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Abstract. We introduce the de Sitter Schwarz map for the hypergeometric differential
equation as a variant of the classical Schwarz map. This map turns out to be the dual
of the hyperbolic Schwarz map, and it unifies the various Schwarz maps studied before.
an example is also studied.

Introduction

The (original) Schwarz map for a differential equation of the form

u′′ + q1(x)u′ + q2(x)u = 0

with independent complex variable x is defined as

Sori : X ∋ x 7−→ u1(x) : u2(x) ∈ P1,

where X is a domain that the equation is defined, u1 and u2 are linearly independent
solutions of the equation, and P1 is the complex projective line. The map is multi-
valued, and the map coincides with the Schwarz map of its SL normal form (obtained by
multiplying a function to the unknown u so that the coefficient of the first derivative may
vanish).

The monodromy group of the equation is a subgroup of PGL(2, C), which acts on the
target P1. In this paper, we modify the Schwarz map of an equation in SL-form

u′′ − q(x)u = 0 (0.1)

to those having the hyperbolic 3-space and the de Sitter 3-space as targets. These spaces
have P1 in their boundaries and enjoy the natural PGL(2, C)-action. We study relations
among those Schwarz maps, and singularities of those maps.

As a typical example, we treat the differential equation E(µ0, µ1, µ∞):

u′′ − q(x)u = 0, q = −1

4
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0
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1
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)
, (0.2)

which is the SL-form of the hypergeometric equation

x(1 − x)u′′ + {c − (a + b + 1)x}u′ − abu = 0,

where
µ0 = 1 − c, µ1 = c − a − b, µ∞ = b − a;

refer to [14]. We make a detailed global study about the various Schwarz maps for
E(1/2, 1/2, 1/3), which has a dihedral group as its monodromy group.

The Lorentz space L4 is a 4-dimensional space with norm

⟨t, t⟩ = −t20 + t21 + t22 + t23, t = (t0, t1, t2, t3) ∈ L4.

Date: March 10, 2015.
2000 Mathematics Subject Classification. 53C42, 57R45, 33C05, 53A35.
Key words and phrases. hypergeometric differential equation, Schwarz map, de Sitter Schwarz map,

hyperbolic Schwarz map, derived Schwarz map.
To the memory of Professor Shoshichi Kobayashi.

1



2 S. FUJIMORI, M. NORO, K. SAJI, T. SASAKI AND M. YOSHIDA

The quotient space (L4 − {0}) /R>0 (∼= S3) is divided into five parts:

H3
± := {t ∈ L4 | ⟨t, t⟩ < 0, ±t0 > 0}/R>0,

S2
± := {t ∈ L4 | ⟨t, t⟩ = 0, ±t0 > 0}/R>0,

S3
1 := {t ∈ L4 | ⟨t, t⟩ > 0}/R>0,

hyperbolic 3-spaces, 2-spheres, and de Sitter 3-space, respectively. We can consider L4 to
be the space Herm of 2 × 2 self-adjoint matrices (h∗ = h) by the identification

L4 ∋ t = (t0, t1, t2, t3) ↔ h =

(
t0 + t3 t1 + it2
t1 − it2 t0 − t3

)
∈ Herm.

Since ⟨t, t⟩ = − det h holds, we have

H3
± = {h ∈ Herm | det h > 0, ±trace h > 0}/R>0,

S2
± = {h ∈ Herm | det h = 0, ±trace h > 0}/R>0,

S3
1 = {h ∈ Herm | det h < 0}/R>0.

These hyperbolic spaces and the de Sitter 3-space can be identified with

H3
± := {±UU∗ | U ∈ SL(2, C)} ∼= SL(2, C)/SU(2),

S3
1 := {UKU ∗ | U ∈ SL(2, C)} ∼= SL(2, C)/SU(1, 1),

respectively, where

K =

(
1 0

0 −1

)
,

and the 2-spheres can be identified with P1 by

S2
± ∋

(
σ ζ

ζ̄ τ

)
←→ ζ

τ
∈ P1 = C ∪ {∞};

refer to Section 1. For linearly independent solutions u1(x) and u2(x) of (0.1), we set

U(x) =

(
u1 u′

1

u2 u′
2

)
(x) ∈ SL(2, C), (0.3)

and define two hyperbolic Schwarz maps and two de Sitter Schwarz maps as

Shyp
± : X ∋ x 7−→ ±U(x)U(x)∗ ∈ H3

±,

SdeS
± : X ∋ x 7−→ ±U(x)KU(x)∗ ∈ S3

1.

We see that the four maps are (locally) flat fronts in the sense of [7] (see §1.3). So we
can discuss normals of the image surfaces even at a singular point of these maps. For a
point of the hyperbolic Schwarz image surface Shyp

+ (X), we correspond unit normals to
this surface. The unit normal vectors are space-like, and they turn out to be the de Sitter
Schwarz maps. The unit normals of the other hyperbolic Schwarz image surface Shyp

− (X)
defines also the de Sitter Schwarz maps. Conversely, the unit normals of de Sitter Schwarz
maps define the hyperbolic Schwarz maps. In this sense, the hyperbolic ones and de Sitter
ones are dual to each other (see §2.2).

Recall that the derived Schwarz map (c.f. [15]) is defined as

Sder : X := C − {0, 1} ∋ x 7−→ u′
1(x) : u′

2(x) ∈ P1.
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If we continue geodesically the said normals, they hit the ideal boundaries S2
±(∼= P1), and

recover the original and the derived Schwarz maps (see §2.2).

The hyperbolic and the de Sitter Schwarz maps are singular along the curve

C : |q(x)| = 1;

refer to [4]. Along the non-singular parts of the image of C, the image surfaces have
cuspidal edge singularities; so we call this curve C the cusp-line. At a singular point
of the image of C, the surfaces have swallowtail singularities or worse. Criteria of the
singularities in terms of q(x) are given in §3.2.

For a hyperbolic (as well as de Sitter) Schwarz image surface, we consider the family of
parallel surfaces. One extreme of the family is the original Schwarz image and the other
is the derived Schwarz image. The union of the singular points of members of this family
form the caustic, which is also a flat front. Regular points of the caustic correspond
to cuspidal edges of the parallel surface. Cuspidal edges of the caustic correspond to
swallowtails of the parallel surfaces; refer to [5].

As a typical example, we study the hypergeometric equation whose monodromy group
is isomorphic to the dihedral group of order 6; this is given by

µ0 = µ1 =
1

2
, µ∞ =

1

3
.

We study the singularities of the de Sitter Schwarz image and its parallel surfaces, and
the caustic of the parallel family. Those of the hyperbolic one were studied in [14, 15, 13].

As a dessert, some pictures of the de Sitter Schwarz map of the Airy equation are
shown. The hyperbolic counterpart is shown in [12]; please compare and enjoy the differ-
ence/similarity.

Part 1. Various Schwarz maps

1. Lorentz, hyperbolic and de Sitter spaces

The Lorentz space L4 is a 4-dimensional space with norm

⟨t, t⟩ = −t20 + t21 + t22 + t23, t = (t0, t1, t2, t3) ∈ L4.

Though in the introduction we defined the hyperbolic 3-space as well as the de Sitter space
as quotients of subdomains by R>0, living in the quotient space (L4 − {0}) /R>0(∼= S3),
in this section we treat these spaces as 3-dimensional subsets lying in the space L4: In
the space L4 live the hyperbolic 3-space

H3
+ = {t ∈ L4 | ⟨t, t⟩ = −1, t0 > 0} ∼= H3

+

and the de Sitter 3-space

S3
1 = {t ∈ L4 | ⟨t, t⟩ = 1} ∼= S3

1 ,

with the metric induced from L4. The former is a simply connected Riemannian manifold
of sectional curvature −1, and the latter is a simply connected Lorentzian manifold of
sectional curvature 1. We understand that the spaces H3

± and S3
1 bear the metric obtained

through the above isomorphisms.

