image description
English version





  1. A. Takezawa, X. Zhang, T. Tanaka, M. Kitamura, Topology Optimization of a Porous Unit Cell in a Fluid Flow Considering Forchheimer Drag., Int. J. Comput. Fluid Dynam., in press.
  2. 佐藤泰貴,大槻真嗣,馬場満久,戸部裕史,石村康生,北薗幸一,竹澤晃弘,金属3Dプリンタにより造形した月惑星探査機用着陸衝撃吸収材の力学特性,日本航空宇宙学会論文集,印刷中.
  3. A. M. Vilardell, A. Takezawa, A. du Plessis, N. Takata, P. Krakhmalev, M. Kobashi, I. Yadroitsava, I. Yadroitsev, Topology optimization and characterization of Ti6Al4V ELI cellular lattice structures by laser powder bed fusion for biomedical applications., Mater. Sci. Eng. A, 766 (2019) 138330.
  4. A. Takezawa, X. Zhang, M. Kitamura, Optimization of an Additively Manufactured Functionally Graded Lattice Structure with Liquid Cooling Considering Structural Performances, Int. J. Heat. Mass. Tran., 143C (2019) 118564.
  5. A. Takezawa, X. Zhang, M. Kato, M. Kitamura, Method to Optimize an Additively-Manufactured Functionally-Graded Lattice Structure for Effective Liquid Cooling, Addit. Manufact., 28 (2019) 285-298.
  6. G. L. Putra, M. Kitamura, A. Takezawa, Structural optimization of stiffener layout for stiffened plate using hybrid GA, Int. J. Nav. Arch. Ocean Eng., 11 (2019) 809-818.
  7. X. Zhang, A. Takezawa, Z. Kang, A phase-field based robust topology optimization method for phononic crystals design considering uncertain diffuse regions, Comput. Mater. Sci., 160 (2019) 159-172.
  8. A. Takezawa, X. Zhang, Y. Koizumi, Numerical study on the effective stiffness of topology-optimized lattice structures made of orthotropic crystal grains with optimal orientation, Comput. Mater. Sci., 159 (2019) 202-20.
  9. A. Takezawa, T. Yamamoto, X. Zhang, K. Yamakawa, S. Nakano. M. Kitamura, An objective function for the topology optimization of sound-absorbing materials, J. Sound Vib., 443 (2019) 804-819.
  10. Z. Liu, S. Cho, A. Takezawa, X. Zhang, M. Kitamura, Two-stage layout-size optimization method for prow stiffeners, Int. J. Nav. Arch. Ocean Eng., 11 (2019) 44-51.
  11. L. Suo, Z. Lei, S. Zhao, Z. Wu. A. Takezawa, Reliability-Guided Rayleigh Backscattering Spectrum Correlation Method for Distributed Strain Measurements in Optical Fibers, J. Mod. Opt., 66 (2019) 512-520.
  12. L. Suo, Z. Lei, S. Zhao, Z. Wu. A. Takezawa, Study on sliding-window length based on Rayleigh backscattering spectrum correlation in distributed optical-fiber strain measurement, Opt. Fiber Technol. 47 (2019) 126-132.
  13. X. Zhang, A. Takezawa, Z. Kang, Robust topology optimization of vibrating structures considering random diffuse regions via a phase-field method, Comput. Meth. Appl. Mech. Eng. 344 (2019) 766-797.
  14. X. Zhang, J. He, Z. Kang, A. Takezawa, Robust topology optimization of phononic crystals with random field uncertainty, Int. J. Numer. Meth. Eng., 115 (9) (2018) 1154-1173.
  15. X. Zhang, A. Takezawa, Z. Kang, Topology optimization of piezoelectric smart structures for minimum energy consumption under active control, Struct. Multidisc. Optim., 58 (1) (2018) 185-199.
  16. J. Liu, A. T. Gaynor, S. Chen, Z. Kang, K. Suresh, A. Takezawa, L. Li, J. Kato, J. Tang, C. C. L. Wang, L. Cheng, X. Liang, A. C. To, Current and future trends in topology optimization for additive manufacturing, Struct. Multidisc. Optim., 57 (6) (2018) 2453-2483.
  17. A. Takezawa, K. Yonekura, Y. Koizumi, X. Zhang, M. Kitamura, Isotropic Ti-6Al-4V lattice via topology optimization and electron beam melting, Addit. Manufact., 22 (2018) 634-642.
