高分子の結晶化

広島大学 大学院総合科学研究科

戸田昭彦

目次

はじめに: 高分子結晶とは

高分子結晶の熱力学

結晶化駆動力,格子モデル,融点,ガラス転移

「結晶成長」とは

高分子の折り畳み鎖結晶化機構 標準モデル,成長様式,高分子性,1次核形成,準安定相の役割

結晶構造

0.25nm

ポリエチレン 透過型電子顕微鏡 電子線回折像

$\underbrace{ 10 \mu m} f 10 nm$

奥居: 繊維と工業 63 ('07) 395

折りたたみ鎖単結晶

ポリフッ化ビニリデン単結晶 透過型電子顕微鏡像

結晶・非晶の積層構造

アイソタクティックポリプロピレン 染色後 透過型電子顕微鏡像 山田氏提供(サンアロマー)

ポリフッ化ビニリデン球晶 偏光顕微鏡像

多彩な高次構造形成

ポリヒドロキシ酪酸 偏光顕微鏡像

球晶の集合体

結晶性高分子のつくる階層構造

折り畳み鎖結晶

説明されるべき特徴

- A) 結晶厚の結晶化温度(過冷却度)依存性
- B) 成長速度の結晶化温度(過冷却度)依存性

C)結晶の融解挙動

Sir Charles Frank: "If one could understand enough about the morphology of crystals, he understood essential points of the fundamentals of crystal growth." "Diamonds are letters sent from the depth of the Earth." 「雪は天から送られた手紙である」中谷宇吉郎

高分子結晶の熱力学

融液一結晶間の $\Delta \mu_{\ell-c}$ = 融液結晶化の駆動力

混合状態の格子モデル

溶解温度, ブレンドの融点, ランダム共重合体の融点 融点の分子量依存性

融点の圧力依存性

折り畳み鎖結晶の融点:平衡融点の決定方法

動的過程

ガラス, ガラス転移

融液一結晶間の $\Delta \mu_{\ell-c}$ = 融液結晶化の駆動力

 $\therefore \text{ At } T_{\mathrm{M}}: \mu_{\mathrm{s}}(T_{\mathrm{M}}) = \mu_{\ell}(T_{\mathrm{M}}) \implies h_{\mathrm{s}}(T_{\mathrm{M}}) - T_{\mathrm{M}} s_{\mathrm{s}}(T_{\mathrm{M}}) = h_{\ell}(T_{\mathrm{M}}) - T_{\mathrm{M}} s_{\ell}(T_{\mathrm{M}})$ $\Rightarrow h_{\ell}(T_{\mathrm{M}}) - h_{\mathrm{s}}(T_{\mathrm{M}}) = T_{\mathrm{M}}[s_{\ell}(T_{\mathrm{M}}) - s_{\mathrm{s}}(T_{\mathrm{M}})] \implies \Delta h_{\mathrm{f}}(T_{\mathrm{M}}) = T_{\mathrm{M}}\Delta s_{\mathrm{f}}(T_{\mathrm{M}})$ $\Delta \mu(T) \simeq \Delta h_{\mathrm{f}}(T_{\mathrm{M}}) - T \Delta s_{\mathrm{f}}(T_{\mathrm{M}}) \simeq \Delta h_{\mathrm{f}}(T_{\mathrm{M}}) \frac{T_{\mathrm{M}} - T}{T_{\mathrm{M}}} = \Delta h_{\mathrm{f}} \frac{\Delta T}{T_{\mathrm{M}}}$ $\Delta h_{\mathrm{f}}, \Delta s_{\mathrm{f}}: \text{Const.} \succeq \ (\Sigma \Xi)$

 $\overline{}$ $T/T_{
m M}$ ¹

Hoffman: J Chem Phys **29** ('58) 1192 Hoffman, Weeks: J Chem Phys 37 ('62) 1723

高分子理想鎖の格子モデル (Flory-Huggins)

高分子鎖は溶媒分子と大きさの等しいセグメントN個からできているとする。 Nは高分子と溶媒のモル体積の比に等しい。

$$\begin{split} \phi_{0} &= \frac{n_{0}}{\Omega} \ , \ \phi_{1} = \frac{Nn_{1}}{\Omega} \ , \ \Omega = n_{0} + Nn_{1} \\ W(n_{0}, Nn_{1}) &= \frac{1}{n_{1}! \, 2^{n_{1}}} \prod_{j=0}^{n_{1}-1} (\Omega - Nj) \times [z(1 - \frac{Nj}{\Omega})] \times [(z - 1)(1 - \frac{Nj}{\Omega})]^{N-2} \\ & \text{IF} \\ & \text{If} \\ S(n_{0}, Nn_{1}) &= k_{\text{B}} \ln W = k_{\text{B}} (-n_{0} \ln \phi_{0} - n_{1} \ln \phi_{1} + n_{1} \ln \frac{z(z - 1)^{N-2}N}{2e^{N-1}}) \\ & S(0, Nn_{1}) &= k_{\text{B}} n_{1} \ln \frac{Nz(z - 1)^{N-2}}{2e^{N-1}} \qquad S(n_{0}, 0) = 0 \\ \Delta S &= S(n_{0}, Nn_{1}) - S(0, Nn_{1}) - S(n_{0}, 0) = -k_{\text{B}} (n_{0} \ln \phi_{0} + n_{1} \ln \phi_{1}) \end{split}$$

証明)

