The Use of Dynamic Geometry Software by High School Teachers in Vietnam: Analysis from Case Studies

Nguyen Chi Thanh
CICE Visiting Professor
Associate Professor at the Faculty of Teacher Education,
University of Education, Vietnam National University, Hanoi, Vietnam

Hiroshima University, the 8th March 2013
Plan

- Some remarks from the 1rst seminar
- Introduction DGS
- An institutional analyse: actual situation in Vietnam
- Teacher professional development
- Conclusion
Some remarks from the 1rst seminar

- High school teacher (HST) training: 3 models
- No specific content in ICT use in pre-service teacher training
- No specific (or very little) in computer software in teaching and learning

Pre-in service teacher are mostly weak in presentation skill, ICT use skill, report elaboration skill and real life problem solving skill. (Dinh Quang Bao, 2011)

- In despite of some positive modification recently made, mathematics curriculum at high school remains academic, formal and “skillful” based orientation
- Very strong institutional recommendation in terms of ICT use and integration in mathematic education
Plan

- Some remarks from the 1rst seminar
- Introduction DGS
- An institutional analyse: actual situation in Vietnam
- Teacher professional development
- Conclusion
What is expected from technology?

- Must help students to adapt to the technological world
- Must help to renew pedagogical practices, must provide new teaching tools, for visualising, communicating…
- Must make teaching and learning easier and better
- Must allow students to master current math practices
- Must save teaching and learning time
- Must help to understand mathematical concepts, must increase students’ math power
Why Dynamic Geometry Software (DGS) ?

<table>
<thead>
<tr>
<th>Web</th>
<th>Hình ảnh</th>
<th>Bản đồ</th>
<th>Mua sắm</th>
<th>Video</th>
<th>Nhiều hơn</th>
<th>Các công cụ tìm kiếm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Search Result 1

Bài viết học thuật cho ICT + mathematic education
- Science, ICT and mathematics education in rural and ... - Lyons - Trích dẫn 49 bài viết
- Smith's inquiry into post-14 mathematics education - Smith - Trích dẫn 139 bài viết
- ... and mathematics education: A multidimensional study ... - Lagrange - Trích dẫn 94 bài viết

Search Result 2

Bài viết học thuật cho geometry software mathematics education
- Geometry software and their evolving mathematical ... - Jones - Trích dẫn 157 bài viết
- Mathematics and geometry education with ... - Kaufmann - Trích dẫn 171 bài viết
- geometry, algebra and calculus in the software system ... - Hohenwarter - Trích dẫn 34 bài viết
Why Dynamic Geometry Software (DGS)?

Over the last two decades, DGS has become one of the most widely used pieces of software in schools and colleges all over the world (there are versions of the software in French, German, Japanese, Spanish and Swedish etc.).

In terms of research, Sträßer (2001) thinks that DGS may be one of the best, if not the best, researched type of software within mathematics education research. In respect of geometry in secondary schools, Hollebrands (2003) and colleagues consider DGS research to be the sort of software research that offers most insight into its use in the classroom.
A statistic figure about DGS (Wikipedia 2013)

2D programs
3.1 C.a.R.
3.2 CaRMetal
3.3 Cabri II Plus
3.4 Cinderella
3.5 Euklid DynaGeo
3.6 Eukleides
3.7 Dr Genius
3.8 Dr. Geo
3.9 Gambol
3.10 GCLC
3.11 GeoGebra
3.12 Geogebra
3.13 Geometry Expressions
3.14 The Geometer’s Sketchpad
3.15 Geometrix
3.16 Geonext
3.17 The Geometric Supposer
3.18 Géoplan-Géospace
3.19 GeoProof
3.20 GEUP
3.21 GRACE
3.22 iGeom
3.23 Jeometry
3.24 Isard
3.25 Kig
3.26 Kgeo
3.27 KmPlot
3.28 KSEG
3.29 Non-Euclid
3.30 OpenEuclide
3.31 Sphaerica
3.32 Live Geometry
3.33 TracenPoche
3.34 Tabula
3.35 Tabulae
3.36 Wingeom

