電磁気力と特殊相対性理論

以下では、特殊相対性理論の枠内において、力学と電磁気学の基礎方程式が慣性系間の座標変換で不変に保たれることを示す。さらには、電場と磁場が統一して理解されること、すなわち、運動する系から見た場合には、電場と磁場は相互に変換され、例えば電流（運動する電荷）のつくる磁場は運動する電荷の速度が十分遅い場合でも生じる電気力の相対論的な効果として理解されることを示す。

(参考書) 太田浩一「電磁気学の基礎Ⅱ」東京大学出版會, 2012 (ISBN: 4130626140)

ニュートンの運動の3法則
第1法則：慣性の法則
第2法則：ニュートンの運動方程式 $ma = F$
第3法則：作用反作用の法則（運動量保存則）

相対性原理
全ての慣性系で力学法則が同じ形になることを要請する原理。
慣性系とは慣性の法則（第1法則）が成り立つ座標系のことである。
一つの慣性系に対して一定の速度で移動する座標系も慣性系である。
ニュートンの運動の第2法則は（$F = 0$ のとき $a = 0$ となるような，第1法則が成り立つ）慣性系の上で（$v \ll c$ のときに）成立する法則である。

ガリレイ変換
S'系 (x', y', z') の原点 O'が S系 (x, y, z)の原点 Oに対して x軸方向に一定速度 vで移動しているとき、
\[
\begin{align*}
 x' &= x - vt \\
 t' &= t
\end{align*}
\]あるいは、
\[
\begin{align*}
 x &= x' + vt' \\
 t &= t'
\end{align*}
\]

ガリレイ変換による速度の合成則
\[
\frac{dx'}{dt'} = \frac{dx}{dt} - v \quad \Rightarrow \quad V' = V - v \quad \Rightarrow \quad V = V' + v
\]

また、
\[
\frac{d^2x'}{dt'^2} = \frac{d^2x}{dt^2} - \frac{dv}{dt} = \frac{d^2x}{dt^2} \quad \Rightarrow \quad m\frac{d^2x}{dt^2} = F \quad ならば \quad m\frac{d^2x'}{dt'^2} = F
\]
すなわち、ニュートンの運動方程式（第2法則）は、ガリレイ変換による相対性原理を満たす。
(1) ローレンツ変換

光速度不変の原理 \[
\begin{align*}
(x, c, t) &= (x', c, t') \\
\therefore x &= ax + bt \\
x' &= ax - bt
\end{align*}
\]
電磁気学の基礎方程式であるマクスウェル方程式には光速度 \(c = (\varepsilon_0 \mu_0)^{-1/2} \) が定係数として現れる。マクスウェル方程式を慣性系間の座標変換で不変に保つためには、光速度が全ての慣性系で一定である必要がある。
実測でも一定であった（マイケルソン・モーリーの実験）。

ローレンツ変換（時刻も変わり、変換により時間と空間が混合する変換）

光速度不変の原理を満たす変換則であり、力学と電磁気学の基礎方程式に関する相対性原理（特殊相対性原理）における変換則である。

各慣性系は対等なので、順変換・逆変換が同じ形式となるように、線形変換になる。そこで、静止系 \(S \) と静止系に対し速度 \(v \) で移動する座標系 \(S' \) について、変換則を、

\[
\begin{align*}
(x, a, x, b, t) &= (x', a, x, b, t') \\
x' &= ax + bt \\
x &= ax - bt
\end{align*}
\]
とする。一方の原点を他方から見たとき、

\[
\begin{align*}
(x', a, x, b, t) &= (x', a, x, b, t') \\
x' &= (b/a) \times t + vt \\
\therefore (b/a) &= v
\end{align*}
\]
または、光速度不変の原理から、

\[
\begin{align*}
ct &= ax + bx' + bt' = ax (c+b) + t' \\
c't' &= ax - bx = (ac-b) t
\end{align*}
\]

\[
\begin{align*}
\therefore c^2 t = (ac+b) t' = (ac+b)(ac-b) t &\rightarrow c^2 = (ac)^2 - b^2 = a^2(c^2 - v^2) \rightarrow a^2 = c^2/(c^2 - v^2) \\
&\rightarrow \begin{align*}
a &= 1\left(1 - (v/c)^2\right)^{1/2} \\
b &= v\left(1 - (v/c)^2\right)^{1/2} \\
x' &= (x'/v t')/\left(1 - (v/c)^2\right)^{1/2} \\
x &= (x'/v t)/\left(1 - (v/c)^2\right)^{1/2}
\end{align*}
\]