$$\begin{split} W &= \frac{1}{n_1! 2^{n_1}} \prod_{j=0}^{n_1-1} (\Omega - Nj) \times [z(1 - \frac{Nj}{\Omega})] \times [(z-1)(1 - \frac{Nj}{\Omega})]^{N-2} \\ &= (\delta\Omega)^{n_1} \frac{1}{n_1!} \prod_{j=0}^{n_1-1} (1 - \frac{Nj}{\Omega})^N \qquad \delta \equiv \frac{1}{2} z(z-1)^{N-2} \\ &= (\delta\frac{N^N}{\Omega^{N-1}})^{n_1} \frac{1}{n_1!} \prod_{j=0}^{n_1-1} (\frac{\Omega}{N} - j)^N = (\delta\frac{N^N}{\Omega^{N-1}})^{n_1} \frac{1}{n_1!} [\frac{(\Omega/N)!}{(n_0/N)!}]^N \\ &\subset \subset \heartsuit, \quad \text{Stirling} \mathcal{O} \text{iff} [\emptyset] \text{if} \ln N! \sum_{N \gg 1} N(\ln N - 1) \\ \ln W \sim n_1 \ln \delta \frac{N^N}{\Omega^{N-1}} - n_1(\ln n_1 - 1) + N \frac{\Omega}{N} (\ln \frac{\Omega}{N} - 1) - N \frac{n_0}{N} (\ln \frac{n_0}{N} - 1) \\ &= n_1 \ln \delta + Nn_1 \ln N - (N-1)n_1 \ln \Omega - n_1 \ln n_1 + n_1 + \Omega \ln \Omega - \Omega \ln N - \Omega - n_0 \ln n_0 + n_0 \ln N + n_0 \\ &= n_1 (\ln \delta + 1 - N + \ln N) - n_1 (\ln n_1 - \ln \Omega + \ln N) - n_0 (\ln n_0 - \ln \Omega) + (n_0 + Nn_1 - \Omega)(1 + \ln N) \\ &= n_1 \ln \frac{\delta N}{e^{N-1}} - n_1 \ln \frac{Nn_1}{\Omega} - n_0 \ln \frac{n_0}{\Omega} \\ &= -n_1 \ln \phi_1 - n_0 \ln \phi_0 + n_1 \ln \frac{\delta N}{e^{N-1}} \quad \text{fz fz } \cup, \quad \phi_0 = \frac{n_0}{\Omega} \quad \phi_1 = \frac{Nn_1}{\Omega} \quad n_0 + Nn_1 = \Omega \end{split}$$

田中文彦「高分子の物理学」1994 裳華房

溶解
$$\Delta \mu_{s-c} =$$
融解 \rightarrow 混合
 $\Delta \mu_{t-c} = \Delta h_{f} \frac{T_{M}^{0} - T}{T_{M}^{0}}$
 $\Delta \mu_{t-s} :$ 格子モデル(Flory-Huggins)
 $\Delta S = -k_{B}(n_{0} \ln \phi_{0} + n_{1} \ln \phi_{1})$ $\Delta U = z \Delta \varepsilon \frac{n_{0} N n_{1}}{\Omega} = \chi k_{B} T n_{0} \phi_{1}$ $\chi \equiv \frac{z \Delta \varepsilon}{k_{B} T}$
 $\Delta F = \Delta U - T\Delta S = k_{B} T(n_{0} \ln \phi_{0} + n_{1} \ln \phi_{1} + \chi n_{0} \phi_{1})$
 $\Delta \mu = \frac{\partial \Delta F}{\partial n_{1}} = k_{B} T(\frac{n_{0}}{\phi_{0}} \frac{\partial \phi_{0}}{\partial n_{1}} + \ln \phi_{1} + \frac{n_{1}}{\phi_{1}} \frac{\partial \phi_{1}}{\partial n_{1}} + \chi n_{0} \frac{\partial \phi_{1}}{\partial n_{1}}) = k_{B} T[\ln \phi_{1} - (N-1)\phi_{0} + \chi N \phi_{0}^{2}]$
 $\therefore \frac{\partial \phi_{0}}{\partial n_{1}} = \frac{\partial}{\partial n_{1}} \frac{N n_{1}}{n_{0} + N n_{1}} = \frac{-N n_{0}}{(n_{0} + N n_{1})^{2}}$ $n_{0} \frac{\partial \phi_{0}}{\partial n_{1}} = -N \phi_{0}^{2}$

高分子1本当たりの量が計算された。溶媒と高分子構造単位のモル体積を v_0, v_u として、1本の高分子の構造単位数 Nv_0/v_u で割ることで、構造単位1モル当たりの量とする。

$$\Delta \mu_{\ell-s} = \frac{-\Delta \mu}{N v_0 / v_u} = -k_{\rm B} T \frac{v_u}{v_0} \left[\frac{\ln \phi_1}{N} - (1 - \frac{1}{N}) \phi_0 + \chi \phi_0^2 \right] \simeq -k_{\rm B} T \frac{v_u}{v_0} \left(-\phi_0 + \chi \phi_0^2 \right) \text{ for } N \gg 1$$

Mandelkern: "Crystallization of Polymers"

$$\begin{split} \Delta \mu_{\ell\text{-c}} &\simeq \Delta h_f \, \frac{T_{\text{M}}^0 - T}{T_{\text{M}}^0} \\ \Delta \mu_{\ell\text{-s}} &\simeq -k_{\text{B}} T \, \frac{v_{\text{u}}}{v_0} (-\phi_0 + \chi \, \phi_0^2) \ \text{for } N \gg 1 \end{split}$$

溶解温度
$$T_{\rm d}$$
 で $\Delta\mu_{\rm s-c} = 0$ から, $\Delta\mu_{\ell-c} = \Delta\mu_{\ell-s}$ $\therefore \Delta h_f \frac{T_{\rm M}^0 - T_{\rm d}}{T_{\rm M}^0} = -RT_{\rm d} \frac{v_{\rm u}}{v_0} (-\phi_0 + \chi \phi_0^2)$
 $\Delta h_f (\frac{1}{T_{\rm d}} - \frac{1}{T_{\rm M}^0}) = R \frac{v_{\rm u}}{v_0} (\phi_0 - \chi \phi_0^2)$
希薄溶液 $(\phi_0 \sim 1)$ では, $\Delta h_f (\frac{1}{T_{\rm d}} - \frac{1}{T_{\rm M}^0}) = R \frac{v_{\rm u}}{v_0} (1 - \chi)$

Mandelkern: "Crystallization of Polymers"

高分子ブレンドの融点 西-Wangの式

 $\Delta \mu_{\ell-b}$:格子モデル(Flory-Huggins)

$$\phi_0 = \frac{N_0 n_0}{N_0 n_0 + N_1 n_1} \quad \phi_1 = \frac{N_1 n_1}{N_0 n_0 + N_1 n_1}$$

$$\begin{split} \Delta F &= k_{\rm B} T (n_0 \ln \phi_0 + n_1 \ln \phi_1 + \chi N_0 n_0 \phi_1) \\ \Delta \mu &= \frac{\partial \Delta F}{\partial n_1} = k_{\rm B} T [\ln \phi_1 - (\frac{N_1}{N_0} - 1) \phi_0 + \chi N_1 \phi_0^2] \\ \Delta \mu_{\ell-b} &= \frac{-\Delta \mu}{N_1 v_0 / v_{\rm u}} = -k_{\rm B} T \frac{v_{\rm u}}{v_0} [\frac{\ln \phi_1}{N_1} - (\frac{1}{N_0} - \frac{1}{N_1}) \phi_0 + \chi \phi_0^2] \simeq -k_{\rm B} T \frac{v_{\rm u}}{v_0} \chi \phi_0^2 \quad \text{for } N_0, N_1 \gg 1 \end{split}$$