3D programs
4.1 Archimedes Geo3D
4.2 Cabri 3D
4.3 Euler 3D
4.4 Geometria
4.5 Geomview
4.6 GEUP 3D
4.7 PyGeo
4.8 JavaView
4.9 SingSurf

2D DGS: 36
3D DGS: 9
Plan

- Some remarks from the 1rst seminar
- **Introduction DGS**
- An institutional analyse: actual situation in Vietnam
- Teacher professional development
- Conclusion
Introduction to DGS

- **Interactive geometry software** (or Interactive Geometry Software IGS, or Dynamic Geometry environments, DGE) are computer programs which allow one to create and then manipulate geometric constructions, primarily in plane geometry. In most DGS, one starts construction by putting a few points and using them to define new objects such as lines, circles or other points. After some construction is done, one can move the points one started with and see how the construction changes.

- DGS provides a range of tools for constructing geometric objects from a range of ‘primitive’ objects (such as points, segments, lines, circles etc.). The tools available in the software include ‘classical’ constructions (midpoint, perpendicular, parallel, etc.) as well as transformations (reflect, rotate, translate, etc.).
Generalities about a DGS: Cabri software

Cabri is flexible ...
- Teachers can customise menus to display only relevant tools
- Add macros to any menu to automate steps
- Redefine points or objects

and very powerful ...
- Display loci of points or objects, loci of loci, and intersections with loci!
- Create objects involving elements at infinity
- Equation tool can obtain the equation of a locus for algebraic curves!

.../Continued
Cabri: User interface
Example 1

We will use one of the tools from the creation toolboxes highlighted above to create a quadrilateral.
Example I

This toolbox creates points.
Example I

This toolbox creates objects which are straight or have straight sides.
Example I

This toolbox creates objects which are curved or have curved sides.
Example I
Example I
Example I

A menu of the tools which are in this toolbox will appear.

There isn't a quadrilateral tool.

However, a quadrilateral is a type of polygon, so drag the cursor to Polygon.
Example I

The polygon tool icon is now shown.

Release the mouse button.
Example I

Click and hold down to see all tools, then drag to the Label tool and release.

This icon is in fact already showing when Cabri opens – you could just click on it to activate it.
Example I
Example I

Experiment with the creation toolboxes.

While creating an object, click to either create new points or select existing points.

Never drag while creating an object!

Some examples are on the next slide.
To do now...

Lines, rays and circles can be created with either one or two points.

These points were created before using the line, ray or circle tool.

Try to create these.
The Euler line in a triangle

We will construct a general triangle ABC,

- then its three medians (the lines that join a vertex to the midpoint of the opposite side)
- Next the tree altitudes of the triangle (the lines through each vertex in turn, perpendicular to the opposite side)
- Finally the tree perpendicular bisectors (lines perpendicular to each side, through the midpoint of the side)
- The Euler line of the triangle
The Euler line and...the Euler circle

Next, construct the nine-point circle for the triangle. This is the circle whose centre is at the midpoint of OH, and which passes through the midpoints of the sides: A’, B’ and C’ the foot of each altitude, and the midpoint of each the line segments HA, HB, HC.
Example II

Now reflect the shape in this line.
Example II

We will now add an additional reflection line at right angles to the original line.
Example III

We will first create a point through which to rotate the quadrilateral.
Example IV

Let's start by creating a centre of rotation.

and a number for the angle of rotation.
Example IV
Example IV

Numerical Edit

Now rotate.
Example V

First, we need a vector to give the direction and distance of the translation.
Example V

Now we can translate the quadrilateral by this vector.
Example VI

First, create a centre of enlargement.

and a number…
Example VII

and a number… and now enlarge the quadrilateral.
Example VIII

Using the expression tool to create a rectangle of constant area with Cabri 2 plus

We will start with two perpendicular lines intersecting at P.

Q is free to move along this line.

