補充問題 (2011/10/27)

 $oxed{oldsymbol{59}}$ 平面上の線型変換 $f,\,g$ の表現行列がそれぞれ

$$\begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & -4 \\ 1 & 2 \end{pmatrix}$$

のとき, $g \circ f$, $f \circ g$ の表現行列をそれぞれ求めよ.

- $egin{bmatrix} oldsymbol{60} & oldsymbol{60} & 1 \ 2 & 3 \end{pmatrix}$ を表現行列にもつ平面上の線型変換 f について以下の問題に答えよ.
 - (1) f の逆変換 f^{-1} を求めよ.
 - (2) f によって点 (-1,1) に移される点の座標を求めよ.
- $oxed{61}$ 平面上の原点を回転の中心とした角度 $\frac{\pi}{6}$ の回転を f とするとき, f を 30 回合成した変換の表現行列を求めよ.
- **62** (難) 平面上において、原点を通り x 軸の正の方向とのなす角が θ である直線を ℓ とし、 x 軸に関する線対称を f、直線 ℓ に関する線対称を g とする.このとき、以下の問題に答えよ.
 - (1) 点 P(x,y) が g によって点 P'(x',y') に移るとき, P'(x',y') を x,y,θ を用いて表せ. $(ヒント: 直線 <math>\ell$ が線分 PP' の垂直二等分線であることを使え.)
 - (2) (1) を利用して合成変換 $g \circ f$ の表現行列を求めよ.

注意. $oxedel{62}$ は、平面上の回転は高々 2 つの線対称移動の合成に等しいことの証明を与えている. このことはカルタン・デュドネの定理 (の 2 次元版) として知られている.