溶解温度 $T_{\rm d}$ で $\Delta\mu_{\rm s-c} = 0$ から、 $\Delta\mu_{\ell-c} = \Delta\mu_{\ell-b}$ $\therefore \Delta h_f \frac{T_{\rm M}^0 - T_{\rm M}}{T_{\rm M}^0} = -RT_{\rm M} \frac{v_{\rm u}}{v_0} \chi \phi_0^2 \Rightarrow \Delta h_f (\frac{1}{T_{\rm M}} - \frac{1}{T_{\rm M}^0}) = -R \frac{v_{\rm u}}{v_0} \chi \phi_0^2$

Nishi, Wang: Macromolecules 8 ('75) 909

ランダム 共重合体の 融点 Floryの 式

 X_{A} : ランダム共重合体中の結晶性(A)成分のモル分率 ζ : A成分連鎖からなる結晶の厚さ(長さ) $\zeta \Delta h_{\epsilon} \frac{T_{M}^{0} - T_{M}}{2} - T_{\mu} [-R \ln(X_{A})^{5}] = 0$

$$\zeta \Delta h_f \frac{\Delta M}{T_{\rm M}^0} - T_{\rm M} [-R \ln(X_{\rm A})^{\zeta}] =$$

$$\therefore \quad \Delta h_f (\frac{1}{T_{\rm M}} - \frac{1}{T_{\rm M}^0}) = -R \ln X_{\rm A}$$

Flory: J Chem Phys **17** ('49) 223 Mandelkern: "Crystallization of Polymers" Helfand, Lauritzen: Macromolecules **6** ('73) 631

融点の分子量依存性

Broadhurst, Flory-Vrij $T_{\rm M}(n) = \frac{\Delta h_{\rm f}}{\Delta s_{\rm f}} = \frac{n \,\Delta h_{\rm f}^{\rm 0} + \Delta h_{\rm f}^{\rm e}}{n \,\Delta s_{\rm f}^{\rm 0} + \Delta s_{\rm f}^{\rm e}}$ $=T_{\rm M}(\infty)\frac{n+a}{n+b+c\ln n}$ a < 0, b > 0, c > 0 $T_{\rm M}(\infty)$ 400 結晶内:末端同士1通り 溶融体:ランダム n通り $T_{
m M}$ 300

Broadhurst:_J Res Nat Bur Std **66A** ('62) 241 Flory, Vrij: J Amer Chem Soc **85** ('63) 3548

融点

圧力依存性 Clapeyron Clausius の式 共存曲線の接線: $\frac{dp}{dT} = \frac{\Delta S}{\Lambda V} = \frac{L}{T\Lambda V}$ ただし, L = 潜熱. $p + \frac{4\pi}{\mu_{A} < \mu_{B}} = \frac{\mu_{B}}{\mu_{A} < \mu_{B}} = \frac{\mu_{B}}{\mu_{B} < \mu_{B}} = \frac{\mu_{B}}{\mu_{A} < \mu_{B}} = \frac{\mu_{B}}{\mu_{A}$ T

融点

圧力依存性 Clapeyron Clausius の式

融点

圧力依存性 Clapeyron Clausius の式

Mishima, Calvert, Whalley: Nature 310 (84) 393

Rastogi, Newman, Keller: Nature 353 (91) 55

Entropically Favored Ordering

PMMA colloidal suspension (2.3 μ m, $\phi \approx 0.6$) Weeks: Soft Jammed Materials 2007

Alder & Wainwright: *Phys Rev* 127 (62) 359

Polyethylene 高温高圧下

Orthorhombic

Hexagonal

Sliding Diffusion

Wunderlich, Arakawa: J Polym Sci A2 ('64) 3697 Bassett, Block, Piermarini: J Appl Phys 45 ('74) 4146 Hikosaka: Polymer 28 ('87) 1257 Rastogi, Hikosaka, Kawabata, Keller: Macromolecules 24 ('91) 6384 高圧(PE伸びきり鎖結晶)

折り畳み鎖結晶の融点:Gibbs-Thomsonの式(サイズ効果)

$$\Delta G = 4 x d_{c} \sigma + 2 x^{2} \sigma_{e} - x^{2} d_{c} \Delta \mu$$
$$= x^{2} (4 \sigma d_{c} / x + 2 \sigma_{e} - d_{c} \Delta \mu) = 0$$
$$\Delta \mu = \Delta h_{f} \underbrace{T_{M}^{0}}_{T_{M}^{0}} \underbrace{T}_{M} \quad \text{伸びきり鎖の平衡融点}$$

Gibbs-Thomsonの式 $d_c/x \ll 1$

 $2\sigma_{e} - d_{c}\Delta\mu \cong 0$ 折り畳み鎖結晶と融液の平衡

@ $T_{\rm M}$: $T_{\rm M} = T_{\rm M}^0 - \frac{C}{d_{\rm c}}$, $C = \frac{2\sigma_{\rm e}T_{\rm M}^0}{\Delta h_{\rm f}}$ 折り畳み鎖結晶の融点 @ $T_{\rm c}$: $d_{\rm c} \ge d_{\rm c}^* = \frac{2\sigma_{\rm e}}{\Delta\mu(T_{\rm c})} = \frac{C}{T_{\rm M}^0 - T_{\rm c}}$ 結晶厚さの下限

 $\Delta \mu = \mu_2 - \mu_1 = \gamma \frac{2v_1}{R} , v_1 : 1 相内での分子 1 個の体積$

伸びきり鎖結晶の平衡融点T_Mの決定法

Gibbs-Thomsonプロット $T_{\rm M} = T_{\rm M}^0 - \frac{C}{d_{\rm c}}, \quad C = \frac{2\sigma_{\rm e}T_{\rm M}^0}{\Delta h_{\rm f}}$ $T_{\rm M} \ge d_{\rm c} \quad \mathcal{O}$ データセットが必要

簡便法(Hoffman-Weeksプロット)

もし $T_{c} \rightarrow T_{M}^{0}$,なら $T_{M} \rightarrow T_{M}^{0}$ であろう。 $T_{M} \ge T_{c}$ のデータセットが必要