This number will be the area of the rectangle.
Example VIII

We will now create an expression to use to calculate the length of a rectangle given its area and width.

PQ = 3.53 cm

Note: the Calculator tool could also be used here.
Example VIII

Now to apply this expression to our values for area and width (the length PQ).

Area = 10

\[\text{a/w} \]

PQ = 3.53 cm

157th CICE Open Seminar
Example VIII

Select numbers in alphabetic order not order of occurrence in the expression.

Area = \(\frac{15}{\text{with this number for a}} \)

\(PQ = 3.53 \text{ cm} \)
Example VIII

We will now use the Compass tool to construct all the points which are 2.83 cm from P.

Area = 10

\[\frac{a}{w} = \frac{2.83}{\text{PQ} = 3.53 \text{ cm}} \]
Example VIII

Area = 10

a/w

2.83

PQ = 3.53 cm
Example VIII

We will find the fourth vertex by using the fact that the diagonals of a rectangle bisect each other.

Area = 10

How else could you find the fourth vertex?
Example VIII

Let’s check by measuring the area and the perimeter of this figure.

Area = 10

\(\frac{a}{w} = 2.83 \)
Example VIII

157th CICE Open Seminar
Example VIII

Let's drag Q and see how this affects the perimeter.

Area = 10

\(a/w \)

Perimeter = 12.73 cm

PQ = 3.53 cm

157th CICE Open Seminar
Example VIII

Area = 10

Where does the minimum perimeter occur?

The maximum perimeter?
Cabri 3D: the unique 3D Interactive geometry software

- Example 1
- Example 2
Introduction to DGS

With a DGS in general, we can do followings:

• General geometric constructions
• Macros
• Loci
• Measurements and calculation
• Graphics Export Formats
• Object attributes
• Proof
Introduction to DGS: a historical perspective

- End of 70s and in the 80s “significant” software started. They were the result of university type research and spread through pioneering teachers.

- Let us think in first place of Logo developed and spread under Seymour Papert’s impulse at Media Lab-MIT, USA.

- Later we have had software like Geometric Supposer (MIT) and rather soon, authentic dynamic geometry software, came to live, say (historically):
 - Cabri (University of Grenoble – France) and
 - GSP (Swarthmore College – USA)
Introduction to DGS: a historical perspective (Laborde J-M, 2010)
From high perspective does DGS really matter?

- When participating in conferences on Computer in Education you learn just (very often):
 - How wonderful the use of ICT is;
 - How much kids learn through technology;
 - How good my (i.e. presenter’s) DGS is good;
 - …

- Looking at actual data about the use of ICT shows that in fact, mostly everywhere, ICT use is only marginal (even if in some country it is officially part of the curriculum) - best cases 20% - (Laborde J-M, 2010)

- Why such an apparent contradiction?
Actually DGS matters

- In various countries some politicians claim that
 - the use of technology is a big mistake
 - one should come
 + come Back to Basics (USA);
 + learn long division (GB);
 + learn to extract square roots by hand (France).
Plan

- Some remarks from the 1rst seminar
- Introduction DGS
- An institutional analyse: actual situation in Vietnam
- Teacher professional development
- Conclusion
Shared research claims

- There are several technological environments very promising in terms of learning
- The usual teaching practice does not take full advantage of these possibilities
- A critical element in the integration of technology into usual teaching is the teacher (Artigue, Bottino and Furinghetti, Guin and Trouche, Monaghan, Ruthven, Sutherland…)

157th CICE Open Seminar
An institutional analyse

- Teacher training programme
- Mathematic curriculum at high school: no or few activity with DGS

<table>
<thead>
<tr>
<th>Textbook</th>
<th>Without others ICT (calculator, computer)</th>
<th>With DGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edition 2000</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Edition 2005</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

- Teacher use
 - Example 1 (support of powerpoint presentation)
 - Example 2 (illustration of geometrical properties)
 - Example 3 (exploring geometrical properties)
Reasons mentioned by teachers

• Benefit for teachers
 • Facing the students
 • More comfort (no pain in arms and back)
 • Clean, precise and beautiful figures
 • Saving construction and time

• Benefit for students
 • Saving construction and time
 • Multiplying cases
 • Amplified Visualization
How does a teacher usually design tasks?