  18. A. Takezawa, K. Takenaka, X. Zhang, Inverse analysis of giant macroscopic negative thermal expansion of Ca2RuO4-y ceramics based on elasticity and structural topology optimization, Appl. Phys. Express, 11 (2018) 055801.
  19. A. Takezawa, J. W. Lee, M. Kitamura, Design methodology of magnetic fields and structures for magneto-mechanical resonator based on topology optimization, Optim. Eng., 19 (2018) 19-38.
  20. 西津卓史,谷次智弥,竹澤晃弘,米倉一男,渡邊修,北村充,トポロジー最適化と積層造形を活用したラティス構造の創出手法,日本機械学会論文集,Vol.83,2017, p.16-00581.
  21. A. Takezawa, Y. Koizumi, M. Kobashi, High-stiffness and strength porous maraging steel via topology optimization and selective laser melting, Addit. Manuf. , 18 (2017) 194-202.
  22. A. Takezawa, M. Kobashi, Design methodology for porous composites with tunable thermal expansion produced by multi-material topology optimization and additive manufacturing, Compos. Part B Eng., 131 (2017) 21-29.
  23. A. Takezawa, M. Kobashi, Y. Koizumi, M. Kitamura, Porous metal produced by selective laser melting with effective isotropic thermal conductivity close to the Hashin-Shtrikman bound, Int. J. Heat. Mass. Tran., 105 (2017) 564-572.
  24. T. Nishizu, A. Takezawa, M. Kitamura, Eigenfrequecy-based Damage Identification Method for Non-destructive Testing Based on Topology Optimization, Eng. Optim., 49 (3) (2017) 417-433.
  25. 竹澤晃弘, AM技術を活かすトポロジー最適化,スマートプロセス学会誌,Vol.6,No.3,2017, pp.119-124.
  26. Y. Koizumi, A. Okazaki, A. Chiba, T. Kato, A. Takezawa, Cellular Lattices of Biomedical Co-Cr-Mo-Alloy Fabricated by Electron Beam Melting with the Aid of Shape Optimization, Addit. Manuf., 12B (2016) 305-313.
  27. 槙原幹十朗,吉水謙司,竹澤晃弘, 振動ハーベスティングにおける発電エネルギ増加制御の研究,日本機械学会論文集,Vol.82,2016, p.15-00499.
  28. A. Takezawa, M. Daifuku, Y. Nakano, K. Nakagawa, T. Yamamoto, M. Kitamura, Topology optimization of damping material for reducing resonance response based on complex dynamic compliance, J. Sound Vib., 365 (2016) 230-243.
  29. M. Daifuku, T. Nishizu, A. Takezawa, M. Kitamura, H. Terashita, Y. Ohtsuki, Design methodology using topology optimization for anti-vibration reinforcement of generators in a ship's engine room, Proc. IME M J. Eng. Marit. Environ., 230 (2016) 216-226. [Preprint]
  30. 野波諒太,北村充,竹澤晃弘,Hybrid GAを用いたスティフナーを有する大型構造物の最適化に関する研究,日本機械学会論文集,Vol.81,2015, p.15-00437.
  31. 野波諒太,北村充,竹澤晃弘,平川真一,補強材のレイアウトを考慮した船体構造最適化に関する研究,日本船舶海洋工学会論文集,Vol.22,2015, p.129-135.
  32. 中野陽平,竹澤晃弘,槙原幹十朗,北村充,エネルギー回生式セミアクティブ振動制御装置に対するSRS制約を導入した圧電アクチュエータ最適配置,日本機械学会論文集,Vol.81,2015, p.15-00191.
  33. 西津卓史,竹澤晃弘,北村充,トポロジー最適化を用いた熱伝導制約下での熱変形最小化,日本機械学会論文集,Vol.81,2015, p.15-00111.
  34. K. Makihara, A. Takezawa, D. Sigeta, Y. Yamamoto, Power evaluation of advanced energy-harvester using graphical analysis, Mech. Eng. J. 2 (4) (2015) 14-00444.
  35. A. Takezawa, M. Kobashi, M. Kitamura, Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing, APL Mater., 3 (7), (2015), 076103. [Open access] [STL files]
  36. 北村充, 上重嘉史,竹澤晃弘,部材接合部の応力評価を可能とするはり・シェル要素の開発,日本船舶海洋工学会論文集,Vol.19,2014, pp.111-121.