融液結晶化時の厚化成長では,

$$d_{\rm c} = \gamma d_{\rm c}^{*} = \gamma \frac{C}{T_{\rm M}^{0} - T_{\rm c}}$$

$$\therefore T_{\rm M} = T_{\rm M}^{0} \left(1 - \frac{T_{\rm M}^{0} - T_{\rm c}}{\gamma T_{\rm M}^{0}}\right) \implies T_{\rm M} = \frac{1}{\gamma} T_{\rm c} + \left(1 - \frac{1}{\gamma}\right) T_{\rm M}^{0}$$

T_Mの決定法

顕微鏡法などによる融解の直接観察,熱測定 問題点: ピーク幅,再組織化・再結晶化,複数ピーク,昇温速度依存性

 $T_{\rm M}^0$ の決定法:ポリエチレンの例

問題点のうち,再組織化・再結晶化の影響は高速昇温により回避できる。
 ピーク帰属は昇温速度依存性により,その昇温速度依存性は融解キネティクスとして定
 量的に評価できる。
 Toda A, Taguchi K, Nozaki K, Konishi M, 2014, Polymer, 55, 3186

動的過程:素過程の進行速度 Arrheniusの式

反応速度 k:

動的過程:素過程の進行速度 Eyringの反応速度論

例)粘度η: **τ**=ηγ $k_{\rm f} - k_{\rm b} \sim \frac{k_{\rm B}T}{h} e^{-\frac{\Delta\mu^{*}}{k_{\rm B}T}} (1 - e^{-\frac{\Delta w}{k_{\rm B}T}}) \sim \frac{1}{h} e^{-\frac{\Delta\mu^{*}}{k_{\rm B}T}} \Delta w$ $\Delta w = (\tau a^2) a = \tau v_s$ $\frac{\partial v}{\partial x} = \frac{a(k_{\rm f} - k_{\rm b})}{a} \sim \frac{v_{\rm s}}{h} e^{-\frac{\Delta \mu^*}{k_{\rm B}T}} \tau$ $\eta = \frac{h}{v_{\rm s}} \exp[\frac{\Delta \mu^*}{k_{\rm B}T}]$ Arrhenius 型 $\ln\eta = \ln\frac{h}{v_{\rm s}} + \frac{\Delta\mu^*}{k_{\rm R}}T^{-1}$ ln η T^{-1}

 $\dot{\gamma} = rac{\partial v}{\partial x}$ $\tau = \eta \dot{\gamma}$ Δw

Eyring: "絶対反応速度論"

ガラス, ガラス転移

ガラス

- •長距離秩序なし(液体),流動性なし(固体)
- 分子鎖全体の形態~溶融状態(ランダムコイル)

ガラス転移

- 溶融体を降温して(過冷却すると)流動性を失い,固化する。
- 高分子鎖のミクロブラウン運動(高分子鎖の部分鎖の熱運動に起因するセグメント運動)が凍結される(運動を特徴づける時間がマクロな時間スケール(例100秒)になる)。
- •動的な転移(緩和現象)であり、熱力学的な相転移ではない。
- ・ガラス転移に伴い、降温(昇温)時の体積やエンタルピー変化に異常が現れる
 (膨張率や熱容量に階段状の変化が現れる)。

ガラス, ガラス転移

ガラス、ガラス転移 Viscosity n

$$\begin{aligned} \text{Vogel-Fulcher-Tamman}\,\, \textbf{I} \textbf{J} \\ \eta_0 &= A \exp[\frac{U^*}{R(T-T_0)}] \\ &= A \exp\{\frac{U^*}{R[T-(T_g-c_2)]}\} \end{aligned}$$

$$a_T &= \frac{\eta_0(T)}{\eta_0(T_g)} \\ \log_{10} a_T &= \frac{\log_{\text{e}} a_T}{\log_{\text{e}} 10} = -\frac{U^*}{2.303c_2R} \frac{T-T_g}{T-T_g+c_2} \\ &= -c_1 \frac{T-T_g}{T-T_g+c_2} \quad \text{WLF}\, \textbf{I} \textbf{J} \\ c_1 &= \frac{U^*}{2.303c_2R} \end{aligned}$$

Angell: Science 267 ('95) 1924

自由体積モデル(現象論) 分子(占有体積 v_0)のまわりの 自由体積 $v_f = v - v_0$ の変化に伴う, ミクロブラウン運動の易動度の変化(凍結)。

Volume V

自由体積分率の変化 $f = \frac{v_{\rm f}}{v_0} = f_{\rm g} + \alpha_{\rm f} (T - T_{\rm g})$ Doolittle の粘度式 $\eta \propto \exp[\frac{B}{f}]$ 自由体積 f が大きい方が粘度が小さい。

$$\ln[\frac{\eta(T)}{\eta(T_{g})}] = B[\frac{1}{f(T)} - \frac{1}{f(T_{g})}] = -\frac{(B/f_{g})(T - T_{g})}{(T - T_{g}) + (f_{g}/\alpha_{f})}$$

WLF IJ

配位エントロピーモデル(現象論) 温度の低下に伴い、分子鎖の配位の凍結が起こる。 (配位zントロピ $-S_c$ の低下) 分子運動がより協同的になる。 (協同再配置領域CRRが大きくなる)。 粘度 η ∝ exp[$\frac{\Delta \mu}{\nu \tau} z^*$] $\Delta \mu$:1粒子(モノマー)当たりの運動の活性化エネルキー z^* :CRRの粒子数 $S_{c} = N^{*}s_{c}^{*}$, $N^{*}z^{*} = N_{A}$:全粒子数 $N^*: CRRの総数, s_c^* = k \ln 2: CRRの配位エントロヒ[°] \therefore z^* = N_A \frac{s_c^*}{S} \implies \eta \propto \exp[\frac{D}{TS}]$ $S_{\rm c} = \int_{T_{\rm K}}^{T} \frac{\Delta C_p}{T} dT \sim \Delta C_p \ln[\frac{T}{T}]$ $\ln[\frac{\eta(T)}{\eta(T_{g})}] = D\Delta C_{p} [\frac{1}{T \ln[T/T_{K}]} - \frac{1}{T_{g} \ln[T_{g}/T_{K}]}] \sim \text{WLF}$