さらに、

\[
\begin{align*}
x' &= ax - bt \rightarrow x' = (x' + vt)/\left(1 - (v/c)^2\right)^{1/2} \\
v t/\left(1 - (v/c)^2\right)^{1/2} &= (v/c)x'/\left(1 - (v/c)^2\right) + v t'/\left(1 - (v/c)^2\right) \\
t &= \left[t' + (v/c)x\right]/\left(1 - (v/c)^2\right)^{1/2}
\end{align*}
\]

同様にして、

\[
\begin{align*}
t' &= (t - (v/c)x)/\left(1 - (v/c)^2\right)^{1/2}
\end{align*}
\]

以上をまとめたものが、一つの座標軸、例えば \(x \) 軸の方向に互いに移動する座標系間の変換則であり、特殊ローレンツ変換と呼ばれている。

\[
\begin{align*}
t' &= \gamma (t - (v/c)^2 x) \\
x' &= \gamma (x - vt) \\
y' &= y \\
z' &= z
\end{align*}
\]

ただし、\(\gamma = [1 - (v/c)^2]^{-1/2} \) はローレンツ因子である。
ローレンツ収縮
速度 v で運動している物体の長さについて、静止系 S である時刻 t に両端の位置 x_1, x_2 を測定して決定した長さ $L = x_2 - x_1$ と、物体と共に速度 v で移動する座標系 S' （物体が静止している系）で測定した物体固有の長さ L_0 は、異なる。

$$L_0 = x'_2 - x'_1 = \gamma \left[(x_2 - vt) - (x_1 - vt) \right] = \gamma (x_2 - x_1) = \gamma L \rightarrow L_0 = \gamma L > L$$

すなわち、運動している物体の運動方向の長さは、固有の長さよりも短くなる。

時計の遅れ
静止系 S に対し速度 v で移動する座標系 S' 内のある位置 x' で測定した時刻を t' とする。

$$t = \gamma \left[t' + \left(\frac{v}{c^2} \right) x' \right]$$

S' 系での経過時間を $\Delta t'$, 静止系 S での経過時間を Δt とするとき,

$$\Delta t = t_2 - t_1 = \gamma \left[\left(t'_2 + \left(\frac{v}{c^2} \right) x' \right) - \left(t'_1 + \left(\frac{v}{c^2} \right) x' \right) \right] = \gamma \left(t'_2 - t'_1 \right) \rightarrow \Delta t = \gamma \Delta t' > \Delta t'$$

すなわち、時刻の測定位置 x' と共に移動し、x' が静止している系での時間間隔は、位置 x' が速度 v で移動する静止系での経過時間よりも短くなり、ゆっくりと時間が経過する。

運動する物体と共に移動し、物体が静止している座標系での時間を固有時と呼ぶ。

ローレンツ変換による速度の合成則
速度 v で x 軸方向に移動する座標系 S' の中で、物体が速度 $(V'_x, V'_y, 0)$ で $x - y$ 平面内で運動しているとき、

$$x' = V'_x t', \quad y' = V'_y t'$$

なので、静止系 S から見た物体の速度 $(V_x, V_y, 0)$ は、

$$\begin{align*}
V_x &= \frac{x}{t} = \frac{\gamma (V'_x + v) t'}{\gamma [1 + V'_x/c^2] t'} = \frac{V'_x + v}{1 + vV'_x / c^2} \\
V_y &= \frac{y}{t} = \frac{y'}{\gamma [1 + V'_y / c^2] t'} = \frac{V'_y / \gamma}{1 + vV'_y / c^2}
\end{align*}$$

特に、x 軸方向の運動 $(V, 0, 0)$ では、$V = (V' + v) / [1 + vV'/c^2] \leq c$

例えば、$V' = c$ のとき、$V = (c + v) / [1 + vc / c^2] = c(c + v) / (c + v) = c$
電荷密度と電流密度のローレンツ変換

x 軸方向に直線運動する体積 V の箱について、1）箱と共に x 軸方向に移動する座標系 S_0、2）静止系 S、3）x 軸方向に速度 v で移動する系 S' で考える。

座標系 S から見た箱の速度を V, 座標系 S' から見た箱の速度を V', とするとき, $\beta = v/c, \beta_v = V/c$ とおけば,

$$
\begin{align*}
\frac{dx}{dx'} &= dx_0[1-(V/c)^2]^{1/2}, \quad \frac{dx'}{dx} = dx_0[1-(V'/c)^2]^{1/2}, \quad V' = \frac{V-v}{1-Vv/c^2}, \\
\frac{dx'}{dx} &= dx_0[1-(V/c-v/c)^2]^{1/2}/(1\beta_v \beta), \quad \frac{dx}{dx'} = dx_0[1-(\beta_v-\beta)^2]^{1/2}/(1\beta_v \beta), \\
&= \frac{dx}{\gamma(1-vV/c^2)} \quad \because (1-\beta_v \beta)^2-(\beta_v-\beta)^2 = 1-2\beta_v \beta + (\beta_v \beta)^2 - (\beta_v-\beta)^2 + 2\beta_v \beta - \beta^2 \\
&= 1-\beta_v^2 + \beta_v^2(\beta^2-1) = (1-\beta_v^2)(1-\beta^2)
\end{align*}
$$