  37. A. Takezawa, M. Haraguchi, T. Okamoto, M. Kitamura, Cross-sectional optimization of whispering-gallery mode sensor with high electric field intensity in the detection domain, IEEE. J. Sel. Top. Quant. Electron. 20 (6) (2014) 5300110. [Preprint]
  38. A. Takezawa, G.H. Yoon, S.H. Jeong, M. Kobashi, M. Kitamura, Structural topology optimization with strength and heat conduction constraints, Comput. Meth. Appl. Mech. Eng. 276 (2014) 341-361. [Preprint]
  39. A. Takezawa, M. Kitamura, S.L. Vatanabe, E.C.N. Silva, Design methodology of piezoelectric energy-harvesting skin using topology optimization, Struct. Multidisc. Optim. 49 (2) (2014) 281-297. [Preprint]
  40. A. Takezawa, M. Kitamura, Enhancement of non-resonant dielectric cloaks using anisotropic composites, AIP Adv. 4 (2014) 017106. [Open access]
  41. S.H. Jeong, G.H. Yoon, A. Takezawa, D.H. Choi, Development of a novel phase-field method for local stress-based shape and topology optimization, Comput. Struct. 132 (2014) 84-98.
  42. A. Takezawa, M. Kitamura, Phase field method to optimize dielectric devices for electromagnetic wave propagation, J. Comput. Phys. 257A (2014) 216-240. [Preprint]
  43. A. Takezawa, K. Makihara, N. Kogiso, M. Kitamura, Layout optimization methodology of piezoelectric transducers in energy-recycling semi-active vibration control systems, J. Sound Vib. 333 (2014) 327-344. [Preprint]
  44. 西津卓史,竹澤晃弘,北村充,トポロジー最適化と固有振動数解析に基づく非破壊検査での損傷同定手法,日本船舶海洋工学会論文集,Vol.18,2013, pp.73-80.
  45. A. Takezawa, M. Kitamura, Sensitivity analysis and optimization of vibration modes in continuum systems, J. Sound Vib. 332 (2013) 1553-1566. [Preprint]
  46. A. Takezawa, M. Kitamura, Cross-Sectional Shape Optimization of Whispering-Gallery Ring Resonators, IEEE/OSA J. Lightwave Tech. 30 (2012) 2776-2782. [Preprint]
  47. L.A.M. Mello, A. Takezawa, E.C.N. Silva, Designing piezoresistive plate-based sensors with distribution of piezoresistive material using topology optimization, Smart Mater. Struct. 21 (2012) 085029.
  48. A. Takezawa, M. Kitamura, Geometrical design of thermoelectric generators based on topology optimization, Int. J. Numer. Meth. Eng. 90 (2012) 1363-1392. [Preprint]
  49. A. Takezawa, M. Kitamura, Topology optimization of compliant circular-path mechanisms based on an aggregated linear system and singular value decomposition, Int. J. Numer. Meth. Eng. 89 (2012) 706-725. [Preprint]
  50. M. Kitamura, K. Hamada, A. Takezawa, T. Uedera, Shape Optimization System of Bottom Structure of Ship Incorporating Individual Mesh Subdivision and Multi-Point Constraint, Int. J. Offshore. Polar. Eng., 21 (2011) 209-215.
  51. T. Yamada, K. Izui, S. Nishiwaki, A. Takezawa, A Structural Optimization Method Incorporating Level Set Boundary Expressions Based on the Concept of the Phase Field Method, J. Environ. Eng., 6 (3) (2011) 567-578.
  52. A. Takezawa, S. Nii, M. Kitamura, N. Kogiso, Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system, Comput. Meth. Appl. Mech. Eng. 200 (25-28) (2011) 2268-2281. [Preprint]
  53. 新居悟,竹澤晃弘,北村充,小木曽望,縮約された線形システムを用いた不確定荷重に対するロバストトポロジー最適化,日本機械学会論文集A編, Vol.77(775),2011,pp.472-482.
  54. T. Yamada, K. Izui, S. Nishiwaki, A. Takezawa, Topology optimization method based on the level set method incorporating a fictitious interface energy, Comput. Meth. Appl. Mech. Eng. 199 (45-48) (2010) 2876-2891.
  55. A. Takezawa, S. Nishiwaki, M. Kitamura, E.C.N. Silva, Topology optimization for designing strain-gauge load cells, Struct. Multidisc. Optim. 42 (3) (2010) 387-402. [Preprint]
  56. A. Takezawa, S. Nishiwaki, M. Kitamura, Shape and topology optimization based on the phase field method and sensitivity analysis, J. Comput. Phys. 229 (7) (2010) 2697-2718. [Preprint] [Matlab code]
  57. 竹澤晃弘,西脇眞二,北村充,フェーズフィールド法と感度解析に基づく構造最適化,日本機械学会論文集A編, Vol.76(761),2010,pp.1-9.