ガラス, ガラス転移 Heat capacity C

1.50 **faster β** 1.00 365.0 370.0 375.0 380.0 385.0 390.0

390.0

ガラス, ガラス転移 Relaxation

緩和時間の分布(動的不均一性) Stretched exponential function Kohlrausch-Williams-Watts

$$\sum_{i} p_i \exp\left[-\frac{t}{\tau_i}\right] \simeq \exp\left[-\left(\frac{t}{\tau}\right)^{\beta}\right] \quad 0 < \beta < 1$$

Havriliak-Negami relaxation

$$\sum_{i} p_i \frac{1}{1+i\omega\tau} \simeq \frac{1}{\left[1+(i\omega\tau)^{\alpha}\right]^{\gamma}} = f' - if'' \quad 0 < \alpha, \gamma < 1$$

Alvarez, Alegra, Colmenero: Phys. Rev. B44 ('91) 7306

$$\ln[\frac{\tau_{\rm HN}}{\tau_{\rm KWW}}] = f(\beta)$$
$$\alpha \gamma \sim \beta$$

「結晶成長」とは

「結晶」とは

理想的成長(Normal Growth):融液,溶液,気相

表面キネティクス

斎藤幸夫:「結晶成長」2002 裳華房

理想的成長(Normal Growth)
$$V = \frac{a}{\tau} = K \frac{\Delta \mu}{k_{\rm B}T}$$

融液からの結晶化: $1 - e^{-\Delta \mu / k_{\rm B}T} \approx \Delta \mu / k_{\rm B}T$
 $V = a \cdot v e^{-E_d / k_{\rm B}T} e^{-\Delta S / k_{\rm B}T} \cdot [1 - e^{-\Delta \mu / k_{\rm B}T}] \approx K_T \frac{T_{\rm M} - T}{T_{\rm M}}$ Wilson-Frenkel則
 $t t t \cup , \frac{\Delta \mu}{k_{\rm B}T} \approx \frac{\Delta h}{k_{\rm B}T} \frac{T_{\rm M} - T}{T_{\rm M}} , K_T = \frac{k_{\rm B}T}{\pi a^2 \eta} \frac{\Delta h}{k_{\rm B}T} e^{-\Delta S / k_{\rm B}T}$
 $z z \tau , a^2 = 6D \tau_0 , \frac{1}{\tau_0} = v e^{-E_d / k_{\rm B}T} , D = \frac{k_{\rm B}T}{6\pi\eta a}$ Einstein-Stokes 則
 $\Rightarrow a v e^{-E_d / k_{\rm B}T} = \frac{k_{\rm B}T}{\pi a^2 \eta}$

理想的成長(Normal Growth)
$$V = \frac{a}{\tau} = K \frac{\Delta \mu}{k_{\rm B}T}$$

溶液からの結晶化:

 $V = a \cdot v e^{-E_{\text{des}}/k_{\text{B}}T} \cdot v_{\text{s}}[C - C_{\text{eq}}(T)] = a v_{\text{s}} v e^{-E_{\text{des}}/k_{\text{B}}T}[C - C_{\text{eq}}(T)]$

気相からの結晶化:

$$V = a \cdot a^{2} \left[\frac{P}{\sqrt{2\pi m k_{\rm B}T}} - \frac{P_{\rm eq}}{\sqrt{2\pi m k_{\rm B}T}}\right] = \frac{v_{\rm s}}{\sqrt{2\pi m k_{\rm B}T}} \left(P - P_{\rm eq}\right) \quad \text{Hertz-Knudsen}$$

表面(2次元)核形成

斎藤幸夫:「結晶成長」2002 裳華房

補)1次核形成

1 次核:
$$\Delta G = -\Delta \mu \frac{4}{3} \pi r^3 + \sigma 4\pi r^2$$

臨界核: $0 = \frac{\partial \Delta G}{\partial r} = -4\pi \Delta \mu r^2 + 8\pi \sigma r$
臨界核半径: $r^* = \frac{2\sigma}{\Delta \mu}$, 臨界核: $\Delta G^* = \frac{16\sigma^3}{3\Delta \mu^2}$
核形成頻度: $I_c = I_0 \exp[-\frac{\Delta G^*}{k_B T}] = I_0 \exp[-\frac{16\sigma^3}{3\Delta \mu^2 k_B T}]$

核形成-成長様式:
$$V = \frac{a}{\tau}$$

核形成頻度 $I_c = I_0 \exp[-\frac{\pi a \sigma^2}{\Delta \mu k_B T}]$ (単位面積当たり
ステップ前進速度 $v = K \frac{\Delta \mu}{k_B T}$
 $\frac{1}{\tau} = I_c A_k$, $\pi(v\tau)^2 = A_k \Rightarrow$ 被覆面積 $A_k = (\frac{\pi v^2}{I_c^2})^{1/3}$
単一核成長様式 $A_k \gg A$ $(I_c^2 A^3 / v^2 \ll 1)$
 $\frac{1}{\tau} = I_c A$
 $V \sim a I_c A = a I_0 A \exp[-\frac{\pi a \sigma^2}{\Delta \mu k_B T}]$
多核成長様式 $A_k \ll A$ $(I_c^2 A^3 / v^2 \gg 1)$
 $\frac{1}{\tau} = I_c A_k = (\pi I_c v^2)^{1/3}$
 $V \sim a (I_c v^2)^{1/3} = a I_0^{1/3} (K \frac{\Delta \mu}{k_B T})^{2/3} \exp[-\frac{\pi a \sigma^2}{3 \Delta \mu k_B T}]$

らせん転位による結晶成長

F.C.Frank (1949)

http://home.hiroshima-u.ac.jp/atoda/Figs/crystalgrowth.html

http://home.hiroshima-u.ac.jp/atoda/Figs/spiralgrowth.html

表面キネティクス
$$V = \frac{a}{\tau}$$

らせん転位による渦巻成長: Frank
 $v = v_0(1 - \frac{r^*}{r})$, $v_0 \equiv K \frac{\Delta \mu}{k_{\rm B}T}$, $r^* = \frac{\sigma}{\Delta \mu}$
アルキメデスらせん $r \approx 2r^* \theta$ による成長
ステップ間隔 $\lambda \approx 4\pi r^* \rightarrow \lambda \approx 19 r^*$
 $\tau = \frac{\lambda}{v_0}$
 $V = \frac{a}{(\lambda/v_0)} = \frac{a}{19} \frac{\Delta \mu}{\sigma} (K \frac{\Delta \mu}{k_{\rm B}T}) = \frac{aK}{19\sigma k_{\rm B}T} \Delta \mu^2$
 V

 $r=2r^{*}\sin heta \sim 2r^{*} heta$

高分子の折り畳み鎖結晶化機構

標準モデル

折り畳み鎖結晶

説明されるべき特徴

- A)結晶厚の結晶化温度(過冷却度)依存性
- B) 成長速度の結晶化温度(過冷却度)依存性

- 原子間力顕微鏡(AFM)
- 電子顕微鏡
- 小角散乱(2 d sin θ = λ)
- ラマン散乱(LAM)

• 原子間力顕微鏡(AFM)

•電子顕微鏡(TEM)

Shadowing Pt-Pd

Staining RuO₄

過マンガン酸エッチング+ Replica Bassett et al.