以上より, $(L')^3 = \frac{(L)^3}{\gamma(1-vV/c^2)}$

電荷保存則から, 総電荷 Q は変化しないはずなので, $Q = \rho L^3 = \rho'(L')^3$ より,

$$
\rho' = \rho \frac{L^3}{(L')^3} = \rho \frac{(1-vV/c^2)}{\gamma(1-vV/c^2)}, \quad \rho = \gamma(\rho - \frac{V}{c} v)
$$

電流密度は, $i_x = \rho V$, $i_x' = \rho' V'$

$$
i_x' = \rho' V' = \rho \frac{V-v}{1-Vv/c^2} = \gamma(V-v) = \gamma(i_x - \rho v)
$$

次に, $x-y$ 座標平面内で運動する体積 V の箱について, 同様に,

1) 箱と共に移動する座標系 S_0 2) 静止系 S 3) x 軸方向に速度 v で移動する系 S'を考える。座標系 S から見た箱の速度を $(V_x, V_y, 0)$, 座標系 S' から見た箱の速度を $(V_x', V_y', 0)$ とすると, 系 $S-S'$ 間のローレンツ収縮は x 軸方向のみなので,

$$
\begin{align*}
dx' &= \frac{dx}{\gamma(1-vV_x/c^2)}, \quad dy' = dy[1-(V_y/c)^2]^{1/2}
\end{align*}
$$

電荷保存則から,

$$
\rho' = \rho \frac{L^3}{(L')^3} = \rho \gamma(1-vV_x/c^2)
$$

また, $V_y' = \frac{V_y}{\gamma(1-vV_x/c^2)}$ なので, 電流密度は,

$$
i_y' = \rho' V_y' = \rho \gamma(1-vV_x/c^2) \frac{V_y}{\gamma(1-vV_x/c^2)} = i_y
$$

以上をまとめると, 電荷密度と電流密度のローレンツ変換は以下の通りである。

$$
\begin{align*}
\rho' &= \gamma(\rho - \frac{V}{c} v), \\
i_x' &= \gamma(i_x - \rho v), \\
i_y' &= \gamma(i_y' + \rho' v), \\
i_y &= i_y', \quad i_z = i_z
\end{align*}
$$
電場と磁場のローレンツ変換

1) 図のような配置で x 方向に速度 V で直線運動する平行板コンデンサーによる電場と磁場を、

$$E_x = \frac{\sigma}{\varepsilon_0}, \quad B_z = \mu_0 \sigma V$$

同じく x 方向に速度 v で移動する座標系 S' から見たとき、電荷密度のローレンツ変換と速度の合成則から、

$$\sigma' = \gamma \sigma (1 - \frac{vV}{c^2}), \quad V' = \frac{V - v}{1 - vV/c^2}$$

となるので、S' 系での電場と磁場は、

$$E'_x = \frac{\sigma'}{\varepsilon_0} = \frac{1}{\varepsilon_0} \gamma \sigma (1 - \frac{vV}{c^2}) = \gamma (E_x - vB_z)$$

$$B'_z = \mu_0 \sigma' V' = \mu_0 \gamma \sigma (1 - \frac{vV}{c^2}) \frac{V - v}{1 - vV/c^2} = \mu_0 \gamma \sigma (V - v) = \gamma (B_z - \frac{E_x}{c^2})$$

2) 同様に、図の平行板コンデンサーを x 軸周りに 90 度回転させた配置から、

$$E'_x = \gamma (E_x + vB_y) \quad B'_y = \gamma (B_y + v \frac{E_x}{c^2})$$

3) 平行板コンデンサーの平面に垂直な方向を x 軸とし、この方向に移動する系では、平行板はローレンツ収縮しないので、$\sigma' = \sigma$

$$E'_x = E_x$$

4) 図の配置で、磁場の向きを x 軸とし、この方向に移動する系では、電荷密度のローレンツ変換と速度の合成則から、

$$\sigma' = \gamma \sigma \quad V' = \frac{V}{\gamma}$$

$$B'_z = \mu_0 \sigma' V' = \mu_0 \gamma \sigma V / \gamma = B_z$$

以上をまとめると、電場と磁場のローレンツ変換は、

$$\begin{align*}
E'_x &= E_x \\
E'_y &= \gamma (E_y - vB_z) \\
E'_z &= \gamma (E_z + vB_y) \quad & B'_y &= \gamma (B_y + (v/c^2)E_x) \\
B'_z &= \gamma (B_z - (v/c^2)E_y)
\end{align*}$$