- Duplication from pencil environment to DGS environment
- Adaptation from text book
- ‘’do-it-yourself” from the available resources
- Very few teachers design tasks from scratch
How does a teacher usually design tasks?

- The most immediate use by teachers is just “showing” geometrical theorems: teachers manipulate themselves or the students are allowed to have a restricted manipulation (dragging a point on a limited part of line)
 - It would take a long time in order for them to master the package and I think the cost benefit does not pay there… And there is a huge scope for them making mistakes and errors, especially at this level of student… and the content of geometry at foundation and intermediate level doesn’t require that degree of investigation »
 - The student is a spectator of beautiful figures (showing the power of the software) or of properties part of the content of the curriculum (quoted by Laborde 2002)

- Sometimes the students must formulate the theorems
Three possibilities

- Three possibilities for the design of tasks
 - using ready made tasks for technology
 - adapting tasks designed for paper and pencil
 - designing his/her own tasks
Designing technology based tasks is problematic

- Designing technology based tasks is out of the range of the ordinary activities of teachers
 - Limited number of such tasks in textbooks
 - Limited number of resources
- Including the new element “technology” is not just adding it but affecting all dimensions of the design activity
- And introducing a hidden dimension: the instrumental dimension
Plan

- Some remarks from the 1rst seminar
- Introduction DGS
- An institutional analyse: actual situation in Vietnam
- Teacher professional development
- Conclusion
Integration of ICT

- A change in depth in:
 - content presentation
 - forms of activity

(Laborde C., 1998)
Integration of ICT

Research in the intégration of ICT

Experimental situations

Take into account:
- research result
- Reference situation

Teacher professional development in the integration of ICT
An literature review on the field (Artigue, Lagrange, Laborde 2000)

Corpus : 662 publications

- E : Primery school
- C : Lower secondary school
- L : Upper secondary school
- S : Secondary school
- U : Higher Education
- FE : Teacher professional development 5%

157th CICE Open Seminar
Dynamic geometry: major specific features

- Dragging is one of the distinctive features of DG
- Geometric tools for constructing figures preserving their properties when dragged
- Three possible uses of dragging
 - Dragging for seeing
 - Dragging for conjecturing
 - Dragging for validating/invalidating
Importance of tasks (1/2)

stressed by research in maths education: “importance of tasks in mediating the construction of students’ scientific knowledge” (Monaghan)

• Central role in several theoretical frameworks about teaching and learning processes
 • even if they do not use the word “task” itself

• Constructivist and socio-constructivist approach: problematic tasks for the learners
 • Problem is the source and criterion for knowledge (Vergnaud)
 • Learning comes from adapting to a new situation creating a perturbation (Brousseau)
Importance of tasks (2/2)

In the praxeological approach (Chevallard)

- Knowledge used in an institution is characterized by a system of
 - tasks,
 - techniques to solve the tasks,
 - justifications of the techniques,
 - and theories from which justifications may come
Activity of designing tasks

- Design activity is complex
- Requires to coordinate various types of knowledge about maths, pupils, technology, learning
- As such it may be a tool for professional development provided that some conditions are fulfilled
Resorting to several types of knowledge (Laborde C., 2005)

- Three kinds of knowledge strongly intertwined in the design of tasks
- Mathematical knowledge
- Knowledge of DGS
- Pedagogical content knowledge
 - about mathematics teaching
 - and about the use of DGS for fostering learning
The design of tasks taking full advantage of dynamic geometry: What kinds of knowledge does it require from teachers? (Hamid C., 2013)

- S_m: mathematical knowledge
- S_i: artifact knowledge
- S_{d-i}: didactical knowledge related to the artifact implementation in a learning situation
- S_{d-m}: knowledge related to the implementation of mathematical objects in a didactical situation
A professional activity