Strobl "高分子の物理"

結晶成長速度の測定

結晶の大きさの結晶化時間による変化.結 晶化条件は,溶媒 octane, 濃度 1.0×10⁻⁵ wt%,温度 92.1°C.

結晶厚の結晶化温度 T_c 依存性

Organ & Keller: J Mater Sci 20('85)1602

結晶厚の過冷却度 △T 依存性

$$\ell = \delta \ell + \frac{A}{\Delta T}$$
, $\Delta T = T_{\rm M} - T_{\rm c}$

Organ & Keller: J Mater Sci 20('85)1602

成長速度の結晶化温度 T_c 依存性

奥居, 梅本: 繊維と工業 61 ('05) 157

成長速度の過冷却度 ΔT 依存性

成長速度式中の易動度 β

$$U^{*\prime} = 1500 \text{ cal/mol}$$

Growth from solution

$$\beta \propto \exp[-\frac{U^*}{RT}]$$
 Arrhenius

Hoffman, Davis, Lauritzen: Treatise on Solid State Chemistry, 1976, Vol 3, Chap 7

標準モデル:表面核形成律速モデル

Lauritzen - Hoffmanモデル

Point, 彦坂モデル

2次核(表面核) $\Delta G = -\pi r^2 a \Delta \mu + 2\pi r a \sigma$

Liquid $\overbrace{2r}$

1次核

$$\Delta G(r) = -\Delta \mu \frac{4}{3} \pi r^{3} + \sigma 4\pi r^{2}$$
臨界核: $0 = \frac{\partial \Delta G}{\partial r^{*}} = -4\pi \Delta \mu r^{2} + 8\pi \sigma r$
 $r^{*} = \frac{2\sigma}{\Delta \mu}$ $\Delta G^{*} = \frac{16\sigma^{3}}{3\Delta \mu^{2}}$

n

$$\begin{split} \Delta G &= -\Delta \mu (nab\ell) + 2\sigma_{\rm e} (nab) + 2\sigma(b\ell) \\ \\ \mathbf{Ea} \mathcal{R} 核: \ 0 &= \frac{\partial \Delta G}{\partial n^*} = -ab\ell^* \Delta \mu + 2\sigma_{\rm e} ab \qquad 0 = \frac{\partial \Delta G}{\partial \ell^*} = -n^* ab \Delta \mu + 2\sigma b \\ \\ an^* &= \frac{2\sigma}{\Delta \mu} \qquad \ell^* = \frac{2\sigma_{\rm e}}{\Delta \mu} = \frac{A}{\Delta T} \qquad \Delta G^* = \frac{4b\sigma\sigma_{\rm e}}{\Delta \mu} \end{split}$$

高分子結晶の表面核形成

補)高分子結晶の1次核形成

2次核(表面核)

 $\Delta G(n,\ell) = -\Delta \mu(nab\ell) + 2\sigma_{\rm e}(nab) + 2\sigma(b\ell)$

1次核 $x \equiv na = mb$ $\Delta G(n, \ell) = -\Delta \mu x^2 \ell + 2\sigma_e x^2 + 4\sigma x \ell$ 臨界核: $0 = \frac{\partial \Delta G}{\partial \ell^*} = -\Delta \mu x^2 + 4\sigma x$ $0 = \frac{\partial \Delta G}{\partial x^*} = -2\Delta \mu x \ell + 4\sigma_e x + 4\sigma \ell$ $x^* = n^* a = m^* b = \frac{4\sigma}{\Delta \mu}$ $\ell^* = \frac{4\sigma_e}{\Delta \mu}$ $\Delta G^* = \frac{32\sigma^2\sigma_e}{\Delta \mu^2}$

Lauritzen & Hoffman の標準モデル

http://home.hiroshima-u.ac.jp/atoda/Figs/models.html

n

$$I = \int_{\ell^*}^{\infty} S(\ell) \, d\ell \quad , \quad <\ell > = \frac{\int_{\ell^*}^{\infty} \ell \, S(\ell) \, d\ell}{\int_{\ell^*}^{\infty} S(\ell) \, d\ell}$$

Hoffman JD, Davis GT, Lauritzen, Jr, JI, "Treatise on Solid State Chemistry" Plenum Press, 1976, Vol 3, Chap 7.

自由エネルギー変化

流れの厚さに対する分布・結晶化速度

$$\Delta \mu \cong \Delta h_{\rm f} \, \frac{T_{\rm M} - T}{T_{\rm M}} = \Delta h_{\rm f} \, \frac{\Delta T}{T_{\rm M}}$$

 $\begin{aligned} \mathbf{\hat{z}}\mathbf{\hat{R}}\mathbf{\hat{R}}:S(\ell) \propto A_0 \left(1 - \frac{B}{A}\right) \\ <\ell > & \cong \frac{k_{\rm B}T/b}{2\,\sigma - a\,\Delta\mu} + \frac{2\,\sigma_{\rm e}}{\Delta\mu} = \delta\ell(\Delta T) + \frac{A}{\Delta T} \\ I \propto \exp\left[-\frac{4\,b\,\sigma\,\sigma_{\rm e}}{k_{\rm B}T\,\Delta\mu}\right] = \exp\left[-\frac{K}{T\,\Delta T}\right] \\ A &= \frac{2\,\sigma_{\rm e}\,T_{\rm M}}{\Delta h_{\rm f}} \ , \ K = \frac{4\,b\,\sigma\,\sigma_{\rm e}\,T_{\rm M}}{k_{\rm B}\Delta h_{\rm f}} \end{aligned}$

http://home.hiroshima-u.ac.jp/atoda/Figs/models.html

Point JJ, Macromol, 12, 1979, 770.