あるいは、

$$\begin{align*}
E_x &= E'_x \\
E_y &= \gamma (E'_y + vB'_z) \\
E_z &= \gamma (E'_z - vB'_y) \quad & B_y &= \gamma (B'_y - (v/c^2)E'_x) \\
B_z &= \gamma (B'_z + (v/c^2)E'_y)
\end{align*}$$
マクスウェル方程式のローレンツ変換不変性

静止系でのマクスウェル方程式は、

\[
\begin{align*}
\frac{1}{c^2} \frac{\partial E_x}{\partial t} + \frac{\partial B_y}{\partial y} - \frac{\partial B_z}{\partial z} &= \mu_0 i_x \\
\frac{1}{c^2} \frac{\partial E_y}{\partial t} + \frac{\partial B_z}{\partial z} - \frac{\partial B_x}{\partial x} &= \mu_0 i_y \\
\frac{1}{c^2} \frac{\partial E_z}{\partial t} + \frac{\partial B_x}{\partial x} - \frac{\partial B_y}{\partial y} &= \mu_0 i_z
\end{align*}
\]

\[
\begin{align*}
\frac{\partial B_x}{\partial t} + \frac{\partial E_y}{\partial y} - \frac{\partial E_z}{\partial z} &= 0 \\
\frac{\partial B_y}{\partial t} + \frac{\partial E_z}{\partial z} - \frac{\partial E_x}{\partial x} &= 0 \\
\frac{\partial B_z}{\partial t} + \frac{\partial E_x}{\partial x} - \frac{\partial E_y}{\partial y} &= 0
\end{align*}
\]

\[
\begin{align*}
\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} &= \frac{\rho}{\varepsilon_0} \\
\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} &= 0
\end{align*}
\]

ローレンツ変換による以下の偏微分の変換は、例えば

\[
\begin{align*}
\frac{\partial f}{\partial t} &= \gamma \left(\frac{\partial f'}{\partial t'} - \frac{v}{c^2} \frac{\partial f'}{\partial x'} \right) \\
\frac{\partial f}{\partial x'} &= \gamma \left(\frac{\partial f'}{\partial x'} + \frac{v}{c^2} \frac{\partial f'}{\partial t'} \right)
\end{align*}
\]

であるから、

\[
\begin{align*}
(x', y', z') &= (\gamma(x - vt), \gamma(t - (v/c^2)x), t) \\
&= \gamma(x' - vt') + \frac{v}{c^2} \frac{\partial x'}{\partial t'}
\end{align*}
\]

より、

\[
\begin{align*}
\frac{\partial}{\partial t} &= \gamma \left(\frac{\partial}{\partial t'} - \frac{v}{c^2} \frac{\partial}{\partial x'} \right) \\
\frac{\partial}{\partial x'} &= \gamma \left(\frac{\partial}{\partial x'} + \frac{v}{c^2} \frac{\partial}{\partial t'} \right)
\end{align*}
\]

となる。これらを適用すると、

\[
\begin{align*}
\frac{1}{c^2} \left(\gamma \frac{\partial}{\partial t'} - \gamma v \frac{\partial}{\partial x'} \right) E_x + \frac{\partial B_y}{\partial y'} - \frac{\partial B_z}{\partial z'} &= \mu_0 i_x \\
\frac{1}{c^2} \left(\gamma \frac{\partial}{\partial t'} - \gamma v \frac{\partial}{\partial x'} \right) E_y + \frac{\partial B_z}{\partial z'} - \frac{\partial B_x}{\partial x'} &= \mu_0 i_y \\
\frac{1}{c^2} \left(\gamma \frac{\partial}{\partial t'} - \gamma v \frac{\partial}{\partial x'} \right) E_z + \frac{\partial B_x}{\partial x'} - \frac{\partial B_y}{\partial y'} &= \mu_0 i_z
\end{align*}
\]

\[
\begin{align*}
\frac{1}{c^2} \left(\gamma \frac{\partial}{\partial t'} - \gamma v \frac{\partial}{\partial x'} \right) B_x + \frac{\partial E_z}{\partial y'} - \frac{\partial E_y}{\partial z'} &= 0 \\
\frac{1}{c^2} \left(\gamma \frac{\partial}{\partial t'} - \gamma v \frac{\partial}{\partial x'} \right) B_y + \frac{\partial E_x}{\partial z'} - \frac{\partial E_z}{\partial y'} &= 0 \\
\frac{1}{c^2} \left(\gamma \frac{\partial}{\partial t'} - \gamma v \frac{\partial}{\partial x'} \right) B_z + \frac{\partial E_y}{\partial x'} - \frac{\partial E_x}{\partial y'} &= 0
\end{align*}
\]