1.1. Geodesics in S3
1 and H3

+. Let I ⊂ R and γ : I ∋ s 7→ γ(s) ∈ S3
1 be a curve in S3

1.
We have the following:

Proposition 1. Let γ be a geodesic in S3
1. Set γ(0) = p and γ̇(0) = v ∈ TpS3

1.

(1) If γ is a space-like geodesic with ⟨v, v⟩ = 1, then γ is given by

γ(s) = (cos s)p + (sin s)v.
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(2) If γ is a time-like geodesic with ⟨v, v⟩ = −1, then γ is given by

γ(s) = (cosh s)p + (sinh s)v.

(3) If γ is a light-like geodesic with ⟨v, v⟩ = 0, then γ is given by

γ(s) = p + sv.

Proposition 2. Let I ⊂ R and γ : I ∋ s 7→ γ(s) ∈ H3
+ be a geodesic in H3

+ such that
γ(0) = p and γ̇(0) = v ∈ TpH3

+ with ⟨v, v⟩ = 1. Then γ is given by

γ(s) = (cosh s)p + (sinh s)v.

Note that each geodesic is complete.

1.2. Hermitian matrix models. We can consider L4 to be the space Herm of 2 × 2
self-adjoint matrices by the identification

L4 ∋ t ↔ h =

(
t0 + t3 t1 + it2
t1 − it2 t0 − t3

)
∈ Herm.

Since

⟨s, t⟩ = −1

2
trace(kh̃), L4 ∋ s ↔ k ∈ Herm,

where h̃ is the cofactor matrix of h, and in particular, ⟨t, t⟩ = − det h, we have

H3
+ = {h ∈ Herm | det h = 1, positive definite},

S3
1 = {h ∈ Herm | det h = −1}.

1.3. Flat fronts. Let D ⊂ C be a simply connected domain (since we only study a local
theory in this section, we always assume that D is simply-connected). Let f : D → S3

1 be
a space-like immersion, that is, let f be an immersion with the induced metric If = ⟨df, df⟩
which is positive definite, and let g : D → H3

+ be also an immersion. Assume for each
p ∈ D, a unit normal vector of f at p is given by g(p). Then the first, the second and the
third fundamental forms are

If = ⟨df, df⟩ , II = −⟨df, dg⟩ (= IIf = IIg), IIIf = ⟨dg, dg⟩ (= Ig).

The Gauss curvatures Kf and Kg of f and g are given respectively as

Kf = − det II

det If
+ 1, Kg =

det II

det Ig
− 1. (1.1)

A space-like immersion f is said to be flat if Kf vanishes identically, and an immersion
g is said to be flat if Kg vanishes identically. For not necessarily regular maps, we make
the following definition.

Definition 1. (flat front)

(1) f : D → S3
1 is called a flat front if f is a space-like flat immersion on the set of

regular points, there exists a map g : D → H3
+ such that the pair (f, g) : D →

S3
1 × H3

+ is an immersion, and for any X ∈ TpD,

⟨df(X), g(p)⟩ = 0

holds for any p ∈ D. We call g a unit normal of f .
(2) g : D → H3

+ is called a flat front if g is a flat immersion on the set of regular
points, there exists a map f : D → S3

1 such that the pair (g, f) : D → H3
+ × S3

1 is
an immersion, and for any X ∈ TpD,

⟨dg(X), f(p)⟩ = 0

holds for any p ∈ D We call f a unit normal of g.
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Remark 1. In general, a map f from D to a 3-manifold M is called a front if there exists
an immersion Lf : D → T1M such that π ◦Lf = f holds and Lf is integrable with respect
to the canonical contact structure on the unit tangent bundle π : T1M → M . Since T1S3

1

is canonically identified with S3
1×H3

+, we defined flat fronts as above. See [4, 7] for details.

Now we assume that f is a flat front as in the above definition; If and II respectively
defines a positive semi-definite metric on D, and If + IIIf is positive definite. There exists
a complex coordinate x such that

II = λdxdx̄,

where λ : D → R≥0 is a non-negative function. Set

α := ⟨fx, fx⟩, β := ⟨fx, fx̄⟩.
Then the first fundamental form can be written as

If = αdx2 + 2βdxdx̄ + ᾱdx̄2.

Since det If = det II by (1.1), we have

λ = 2
√

β2 − |α|2.
By direct computations, we have the following Weingarten formula:

gx = −β

λ
fx +

α

λ
fx̄, gx̄ =

ᾱ

λ
fx −

β

λ
fx̄.

Thus the third fundamental form of f (the first fundamental form of g) is written as

IIIf = Ig = −αdx2 + 2βdxdx̄ − ᾱdx̄2.

This yields that f : D → S3
1 is a (space-like) flat front if and only if a unit normal vector

field g : D → H3
+ is a flat front, and likewise g : D → H3

+ is a flat front if and only if a
unit normal vector field f : D → S3

1 is a flat front.
We note that for a flat front f , there are two normals: g+ : D → H3

+, which is said to
be future pointing, and g− = −g+ : D → H3

−, which is said to be past pointing.
More details can be found in [1, 7].

2. Schwarz maps

2.1. Definition of Schwarz maps. Consider a differential equation (0.1)

u′′ − q(x)u = 0,

where q is holomorphic in a simply connected domain D with variable x; the notation ′

means the derivation relative to x. We define various Schwarz maps: the original one

Sori : D ∋ x 7−→ u1(x) : u2(x) ∈ P1,

the derived one

Sder : D ∋ x 7−→ u′
1(x) : u′

2(x) ∈ P1,

the hyperbolic ones

Shyp
± : D ∋ x 7−→ ±U(x)U(x)∗ ∈ H3

±,

and the de Sitter ones

SdeS
± : D ∋ x 7−→ ±U(x)KU(x)∗ ∈ S3

1,

where

U(x) =

(
u1 u′

1

u2 u′
2

)
(x) ∈ SL(2, C), K =

(
1 0

0 −1

)
,
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as in Introduction. Note that U solves the matrix-equation

dU

dx
= UA, where A =

(
0 q

1 0

)
,

and that other solutions are given by MU for certain M ∈ SL(2, C). The correspondence

U → MU induces via Sori/Sder a conformal automorphism of P1, and via Shyp
± and SdeS

±
an orientation preserving isometry of H3

± and S3
1, respectively.

Remark 2. Set v = u′. Since v′ = u′′ = qu and v′′ = q′u + qu′, v satisfies the differential
equation

v′′ − q′

q
v′ − qv = 0.

Thus the derived Schwarz map is the original Schwarz map of the equation above by
definition. Note that this equation has a singular point at a zero point of q. Around
this point, the equation has single valued independent solutions; such a singular point is
often said to be apparent. In particular, if it is a simple zero of q, then the characteristic
exponents are {0, 2}.

2.2. Relation among the Schwarz maps. For notational simplicity, we put f =
UKU∗. We find the future pointing unit normal vector field of f . First, we have

fx = U ′KU∗ = UAKU∗ = U

(
0 −q

1 0

)
U∗

fx̄ = UK(U ′)∗ = UKA∗U∗ = U

(
0 1

−q̄ 0

)
U∗.

(2.1)

Next, we set g := UU∗. Then we see that g satisfies

⟨g, f⟩ = ⟨g, fx⟩ = ⟨g, fx̄⟩ = 0, ⟨g, g⟩ = −1, trace(g) > 0.

In fact, since det U = 1, the cofactor matrix of U is just U−1 and then f̃ = −(U∗)−1KU−1;
so for example,

⟨g, f⟩ = −1

2
trace(gf̃) =

1

2
trace(UKU−1) = 0,

and so forth. Thus g gives the future pointing unit normal vector field of f .

Furthermore, since

gx = U ′U∗ = UAU∗, gx̄ = U(U ′)∗ = UA∗U∗,

we can compute the fundamental forms of g as follows.

