPES3-GunにNPES3-ARビームライン(次のページ)を接続している。

NPES3-ARビームラインのレイアウト

NPFS3-ARビームラインの配置		7 (m)	x (m)	c(m)		v' (m)
	カソード面	0,000	0.000		2 (11)	x (11)
	SOI 1入口	0.109	0.000	0 109		
カソード面からスクリーンまの距離 : s = 2.17 m	SOL 1中心	0 145	0.000	0 145		
	SOL1HD	0.181	0.000	0.181		
	ZH0. ZV0入口	0.326	0.000	0.326		
	ZH0, ZV0中心	0.349	0.000	0.349		
	ZH0, ZV0出口	0.371	0.000	0.371		
	ZH1, ZV1入口	0.624	0.000	0.624		
	ZH1, ZV1中心	0.654	0.000	0.654		
	ZH1, ZV1出口	0.684	0.000	0.684		
	SOL2入口	0.696	0.000	0.696		
	SOL2中心	0.732	0.000	0.732		
1	SOL2出口	0.768	0.000	0.768		
= -0 asthods surface	BH1入口	0.878	0.000	0.878		
z = 0, cathode surface	BH1出口	0.978	0.100	1.035	0.000	0.000
	ZH2, ZV2入口	0.978	0.212	1.147	0.112	0.000
-Solenoid (SL1) -Solenoid (SL1)	ZH2, ZV2中心	0.978	0.242	1.177	0.142	0.000
	ZH2, ZV2出口	0.978	0.272	1.207	0.172	0.000
	SOL3人口	0.978	0.286	1.221	0.186	0.000
	SOL3中心	0.978	0.322	1.257	0.222	0.000
	SOL3出口	0.978	0.358	1.293	0.258	0.000
	screen	0.978	1.235	2.170	1.135	0.000
e	aump入口 dumpえい」 ビザ	0.978	1.340	2.270	1.240	0.000
! ★	dumpシールト hh	0.976	1.020	2.555	1.520	0.000
- Corrector coil (ZH1, ZV1)						
Solenoid (SI 2)						
	View screen					
	view scieeli					
Solenoid (SL3) e^-	►					
j + + 📫	Beam	dump				
Corrector coil (7H2 7V2)	Dealii	uump				
Panding magnet($PH1$)						
Dending magnet(BHT)						

調整可能な項目

<u>ビームの調整方法</u>

ビームの精密な測定を行うためには、ビームをソレノイド電磁石の中心を通す必要がある(中心位置からずれるとプロファイルのゆがみが生じるため)

(1) ソレノイドの磁場を正弦波(周期は遅くて良い、1 Hzとか)で変化させる ⇒ビームがソレノイドの中心を通っていない場合、スクリーン上でのビームの重心位 置が変動する。重心位置の変動がなくなり、プロファイルの大きさが変わるだけに なったとき、ビームはソレノイドの中心を通ったことになる。

(2) ソレノイドの手前にある、補正コイル(SL1の場合はカソード面上のレーザーの位置)を変化させて、スクリーン上でのビームの重心の変動が小さくなるようにする

(3) これを上流のソレノイドから下流のソレノイドに向けて行う

ソレノイドを変更したときのビュースクリーン上でのプロファイルの変化

SL3でのビーム位置のずれなし

100kVビーム試験の結果 ・加速電圧:100 kVに設定(ビームの運動エネルギーは 100 keV) ・レーザーは連続(電荷が低くまたバンチ化されていないので、空間電荷はとりあえず無視できる) ・輸送効率は95%程度には到達(HV電源から流れ出した量31.5nA、ビームダンプ電流30nA) ・レーザー位置、ステアリングの強さを調整し、ある程度ソレノイドの中心を通せるようになった。 z = -z = 0, cathode surface YAG screen上でのビーム Х -Solenoid (SL1) Corrector coil (ZH0, ZV0) Corrector coil (ZH1, ZV1) -Solenoid (SL2) View screen Solenoid (SL3) e^{-} Υ <-Beam dump Corrector coil (ZH2, ZV2) Bending magnet(BH1) ●設定値:

レーザースポットサイズ直径:φ2mm
 SL1のDACの設定値:0.230 V
 SL2のDACの設定値:0.040 V
 SL3のDACの設定値:0.044 V

粒子トラッキングによる実験データの再現 •設定値:

- ・レーザースポットサイズ直径:φ2mm
 ・SL1のDACの設定値:0.230 V
 ・SL2のDACの設定値:0.040 V
 ・SL3のDACの設定値:0.044 V
- GPT入力ファイル名: 'npes3ar1_2.in' (ZH, ZVも含む)
 計算条件: 空間電荷効果なし、粒子数はとりあえず1000個
 電磁場分布
 - ●Gun: NPES3_gun01_2D.gdf ●solenoid: NPES3_sol01_2D.gdf ●偏向雷磁石・GPT付屋のコマンド sector
 - •偏向電磁石: GPT付属のコマンド, sectormagnetを使用

各要素でのx-y空間でのビームプロファイル

SL3をスキャンしたときの、ビュースクリーンでの像(xy空間への射影)

(a) Measurement

ソレノイドの設定値は、測定とシミュレーションでまだ完全には一致していないが、SL3の磁場に対する応答はほぼ合っている。

まとめ

- NPES3-ARビームラインでの、100 kV加速電圧でビーム試験を開始した。
- ビームラインパラメタの調整後、輸送効率は95%程度には到達(HV 電源から流れ出した量31.5nA、ビームダンプ電流30nA)
- ビームをソレノイドの中心を通すように再調整した後、シミュレーションとほぼ同じ傾向を示すビームプロファイルを得ることができた。
- これから
 - ビュースクリーンの較正
 - プロファイルからビームのrmsサイズを計算できるようにする
 - ソレノイドスキャンによるエミッタンス測定
 - よりビーム測定に適したオプティクスの再現