以下の電場, 磁場, 電荷密度, 電流密度のローレンツ変換を用いて整理すると、確かに座標系S'でも同じ形のマクスウェル方程式になる。すなわち、マクスウェル方程式はローレンツ変換によって不変である。

\[
\begin{align*}
E_x &= E_x' \\
E_y &= \gamma(E_y' + vB_z') \\
E_z &= \gamma(E_z' - vB_y') \\
B_x &= B_x' \\
B_y &= \gamma[B_y' - (v/c^2)E_z'] \\
B_z &= \gamma[B_z' + (v/c^2)E_y'] \\
\rho / \varepsilon_0 &= \gamma(p' / \varepsilon_0 + \mu_0 i_x') \\
\mu_0 i_x &= \gamma[\mu_0 i_x' + (v / c^2)p'] / \varepsilon_0 \\
i_y &= i_y' \\
i_z &= i_z'
\end{align*}
\]

例えば、

\[
\begin{align*}
\frac{1}{c^2} \left(\gamma \frac{\partial}{\partial t'} - \gamma v \frac{\partial}{\partial x'} \right) E_x + \frac{\partial B_y}{\partial y'} - \frac{\partial B_z}{\partial z'} &= \mu_0 i_x \\
\frac{1}{c^2} \gamma \frac{\partial E_x'}{\partial t'} + \frac{1}{c^2} \gamma v \frac{\partial E_x'}{\partial x'} - \gamma \frac{\partial B_y'}{\partial y'} + \frac{v}{c^2} \gamma \frac{\partial E_y'}{\partial y'} - \gamma \frac{\partial B_z'}{\partial z'} + \frac{v}{c^2} \gamma \frac{\partial E_z'}{\partial z'} &= \gamma(\mu_0 i_x' + v^2 / \varepsilon_0) \\
\frac{1}{c^2} \frac{\partial E_x'}{\partial t'} + \frac{\partial B_y'}{\partial y'} - \frac{\partial B_z'}{\partial z'} - \mu_0 i_x' + \frac{v}{c^2} \frac{\partial E_z'}{\partial y'} + \frac{\partial E_x'}{\partial y'} + \frac{\partial E_y'}{\partial z'} - \rho' / \varepsilon_0 &= 0
\end{align*}
\]

\[
\begin{align*}
\frac{1}{c^2} \frac{\partial E_x'}{\partial t'} + \frac{\partial B_y'}{\partial y'} - \frac{\partial B_z'}{\partial z'} &= \mu_0 i_x' \\
\frac{\partial E_x'}{\partial x'} + \frac{\partial E_y'}{\partial y'} + \frac{\partial E_z'}{\partial z'} &= \rho' / \varepsilon_0
\end{align*}
\]
（2）運動方程式と力

運動量保存則 → 運動している物体の質量と静止質量

https://home.hiroshima-u.ac.jp/atoda/Figs/momentum.gif

右図のように、静止座標系 S において、同一速度で逆向き $(V, -V)$ に走る同一粒子同士が弾性衝突し、x 方向の向きを変えずに y 方向に互いに反発されたときの運動量保存則を検討する。ただし、$V_y \ll V_x < c$ とする。

座標系 S': S 系の粒子1の x 方向の速度 V_x で x 方向に移動

座標系 S'': S' 系の粒子2の x 方向の速度 $-V'_x$ で x 方向に移動

粒子2の y 方向の速度を S' 系と S'' 系で比較する。S' 系での粒子2の x' 座標は固定されている ($V'_x = 0$ のので、速度の合成則 $V''_x = V'_x / \gamma < V'_x$ から S'' 系での速度 V''_y は S' 系での速度 V''_y よりも遅くなる。

粒子1と2の運動の對称性から $V'_x = V'_y$ なので、

$V'_x = V'_y / \gamma = V'_y / \gamma = V'_y [1 - (V'_x / c)^2]^{1/2} < V'_y$

運動量保存則と対称性から、静止系 S では粒子1と2の衝突前後の運動量変化の大きさは等しい。$V_y \ll c$ である y 方向の運動量変化は、S' 系でも同様のはずであり、

$2m[V'_x = 2m'_x V''_y = 2m'_y [1 - (V''_x / c)^2]^{1/2}
\rightarrow m'_y = m'_x / [1 - (V''_x / c)^2]^{1/2}$

物体が静止している時の質量を m_0 とするとき、$V'_x = V'_y = \gamma V_y \ll c$ なので $m'_0 \equiv m_0$ であり、また $V_y \ll V_x$ なので $V'_x \equiv V'_y$ であり、上式の関係は S' 系での粒子2の質量 m'_0 が、