Ig = qdx2 + (1 + |q|2)dxdx̄ + q̄dx̄2,

IIg = (1 − |q|2)dxdx̄, (2.2)

IIIg = −qdx2 + (1 + |q|2)dxdx̄ − q̄dx̄2.

The singular set of f (the set of points in D where If = IIIg degenerates) is given by

{p ∈ D ; |q(p)| = 1}.
Similarly, the singular set of g (the set of points in D where Ig = IIIf degenerates) is also
given by {p ∈ D ; |q(p)| = 1}.

The future/past pointing unit normal vector ±g(x) is perpendicular to the surface f
in S3

1 and is tangent to the space S3
1 in L4 at each point f(x) ∈ S3

1 for x ∈ D. Let P (x)
be the unique 2-dimensional plane in L4 containing the three points (0, 0, 0, 0) and f(x)
and g(x), that is,

P (x) := {af(x) + bg(x) ; a, b ∈ R}.
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Then

P (x) ∩ S3
1 = {af(x) + bg(x) ; a, b ∈ R, ⟨af(x) + bg(x), af(x) + bg(x)⟩ = 1}.

Since

⟨af(x) + bg(x), af(x) + bg(x)⟩ = a2⟨f(x), f(x)⟩ + 2ab⟨f(x), g(x)⟩ + b2⟨g(x), g(x)⟩
= a2 − b2,

we have a2 − b2 = 1 and hence

P (x) ∩ S3
1 = {(cosh t)f(x) + (sinh t)g(x) ; t ∈ R}.

Thus P (x) ∩ S3
1 consists of the geodesic γ in S3

1 that starts at f(x) and extends in the
direction of ±g(x) (cf. Proposition 1 in Section 1.1). The plane P (x) also intersects the
upper/lower half cone

N± = {(t0, t1, t2, t3) ∈ L4 ; −t20 + t21 + t22 + t23 = 0, ±t0 ≥ 0}
of the light cone of L4 along two lines

{α(f(x) ± g(x)) ; α ∈ R>0},
which are asymptotic lines of the geodesic γ. Therefore the limiting direction of γ is
f(x) ± g(x).

We call N±/R>0 the ideal boundary of S3
1, which is identified with S2

+ ∪ S2
−. Then, the

limiting direction f(x)±g(x) can be regarded as a point in the boundary N±/R>0. Thus,
we have the following.

Proposition 3. The geodesic γ in S3
1 starting from the point f(x) in the direction ±g(x)

hits the ideal boundary N±/R>0 of S3
1 at f(x) ± g(x).

On the other hand, let g = UU∗ : D → H3
+ be an immersion and f = UKU∗ : D → S3

1

a unit normal vector field. Then by the similar arguments, we can see the following, where
the space N+/R>0 (resp. N−/R>0) is now the ideal boundary of H3

+ (resp. H3
−).

Proposition 4. The geodesic in H3
+ starting from the point g(x) in the direction ±f(x)

hits the ideal boundary N+/R>0 of H3
+ at the point g(x) ± f(x).

We next state the mutual relations among several Schwarz maps as follows. Since
f = UKU∗ and g = UU∗, we see

f + g = 2U

(
1 0

0 0

)
U∗ = 2

(
u1ū1 u1ū2

ū1u2 u2ū2

)
∈ S2

+,

f − g = 2U

(
0 0

0 −1

)
U∗ = −2

(
u′

1ū
′
1 u′

1ū
′
2

ū′
1u

′
2 u′

2ū
′
2

)
∈ S2

−;

recall that the 2-spheres are identified with P1 as

S2
± ∋

(
σ ζ

ζ̄ τ

)
←→ ζ

τ
∈ P1 = C ∪ {∞}.

The argument above and that in the previous subsection lead to the following proposition.

Proposition 5. For the de Sitter Schwarz map SdeS
+ (= f), one of the two unit normals

of the image surface at SdeS
+ (x) is future pointing and is given by Shyp

+ (x)(= g(x)), the

other is past pointing and is given by Shyp
− (x).

The geodesic curve in S3
1 passing SdeS

+ (x) with the direction Shyp
+ (x) hits the ideal bound-

ary at SdeS
+ (x) + Shyp

+ (x) ∈ S2
+, which is the image Sori(x) of the original Schwarz map.
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The geodesic curve in S3
1 passing SdeS

+ (x) with the direction Shyp
− (x) hits the ideal bound-

ary at SdeS
+ (x) + Shyp

− (x) ∈ S2
−, which is the image Sder(x) of the derived Schwarz map.

Conversely, for the hyperbolic Schwarz map Shyp
+ , the unit normals of the image surface

at Shyp
+ (x) are given by SdeS

± (x).

The geodesic curves in H3
+ passing Shyp

+ (x) with the directions SdeS
± (x) hit the ideal

boundaries at Shyp
+ (x) + SdeS

± (x) ∈ S2
+, which are the images Sori(x) and Sder(x) of the

original and the derived Schwarz maps.
The above statement with every subscript + and − switched is also true.

We remark that Sori and Sder are the hyperbolic Gauss maps for both f and g (see [7]).
From the above proposition, we have the following picutre. For each x, the eight

points ±f(x), ±g(x), f(x)± g(x), and −f(x)± g(x) are regarded as lying in the 3-sphere
(L4 − {0}) /R>0

∼= S3 = H3
± ∪ S2

± ∪ S3
1 and they are joined by the image of the geodesics

that are described in the proposition. The union of these curves form a circle.

3. Singularities of Schwarz maps

3.1. Preliminaries for surface singularities. Two map-germs χ and ψ : (R2, 0) →
(R3, 0) are said to be right-left equivalent if there exist diffeomorphism-germs σ : (R2, 0) →
(R2, 0) and τ : (R3, 0) → (R3, 0) such that τ ◦ χ ◦ σ = ψ.

A map-germ χ : (R2, 0) → (R3, 0) is called a

• cuspidal edge if χ is right-left equivalent to the map-germ

(x1, x2) 7→ (x1, x
2
2, x

3
2).

• swallowtail if χ is right-left equivalent to

(x1, x2) 7→ (x1, 3x
4
2 + x1x

2
2, 4x

3
2 + 2x1x2).

• cuspidal butterfly (A4-singularity) if χ is right-left equivalent to

(x1, x2) 7→ (x1, 5x
4
2 + 2x1x2, 4x

5
2 + x1x

2
2 − x2

1).

• cuspidal lips (resp. cuspidal beaks) if χ is right-left equivalent to

(x1, x2) 7→ (x1, 4x
3
2 + 4ex2

1x2, 3x
4
2 + 2ex2

1x
2
2), e = +1 (resp. e = −1).

Let 0 be a singular point of a map-germ χ : (R2, 0) → (R3, 0). Assume that rank
dχ|0 = 1, then there exists a non-zero vector field η on (R2, 0) such that η|p spans the
kernel of dχ|p if p is a singular point of χ. We call η the null vector field of χ.

3.2. Criteria of singularities of de Sitter and hyperbolic Schwarz maps. Let
f : D → S3

1 (resp. g : D → H3
+) be a front and let g : D → H3

+ (resp. f : D → S3
1) denote

its unit normal. Let (x1, x2) be a coordinate system on D. We define a function

δ = det

(
∂f

∂x1

,
∂f

∂x2

, g, f

) (
resp. δ = det

(
∂g

∂x1

,
∂g

∂x2

, f, g

))
,

which we call the signed area density function of f . Note that the singular set of f
coincides with the zero set of δ.

We compute the signed area density function for the de Sitter Schwarz map f = SdeS
+ =

UKU∗. Thanks to the expressions in (2.1), we have

fx × fx̄ =
i

2

(
fx f−1 fx̄ − fx̄ f−1 fx

)
=

i

2
U

(
−qq̄ + 1 0

0 1 − qq̄

)
U∗. (3.1)
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Thus it holds that

⟨fx × fx̄, g⟩ =
1

2
trace ((fx × fx̄) ḡ) =

i

4
(qq̄ − 1) trace

(
U∗ŪU∗Ū

)
,

where g = Shyp
+ = UU∗. Since trace

(
U∗ŪU∗Ū

)
̸= 0 for U ̸= 0, the signed area density

function δ of f is

δ = qq̄ − 1.