高分子の折り畳み鎖結晶化機構

成長様式

成長速度

$$V \approx \begin{cases} bIL & \text{for } IL^2 / 2v \ll 1 \\ b\sqrt{2Iv} & \text{for } IL^2 / 2v \ll 1 \end{cases}$$

$$\frac{1}{\tau} = I L_k , 2v\tau = L_k \Rightarrow 被覆長 L_k = (\frac{2v}{I})^{1/2}$$
単一核成長様式 $L_k \gg L \ (IL^2 / 2v \ll 1)$

$$\frac{1}{\tau} = I L$$

$$V \sim b I L$$
多核成長様式 $L_k \ll L \ (IL^2 / 2v \gg 1)$

$$\frac{1}{\tau} = I L_k = (2Iv)^{1/2}$$

$$V \sim b (2Iv)^{1/2}$$

表面核形成頻度 $I \propto \beta \exp[-\frac{K}{T \Lambda T}]$ ステップ伝搬速度 $v \propto \beta (1 - \exp[-A\Delta T])$ \sim 一定 for ΔT 高分子結晶化 $\mathsf{Z} = \frac{IL^2}{2w} \propto L \exp\left[-\frac{K}{T \Lambda T}\right]$ 单一核成長様式 $z \ll 1 \Delta T$ 低 $V = b I L \propto L \exp\left[-\frac{K}{T \Lambda T}\right]$ 多核成長様式 $z \gg 1 \Delta T$ 高 $V = b (2Iv)^{1/2} \propto \exp[-\frac{K/2}{T \Lambda T}]$

レジーム転移

Hoffman, Frolen, Ross, Lauritzen: J Res Nat Bur Stand **79A** ('75) 671 Toda: Colloid Polym Sci **270** ('92) 667

Hoffman, Frolen, Ross, Lauritzen: J Res Nat Bur Stand **79A** ('75) 671 Toda: Colloid Polym Sci **270** ('92) 667 Toda:Faraday Disc **95** ('93) 129

瀬戸-Frank モデル

Seto: Rep Progr Polym Phys Jpn 7 ('64) 67 Frank: J Cryst Grovvth 22 ('74) 233

瀬戸-Frank モデル

$$\begin{split} \mathbf{\hat{r}} \ddot{\mathbf{r}} \ddot{\mathbf{r}} \mathbf{fr} \left(\frac{\partial \ell}{\partial t} = \frac{\partial r}{\partial t} = 0 \right) & -\frac{L}{2} \qquad \frac{L}{2} \\ -v \frac{\partial \ell}{\partial x} = v \frac{\partial r}{\partial x} = +I - 2v \, \ell \, r \quad \& \quad \ell \left(\frac{L}{2}\right) = r\left(-\frac{L}{2}\right) = 0 \end{split}$$

Seto: Rep Progr Polym Phys Jpn 7 ('64) 67 Frank: J Cryst Grovvth 22 ('74) 233

瀬戸-Frank-Mansfield モデル *v*</ $\ell, r:$ 左右に進むステップの線密度 速度: $V = b \frac{1}{\tau} = b v (\ell + r)$ 傾き: $\frac{\partial y}{\partial x} = b(\ell - r)$ ∂y ∂x vrb1 境界条件: L = 2ht $\ell(2\,h\,t) = r(-2\,h\,t) = 0$

Mansfield: Po!ymer 29 ('88) 1755

http://home.hiroshima-u.ac.jp/atoda/Figs/growthmode.htm

Regime 1, 2, 3 transition PE

Armistead & Hoffman: Macromolecules 35 ('02) 3895

Regime 1, 2, 3 transition iPP

Janimak, et al: Macromolecules 24 ('91) 2253

成長速度の ΔT 依存性変化の原因 1

Takayanagi: Mem Fac Eng Kyushu Univ 16 ('57) 111

- 1. 成長結晶相の変化(不連続変化)
- 2. 成長軸の変化(傾きの変化)

Breakdown of Einstein's relation near $T_{\rm g}$ $D > \frac{kT}{6\pi\eta r_{\rm SE}}$ for $T < T_{\rm B} \cong 1.2T_{\rm g}$

Ngai, Magill, Plazek: J Chem Phys 112 (2000) 1887

成長速度の濃度依存性

成長速度の濃度依存性

Toda: J Chem Soc Farad Tran 91 ('95) 2581

Toda, Kiho: J Polym Sci B27 ('89) 53

θ

Gt

 $V \propto [I_{\text{cillia}} I'_{\text{cillia}} I v(C)]^{1/3} \propto C^{1/4}$

Cooper, Manley: Macromolecules **8** ('75) 219 Toda, Kiho, Miyaji, Asai: J Phys Soc Jpn **54** ('85) 1411

高分子の折り畳み鎖結晶化機構

高分子性

高分子性

分子量依存性

1 次核形成頻度:
$$I \propto I_0 \beta \exp\left[-\frac{C}{T\Delta T^2}\right]$$

結晶成長速度: $V \propto G_0 \beta \exp\left[-\frac{K}{T\Delta T}\right]$
 $\begin{bmatrix}\Delta T = T_M(M) - T_c\\T_{\infty} = T_g(M) - 30 \text{ K}\end{bmatrix}$
 $T_M(M)$, $T_g(M_n) = T_g^{\infty} - \frac{A}{M_n}$ (Fox-Flory)
 $I_0 \propto M^{-\alpha} G_0 \propto M^{-\beta}$
 $\eta_0 \propto M^{3.4}, D^{-1} \propto M^2$ for $M > M_c$
 $\zeta \propto M^1$

Hoffman: $G(\Delta T) \propto M^{-1.3}$ Polymer 23 ('82) 656 彦坂: $G(\Delta T) \propto M^{-1.8}$ (FCC) $\propto M^{-0.7}$ (ECC) Polym J 31 ('99) 749 $I(\Delta T) \propto M^{-1}$ (ECC) 奥居: $G_{\max} \propto M^{-0.5}$ Polymer 46 ('05) 8790