$m'_0 = m_0 / [1 - (V''_x / c)^2]^{1/2} > m_0$

と、変化することを意味している。

すなわち、ある座標系内で速度 V で運動している物体の質量は $[1 - (V / c)^2]^{1/2}$ の割合で重く見える。

$m = m_0 / [1 - (V / c)^2]^{1/2} > m_0$

物体と共に移動し、物体が静止する座標系での質量 m_0 を静止質量あるいは固有質量と呼ぶ。
運動方程式
低速極限ではニュートンの運動方程式と一致するよう、「運動量の時間変化率は外力に等しい」とする以下の運動方程式が成り立つ。

\[F = dp/\,dt = d(mV)/\,dt \]

例えば、速度 \(v \) で移動する座標系 \(S' \) の中で同じ向きに直線運動する物体の速度が、初速 \(V_0' = 0 \) で、\(\Delta t' \) 後に \(V'_1 = (\Delta V') \) となるとき、\(V'_0 = 0 \) で \(\Delta t' \ll 1 \) では \(V'_1 \ll c \) なので、ニュートンの運動方程式

\[m_v(\Delta V'/\Delta t') = F \]

が成り立つ。
この物体の運動を静止系 \(S \) から見たとき、初速は \(V_0 = v \) で、\(\Delta t \) 後に \(V_1 \) となるとする。

\[\Delta t = \Delta t'/[1-(v/c)^2]^{1/2} \]

\(v/c \ll 1 \) かつ \(\Delta t' \ll 1 \) で \(\Delta V' = V'_1 \ll c \) とできるので、

\[V_i = (V_i' + v)/[1 + (v/V'_i / c^2)] = (V_i' + v)[1 - (v/V'_i / c^2)] = v + [1 - (v/c)^2]V'_i \]

\[\Delta V = V_i - V_0 = V_i - v = [1 - (v/c)^2]\Delta V' \]

\[m_v(\Delta V'/\Delta t') = F \]

より、

\[F = m_v \{ \Delta V/[1 - (v/c)^2] \} / \{ \Delta t/[1 - (v/c)^2]^{3/2} \} = m_v[1 - (v/c)^2]^{-3/2}(\Delta V/\Delta t) \]

\(V = V_0 \) であるから、

\[F = m_v[1 - (V/c)^2]^{-3/2}(V_1 - V_0)/\Delta t \]

ここで、以下の変形がなれたので、

\[(d/\,dt) \{ V/[1 - (V/c)^2]^{3/2} \} \]

\[= (dV/\,dt)/[1 - (V/c)^2]^{3/2} + V(-1/2)[1 - (V/c)^2]^{-1/2}(-2V/c)(dV/\,dt) \]

\[= [1 - (V/c)^2]^{-1/2} + (V/c)^2[1 - (V/c)^2]^{-3/2} \] (dV/\,dt) = \[1 - (V/c)^2]^{-3/2} \]

\[F = (d/\,dt) \{ m_vV/[1 - (V/c)^2]^{3/2} \} = d(mV)/\,dt \]

なり、確かに上記の運動方程式が静止系で成立する。

また、直線運動している物体に垂直方向の外力が作用するとき、垂直方向の初速はゼロなので、この方向には質量 \(m \) の物体に関する上記のニュートンの運動方程式が成立する。

エネルギーや質量の等価性： \(E = mc^2 \)
速度 \(0 \to V \) までに行う仕事（エネルギー） \(\Delta K \) は、

\[\Delta K = \int Fdx = \int[d(mV)/\,dt](dx/\,dt)dt = \int V d(mV) = [V d[m_vV /\,[1 - (V/c)^2]^{1/2}] \]

\[d[m_vV /\,[1 - (V/c)^2]^{1/2}] / dV = m_v /\,[1 - (V/c)^2]^{1/2} + m_v(-1/2)[1 - (V/c)^2]^{-3/2}(-2V/c) \]

\[= m_v /\,[1 - (V/c)^2]^{1/2} + m_v(V/c)[1 - (V/c)^2]^{-3/2} = m_v /\,[1 - (V/c)^2]^{3/2} \]

\[\Delta K = \int [m_vV /\,[1 - (V/c)^2]^{1/2}] dV = [m_v c^2 /\,[1 - (V/c)^2]^{1/2}] V = m_v c^2 /\,[1 - (V/c)^2]^{1/2} - m_v c^2 \]

\[\therefore (d/\,dt) [1 - (V/c)^2]^{-1/2} = (V/c)[1 - (V/c)^2]^{-3/2} \]

すなわち、エネルギー \(E \) の以下の表式が得られる。

\[E = m_v c^2 /\,[1 - (V/c)^2]^{1/2} = mc^2 \]

\(V/c \ll 1 \) で、エネルギー \(E \) は静止エネルギーとニュートン力学での運動エネルギーの和となる。

\[E = m_v c^2[1 + (1/2)(V/c)^2] = m_v c^2 + m_v V^2 / 2 \]
相対運動している2つの座標系間で成り立つ外力の変換則