We next define a vector field η as

η = ∂x + q∂x̄.

Then ηf = 0 holds on the singular set of f by (2.1) and qq̄ = 1 on that singular set. Thus
we can take η as a null vector field for f . We remark that the vector field (1−q̄)∂x−(1+q)∂x̄

also can be taken as a null vector field as in [14, 10].

Remark 3. In the case of the hyperbolic Schwarz map g = UU∗, the signed area density
function is the same δ as above, while the null direction is ∂x− q∂x̄, which is not the same
as above. See [14, 10].

Now we compute the criteria of singularities of f . Since

ηg = gx + qgx̄ = U

(
0 2q

2 0

)
U∗

holds, we have ηg ̸= 0 on singular points. Thus the map f is always a front.
By a direct calculations, we have

ηδ = q′q̄ + q2q′

ηηδ = q′′q̄ + 3qq′q′ + q3q′′

ηηηδ = q̄q′′′ + 3(q′)2q′ + 4qq′′q′ + 4q2q′q′′ + q4q′′′.

Let p be a singular point of f , that is q(p)q(p) = 1. Since dδ = (q′q̄, qq′), we see that
dδ(p) = 0 is equivalent to q′(p) = 0. Assume that q′(p) = 0. Then we have

Hess δ =

(
q′′q̄ 0

0 qq′′

)
= qq̄q′′q′′ = q′′q′′ = |q′′|2.

Thus we can paraphrase the criteria of singularities stated in [4, Proposition 1.3] (see also
[11, Corollary 2.5]), [3, Theorem A.1] and [2, Theorem 8.2] in terms of q as follows:

Proposition 6. Assume q(p)q̄(p) = 1. Then the de Sitter Schwarz map SdeS
+ (= f) at p

is

• cuspidal edge if

q′q̄ + q2q′ ̸= 0.

• swallowtail if q′q̄ + q2q′ = 0, q′ ̸= 0 and

q′′q̄ + 3qq′q′ + q3q′′ ̸= 0.

• cuspidal butterfly if q′q̄ + q2q′ = 0, q′ ̸= 0, q′′q̄ + 3qq′q′ + q3q′′ = 0 and

q̄q′′′ + 3(q′)2q′ + 4qq′′q′ + 6q2q′q′′ + q4q′′′ ̸= 0.

• cuspidal beaks if q′ = 0, |q′′|2 > 0 and q′′q̄ + q3q′′ ̸= 0.

Furthermore, no cuspidal lips does appear.

Remark 4. The hyperbolic counterpart of this proposition is known in [14, 10]. Assume

q(p)q̄(p) = 1. Then the hyperbolic Schwarz map Shyp
+ (= g) at p is



10 S. FUJIMORI, M. NORO, K. SAJI, T. SASAKI AND M. YOSHIDA

• cuspidal edge if

q′q̄ − q2q′ ̸= 0.

• swallowtail if q′q̄ − q2q′ = 0, q′ ̸= 0 and

q′′q̄ − 3qq′q′ + q3q′′ ̸= 0.

• cuspidal butterfly if q′q̄ − q2q′ = 0, q′ ̸= 0, q′′q̄ − 3qq′q′ + q3q′′ = 0 and

q̄q′′′ − 3(q′)2q′ − 4qq′′q′ + 6q2q′q′′ − q4q′′′ ̸= 0.

• cuspidal beaks if q′ = 0, |q′′|2 > 0 and q′′q̄ + q3q′′ ̸= 0.

Cuspidal lips does not appear. Note that the condition for cuspidal beaks is common for
f and g. This means that the de Sitter Schwarz map has cuspidal beaks at a point if and
only if the hyperbolic Schwarz map has cuspidal beaks at the point.

4. Parallel surfaces and caustic surfaces

The collection of points on oriented normal geodesics of a surface S with a constant
distance from S is called a parallel surface of S. We study parallel surfaces of the image
surface of the de Sitter Schwarz map. The hyperbolic counterpart is studied in [13]; to
make the description complete, we repeat some of them.

4.1. Parallel surfaces and their limits. Parallel surfaces of the image surfaces under
the de Sitter and hyperbolic Schwarz maps, SdeS

+ and Shyp
+ , for u′′ − q(x)u = 0 are given

by

SdeS
k : X ∋ x 7−→ U(x)

 k 0

0 −1

k

U∗(x) ∈ S3
1,

and

Shyp
k : X ∋ x 7−→ U(x)

 k 0

0 +
1

k

U∗(x) ∈ H3
+,

respectively, where k ∈ (0,∞) is a parameter. Inserting the expression of U(x) in (0.3),
we have

SdeS
k (x) =

(
ku1u1 − 1

k
u′

1u
′
1 ku1u2 − 1

k
u′

1u
′
2

ku2u1 − 1
k
u′

2u
′
1 ku2u2 − 1

k
u′

2u
′
2

)
,

and

Shyp
k (x) =

(
ku1u1 + 1

k
u′

1u
′
1 ku1u2 + 1

k
u′

1u
′
2

ku2u1 + 1
k
u′

2u
′
1 ku2u2 + 1

k
u′

2u
′
2

)
.

Then, since

S2
± ∋

(
σ ζ

ζ̄ τ

)
←→ ζ

τ
∈ P1 = C ∪ {∞},

and

lim
k→0

ku1u2 ∓ 1
k
u′

1u
′
2

ku2u2 ∓ 1
k
u′

2u
′
2

=
u′

1

u′
2

, lim
k→∞

ku1u2 ∓ 1
k
u′

1u
′
2

ku2u2 ∓ 1
k
u′

2u
′
2

=
u1

u2

,

we have the following proposition.

Proposition 7. As k → 0 both the de Sitter and hyperbolic Schwarz maps tend to the
derived Schwarz map, and as k → ∞, they tend to the original Schwarz map.
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4.2. Singularities on parallel surfaces. We characterize the singularities of the mem-
bers of the parallel family of the de Sitter Schwarz map as follows (the hyperbolic coun-
terpart is given in [13]). Since

dVk = Vk

(
0 q/k2

1 0

)
dy, Vk = U

 √
k 0

0
1√
k

 ,

relative to the new coordinate y = kx, the parallel surfaces can be seen as the de Sitter
and hyperbolic Schwarz images, respectively, associated with the equation

v̈ − Q(y)v = 0, where · = d/dy and Q(y) = Q(k; y) =
1

k2
q
(y

k

)
.

Then Proposition 6 gives the characterization of singularities of the map SdeS
k :

(1) The map SdeS
k is singular along the curve {y | QQ = 1},

(2) the map has cuspidal edge singularity at a point y0 if QQ = 1 and

Q̇ ̸= 0, Q3Q̇ + Q̇ ̸= 0,

(3) swallowtail singularity if QQ = 1 and

Q̇ ̸= 0, Q3Q̇ + Q̇ = 0, Re

(
Q̈

Q2
− 3

2

Q̇2

Q3

)
̸= 0,

(4) cuspidal butterfly if QQ = 1, Q̇ ̸= 0, Q3Q̇ + Q̇ = 0 and

Re

(
Q̈

Q2
− 3

2

Q̇2

Q3

)
= 0,

...
Q/Q +

...
QQ4 − 5Q̇Q̈/Q2 − 5Q̇Q̈Q5 ̸= 0,

(5) cuspidal beaks if QQ = 1 and

Q̇ = 0, Q̈ ̸= 0, Re

(
Q̈

Q2
− 3

2

Q̇2

Q3

)
̸= 0,

where Q = Q(y0), Q̇ = Qy(y0), . . .

In fact, for example, if QQ̄ = 1 and Q̇Q̄ + Q2 ¯̇Q = 0, then

Q̈Q̄ + 3QQ̇ ¯̇Q + Q3 ¯̈Q = Q

(
Q̈

Q2
− 3

Q̇2

Q3
+ Q2 ¯̈Q

)
.