高分子性

Molecular Nucleation

Wunderlich: Farad Disc Roy Soc Chem 68 (79) 239

高分子性

絡み合い

- 1. Melt memory effects of heterogeneous nucleation
- 2. Crystal Growth Rate V
- 補)Gel spinning:

chain orientation with minimum intermolecular entanglements

高分子の折り畳み鎖結晶化機構

1次核形成

高分子結晶の1次核形成

 $x \equiv na = mb$ Homogeneous $\Delta G(n, \ell) = -\Delta \mu x^2 \ell + 2\sigma_e x^2 + 4\sigma x \ell$ 臨界核: $0 = \frac{\partial \Delta G}{\partial \ell} = -\Delta \mu x^2 + 4\sigma x$ $0 = \frac{\partial \Delta G}{\partial x} = -2\Delta \mu x \ell + 4\sigma_e x + 4\sigma \ell$ $x^* = n^* a = m^* b = \frac{4\sigma}{\Delta \mu}$ $\ell^* = \frac{4\sigma_e}{\Delta \mu}$

$$\Delta G^* = \frac{32\sigma^2\sigma_{\rm e}}{\Delta\mu^2}$$

高分子結晶の1次核形成

1 次核: $I_{c}^{1} \propto \beta \exp\left[-\frac{16\sigma^{3}}{3k_{B}T}\frac{1}{(\Delta\mu)^{2}}\right]$ 表面核: $I_{c}^{2} \propto \beta \exp\left[-\frac{\pi a\sigma^{2}}{k_{B}T}\frac{1}{\Delta\mu}\right] \propto V$

$$\beta \propto \exp\left[-\frac{U^{*}}{R(T-T_{\infty})}\right] \qquad \Delta \mu = \frac{\Delta h_{\rm f}}{T_{\rm M}} \Delta T$$

Umemoto, Hayashi, Kawano, Kikutani, Okui: J Macromol Sci **B42** ('03) 421

Matusita, Tashiro: J Ceram Soc Jpn 81 ('73) 500

Fast Scan Calorimetry

iPP: Schawe, J. Therm Anal Calor, 116 (2014) 1165

PA11: Mollova, Androsch, Mileva, Schick, Benhamida, Macromolecules 46 (2013) 828

PBT: Androsch, Rhoades, Stolte, Schick, Euro Polym J 66 (2015) 180

PA66: Rhoades, Williams, Androsch, Thermochim Acta 603 (2015) 103

DSC

Supaphola, Spruiell, Polymer 42 (2001) 699

高分子結晶の1次核形成

Fokin, Nikolay, Yuritsyn, Zanotto: in "Nucleation Theory and Applications"

高分子結晶の1次核形成

Al Mamun, Umemoto, Ishihara, Okui: Polymer 47 ('06) 5531

高分子結晶の1次核形成

不均一核

for $m^* < 1$ (b $\Delta \mu > 2\Delta \sigma$) for $m^* > 1$ ($b\Delta\mu < 2\Delta\sigma$) $\Delta G_{\rm H}^* = \frac{16\sigma\sigma_{\rm e}\Delta\sigma}{\Delta\mu^2}$ $\Delta G_{\rm H}^* = \frac{4b\sigma\sigma_{\rm e}}{\Delta\mu - \Delta\sigma/b}$ $\sim rac{4b \sigma \sigma_{
m e}}{\Delta \mu}$ for $b\Delta\mu \gg \Delta\sigma$

Urushihara, Okada, Watanabe, Toda, Kawamoto, Hikosaka: Polymer J 41 ('09) 228

高分子結晶の1次核形成

不均一核(融液記憶効果)

Yamazaki, Gu, Watanabe, Okada, Toda, Hikosaka: Polymer 47 ('06) 6422
高分子の折り畳み鎖結晶化機構

準安定状態の役割

結晶成長先端の形態(計算機実験)

エントロピー障壁・Pinning モデル

Keller-Strobl モデル

梶モデル 相分離

エントロピー障壁モデル

Pinning $\Delta S > 0$ 準安定

Sadler, DM: Nature **326** (1987) 174 Doye & Frenkel: Phys Rev Lett **81**('98) 2160 Toda: J Chem Phys 18 ('03) 8446

PE	orthorhombic	hexagonal
PVDF-TrFE	orthorhombic	hexagonal
i-PB1	torigonal	tetragonal
i-PP	monoclinic	meso

準安定相(例:PE 高温高圧下)

Orthorhombic

Hexagonal

Sliding Diffusion

Wunderlich, Arakawa: J Polym Sci A2 ('64) 3697 Bassett, Block, Piermarini: J Appl Phys 45 ('74) 4146 Hikosaka: Polymer 28 ('87) 1257 Rastogi, Hikosaka, Kawabata, Keller: Macromolecules 24 ('91) 6384

高圧(PE伸びきり鎖結晶)

成長先端の準安定相?

融解線と結晶化線

Gibbs-Thomson

G-Tプロット (融解線)

$$T_{\rm M} = T_{\rm M}^0 - \frac{C}{d_{\rm c}}, \quad C = \frac{2\sigma_{\rm e}T_{\rm M}^0}{\Delta h_{\rm f}}$$

結晶化線 $T_{\rm c} = T_{\rm M}^0 - \frac{1}{\gamma}\frac{C}{d_{\rm c}}$

A. Toda, K. Taguchi, K. Nozaki, M. Konishi, 2014, Polymer, 55, 3186

準安定相の役割

「1次核形成」前の誘導期

密度とコンフォメーションのカップリング 過冷却液体

- → ミクロ相分離(準安定)
- → 1次核形成の可能性

光散乱 X線小角散乱 X線広角回折

Imai, Kaji, Kanaya, Sakai : Phys Rev B52 ('95) 12696

PE	orthorhombic	hexagonal
PVDF-TrFE	orthorhombic	hexagonal
i-PB1	torigonal	tetragonal
i-PP	monoclinic	meso
	PE PVDF-TrFE i-PB1 i-PP	PEorthorhombicPVDF-TrFEorthorhombici-PB1torigonali-PPmonoclinic

相分離1:2相共存

相転移点 (p_0, T_0) で、一定体積 V_0 ($V_A < V_0 < V_B$)下での A-B 2相の共存

 $\mu_{\mathrm{A}}(T_0, p_0) = \mu_{\mathrm{B}}(T_0, p_0) \qquad \mu = f + p_0 v \qquad p_0 = -\frac{f_{\mathrm{A}} - f_{\mathrm{B}}}{v_{\mathrm{A}} - v_{\mathrm{B}}} = -\frac{\partial f_{\mathrm{A}}}{\partial V} = -\frac{\partial f_{\mathrm{B}}}{\partial V}$

$$F(T,V) = U - TS \qquad dF = S \, dT - p \, dV \qquad \left(\frac{\partial F}{\partial V}\right)_T = -p < 0 \qquad \left(\frac{\partial^2 F}{\partial V^2}\right)_T = -\frac{\partial p}{\partial V} > 0$$