静止系 \(S\) と、静止系に対し \(x\) 軸方向に速度 \(v\) で移動する座標系 \(S'\) で、ある物体の運動を観察するとき、

\[
\begin{align*}
t' &= \gamma [t - (v / c^2)x] \\
V'_x &= (V_x - v)/(1 - vV_x / c^2) \\
V'_y &= (V_y / \gamma) / (1 - vV_y / c^2) \\
m' &= m / (1 - v^2 / c^2)^{1/2} = m \gamma_v \\
E' &= \gamma_v m_v c^2 \\
p'_x &= m' V'_x = \gamma_v m_v V_x \\
p'_y &= m' V'_y = \gamma_v m_v V_y
\end{align*}
\]

ただし、\(\gamma_v = (1 - V_x^2 / c^2)^{-1/2} = [1 - (V_x^2 + V_y^2) / c^2]^{1/2}\) である。

また、
\[
\begin{align*}
1 - V_x^2 / c^2 &= 1 - \frac{(V_x - v)^2}{(1 - vV_x / c^2)^2} = \frac{(1 - vV_x / c^2)^2 - (V_x - v)^2 / c^2}{(1 - vV_x / c^2)^2} \\
&= \frac{1 - 2vV_x / c^2 + (vV_x / c^2)^2 - V_x^2 / c^2 + 2V_x v / c^2 + v^2 / c^2}{(1 - vV_x / c^2)^2} \\
&= \frac{1 - V_x^2 / c^2 - v^2 / c^2 + (vV_x / c^2)^2}{(1 - vV_x / c^2)^2} = \frac{(1 - V_x^2 / c^2)(1 - v^2 / c^2)}{(1 - vV_x / c^2)^2}
\end{align*}
\]

\[
\begin{align*}
V_y / \gamma^2 &= \frac{(V_y / c^2)(1 - V_x^2 / c^2)}{(1 - vV_y / c^2)^2} \\
1 - (V_x^2 + V_y^2) / c^2 &= \frac{(1 - V_x^2 / c^2)(1 - v^2 / c^2)}{(1 - vV_x / c^2)^2} - \frac{(V_y / c^2)(1 - V_x^2 / c^2)}{(1 - vV_x / c^2)^2}
\end{align*}
\]

\[
\begin{align*}
\gamma_v &= \gamma_v \gamma (1 - vV_x / c^2)
\end{align*}
\]

すなわち、
\[
\begin{align*}
E' &= \gamma_v \gamma (1 - vV_x / c^2) m_v c^2 = \gamma (\gamma_v m_v c^2 - v \gamma_v m_v V_x) = \gamma (E - v p_x) \\
p'_x &= \gamma_v \gamma m_x (V_x - v) = \gamma (\gamma_v m_x V_x - \gamma_v m_v v) = \gamma (p_x - v E / c^2) \\
p'_y &= \gamma_v \gamma (1 - vV_x / c^2) m_v V_y = \gamma \gamma_v m_v (V_y / \gamma) = p_y
\end{align*}
\]

また、
\[
\frac{dt'}{dt} = \gamma (1 - v/ c^2) \frac{dx}{dt} = \gamma (1 - vV_x / c^2)
\]

以上より、以下の運動方程式が各座標系において成り立つとき、

\[
\begin{align*}
\mathbf{F} &= dp / dt \\
\mathbf{F}' &= dp' / dt' \\
F'_x &= \frac{dp'_x}{dt'} = \frac{dp'_x}{dt} \frac{dt}{dt'} = \gamma \frac{d(p_x - v E / c^2)}{dt} / \gamma (1 - vV_x / c^2) = \frac{dp_x}{dt} - (v / c^2) dE / dt \\
&= \frac{F_x - (v / c^2) dE / dt}{1 - vV_x / c^2}
\end{align*}
\]
ここで、
\[E^2 = (mc^2)^2 = (m_o c^2)^2 / [1 - (V / c)^2] \]
\[E^2[1 - (V / c)^2] = E_0^2 \quad \rightarrow \quad E^2 - (mVc)^2 = E_0^2 \quad \rightarrow \quad E^2 - (pc)^2 = E_0^2 \]
∴ \[E \cdot (p \cdot p) + E_0^2 \]
\[E \cdot (dE / dt) = (dE^2 / dt) / 2 = (d(c^2(p \cdot p)) / dt) / 2 = c^2 p \cdot (d\mathbf{p} / dt) = c^2 p \cdot F \]
∴ \[(dE / dt) = F \cdot (p / m) = F \cdot V \]
以上より、

\[F_x' = \frac{F_x - (v / c^2)(\mathbf{F} \cdot \mathbf{V})}{1 - vV_c / c^2} \]