Remark 5. The cusp-line of the de Sitter and hyperbolic Schwarz maps for the equation
v̈ − Q(y; k)v = 0 is the curve |Q(y; k)| = 1 in y-plane, while this curve can be expressed
by |q(x)| = k2 in the x-plane. For the hypergeometric equation (0.2), the coefficient q is
given as

−4q(x) =
(1 − µ2

∞)x2 + (µ2
0 + µ2

∞ − µ2
1 − 1)x + 1 − µ2

0

x2(1 − x)2
.

We can read a rough picture of the cusp-lines when k tends to 0 and ∞ from that of the
curve

Ck : |q(x)| = k2

on the x-plane when k tends to 0 and ∞:

• When k → 0, the curve Ck consists of a big circle and small circles around zero(s)
of the numerator, if none of µ2

0, µ2
1 and µ2

∞ is equal to 1.
• When k → ∞, Ck tends to small circles around 0 and 1.
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Here, a circle means a simple closed curve. Indeed, in the expression of q(x) above, the
denominator is of degree 4 in x, and the numerator is quadratic with roots different from
0 and 1. The cusp-lines in y-plane can be obtained from Ck by the relation y = kx.

4.3. Caustic surfaces and their singularities. The caustic C of a space-like surface
f : D → S3

1 is the union of singular values of parallel surfaces of f . We assume that q
has no zeros on D. Then by (2.2), f has no umbilic points on D, and C consists of two
surfaces, C1 and C2, and they are parameterized as

Ci(x) = cosh ri(x)f(x) + sinh ri(x)g(x) (i = 1, 2),

where g is the Gauss map of f , and ri is determined by the identity tanh ri = −1/κi when
|κi| > 1, where κi (i = 1, 2) are the principal curvatures, namely, the eigenvalues of dg.
Let Vi be the vector fields which give the principal directions with respect to κi (i = 1, 2),
respectively. Since Vig = κiVif holds, we have

Vi(Ci) = Vi(ri) sinh rif + cosh riVif + Vi(ri) cosh rig + sinh riVig

= Vi(ri) sinh rif + (cosh ri + sinh riκi)Vif + Vi(ri) cosh rig

= Vi(ri)
(
sinh rif + cosh rig

)
,

Vi+1(Ci) = Vi+1(ri) sinh rif +
(
cosh ri + sinh riκi+1

)
Vi+1f + Vi+1(ri) cosh rig,

for i = 1, 2, and V3 = V1. Since ⟨Vif, Vi+1f⟩ = 0 holds because V1 and V2 are the principal
directions, we see that

⟨Vif, Vi(Ci)⟩ = ⟨Vif, Vi+1(Ci)⟩ = ⟨Vif, Ci⟩ = 0.

Thus the unit normal vector field of Ci can be taken as

Vif

|Vif |
.

Then we see that the signed area density function for Ci can be calculated as

det

(
Vi(Ci), Vi+1(Ci),

Vif

|Vif |
, Ci

)
= −Vi(ri)(cosh ri + κi+1 sinh ri)

|Vif |
,

and this is proportional to Vi(ri) because κi ̸= κi+1 on D. On the other hand, if Vi(ri) = 0,
then Vi(Ci) = 0. This implies that the null vector field of Ci can be taken as Vi. Thus as
we got Proposition 6 from [11, Corollary 2.5], we have:

Lemma 1. Under the above setting, let p be a singular point of Ci. Let us assume that
Ci at p is a front. Then Ci at p is

• cuspidal edge if and only if ViVi(ri) ̸= 0,
• swallowtail if and only if ViVi(ri) = 0, Vi+1Vi(ri) ̸= 0 and ViViVi(ri) = 0.

Now let us assume that f is a de Sitter Schwarz map: f = UKU∗. We rewrite the
fundamental forms If and II in the real variables dx = du + idv and q = α + iβ. Then,
wee see

If = (du dv)

(
−2α + 1 + |q|2 2β

2β 2α + 1 + |q|2

)(
du

dv

)
,

II = (du dv)

(
1 − |q|2 0

0 1 − |q|2

)(
du

dv

)
.
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Hence

det(II − κIf ) = det

(
1 − |q|2 − κ(−2α + 1 + |q|2) −2κβ

−2κβ 1 − |q|2 − κ(2α + 1 + |q|2)

)
= (1 − |q|2 − κ(1 + |q|2) − 2κ|q|)(1 − |q|2 − κ(1 + |q|2) + 2κ|q|),

which is zero precisely when κ = κ1 or κ = κ2, where

κ1 =
1 + |q|
1 − |q|

, κ2 =
1 − |q|
1 + |q|

are principal curvatures. Since |κ2| < 1 holds, there is no solution for tanh r2 = −1/κ2.
Thus we consider only the case of κ = κ1. By a computation, we see that the principal
direction with respect to κ1 is given as V1 = β∂u + i(−|q|2 + α)∂v, or equivalently, as

V1 = (−α + β + |q|2)∂x + (α + β − |q|2)∂x̄, (4.1)

where ∂x = (∂u − i∂v)/2. On the other hand, the caustic C1 is written as

C1 = cosh r1f + sinh r1g

= U

(
cosh r1

(
1 0

0 −1

)
+ sinh r1

(
1 0

0 1

))
U∗

= U

(
|q|1/2 0

0 −|q|−1/2

)
U∗.

Set

Uc = UB, B =

(
q1/4 0

0 q−1/4

)
.

Then we see that Uc ∈ SL(2, C) and C1 = UcJU∗
c . This implies that the caustic C1 is flat.

We set gc = UcU
∗
c . Since q is non-zero on D, gc is well-defined on D, and is a unit normal

of C1. Moreover, we have

Lemma 2. Under the above setting, C1 is a front.

Proof. First we show that the rank of dC1 is at least 1, namely C ′
1 ̸= O. Since C ′

1 =
(Uc)

′KU∗
c , it is enough to see (Uc)

′ ̸= O. Furthermore, since (Uc)
′ = U(AB + B′) and the

(1, 2)-element of AB + B′ is q3/4 as we will see, we see that (Uc)
′ ̸= O for q ̸= 0. We next

show that dgc(ξ) ̸= 0, for a vector ξ = ξ1∂x + ξ2∂x̄ which satisfies dC1(ξ) = 0. Since

dC1(ξ) = ξ1(UcKU∗
c )′ + ξ2(UcKU∗

c )x̄ = U
(
ξ1(AB + B′)KB∗ + ξ2BK(AB + B′)∗

)
U∗,

dgc(ξ) = ξ1(UcU
∗
c )′ + ξ2(UcU

∗
c )x̄ = U

(
ξ1(AB + B′)B∗ + ξ2B(AB + B′)∗

)
U∗,

and det U ̸= 0, it is enough to show that

ξ1(AB + B′)B∗ + ξ2B(AB + B′)∗ ̸= O

under the assumption

ξ1(AB + B′)KB∗ + ξ2BK(AB + B′)∗ = O.

Let us set

AB + B′ =

(
a11 a12

a21 a22

)
.

Then we see that

ξ1(AB+B′)KB∗+ξ2BK(AB+B′)∗ =

(
ξ1q

1/4a11 + ξ2q
1/4a11) −ξ1q

−1/4a12 + ξ2q
1/4a21

ξ1q
1/4a21 − ξ2q

−1/4a12 −ξ1q
−1/4a22 + ξ2q

−1/4a22

)
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and

ξ1(AB + B′)B∗ + ξ2B(AB + B′)∗ =

(
ξ1q

1/4a11 + ξ2q
1/4a11) ξ1q

−1/4a12 + ξ2q
1/4a21

ξ1q
1/4a21 + ξ2q

−1/4a12 ξ1q
−1/4a22 + ξ2q

−1/4a22.