  58. 竹澤晃弘,金野有里,北村充,濱田邦裕,大槻康明,トポロジー最適化を用いたブリッジウィングの防振設計に関する研究,日本船舶海洋工学会論文集,Vol.10,2010,pp.205-212.
  59. K. Hamada, A. Takezawa, M. Kitamura, K. Kanaikari, A Multi-step Design Optimization Method for Mid-ship Section, Ship Technol. Res., 56 (4) (2009) 110-120.
  60. K.V. Karottu, K. Hamada, A. Takezawa, M. Kitamura, Optimization of Block Division Using Nodal Cut Set Method, Ship Technol. Res., 56 (4) (2009) 142-153.
  61. 岡本 由仁,山田 崇恭,泉井 一浩,西脇 眞二,竹澤 晃弘,レベルセット法に基づく熱電効果を利用した熱アクチュエータ設計問題に関するトポロジー最適化,日本計算工学会論文集,Vol.2009,2009,Paper No.20090024.
  62. 竹澤晃弘,西脇眞二,北村充,フェーズフィールド法に基づく構造最適化(ペリメータ制約の検討と最適化問題の拡張),日本機械学会論文集A編,Vol.75(760),2009,pp.1784-1793.
  63. 山田崇恭,西脇眞二,泉井一浩,吉村允孝,竹澤晃弘,レベルセット法による形状表現を用いたフェーズフィールド法の考え方に基づくトポロジー最適化,日本機械学会論文集A 編,Vol.75(753),2009,pp.550-558.
  64. 北村充,上寺哲也,濱田邦裕,竹澤晃弘,部材認識機能を利用した船体構造の形状最適化システムに関する研究−船体構造二重底部の形状最適化−,日本船舶海洋工学会論文集,Vol.8,2008,pp.281-289.
  65. 竹澤晃弘,西脇眞二,北村充,トポロジー最適化法を用いたひずみゲージ式変換器構造の最適化,日本機械学会論文集A 編,Vol.74(747), 2008,pp.1459-1468.
  66. 竹澤晃弘,西脇眞二,北村充,Silva, E. C. N.,特異値分解に基づく多軸荷重変換器構造のトポロジー最適化,日本機械学会論文集C 編,Vol.74(746),2008,pp.2462-2470.
  67. 北村充,濱田邦裕,竹澤晃弘,高木貴弘,金谷勲平,大槻康明,独立要素分割と多点拘束を利用した船体構造二重底部の形状および寸法最適設計に関する研究,日本船舶海洋工学会論文集,Vol.7,2008,pp.89-96.
  68. 竹澤晃弘,最上克哉,西脇眞二,泉井一浩,吉村允孝,北村充,離散構造要素を用いたバンドギャップ構造の最適化,日本機械学会論文集C編,Vol.74(740),2008,pp.780-788.
  69. A. Takezawa, S. Nishiwaki, K. Izui, M. Yoshimura, Structural optimization based on topology optimization techniques using frame elements considering cross-sectional properties, Struct. Multidisc. Optim., 34 (1) (2007) 41-60.
  70. A. Takezawa, S. Nishiwaki, K. Izui, M. Yoshimura, Structural optimization using function-oriented elements to support conceptual designs, ASME J. Mech. Des., 128 (4) (2006) 689-700.
  71. A. Takezawa, S. Nishiwaki, K. Izui, M. Yoshimura, H. Nishigaki, Y. Tsurumi, Concurrent design and evaluation based on structural optimization using structural and function-oriented elements at the conceptual design phase, Concurr. eng. res. appl, 13 (1) (2005) 29-42.
  72. 竹澤晃弘,斉藤真大,西脇眞二,泉井一浩,吉村允孝,フレーム要素を用いたトポロジー最適化(固有振動数最大化を目的とした場合),日本機械学会論文集C編,Vol.71(710),2005,pp.3018-3025.
  73. 竹澤晃弘,西脇眞二,泉井一浩,吉村允孝,離散構造要素を用いたトポロジー最適化(フレーム要素の断面主軸方向を設計変数として考慮した場合),日本機械学会論文集C編,Vol.71(706), 2005,pp.172-179.
  74. 竹澤晃弘,西脇眞二,泉井一浩,吉村允孝,西垣英一,鶴見康昭,離散化構造要素を用いたトポロジー最適化,日本機械学会論文集C編,Vol.70(692),2004,pp.1008-1015.