\(y \) 軸方向についても同様に、

\[F_y' = \frac{dp_y'}{dt'} = \frac{dp_y}{dt} / \gamma (1 - vV_c / c^2) \]

これらの表式から、以下の結果が得られる。
1) \(x \) 軸方向に直線運動する物体では、\(\mathbf{F} \cdot \mathbf{V} = F_x V_x \) なので、

\[F_x = F_x' \]

となり、進行方向成分の外力は座標系に依らない。
2) 座標系 \(S' \) が物体と共に速度 \(v = V_x \) で動く座標系であれば、

\[F_y' = \frac{F_y[(V_x / c)^2]^{1/2}}{1 - vV_c / c^2} \]

となる。すなわち、\(x \) 軸方向に速度 \(V_x \) で移動している物体に外力が \(y \) 軸方向に作用するとき、この運動方向に垂直に作用する力の大きさは座標系に依存する。
外力の変換則が電磁場でも成り立っていることを確認

静止系Sに対してx軸方向に速度vで直線運動している電荷Qがある。この電荷と同じ速度vで移動する座標系をS'とする。S系内で速度V, S'系内で速度V'で運動するもう一つの電荷qに作用する力について、電荷Qと共に動く座標系S'で電気力$\mathbf{F}'=q\mathbf{E}'$であるが、静止系Sで作用する力\mathbf{F}については、前述の外力の変換則により以下のように表される。

\[
F_x = F_x' + \frac{(v^2/c^2)(V' \cdot \mathbf{V}')}{1 + vV'/c^2} = F_x' + \frac{(v^2/c^2)(V' - v)}{(1 + vV'/c^2)(1 - V'/c^2)}
\]

\[
F_y = \gamma \left[F_y' - \frac{(v^2/c^2)V'V_y}{1 + vV'/c^2} \right] = \gamma \left[F_y' - \frac{(v^2/c^2)V'V_y}{1 + vV'/c^2} \right] = F_y + (\gamma/c^2)v(F_yV_y + F_yV_z)
\]

\[
F_z = \gamma F_z' + [V \times (\gamma/c^2)(v \times \mathbf{F}_z)]_0
\]

ただし、以下の関係を用いた。

\[
v = (v, 0, 0) \quad \mathbf{V}' = (V_x', V_y', V_z') \quad \mathbf{V} = (V_x, V_y, V_z)
\]

\[
V_x' = \frac{V_x - v}{1 - vV'/c^2} \quad V_y' = \frac{V_y}{1 - vV'/c^2} \quad V_z' = \frac{V_z}{1 - vV'/c^2}
\]

\[
F_x' = \frac{F_x' + (v^2/c^2)(V' \cdot \mathbf{V}')}{1 + vV'/c^2} \quad F_y' = \frac{F_y' + (v^2/c^2)(V' \cdot \mathbf{V}')}{1 + vV'/c^2} \quad F_z' = \frac{F_z'}{1 + vV'/c^2}
\]

\[
\mathbf{F}' \cdot \mathbf{V}' = F_x' V_x' + F_y' V_y' + F_z' V_z' = F_x' (V_x - v) + F_y' V_y' / \gamma + F_z' V_z' / \gamma
\]

\[
\mathbf{V} \times (v \times \mathbf{F}_z) = (V_x, V_y, V_z) \times [(v, 0, 0) \times (0, F_y', F_z')] = (V_x, V_y, V_z) \times (0, -vF_y', vF_z')
\]

\[
\gamma^2 (1 - vV'/c^2) = 1
\]

\[
\gamma^2 (1 - vV'/c^2)(1 + vV'/c^2) = 1 - vV'/c^2
\]

すなわち、静止系Sでは、$\mathbf{F} = \mathbf{F}_S' + \gamma \mathbf{F}_S' + \mathbf{V} \times (\gamma/c^2)(v \times \mathbf{F}_S')$ ただし、$\mathbf{E} = \mathbf{E}_S' + \gamma \mathbf{E}_S' \quad \mathbf{B} = (\gamma/c^2)(v \times \mathbf{E}_S')$

静止系S内で速度Vで運動する電荷qに作用する力としての磁場\mathbf{B}は、もう一つの電荷Qが速度vで動くこと（電流）による電場と相対的な効果（$\gamma/c^2)(v \times \mathbf{E}_S')$であることが分かる。動く電荷$Q$によりつくられる磁場は、電荷$Q$の速度$v$が光速度よりも十分遅くても作用する相対的な効果である。

このように、電荷Qと共に動く座標系S'では電荷Qによる静電場\mathbf{E}'のみが電荷qに作用する一方で、静止系Sでは動いている電荷Qが電場\mathbf{E}と磁場\mathbf{B}により電荷qに作用すると、$\mathbf{F} = dp/dt$を前提とした前述の外力の変換則が電磁場でも成り立っていることが確認される。