)
Hence, under the condition ξ1(AB + B′)KB∗ + ξ2BK(AB + B′)∗ = O, we have

ξ1(AB + B′)B∗ + ξ2B(AB + B′)∗ =

(
0 2ξ1q

−1/4a12

2ξ1q
1/4a21 0

)
On the other hand, we have

AB + B′ =

1

4
q−3/4q′ q3/4

q1/4 −1

4
q−5/4q′

;

hence, (a12, a21) = (q3/4, q1/4) and it cannot be (0, 0) because q ̸= 0. Thus, ξ1(AB +
B′)B∗ + ξ2B(AB + B′)∗ does not vanish, which completes the proof. ¤

The same assertion for flat fronts in the hyperbolic space is shown in [5, Proposition
6.1]. See also [7, Theorem 2.9]. By Lemmas 1 and 2, we have:

Proposition 8. Under the same setting as in Lemma 2, let p be a singular point of C1,

namely, V1(κ1)(p) = V1

(
1 + |q|
1 − |q|

)
(p) = 0. Then C1 at p is

• cuspidal edge if and only if V1V1

(
1 + |q|
1 − |q|

)
̸= 0,

• swallowtail if and only if

V1V1

(
1 + |q|
1 − |q|

)
= 0, V2V1

(
1 + |q|
1 − |q|

)
̸= 0, V1V1V1

(
1 + |q|
1 − |q|

)
̸= 0,

where V1 is the vector field as in (4.1).

See [13, §4] for the case of hyperbolic Schwarz map. For investigations about caustics
of flat fronts in the hyperbolic space, see [5, 6, 8].

Part 2. Examples

5. A hypergeometric differential equation

We treat the hypergeometric differential equation (0.2) with special parameters
E(1/2, 1/2, 1/3), which has the dihedral group of order 6 as its monodromy group. A
study of the hyperbolic Schwarz map of this equation was made in [13]. In this section
we study the de Sitter Schwarz image, parallel family, the caustic surface, and especially
their singularities.

The coefficient q(x) of the equation is

q(x) = −1

4

(
3

4x2
+

3

4(1 − x)2
+

11

18x(1 − x)

)
,

and the coefficient of the parallel family is

Q = Q(y; k) = −1

4

(
3

4y2
+

3

4(k − y)2
+

11

18y(k − y)

)
.
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In the following, we express the complex variable y as s + it, where s and t are real
variables. We define several polynomials to study the cusp-line and singularities. We first
denote the numerator of the rational polynomial QQ − 1 by C, which turns out to be

C = −704t2k2 + 729k4 + 1024t4 − 1728k3s + 2752k2s2 − 2048ks3 + 2048s2t2

−124416s4t4 − 20736k4s4 + 82944k3s5 − 124416k2s6 + 82944ks7 − 82944s2t6

−82944s6t2 − 20736k4t4 − 41472k2t6 + 1024s4 − 20736s8 − 20736t8 + 248832s3t4k

−290304k2s4t2 + 248832ks5t2 − 207360s2t4k2 + 82944k3t4s + 82944t6ks

−41472k4s2t2 + 165888k3s3t2 − 2048kst2.

Then the condition QQ = 1 is equivalent to

C = 0.

We next denote by QR the real part of the numerator of Q̇ and by QI the imaginary part.
Then, the condition Q̇ ̸= 0 is

QR ̸= 0 or QI ̸= 0.

Similarly, we denote by SR the real part of the numerator of the expression Q3 Q̇+ Q̇ and

by SI the imaginary part. Then the condition Q3 Q̇ + Q̇ = 0 is

SR = SI = 0.

Furthermore, let R denote the numerator of the real part of the expression (Q̈/Q2 −
3/2 Q̇2/Q3). Then, the condition that appears in the characterizations (3) and (4) is
nothing but

R = 0 or R ̸= 0.

We omit the concrete expressions of these polynomials as they are directly computable
from the expression of the rational polynomial Q.

5.1. Positions of swallowtail singularities. The swallowtail singularities, or simply
swallowtails, are obtained by solving the system of equations

C = SR = SI = 0,

and by checking the conditions QR ̸= 0 or QI ̸= 0, and R ̸= 0. To get the solutions
of the above system, we make the prime decomposition of the radical

√
I of the ideal

I = ⟨C, SR, SI⟩. The result is
√

I = C1 ∩C2 ∩C3 ∩C4 ∩C5 where Ci are given as follows:

C1 = ⟨P1, t⟩, C2 = ⟨P2, 2s − k⟩, C3 = ⟨F1, F2, F3, F4⟩,

C4 = ⟨9s2 + 9t2 − 2, k⟩, C5 = ⟨s2 + t2, k⟩;
where

P1 = (−144s2 + 27)k2 + (288s3 − 32s)k − 144s4 + 32s2,

P2 = 9k4 + (72t2 + 19)k2 + 144t4 − 32t2,

and the polynomials F1 and F2 are given in the appendix; for the polynomials F3 and F4,
we refer to the remark below.1. Since k is positive and k ∈ C4 and k ∈ C5, we only have
to consider real zeros of C1, C2 and C3.

In Figure 1, we show the shape of curves defined by the polynomials P1, P2, and F1,
respectively.

1Prime decompositions in this paper are all done by the mathematical software Risa/Asir (Kobe
distribution) and noro pd.prime dec().
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{P1(k, s) = 0} {P2(k, t) = 0} {F1(k, s) = 0}

Figure 1. Curves defined by the polynomials P1, P2 and F1

Remark 6. The polynomial F1 is a polynomial of k and s; A rough shape of the curve
{F1(k, s) = 0} is given in Figure 1. The polynomial F2 is written in the form P (k)t2 +
B(k, s), where

P (k) = 81599993567348889600k14 − 136833550557642455040k12

−226049102009890096896k10 − 108459231085511442432k8

−19889376350114414592k6 − 26073503564166070272k4

−2883573225000796160k2 − 76773399409459200.

and B is a polynomial of k and s. The polynomials F3 and F4 are not independent of F1

and F2; we have the relations

P (k)F3 = aF2 + bF1, P (k)3F4 = cF 2
2 + dF2 + eF1, (5.1)

where a, b, c, d and e are polynomials of k and s; more precisely, c is a constant, a and b
are polynomials of k, and d and e are polynomials of k and s.

5.1.1. Swallowtails from the ideal C1. Since the swallowtails from the ideal C1 = ⟨P1, t⟩
are given by solving the equation t = P1(k, s) = 0, they lie on the s-axis. Note that a
rough shape of the curve defined by P1(k, s) = 0 is given in the first figure of the Figure 1.
Since the degree of P1 relative to s is four, the number of the solutions {s; P1(k, s) = 0}
is at most four for each k. We then compute the resultant of P1(k, s) as an s-polynomial,
which is

−1358954496k2(9k2 − 19)(243k2 + 16)2.

This vanishes only when k is equal to

k1 =
1

3

√
19 = 1.452966314.

This means that the number of the solutions {s; P1(k, s) = 0} is two, three, and four,
according to k < k1, k = k1, and k > k1.

We now check whether the solution of the equation is really a swallowtail, namely check
whether QR ̸= 0 or QI ̸= 0, and R ̸= 0. First we exclude the common zeros of the ideal
C1 + ⟨QR, QI⟩. Computation shows√

C1 + ⟨QR, QI⟩ = ⟨k, s, t⟩ ∩ ⟨9k2 − 19, 2s − k, t⟩ ∩ ⟨243k2 + 16, t, 9s2 − 9ks − 1⟩.
Since k, s, t are real and k is positive, the common solution is (k, s, t) = (1

3

√
19, 1

6

√
19, 0).

Thus, the point p1 with coordinates (s, t) = (1
6

√
19, 0), which is on the cusp-line with

k = 1
3

√
19, is not a swallowtail.