• Designing tasks is a teacher professional activity (Robert)
• It is a complex activity involving several dimensions
 • Epistemological dimension: choosing
 • features of mathematical knowledge
 • how to use them
 • Cognitive dimension: what kind of learning does promote the task?
 • Didactic and institutional dimensions:
 • How does the task fit
 • the constraints and needs of the teaching system,
 • of the curriculum,
 • of the specific class and of its didactic past?
Key points in the anthropological approach (Chevallard Y., 1998)

- Mathematical objects are nothing absolute; they arise from institutional practices: « praxeologies »

- Praxeologies can be seen as complexes of tasks-techniques-technology-theory

- Knowing = ideoneity with institutional relationships

- The advance of knowledge goes along with the routinisation of tasks and techniques, the naturalization of knowledge
Instrumental dimension

- A tool affects the way of solving a task
- A tool is not transparent but must be appropriated by the user
- The user constructs schemes of utilization of the tool to perform tasks with the tool
- Construction process of these schemes: *instrumental genesis* (Rabardel)
- Using a tool shapes the way to do mathematics and consequently may affect mathematical knowledge constructed by the user
Instrumental dimension (Trouche 2003)

Vygotsky situates each piece of learning in a world of culture where the *instruments* (material as well as psychological) play an essential role.

Artifacts are only *propositions* exploited or not by users (Rabardel).

Two processes closely interrelated:
- the first one directed towards the artifact (*instrumentalisation*);
- the second one directed towards the subject (*instrumentation*).
Instrumental dimension (Trouche 2003)

From the artifact

Instrumentalisation

Instrumental genesis

To the instrument

Instrumentation

Constraints

New potential
Didactical situation

A-didactical situation

Knowledge -- Student -- "Milieu" -- Teacher

Didactical situation
Example of analysis of “milieu” (Laborde, 2005)

- Teaching goal:
 - make the students learn the theorem according to which an angle inscribed in a semi-circle is a right angle

Task with dynamic geometry software:
Create a circle with center O and a point A on this circle. Construct B such that [AB] is a diameter of the circle. Create a point M on the circle and the segments [AM] and [MB]. Measure the angle AMB.

Drag M on the circle. What do you observe?
Example of analysis of “milieu”

• “Milieu”:
 • Geometric figure (robust construction)
 • Feedback:
 • Invariance of the measure of the angle AMB

• Contribution to identification of elements of the theorem:
 • Varying nature of M and invariance of angle measure
 • Exteriorizing of the variable nature of M and the set on which it varies
Plan

• Some remarks from the 1rst seminar
• Introduction DGS
• An institutional analyse: actual situation in Vietnam
• Teacher professional development
• Conclusion
Conclusion

- Related to research about the integration in ICT in mathematical education, there is almost no significant result in Vietnam.
- Teacher professional development in the domain: a huge demand and a lot of effort to do.
- Some research show:
 - The integration of ICT is a long and complex process
 - Political will and the hardware are necessary but not sufficient
 - Professional development is critical for contributing to increase the confidence of teachers.
 - The role of research is crucial
 + Time for investigating different kinds of tasks
 + A better knowledge of students faced with different kinds of tasks
 - Informing professional development
• New devices (tools) are coming in Vietnam classroom:
 - Forum
 - Tablet
 - Smart interactive board

New research questions

New challenges for teacher professional development
ARTIGUE M., (2005), The instrumental approach: the institutional dimension, *Seminar at the University of Leeds*, England

LABORDE C. (2002), The design of tasks taking full advantage of dynamic geometry: what kinds of knowledge does it require from teachers?, *Conference CERME*

LABORDE J. (2010), “Does DGS matters?” , the 14th *ATCM*, Malaysia

NGUYEN C.T. (2006), « Integrate the dynamic geometry software Cabri in to the pratices of Teachers: a didactical perspective », Workshop at the 17th ICMI *Study Digital technologies and mathematics teaching and learning: Rethinking the terrain*, Vietnam