We next exclude the common zeros of the ideal C1 + ⟨R⟩. We have√
C1 + ⟨R⟩ = ⟨k, s, t⟩ ∩ ⟨k, t, 9s2 − 2⟩ ∩ ⟨9801k2 − 10640, t, 33s2 − 33ks − 19⟩.
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Since k > 0,

k3 =
√

10640/9801 = 1.041922986,

is found to be an exceptional value, for which the point p±3 : (s, t) = (a, 0), where a =
2
99

√
665 ± 19

99

√
23 is the solution of 33s2 − 33ks − 19 = 0, is not a swallowtail. Note that

this point satisfies the condition Q̇ ̸= 0, because QR ̸= 0 or QI ̸= 0 as seen in the above.

5.1.2. Swallowtails from the ideal C2. The swallowtails given by C2 = ⟨P2, 2s − k⟩ lie on
the line s = k/2. The polynomial P2(k, t) is even and of degree four relative to t and the
curve {P2(k, t) = 0} has a shape given in the middle figure of Figure 1. The resultant of
P2(k, t) as a t-polynomial is

1358954496k2(9k2 + 19)(243k2 − 16)2,

which vanishes only when k is equal to

k2 =
4√
243

= 0.2566001196.

As seen in the figure, the number of solutions of P2 = 0 is four, two, and zero according
to 0 < k < k2, k = k2, and k > k2.

In order to exclude non-swallowtail solutions, we consider the zeros of C2 + ⟨QR, QI⟩.
We have√

C2 + ⟨QR, QI⟩ = ⟨k, s, t⟩ ∩ ⟨9k2 + 19, 2s − k, t⟩ ∩ ⟨243k2 − 16, 2s − k, 243t2 − 23⟩,

and only the last one has real zeros. Hence, we see that k2 is an exceptional value and

the point p±2 : (s, t) = ( 2√
243

,±
√

69
27

) are not swallowtails.

We next consider the zeros of C2 + ⟨R⟩. We have√
C2 + ⟨R⟩ = ⟨k, s, t⟩ ∩ ⟨k, s, 9t2 − 2⟩ ∩ ⟨9801k2 + 10640, 2s − k, 9801t2 − 8303⟩.

Since any component has no real solution for k > 0, we have no exceptional value in this
case, i.e. the solutions of P2 = 2s − k = 0 when 0 < k < k2 are all swallowtails.

5.1.3. Swallowtails from the ideal C3. We first see that any common root of F1 = F2 =
F3 = F4 = 0 satisfies the condition Q̇ ̸= 0. In order to see this, we consider C3 + ⟨QR, QI⟩.√

C3 + ⟨QR, QI⟩ = ⟨k, s, t⟩ ∩ ⟨243k2 − 16, t, 9s2 − 9ks + 1⟩
∩⟨243k2 + 16, 2s − k, 243t2 + 23⟩
∩⟨2187k4 + 304, 64s2 − 64ks + 39k2, 64t2 − 23k2⟩

and see that only the second component has real solutions for which k2 is exceptional.
However, we have no real solution of 9s2 − 9ks + 1 = 0 for this k. In other words, the
condition Q̇ ̸= 0 is always satisfied.

We next see whether a solution of F1 = F2 = F3 = F4 = 0 satisfies the condition R ̸= 0.
For this purpose we consider the ideal C3 + ⟨R⟩. We have√

C3 + ⟨R⟩ = ⟨s, t, k⟩ ∩ ⟨9801t2 − 8303, 9801k2 + 10640, k − 2s⟩
∩⟨33sk − 33s2 + 19, 9801k2 − 10640, t⟩
∩⟨−435848050125k8 − 119481222825k4 + 609206272,

−106540634475k6 + 18854345700k4 + 14097778650k2

−26246410560t2 − 1108945792,

106540634475k6 + 18854345700k4 − 20659381290k2

+26246410560sk − 26246410560s2 − 1108945792⟩.
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Since k is real and positive, we do not need to consider the first and the second compo-
nents. The third component, which is already appeared in C1, shows that the value k3 is
exceptional. For the last component, the real positive root of the first polynomial only of
k is

(−8993/65610 + 3277
√

16385/2952450)1/4.

However, for this value of k, the second polynomial has no real root. Hence, the last
component is also out of consideration.

Therefore, when k ̸= k3, any common root of F1 = F2 = F3 = F4 = 0 is a swallowtail.
Let us give an instruction of solving this system of equations. Because of the equation
(5.1), for a k with P (k) ̸= 0, any root of F1 = F2 = 0 automatically satisfies F3 = F4 = 0;
hence, it is enough to solve F1(k, s) = 0 for s and then F2(k, s, t) = 0 for t.

On the other hand, the system of equations P = F1 = F2 = F3 = F4 = 0 has no
common real root: We have

C3 + ⟨P (k)⟩ = ⟨P (k), t4 + a(k)t2 + b(k), c(s, k))⟩ ∩ ⟨P (k), t4 + d(k)t2 + e(k), f(s, t, k)⟩,

where a, b, c, d, e, f are polynomials. Note that the polynomial P (k) has only one real
positive root k4 = 1.68379 . . . . By evaluating k4 with a sufficiently high precision, we find
that both t4 + a(k4)t

2 + b(k4) and t4 + d(k4)t
2 + e(k4) have no real root.

5.1.4. Summary. We have found three special values of k:

k1 =
√

19/9 = 1.452966314,

k2 =
√

16/243 = 0.2566001196,

k3 =
√

10640/9801 = 1.0419229865.

We have seen that

• The number of swallowtails by C1 is two or four, according to k < k1 or k > k1.
When k = k1, the solutions of P1 = 0 are 1

6

√
19, 1

6

√
19, 1

6
(
√

19 ±
√

46). We have

seen Q̇ = 0 for the point p1 = (1
6

√
19, 0). Hence, we really have two swallowtails

at (s, t) = (1
6
(
√

19 ±
√

46), 0). Furthermore, for k1, the point (1
6

√
19, 0) satisfies

Q̇ = 0 and we can see R ̸= 0 at this point; namely, this point is a singularity called
cuspidal beaks because of the characterization of singularities in Section 4.2.

• The number of swallowtails by C2 is four or zero according to 0 < k < k2 or
k > k2. When k = k2, the points p±2 = (s = 2/

√
243, t = ±

√
69/27) solve P2 = 0,

for which we saw that Q̇ = 0; hence, those are not swallowtails. Moreover, we can
see R ̸= 0 at these points; hence, these are cuspidal beaks.

• When k = k3, we have two singularities from both C3 and C1: p±3 : (s, t) = (a, 0),
where a = 2

99

√
665± 19

99

√
23. However, we have seen that those are not swallowtails.

Furthermore, at these points,
...
Q/Q +

...
QQ4 − 5Q̇Q̈/Q2 − 5Q̇Q̈Q5 happens to be

zero; hence, it is neither a cuspidal butterfly.

• A numerical experiment shows that the number of real solutions of the equation
F1 = F2 = F3 = F4 = 0 is four when k < k3.

5.2. cusp-lines and swallowtails of parallel surfaces of the de Sitter Schwarz
map. Parallel surfaces of the de Sitter Schwarz image of the equation u′′ − q(x)u = 0 is
the de Sitter Schwarz image of

v̈ − Q(y; k)v = 0.

We draw the figures of the cusp-lines on y-plane for several values of k in Figure 2.
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k = 0.25 k = k2 k = 0.27

k = 0.8 k = 1.02 k = k3

k = 1.42 k = k1 k = 1.6

Figure 2. Swallowtail points on the curve |Q(y; k)| = 1

White balls represent swallowtails and the black balls represent points which are limits
of swallowtails and are not themselves swallowtails. These are p1 for k = k1, p±2 for k = k2,
and p±3 for k = k3 as was summarized in Section 5.1.4. Among swallowtails, those on the
s-axis come from the ideal C1, those on the axis s = k/2, namely the symmetry axis of
the figure from the ideal C2, and the other four white balls given for the value k < k3 are
the swallowtails from the ideal C3.

See Remark 8 in the end of Section 6.4.

6. Figures of image surfaces and the image of the cusp-line

6.1. The hollow ball model of the de Sitter space. We realize the de Sitter space
S3

1 in the 3-space by the stereographic projection from the south pole (−1, 0, 0, 0) ∈ S3 :

S3 = (L4 − {0})/R>0 ∋ (t0, t1, t2, t3) 7−→ (x1, x2, x3) ∈ R3

where

xj =
tj

t0 + ∥t∥
, j = 1, 2, 3, ∥t∥ =

√
t20 + t21 + t22 + t23
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If −t20 + t21 + t22 + t23 = 0, we have

x2
1 + x2

2 + x2
3 =

t20
3t20 + 2t0

√
2|t0|

= (
√

2 ∓ 1)2,

as t0 positive or negative. Thus we have the correspondence

hyperbolic space H3
+ ←→ ball of radius

√
2 − 1

sphere S2
+ ←→ sphere of radius

√
2 − 1

de Sitter space S3
1 ←→ hollow ball bounded by balls of radii

√
2 ± 1

sphere S2
− ←→ sphere of radius

√
2 + 1

hyperbolic space H3
− ←→ outside of the ball of radius

√
2 + 1

South Pole in H3
− ←→ the point at infinity

6.2. Drawing dS-surfaces. In order to draw the total image of the map, it is convenient
to consider the map as defined on the image of the usual Schwarz image. In the present
case, the coordinate z on the Schwarz image is related with the original coordinate x by

x = (z3 + 1)2/(4z3).

We refer to [14] for this coordination. The coordinate z varies on the complex plane and
the fundamental domain relative to the monodromy group is a fan {z = reiθ; 0 ≤ θ < π/3}.

Figure 3 visualizes the images of a part of the fan {z = reiθ; 0 < r < r1, 0 < θ < π/3},
where r1 = 0.75 and r1 = 1. The outer curves show some circles of radius

√
2 + 1 and the

inner curves are those of radius
√

2 − 1 The figure changes drastically depending on the
range of the radius r.

0 < r < 0.75 0 < r < 1

Figure 3. Images of one fan

Figure 4 draws the image of the three fans {z = reiθ; 0 < r < 1, 0 < θ < π} and the
image of the six fans {z = reiθ; 0 < r < 1, 0 < θ < 2π}.

6.3. Image around a raindrop. In Figure 2 (k = 0.25), showing the cusp-line, we find
a small closed curve in the upper/lower half y-plane, call it a rain drop, carrying three
swallowtail points. We draw in Figure 5 the images of the area around this curve; here
y = s + it. Please find four swallowtails in the left figure and three in the right figure.
The image of the rain drop is a triangle with three swallowtails as its vertices.

6.4. A triangular horn on the caustic surface. When 0 < k < k2, the cusp-line
|Q(y)| = 1 has a shape as in Figure 2 (k = 0.25). We are interested in the move of the
rain drop in the upper half plane. By remark 6, it tends to the origin in y-plane and
to the zero of the rational function q(x) in the x-plane. Since the numerator of q(x) is

32(x − 1
2
)2 + 19, the limit point is x0 = 1

2
+

√
19
32

i. As we saw in Section 4.2, the map
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three fans six fans

Figure 4. Images of several fans

(s, t) ∈ [0.05, 0.20] × [0.15, 0.40] (s, t) ∈ [0.075, 0.175] × [0.15, 0.30]

Figure 5. Images around a raindrop: k = 0.25

SdeS
k tends to the derived Schwarz map when k tends to zero. The union of the image

of the rain drop for k small enough form a (singular) surface, which we call a triangular
caustic horn after the shape given in Figure 6. The apex of the horn is the image under

Figure 6. Triangular caustic horn

the derived Schwarz map of the point x0. This figure is compared with the triangluar
caustic horn in H3 drawn in Figure 7 of [13, pp 369–385].



22 S. FUJIMORI, M. NORO, K. SAJI, T. SASAKI AND M. YOSHIDA

Remark 7. The union of the triangular caustic horn in S3
1 ⊂ S3 and the triangular

caustic horn in H3
+ ⊂ S3 would form an irreducible surface in S3 with D4-singularity at

the common apex; though, we have no proof. We refer to [9] for D4-singularity.

Remark 8. In Part 2, we treated the specific hypergeometric differential equation
E(1/2, 1/2, 1/3) only. But we believe that the move of the cusp-lines and creation/extinction
of the swallowtails stated in Section 5.1.4 and Section 5.2 would be valid for the hypergeo-
metric differential equation (0.2): E(µ0, µ1, µ∞) with general parameters µ0, µ1, µ∞ ∈ R,
if the numerator of the coefficient q(x) has two imaginary (conjugate) roots; of course the
values k1, k2, k3 change. Moreover, the description above of the triangular horn on the
caustic would be also true, though of course the value of the root x0 changes.

6.5. Appendix: the polynomials F1 and F2.

F1 = 2006122600857600s8k4 − 8024490403430400s7k5 + (9654465016627200k6 + 1203673560514560k4

−3329851637366784k2)s6 + (9989554912100352k3 − 877678637875200k7 − 3611020681543680k5)s5

+(−11424613007360 − 14461566355243008k4 − 6850791135682560k8 + 6676626780979200k6

−200777373057024k2)s4 + (5802474530488320k9 − 7334885759385600k7

+401554746114048k3 + 22849226014720k + 12273874523652096k5)s3

+(−6493402335707136k6 − 438677645819904k4 − 23920283484160k2 − 1417356718283520k10

+5509803968630784k8)s2 + (12495670476800k3 + 237900272762880k5

−2444197869195264k9 − 292745252701440k11 + 2021390892564480k7)s
−255891118429440k8 − 46926482374656k6 + 442574057234529k12 + 792402203507904k10

−2409879306240k4,

F2 = (81599993567348889600k14 − 136833550557642455040k12 − 226049102009890096896k10

−108459231085511442432k8 − 19889376350114414592k6 − 26073503564166070272k4

−2883573225000796160k2 − 76773399409459200)t2

+(−26962287755526144000k4 − 175838369976778752000k10 + 15447144026603520000k6

+218204105901008486400k8)s6 + (80886863266578432000k5 + 527515109930336256000k11

−46341432079810560000k7 − 654612317703025459200k9)s5

+(44753206006209576960k2 − 43495952185766707200k4 + 95698876028480409600k10

−348929265422670336000k12 + 409164684465249976320k8 − 421071612653680459776k6)s4

+(707331786529730199552k7 − 181333319038553088000k13 + 86991904371533414400k5

+899622777448081612800k11 − 89506412012419153920k3 − 741093648797482352640k9)s3

+(105334554440364982272k4 + 359172193908134059200k14 − 114103212523105812480k6

+2469337802693672960k2 − 994615273356217738560k12 − 543300569293458309120k8

+76773399409459200 + 790225006991311413504k10)s2

+(−180586349400468139200k15 + 435701831681672688960k13 − 427401754605871997184k11

+203115819906356281344k9 − 76773399409459200k − 60581348434155405312k5

+70607260337339105280k7 − 2469337802693672960k3)s
+39803903112198017925k16 + 23812565279422021632k6 − 82976036869957840965k14

+2206479912020213760k4 − 23380372288578318336k10 + 179290388626816013280k12

−27724519559976910848k8 + 64777555751731200k2,

7. Airy equation

The most confluent hypergeometric equation is the Airy equation:

u′′ − xu = 0.
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Since q = x, it is quite easy to study the singularities of the de Sitter and hyperbolic
Schwarz maps: They are singular along the unit circle |x| = 1, and has swallowtails at the
cubic roots of ∓1, respectively. The hyperbolic one is studied in [12]. We show several
pictures of the images under the de Sitter Schwarz map of the discs with radii r centered
at the origin.

r = 1.2 r = 1.45 r = 1.5

r = 1.55 r = 1.7 r = 2

Figure 7. Image by de Sitter Schwarz map of the disc |x| < r
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